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Locally unknotted spines of Heegaard splittings

Jesse Johnson

Abstract We show that under reasonable conditions, the spines of the
handlebodies of a strongly irreducible Heegaard splitting will intersect a
closed ball in a graph which is isotopic into the boundary of the ball. This
is in some sense a generalization of the results by Scharlemann on how a
strongly irreducible Heegaard splitting surface can intersect a ball.
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1 Introduction

The goal of this paper is to understand how a strongly irreducible Heegaard
splitting of a manifold M intersects an arbitrary closed ball in B ⊂ M . Intu-
itively, a strongly irreducible splitting is as efficient as possible so the intersec-
tion should be very simple.

This problem was first studied by Scharlemann [4], who showed that under
certain conditions, the splitting surface will intersect B as the boundary of a
neighborhood of a graph on n points which is isotopic into ∂B .

We will look at how the spine of a Heegaard splitting intersects B . In particular,
we will show that under reasonable conditions, the pieces of the spine inside
the ball will be unknotted, i.e. simultaneously isotopic into the boundary of the
ball.

We will begin by generalizing the notion of a tangle. For a graph T , let ∂T be
the set of valence-one vertices.

Definition 1.1 Let B be a closed ball. A graph tangle is a graph T (not
necessarily connected) properly embedded in B , i.e. such that any valence-one
vertices are in the boundary of B .
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Definition 1.2 A graph tangle T is unknotted if there is an embedding of
T × [0, 1] such that T ×{0} maps to T and (T ×{1})∪(∂T × [0, 1]) is embedded
in ∂B . In other words, an unknotted graph tangle can be isotoped into the
boundary of B .

Definition 1.3 Let G be a graph and let P ⊂ G be a finite collection of
points, disjoint from the vertices of G, which separate G. A component of
G \ P will be called a cut graph of G.

Let M be a compact 3-manifold. Let B be a ball embedded in M and let K
be a graph embedded in M such that B ∩ K is non-empty.

Definition 1.4 A trivial cone of K with respect to B is a cut graph C of K
(usually a cone on two or more points) and an embedding of C × I such that
C ×{0} = C , (C ×{1})∪ (∂C × I) ⊂ ∂B , the interior of C × I is disjoint from
K and near (C × {1}) ∪ (∂C × I), C × I lies outside of B . (Here, I = [0, 1].)

Definition 1.5 A graph, K , (not necessarily connected) in a manifold, M ,
is locally unknotted if for any closed ball B such that there are no trivial cones
with respect to B , K ∩ B is unknotted in B . Otherwise, K is locally knotted.

The requirement that there be no trivial cones is necessary because of the
following example: Let K be a graph embedded in M . Let B be a small ball

trivial cone

B

B′

Figure 1: A graph which is knotted in a ball because of a trivial cone

which intersects an edge of K in an unknotted arc α. Isotope α in B to form
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the shape shown in Figure 1. Let B′ be the smaller ball, indicated in the Figure.
There are two parallel sub-arcs of α in B′ , each of which is knotted. The graph
K may still be locally unknotted because for this choice of B′ , there is a trivial
cone.

Definition 1.6 Let M be a compact, connected, closed, orientable 3-manifold.
Let Σ be a compact, connected, closed, orientable, two-sided surface in M such
that M \ Σ consists of two components, X1 and X2 . Assume H1 = X1 ∪ Σ
and H2 = X2 ∪ Σ are handlebodies. Then the ordered triple (Σ,H1,H2) is a
Heegaard splitting for M .

The splitting surface Σ defines the handlebodies H1 and H2 up to labeling so
we will often refer to the Heegaard surface Σ to indicate the Heegaard splitting
(Σ,H1,H2).

A Heegaard splitting is stabilized if there are properly embedded, essential disks
D1 , D2 in H1 , H2 respectively such that ∂D1 and ∂D2 intersect transversely
in a single point in Σ. A splitting is reducible (weakly reducible) if there are
properly embedded, essential disks in H1 , H2 , respectively, whose boundaries
coincide (are disjoint.)

