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Ordering the Reidemeister moves of a classical knot

ALEXANDER COWARD

We show that any two diagrams of the same knot or link are connected by a sequence
of Reidemeister moves which are sorted by type.

57M25; 57M27

It is one of the founding theorems of knot theory that any two diagrams of a given link
may be changed from one into the other by a sequence of Reidemeister moves. One of
the reasons why this result is so crucial to the subject is that it allows one to define
a link invariant as an invariant of a diagram which is unchanged under Reidemeister
moves.
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Figure 1: Reidemeister moves

Since Reidemeister’s seminal paper on this topic in 1927 [2], there have been a number
of steps taken to strengthen the original result in a variety of directions. In 1983, Bruce
Trace [3] proved that type 1 moves may be omitted in the case where two knot diagrams
have the same winding number and framing. Recent work by Joel Hass and Jeffrey
Lagarias [1] has placed a bound on the number of moves required when one of the
diagrams is the trivial unknot diagram.

In this paper we shall address the question of whether, given any two diagrams of a
knot or link, there exists a sequence of Reidemeister moves between them which is
sorted by type. We answer this question in the affirmative with the following theorem:

Theorem 1 Given two diagrams D1 and D2 for a link L, D1 may be turned into
D2 by a sequence of �"

1
moves, followed by a sequence of �"

2
moves, followed by a

sequence of �3 moves, followed by sequence of �#
2

moves.

Furthermore, if D1 and D2 are diagrams of a link where the winding number and
framing of each component is the same in each diagram, then D1 may be turned into
D2 by a sequence of �"

2
moves, followed by a sequence of �3 moves, followed by a

sequence of �#
2

moves.
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660 Alexander Coward

In this paper, all link diagrams shall be regarded as 4–valent graphs embedded in R2

with signed intersections to denote overcrossings or undercrossings. All diagrams shall
be oriented so as to represent an oriented link. �"

1
, �#

1
, �"

2
, �#

2
and �3 shall denote

Reidemeister moves where the arrow indicates whether the move increases the number
of crossings in the diagram, or decreases it, as shown in Figure 1. The winding number
of a component of a link in a diagram is intuitively speaking the number of times
that one must rotate anticlockwise when walking once around that component in the
specified orientation. The framing (also known as the writhe) of a knot diagram is
the number of crossings where the upper strand’s orientation is 90 degrees clockwise
from that of the lower strand, minus the number of crossings where the upper strand’s
orientation is 90 degrees anticlockwise from that of the lower strand. The framing of
a component of a link diagram is obtained by taking the difference over only those
crossings where both strands belong to the component in question. For more on these
notions see Trace [3].

Returning to Theorem 1, the first part of the theorem in fact follows from the second
part because of the following proposition:

Proposition 1 Let D1 and D2 be two diagrams for a link L. Then we may apply �"
1

moves to D1 so as to obtain a new diagram D0
1

with the all the same winding numbers
and framings as D2 .

Proof We know that D1 may be changed into D2 by a sequence of Reidemeister
moves. Note that only �1 moves change the winding numbers and framings of a
diagram, and that each �1 move changes the winding number of the component on
which it acts by ˙1 and the framing of the component on which it acts by ˙1. For
each �1 move in a sequence of Reidemeister moves from D1 and D2 , we may carry
out a �"

1
move on an edge in the same component in D1 with the same effect on the

winding number and framing of that component. After completing these moves we
will have a new diagram D0

1
with the same winding numbers and framings as D2 .

We shall now turn our attention to the proof of Theorem 1. Our strategy will be to
simulate each �3 move with a sequence of �"

2
moves. In order to achieve this we

will need to develop some new notation.

Definition 1 Let D be a link diagram in R2 and let cW I ! R2 be an embedded
path such that c.0/ lies on the interior of an edge of D , c.1/ does not lie on D , and
where c.int.I// intersects D transversely in a finite number of points none of which
are vertices of D , and which are given signings to denote whether the path crosses
above or below D . Let C denote the image of this path so that D [ C is a graph
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Ordering the Reidemeister moves of a classical knot 661

which is 3–valent at one vertex, 1–valent at another, and 4–valent otherwise as shown
in the left hand image of Figure 2.

