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Bottom tangles and universal invariants

KAZUO HABIRO

A bottom tangle is a tangle in a cube consisting only of arc components, each of
which has the two endpoints on the bottom line of the cube, placed next to each other.
We introduce a subcategory B of the category of framed, oriented tangles, which acts
on the set of bottom tangles. We give a finite set of generators of B , which provides
an especially convenient way to generate all the bottom tangles, and hence all the
framed, oriented links, via closure. We also define a kind of “braided Hopf algebra
action” on the set of bottom tangles.

Using the universal invariant of bottom tangles associated to each ribbon Hopf algebra
H , we define a braided functor J from B to the category ModH of left H –modules.
The functor J , together with the set of generators of B , provides an algebraic method
to study the range of quantum invariants of links. The braided Hopf algebra action on
bottom tangles is mapped by J to the standard braided Hopf algebra structure for H

in ModH .

Several notions in knot theory, such as genus, unknotting number, ribbon knots,
boundary links, local moves, etc are given algebraic interpretations in the setting
involving the category B . The functor J provides a convenient way to study the
relationships between these notions and quantum invariants.

57M27; 57M25, 18D10

1 Introduction

The notion of category of tangles (see Yetter [84] and Turaev [80]) plays a crucial role
in the study of the quantum link invariants. One can define most quantum link invariants
as braided functors from the category of (possibly colored) framed, oriented tangles to
other braided categories defined algebraically. An important class of such functorial
tangle invariants is introduced by Reshetikhin and Turaev [74]: Given a ribbon Hopf
algebra H over a field k , there is a canonically defined functor F W TH !Mod

f
H

of the
category TH of framed, oriented tangles colored by finite-dimensional representations
of H into the category Mod

f
H

of finite-dimensional left H –modules. The Jones
polynomial [29] and many other polynomial link invariants (see Freyd–Yetter–Hoste–
Lickorish–Millett–Ocneanu [11], Przytycki–Traczyk [71], Brandt–Lickorish–Millett
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1114 Kazuo Habiro

[5], Ho [28] and Kauffman [34]) can be understood in this setting, where H is a
quantized enveloping algebra of simple Lie algebra.

One of the fundamental problems in the study of quantum link invariants is to determine
the range of a given invariant over a given class of links. So far, the situation is far
from satisfactory. For example, the range of the Jones polynomial for knots is not
completely understood yet.

The purpose of the present paper is to provide a useful algebraic setting for the study
of the range of quantum invariants of links and tangles. The main ingredients of this
setting are

� a special kind of tangles of arcs, which we call bottom tangles,

� a braided subcategory B of the category T of (uncolored) framed, oriented
tangles, which “acts” on the set of bottom tangles by composition, and provides
a convenient way to generate all the bottom tangles,

� for each ribbon Hopf algebra H over a commutative, unital ring k, a braided
functor JW B!ModH from B to the category of left H –modules.

1.1 Bottom tangles

When one studies links in the 3–sphere, it is often useful to represent a link as the
closure of a tangle consisting only of arc components. In such an approach, one first
study tangles, and then obtains results for links from those for tangles, via the closure
operation. The advantage of considering tangles of arcs is that one can paste tangles
together to obtain another tangle, and such pasting operations produce useful algebraic
structures. For example, the set of n–component string links, up to ambient isotopy
fixing endpoints, forms a monoid with multiplication induced by vertical pasting.

Bottom tangles, which we study in the present paper, are another kind of tangles of
arcs. An n–component bottom tangle T D T1[ � � � [Tn is a framed tangle consisting
of n arcs T1; : : : ;Tn in a cube such that all the endpoints of T are on a line at the
bottom square of the cube, and for each i D 1; : : : ; n the component Ti runs from
the 2i th endpoint on the bottom to the .2i � 1/st endpoint on the bottom, where the
endpoints are counted from the left. The component Ti is called the i th component of
T . For example, see Figure 1 (a).