A spine for a handlebody H1 is a graph K1 embedded in H1 such that H1\K1
∼=

∂H1 × (0, 1]. For a Heegaard splitting (Σ,H1,H2), a spine for Σ is the disjoint
union K = K1 ∪ K2 where K1 is a spine for H1 and K2 is a spine for H2 .

We will prove the following:

Main Theorem Let (Σ,H1,H2) be a strongly irreducible Heegaard splitting

for a manifold M . Then every spine of Σ is locally unknotted.

In Section 2, we define sweep-outs and introduce the Rubinstein-Scharlemann
graphic. This is the main tool used in Section 3 to prove Proposition 3.1. The
Proposition states that if a Heegaard splitting is strongly irreducible then some
level surface of any sweep-out intersects a given ball in trivial pieces. This is
essentially a modification of the result in [3] that given any two sweep-outs,
there is a pair of level surfaces such that each loop of intersection is either
trivial in both surfaces or non-trivial in both surfaces. In our case, ∂B contains
only trivial loops so the loops must all be trivial in the level surface of f as
well. The proof of the Main Theorem is given in the final section.

To indicate the significance of this theorem, we note that if Σ is stabilized then
there is a spine of Σ which is locally knotted. To see this, let (Σ,H1,H2) be
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B

ee′

Figure 2: A locally knotted spine of a stabilized Heegaard splitting

a stabilization of a strongly irreducible Heegaard splitting (Σ′,H ′

1,H
′

2). Let K
be a spine of H ′

1 with a single vertex. Because Σ′ is strongly irreducible, any
edge e of K is not isotopic into a ball. Form a spine for H1 by adding a trivial
loop e′ to K . Slide e′ along e to create a formation as in Figure 2 and let B
be the ball indicated by the dotted line. The two arcs are knotted in B and
there are no trivial cones (because e is not isotopic into a ball) so H1 is locally
knotted.

This research was supported by NSF VIGRE grant 0135345.

2 The Rubinstein-Scharlemann graphic

Let M be a compact, connected, closed, orientable 3-manifold and (Σ,H1,H2)
a Heegaard splitting for M . Let Ki be a spine for Hi . Then Hi \ Ki is
homeomorphic to Σ × (0, 1]. Let h : (Hi \ Ki) → Σ × (0, 1] : x 7→ (px, lx)
be a homeomorphism and let f : Hi → I such that f(x) = lx when x /∈ Ki

and f(x) = 0 when x ∈ Ki . If we combine the two functions (one for each
handlebody,) we get a function on all of M .

Definition 2.1 A sweep-out is a smooth function f : M → [−1, 1] such that
f−1(−1) is a spine of H1 , f−1(1) is a spine of H2 and f−1(t) is a surface
isotopic to Σ for each t ∈ (−1, 1).

By choosing a smooth embedding for each Ki and a smooth map h, the above
construction produces a sweep-out for any Heegaard splitting of M .

Definition 2.2 Let f and g be sweep-outs and define ft = f−1(t) and
gt = g|ft

. We will say that f and g are in general position if gt is a Morse
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function on ft for all but finitely many t, and gt is a near-Morse function for
the remaining values. (A function is near-Morse if there is a single degenerate
critical point or there are two non-degenerate critical points at the same level.)

Note that for t ∈ (−1, 1), ft is a surface embedded in M , while gt is a function
on ft .

Let f and g be sweep-outs in general position. For each t ∈ [−1, 1], let st

be a critical value of the function gt . Rubinstein and Scharlemann [3] have
shown that the points (t, st) ∈ [−1, 1] × [−1, 1] form a graph G ⊂ R2 with
vertices of valence 2 and 4 in the interior and valence 1 and 2 on the edges of

1

1
−1

0
f

g

Figure 3: A possible Rubinstein-Scharlemann graphic

[−1, 1] × [−1, 1]. We will call this graph the Rubinstein-Scharlemann graphic.

The valence-2 vertices in the interior arise when gt is a near-Morse function
with a degenerate critical point. As t passes the vertex, a central singularity
and a saddle singularity in ft come together and cancel.

At a valence-4 vertex, (t, st), gt has two critical points at the same level. As t
passes the vertex, one of the critical points rises past the other. The two critical
points may be on the same component of g−1

t (st) or different components.