D[C D0

Figure 2: Adding a tail

Let C�Œ��; �� denote a small product neighbourhood of C such that .C�Œ��; ��/\DD

.C \D/� Œ��; ��. Let D0 be the link diagram whose 4–valent graph is

D[ @.C � Œ��; ��/n.c.0/� .��; �//

and whose vertex signings are induced by those of D[C . The orientation of D0 shall
be that induced by D .

We shall say that D0 is obtained from D by adding a tail along C . We shall call
@.C � Œ��; ��/n.c.0/� .��; �// the tail in D0 and we shall refer to C as the core of
this tail. We shall write D D0 . Note that if D D0 then D0 may be obtained from
D by a sequence of �"

2
moves. Note also that the core of a tail is an embedded arc,

and not an immersed one.

D2 D3

�
"
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"

2
�3

Figure 3: Turning a tail into a lollipop

Definition 2 Suppose that D1 D2 . Let D3 be obtained from D2 by performing
two �"

2
moves and one �3 move as shown in Figure 3. We shall then say that D3 is

obtained from D1 by adding a lollipop and we shall write D1
g!D3 .
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Later on it will be important to distinguish between the part of the lollipop which
circles the crossing and the part which consists of two parallel strands. We shall call
these the circle part and the tail part of the lollipop respectively.

We are now in a position to say how we are going to simulate �3 moves by means of
�
"

2
moves. This is captured in the following important lemma.

Lemma 1 Suppose that D2 is obtained from D1 by means of an �3 move. Then we
may construct a diagram D3 such that:

(1) D3 may be obtained from D1 by a sequence of �"
2

moves.

(2) D2
g!D3

Proof Let D3 be as shown below.

D1 D2

D3

seq.�"
2/

Lemma 2 Let D1 D0
1

. Suppose that D2 may be obtained from D1 by a Reide-

meister move of type �"
2

. It is possible to construct a diagram D0
2

such that:

(1) D0
2

may be obtained from D0
1

by a sequence of �"
2

moves.

(2) D2 D0
2

Proof Let C denote the core of the tail in D0
1

. Let E1 and E2 be the edges (not

necessarily distinct) in D1 upon which our �"
2

move takes place. Note that E1 and
E2 are incident to a face F of the diagram D1 . Let x1 (resp. x2 ) be a point on E1

(resp. E2 ) which does not lie in C � Œ��; ��. Let P be an embedded path from x1 to
x2 whose interior lies entirely in F and which crosses C � Œ��; �� transversely in a
finite number of intervals. Let P 0 be a path obtained from P by extending it a small
amount at x2 into the neighbouring face. Then D0

2
may be formed by adding a tail
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along P 0 to D0
1

as shown below.

D01 D02

D1 D2

  

seq.�"
2
/

�
"

2

Corollary to Lemma 2 Let D1 D0
1

. Suppose that D2 may be obtained from D1

by means of a sequence of Reidemeister moves of type �"
2

. It is possible to construct a
diagram D0

2
such that:

(1) D0
2

may be obtained from D0
1

by a sequence of �"
2

moves.

(2) D2 D0
2

Proof Let D1DE1; : : : ;EnDD2 be a sequence of diagrams such that Ei

�
"

2
�!EiC1 .

Thus we have:

D01 DE01

D1 DE1

E0
2

E2 En DD2

E0n DD0
2

   
seq.�"

2
/ seq.�"

2
/ seq.�"

2
/

�
"

2 �
"

2 �
"

2

� � �

� � �

There is a similar pair of results for the adding of lollipops:

Lemma 3 Let D1
g!D0

1
. Suppose that D2 may be obtained from D1 by a Reide-

meister move of type �"
2

. It is possible to construct a diagram D0
2

such that:

(1) D0
2

may be obtained from D0
1

by a sequence of �"
2

moves.

(2) D2
g!D0

2
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Proof In this case we proceed exactly as in the proof of Lemma 1 except that we
insist that the path P avoids the circle part of of the lollipop.

D0
1

D1 D2

D0
2

seq.�"2/

�
"

2

Corollary to Lemma 3 Let D1
g!D0

1
. Suppose that D2 may be obtained from D1

by sequence of Reidemeister moves of type �"
2

. It is possible to construct a diagram
D0

2
such that:

(1) D0
2

may be obtained from D0
1

by a sequence of �"
2

moves.