If points (t, s) and (t′, s′) are in the same component of ([−1, 1] × [−1, 1]) \
G then there is an isotopy of the surface ft onto the surface ft′ taking the
collection of loops g−1

t (s) to the loops g−1

t′ (s′). In other words, the topological
properties of the loops in the level set depend only on the component c, not
the choice of a point within c.

In the following section, we will replace the sweep-out g with a sweep-out of a
ball B ⊂ M , i.e. a map g : B → [0, 1] such that g−1(0) is a single point in B
and g−1(s) is a sphere parallel to ∂B for every s ∈ (0, 1].

In this case, the definition of general position is essentially the same. The
function gt is defined on a closed submanifold of ft . The resulting graphic, as
in Figure 3, looks like the bottom half of the Rubinstein-Scharlemann graphic
for two sweep-outs.
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3 How a sweep-out intersects a closed ball

Let (Σ,H1,H2) be a Heegaard splitting of M with spine K . Let B ⊂ M be a
closed ball such that K is transverse to ∂B . Let g be the genus of Σ.

Proposition 3.1 Suppose for each surface ft there is an essential curve of ft

lying completely in B . If g = 1 then Σ is stabilized and M = S3 . If g ≥ 2
then Σ is weakly reducible.

Proof Choose a point x ∈ B away from K . Let N be a regular neighborhood
of B and let g : N → [0, 1] be a sweep out of N , such that g−1(0) = {x}. By
work of Cerf [2], we can isotope g by an arbitrarily small amount so that g and
f are in general position.

In particular, isotope and rescale g so that B ⊂ g−1([0, 1]) ⊂ N . Let {(ti, si)}
be the vertices of the Rubinstein-Scharlemann graphic, ordered so that ti <
ti+1 . (i.e. fti has either a degenerate critical point at si or two non-degenerate
critical points at level si .)

The assumption that there is an essential curve of ft lying inside B is equivalent
to assuming that some level curve of gt is essential in ft . If gt is Morse and
each level curve is trivial then ft ∩B is either a collection of disjoint disks or a
sphere. In either case, there are no essential loops of ft lying inside B . Thus
for the remainder of the proof, we will assume that for each t, some level curve
of gt is essential in ft .

Let G be the Rubinstein-Scharlemann graphic in [−1, 1] × [0, 1]. For each
component c of ([−1, 1] × [0, 1]) \ G, let (tc, sc) be a point in the interior of c.
Let Lc be the collection of loops g−1

tc
(sc). If one of the loops bounds a properly

embedded, essential disk in the handlebody f−1[−1, tc], label the region c with
a 1 and if a loop bounds a disk in f−1[tc, 1], label c with a 2. This label is
independent of our choice of (tc, sc) within c. Before continuing, we need the
following lemma:

Lemma 3.2 Let (Σ,H1,H2) be a Heegaard splitting for M and let S be a

2-sphere embedded in M such that S ∩ Σ is a non-empty collection of loops.

If one or more of the loops is essential in Σ then there is a loop of S ∩Σ which

bounds a properly embedded, essential disk in either H1 or H2 .

Proof Induct on the number of components of S ∩ Σ. If there is a single
component l of S ∩Σ then l must be essential. This l splits S into two disks,
each of which is a properly embedded, essential disk in one of the handlebodies.
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If there are more than one components of S ∩ Σ, let n be the number of loops
and assume the result is true whenever there are n − 1 loops. Let l be an
innermost loop of S ∩ Σ (one that bounds a disk D in S disjoint from Σ.) If
l is essential, then D is is properly embedded and essential and we are done.

Otherwise, D is boundary parallel (since handlebodies are irreducible) so we
can isotope S to a surface S′ such that S′ ∩ Σ is a proper subset of S ∩ Σ.
Since S′ ∩Σ has n− 1 components, one of them bounds a properly embedded,
essential disk, so the corresponding component of S ∩ Σ does as well.

If follows from the lemma that if a component c of ([−1, 1] × [0, 1]) \ G is not
labeled then all the loops of Lc are trivial in ft . If one of the components has
both labels 1 and 2, then the Heegaard splitting is weakly reducible, so we can
assume each component has at most one label.

If a vertical line in I × I intersects both a component labeled with a 1 and a
component labeled with a 2 then the Heegaard splitting is weakly reducible:
Choose t so that the vertical line {t} × I intersects both types of components.
Then one level set of gt will contain a loop bounding a disk in H1 and another
level set will contain a loop bounding a disk in H2 . The level curves are disjoint
so the disks will have disjoint boundaries.

Assume Σ is not weakly irreducible. We will show that Σ must be genus-one
and stabilized. For each t ∈ I , if gt is a Morse function then there is an essential
level curve of gt . So, each vertical line {t}×I must pass through either a vertex
of G or one or more labeled components, all with the same label. In the latter
case, let lt be this label.

For t near −1, ft approaches the spine K1 , so lt must be 1 for small enough
t. (Recall, K is transverse to ∂B .) Similarly, lt must be 2 for t near 1. Thus
the label must switch from 1 to 2 somewhere. It can only change at a vertex
of G, so let v = (ti, si) be a vertex where lti−ǫ is 1 and lti+ǫ is 2.

The vertical line at ti passes through only one vertex. Because each vertical
line to the left or right of ti can only pass through one type of component,
the vertex v must be a crossing with the regions above and below it unlabeled.
This type of crossing is shown in Figure 4.

Lemma 3.3 Let g be a Morse function on a compact, connected, closed,

orientable surface F with critical values ci . For some i, let h1 ∈ (ci, ci+1),
h2 ∈ (ci+1, ci+2) and h3 ∈ (ci+2, ci+3). If g−1(h1) ∪ g−1(h3) consists of trivial

loops and g−1(h2) contains non-trivial loops then F is a torus.
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1 2

Figure 4: A crossing at which lc switches, without implying that Σ is weakly reducible

Proof The level set g−1(h2) is the result of adding a band to some loop a1 ⊂
g−1(h1). By assumption, a1 must be trivial so let D1 ⊂ F be the disk whose
boundary is a1 . Let D2 ⊂ F be the 1-handle which is attached to D1 .

The level set g−1(h3) is the result of adding a second 1-handle. Because all the
loops at this level are trivial, the band must be attached to ∂(D1 ∪ D2). Let
D3 be this 1-handle and let a3 = ∂(D1∪D2∪D3). Then a3 must bound a disk
D4 because a3 is isotopic to a loop in g−1(h3).

This D4 must be disjoint from the other handles so the four disks suggest a
handle decomposition of F . Therefore the Euler characteristic of F is 0 and
F is a torus.

We can now complete the proof of Proposition 3.1. If lc changes at a crossing as
in Figure 4 then the Morse function gti−ǫ satisfies the conditions of Lemma 3.3,
implying Σ is a torus. This proves Proposition 3.1 when the genus of Σ is
greater than one. The only case that remains is when the Heegaard splitting
has genus one.

Let g1 = gti−ǫ and let g2 = gti+ǫ . The only difference between the two functions
is the order of the 2-handles that create and destroy the essential loops. One
can check that the loops created by adding the 1-handles in different orders will
intersect in a single point and bound disks in H1 , H2 , respectively.

Thus if Σ is not weakly reducible then Σ is a stabilized, genus-one Heegaard
splitting (of S3 ).

Corollary 3.4 (Waldhausen’s Theorem) Every positive-genus Heegaard split-

ting of S3 is stabilized.

Proof Let (Σ,H1,H2) be a Heegaard splitting of S3 with genus g . Let f be
a sweep-out for Σ. Let N be a small ball in S3 such that f−1(t) ∩ N is either
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a point, a disk or empty for all t. Then B = S3 \ N is a ball and every level
set of f intersects B non-trivially.

If g = 1 then Σ is stabilized and we are done. If g ≥ 2 then Σ is weakly
reducible. The main theorem in [1] states that if a Heegaard splitting is weakly
reducible then it is reducible or the ambient manifold is Haken. Because S3

contains no incompressible surfaces, this implies that Σ is reducible.