(2) D2
g!D0

2

Proof As before let D1 D E1; : : : ;En D D2 be a sequence of diagrams such that

Ei

�
"

2
�!EiC1 . In this case we have:

D01 DE01

D1 DE1

E02

E2 En DD2

E0n DD02

seq.�"
2
/ seq.�"

2
/ seq.�"

2
/

�
"

2 �
"

2 �
"

2

� � �

� � �

We need one more result before we can turn to the proof of Theorem 1.

Proposition 2 Suppose that D2 is obtained from D1 by the addition of a sequence of
tails and lollipops. Then there exists a diagram D3 such that:

(1) D3 may be obtained from D2 by means of a sequence of �"
2

moves followed
by a sequence of �3 moves.

(2) D3 may be obtained from D1 by means of a sequence of �"
2

moves.

Proof Our strategy will be to construct D3 from D2 in accordance with the first
condition and then show that our new diagram D3 satisfies the second condition.

Let D1DE1; : : : ;EnDD2 be a sequence of diagrams such that for each i 2f1; : : : ; n�

1g either Ei  EiC1 or Ei
g!EiC1 . We shall start by performing moves on the
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P

x
v

Figure 4: Diagram showing the circle part of a lollipop in D2

circle parts of the lollipops in D2 . Note that each of these circle parts is associated
with a particular vertex of D2 , namely the vertex around which the circle part was
originally added, and furthermore that the circle parts associated to a particular vertex
are disjoint and concentric. Consider all the circle parts around a vertex v . Let x be
some point in a region R of D2 which neighbours v . Let P be a path from x to a
point on the outermost circle part C associated with v which avoids circle parts of
other lollipops and avoids the tail part of C , as shown in Figure 4 which omits any tail
parts of D2 for the sake of clarity.

We may now undertake a sequence of type �"
2

moves in a neighbourhood of P as
follows. It will be convenient to use the language of adding tails, but one should view
this as a shorthand for describing a sequence of �"

2
moves. First add a tail to the

innermost circle part associated to v along the part of P which is inside that circle
part. Note that P will be disjoint from this tail in the resulting diagram apart from at
x . Extend the tail a small amount so that P and the tail are now disjoint. Continue by
adding tails to all the circle parts associated to v along P in the same way, working in
order from the innermost circle part to the outermost circle part, C . This procedure is
illustrated in Figure 5.

It is worth remembering the tail part of the diagram not shown in the figure, and
observing that as long as we are just performing �"

2
moves then we can simply go

over that part as required.
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Figure 5: Add tails along P using �"
2

moves

Since x was chosen to lie in R, a region of D2 which neighbours v , �"
2

moves may
now be applied in turn to push the ‘nested tails’ which have just been added over the
two edges of R which are adjacent to v , as shown in Figure 6.

Figure 6: Perform some more �"2 moves near each vertex v
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Note that the procedure undertaken so far takes place inside C , the outermost circle
part associated with v , but outside any circle parts associated to other vertices inside
and on C . This is good news since it means that we may repeat this operation at all
vertices with at least one circle part associated. After doing this, we are done with �"

2

moves. We now form D3 by using �3 moves to push all the circle parts associated to
a particular vertex across that vertex, as in Figure 7, again observing that we may do
this on each collection of circle parts independently.

Figure 7: Perform these �3 moves at each vertex

It is now time to show that D3 may be obtained from D1 by means of a sequence of
�
"

2
moves. Let us go back to the sequence D1DE1; : : : ;EnDD2 where Ei EiC1

or Ei
g!EiC1 for i 2 f1; : : : ; n� 1g. Consider the part of D2 which was added in

the final step. If this was a tail, then it still is in D3 and it may be removed by �#
2

moves. If it was a lollipop then it may also now be removed by �#
2

moves since the
circle part is now as shown in Figure 8.

After removing the last tail or lollipop from D3 we may now remove the second last
in the same way. Repeating this process we will eventually reach D1 by means of �#

2

moves.

Theorem 1 Given two diagrams D1 and D2 for a link L, D1 may be turned into
D2 by a sequence of �"

1
moves, followed by a sequence of �"

2
moves, followed by a

sequence of �3 moves, followed by sequence of �#
2

moves.