Thus Σ is a connect sum of Heegaard splittings of S3 with strictly lower genus.
By induction, Σ is a connect sum of g splittings, each with genus 1. Because
each of these splittings is stabilized, their connect sum Σ is stabilized.

Note that the proof of Corollary 3.4 is a modification of Theorem 5.11 in [3].

4 Proof of the Main Theorem

We will begin by stating three lemmas which will be necessary in the final proof.
A proof of the first lemma will be left to the reader.

Lemma 4.1 Let T be a graph tangle in a ball, B , and let D ⊂ B be a

properly embedded disk, disjoint from T , cutting B into two balls B1 and B2 .

Assume that T ∩B1 is unknotted in B1 . Then T is unknotted in B if and only

if T ∩ B2 is unknotted in B2 .

Let Σ be a strongly irreducible Heegaard splitting and let K and B be as in
Section 3. Assume that K has no trivial cones with respect to B .

Lemma 4.2 If Σ is strongly irreducible and B ⊂ M is a closed ball then there

is an immersion of K × I such that K × [0, 1) is embedded, K × {0} = K and

K × {1} is disjoint from B .

Proof Let f be a sweep-out for Σ. By Proposition 3.1, there must be a value
t ∈ (−1, 1) such that B ∩ ft does not contain any essential loops of ft . Let L
be the collection of loops ft ∩ ∂B . These loops are pairwise disjoint and each
loop α ∈ L bounds a disk Dα ⊂ ft .

There is an embedding of K1 × [0, 1] in f−1[−1, t] such that K1 × {0} = K1

and K1 × {1} ⊂ ft \
⋃

Dα . Then K1 × {1} is disjoint from L so K1 × {1} is
either in B or disjoint from B . If it were inside B , then K1 would be isotopic
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into B (a contradiction) so it must be disjoint from B . The same construction
for K2 finishes the proof.

Note that in general, K1 × {1} ∩ K2 × {1} will be non-empty. The statement
of the lemma requires only that the interior of K × I be embedded.

Let K×[0, 1] be immersed in M with embedded interior such that K×{0} = K
and K ×{1} is disjoint from B , as in Lemma 4.2. We will write K × I for the
image of this immersion. Let L = (K × I) ∩ ∂B .

Let e be an edge of K . Then L ∩ (e × I) consists of a number of arcs and
loops. Because K × {1} is disjoint from B , each arc in e × I must have both
its endpoints in K ×{0} or in v× (0, 1) where v is an endpoint of e. Let α be
such an arc.

If α lies in e× [0, 1] and has both its endpoints on the same v× (0, 1) for some
v , then the endpoints of α bound a sub-arc β of v × (0, 1). The loop α ∪ β
bounds a disk D ⊂ e × [0, 1]. Sliding β across D gives an isotopy of v × (0, 1)
which extends to K×(0, 1). This isotopy reduces the number of intersections of
v× [0, 1] with ∂B . Thus by a finite number of such isotopies, we can eliminate
all arcs with both endpoints on the same vertical edge v × (0, 1).

Lemma 4.3 Let l be a component of L which intersects K × {0}. Then l
separates K × I into a component homeomorphic to K × I and a component

homeomorphic to l × I .

Proof Consider a projection ρ of L into K ×{0}. After eliminating arcs in L
with both endpoints on the same edge v × I , we can choose a projection ρ so
that ρ is one-to-one on each arc of L. We will prove that ρ is then one-to-one
on the whole component l . Assume for contradiction this map sends points
x, y ∈ l to the same point in K × {0} and assume y is below x (i.e. farther
from K × {0}.)

Since l is connected, there is a path α : [0, 1] → l with α(0) = x and α(1) = y .
We would like to construct a path α′ : [0, 1] → l such that ρ ◦ α(t) = ρ ◦ α′(t)
for every t and α′(0) = y . This is, in some sense, a lift of the projection of α,
starting at a different base point. We will show that for each t, α′(t) is below
α(t).

The edges of v × I of K × I cut α into a number of arcs coinciding with the
arcs of L. The first arc can’t end on K × {0} because then α would end. It
can’t end at y because ρ is one-to-one on each arc of l . Thus the first arc must
pass from x to some v × I .
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The point y also sits on an arc of l . This arc extends in the same direction as
the first arc of α. It can’t end on K ×{0} because it is below another arc of L
which extends to v × I . It cannot end on K × {1} because L is disjoint from
K × {1}. Thus the arc ends on v × I , below the first arc of α. We can define
α′ as desired, strictly below the first arc of α.

Continue in this fashion for each arc in the image of α, until α reaches y .
Now, α′(1) is a point z below y such that ρ(z) = ρ(y) = ρ(x). Continuing
the construction, we can find another point below z , and so on, implying that
ρ−1ρ(x) contains an infinite number of points. But this is impossible because
L is a finite graph. Thus ρ must be one-to-one.

For each point x ∈ l , consider the vertical arc ax from x to K×{0}. Because ρ
is one-to-one, the union of these arcs is homeomorphic to l× I . Its complement
is homeomorphic to K × I .

We are now ready to prove the main theorem. Isotope K × (0, 1) so as to
minimize the number of loops in L and the number of intersections with vertical
edges v × I . Each component of K ∩ B contains one or more components of
L. If there are no loops, then each l × I component lies entirely in B so by
Lemma 4.3, each l cuts off a piece of K×I homeomorphic l×I . This defines an
isotopy of a component of K ∩B into ∂B so K ∩B is unknotted. Otherwise, if
there are loops in L, we will show that there is always a disk properly embedded
in B which cuts off an unknotted tangle, allowing us to use Lemma 4.1.

Let β be a loop of L. Then β bounds a disk, D1 ⊂ (K × [0, 1]). Assume β
is an inner-most loop, i.e. assume D1 ∩ ∂B = ∂D1 . There are two cases to
consider: either D1 lies entirely in B or the interior of D1 lies outside of B .

Assume the interior of D1 is disjoint from B . The loop β separates ∂B into
two disks. Because M allows a strongly irreducible Heegaard splitting, M is
irreducible, so D1 ∪ ∂B separates M into two balls and a punctured M . Let
D2 be the disk of ∂B \ β such that D1 ∪ D2 bounds a ball, B′ outside B .

The graph K × {1} is disjoint from ∂B′ so each component of K × {1} must
lie outside of B′ . (If it were inside B′ then K × I would suggest an isotopy
bringing one of the spines into B′ .)

If K × I intersects D2 , then let l be a component of D2 ∩ K × I ⊂ L. By
Lemma 4.3, l cuts off a piece of K × I homeomorphic to l × I . This piece is
outside of B so l× I defines a trivial cone. Thus there are no arc-intersections
and K × {0} lies outside of B′ . Any components of K × I in B′ can be
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isotoped out of B′ and then D1 can be isotoped into B , reducing the number
of components of L.

So, if L is minimized, we can assume no loops bound disks whose interiors
are disjoint from B . Let D be the collection of innermost disks in L. These
separate B into a number of balls. Let D ∈ D be an outermost disk in B ,
cutting off a ball B′ which does not contain any disks of D. Let B′′ be the
complement of B′ . Note that a trivial cone of K with respect to B′ or B′′ is
also a trivial cone with respect to B .

If there are no arcs of K in B′ , then we can isotope all the pieces of K × I out
of B′ and then isotope off D . Otherwise, let L′ = (K × I) ∩ ∂B′ and let β be
an innermost loop of L′ cutting off a disk D′ .

The disk D′ cannot lie in B′ because D was assumed to be an outermost disk.
Thus D′ must lie outside B′ . By applying the argument above, to B′ instead
of B , it is clear that D′ can be isotoped into B′ without affecting K . So, if
the number of loops of intersection is minimized, there can be no loops in L′ .

Thus K∩B′ is an unknotted tangle in B′ . By Lemma 4.1, K ∩B is unknotted
if and only if K ∩ B′′ is unknotted. Again minimize the number of loops of
intersection for this new tangle. The number of components of (K×I)∩(B\B′)
is strictly less than the number of components of (K × I) ∩ B so the process
will eventually terminate, proving the theorem.
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