Algebraic & Geometric Topology, Volume 6 (2006)



668 Alexander Coward

Figure 8: Circle part of the last lollipop

Furthermore, if D1 and D2 are diagrams of a link where the winding number and
framing of each component is the same in each diagram, then D1 may be turned into
D2 by a sequence of �"

2
moves, followed by a sequence of �3 moves, followed by a

sequence of �#
2

moves.

Proof By Proposition 1 it is enough to prove the second part of the theorem. Let
D1 and D2 be diagrams of a link where the winding number and framing of each
component is the same in each diagram. Bruce Trace proved in [3] that any two knot
diagrams with the same winding number and framing may be turned from one into
another by means of �2 and �3 moves. In fact his result may be readily generalised
to link diagrams with the same hypotheses as we have made about D1 and D2 . All
one needs to do is to apply the method used in [3] to each component of the link.

We shall thus proceed by induction on M.D1;D2/, the minimum number of Reide-
meister moves required to turn D1 into D2 with only �2 and �3 moves. The claim
clearly holds for M.D1;D2/D 1. Let D1 D I1; : : : ; Im DD2 be a sequence of link
diagrams arising from a minimal length sequence of �2 and �3 moves connecting
D1 and D2 . Then M.D1;D2/ DM.I2;D2/C 1. By the inductive hypothesis, I2

may be turned into D2 by a sequence of �"
2

moves, followed by a sequence of �3

moves, followed by a sequence of �#
2

moves.

Let
I2 DE1; : : : ;En DD2

be a sequence of diagrams arising from such a sequence of Reidemeister moves. Let
Ep , Eq .1� p � q � n/ be such that

E1

�
"

2
�!; : : : ;

�
"

2
�!Ep

�3
�!; : : : ;

�3
�!Eq

�
#

2
�!; : : : ;

�
#

2
�!En:

If the move from I1 to I2 is of type �"
2

then there is nothing to prove. The remaining

cases to consider are if this move is of type �3 or of type �#
2

. In the former case
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apply Lemma 1 to this move and the Corollary to Lemma 3 to the sequence of �"
2

moves that follow it to obtain a diagram E0p as shown:

seq.�"
2
/

seq.�"
2
/

seq.�"
2
/

�3

E0p

EpE0
1

I2 DE1I1

If the move from I1 to I2 is of type �#
2

then I2  I1 . Thus we may apply the
Corollary to Lemma 2 to obtain E0p as shown:

seq.�"
2
/

seq.�"
2/

E0p

Ep

I2 DE1

I1

 

 

Thus in either case we may perform a sequence of �"
2

moves on I1 to obtain a diagram
E0p such that Ep

g!E0p or Ep E0p . Now, Ep and Eq are joined by a sequence
of �3 moves. Applying Lemma 1 to each of these we obtain the following:

seq.�"2/ seq.�"2/ seq.�"2/

�3 �3 �3

Ep EpC1 EpC1 : : :Eq�1 Eq

The stage is now set to apply the Corollary to Lemma 3 several times to obtain a
diagram E0q as shown in the next diagram:
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seq.�"2/

seq.�"2/

seq.�"2/

seq.�"2/

seq.�"2/

seq.�"2/

seq.�"2/

Ep EpC1 EpC2 Eq

E0
pC1

E0
pC2

E0q

��
�

��
�

� �
�

� �
�

� �
�

� � �

Now, E0p is a diagram with either Ep
g!E0p or Ep E0p . If we apply the Corollary

to Lemma 2 or the Corollary to Lemma 3 accordingly, then we get a diagram E00q as
shown:

seq.�"
2/ seq.�"2/

seq.�"
2
/ seq.�"

2
/

Ep Ep

E0p E0p

E0q E0q

E00q E00q

  

I1

�
"

2
�! I2

I1

�3
�! I2

Thus we have formed a diagram E00q such that:

(1) E00q is obtained from D1 by means of a sequence of �"
2

moves.

(2) E00q is obtained from Eq by the addition of a sequence of tails and lollipops.

We complete the proof by applying Proposition 2 to E00q and Eq .

We conclude this paper by noting that although the last theorem was proved by induction,
we could have taken any sequence of �2 and �3 moves as our ingredients. In this
way, one could obtain a (large) upper bound on the number of sorted moves required
to pass from one diagram to the other in terms of the minimum number of unsorted
moves.
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