For n� 0, let BTn denote the set of the ambient isotopy classes, relative to endpoints,
of n–component bottom tangles. (As usual, we often confuse a tangle and its ambient
isotopy class.)
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Figure 1: (a) A 3–component bottom tangle T D T1 [ T2 [ T3 . (b) The
closure cl.T /DL1[L2[L3 of T .

There is a natural closure operation which transforms an n–component bottom tangle
T into an n–component framed, oriented, ordered link cl.T /, see Figure 1 (b). This
operation induces a function

cln D clW BTn! Ln;

where Ln denotes the set of the ambient isotopy classes of n–component, framed,
oriented, ordered links in the 3–sphere. It is clear that cln is surjective, ie, for any link
L there is a bottom tangle T such that cl.T /DL. Consequently, one can use bottom
tangles to represent links. In many situations, one can divide the study of links into the
study of bottom tangles and the study of the effect of closure operation.

Remark 1.1 The notion of bottom tangle has appeared in many places in knot theory,
both explicitly and implicitly, and is essentially equivalent to the notion of based links,
as is the case with string links. We establish a specific one-to-one correspondence
between bottom tangles and string links in Section 13.

1.2 An approach to quantum link invariants using universal invariants of
bottom tangles

1.2.1 Universal link invariants associated to ribbon Hopf algebras For each rib-
bon Hopf algebra H , there is an invariant of links and tangles, which is called the
universal invariant associated to H , introduced by Lawrence [45; 46] in the case
of links and quantized enveloping algebras. Around the same time, Hennings [26]
formulated link invariants associated to quasitriangular Hopf algebras which do not
involve representations but involve trace functions on the algebras. Reshetikhin [72,
Section 4] and Lee [48] considered universal invariants of .1; 1/–tangles (ie, tangles
with one endpoint on the top and one on the bottom) with values in the center of a
quantum group, which can be thought of as the .1; 1/–tangle version of the universal
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link invariant. Universal invariants are further generalized to more general oriented
tangles by Lee [50; 49; 51] and Ohtsuki [65]. Kauffman [35] and Kauffman and Radford
[38] defined functorial versions of universal tangle invariant for a generalization of
ribbon Hopf algebra which is called “(oriented) quantum algebra”.

The universal link invariants are defined at the quantum group level and they do not
require any representations. The universal link invariant have a universality property
that colored link invariants can be obtained from the universal link invariants by taking
traces in the representations attached to components. Thus, in order to study the range
of the representation-colored link invariants, it suffices, in theory, to study the range of
the universal invariant.

1.2.2 Universal invariant of bottom tangles and their closures Here we briefly
describe the relationship between the colored link invariants and the universal invariants,
using bottom tangles.

Let H be a ribbon Hopf algebra over a commutative ring k with unit. For an n–
component bottom tangle T 2BTn , the universal invariant JT DJ H

T
of T associated to

H takes value in the n–fold tensor product H˝n of H . Roughly speaking, JT 2H˝n

is obtained as follows. Choose a diagram D of T . At each crossing of D , place a
copy of universal R–matrix R 2H˝2 , which is modified in a certain rule using the
antipode S W H !H . Also, place some grouplike elements on the local maxima and
minima. Finally, read off the elements placed on each component of H . An example
is given in Figure 18 in Section 7.3. For a more precise and more general definition,
see Section 7.3.

For each n� 0, the universal invariant defines a function

J W BTn!H˝n; T 7! JT :

In this section we do not give the definition of the universal invariant of links, but it can
be obtained from the universal invariant of bottom tangles, as we explain below. Set

(1–1) N D Spankfxy �yS2.x/ j x;y 2H g �H:

The projection
trqW H !H=N

is called the universal quantum trace, since if k is a field and V is a finite-dimensional
left H –module, then the quantum trace trV

q W H ! k in V factors through trq .

The universal link invariant JL 2 .H=N /˝n for an n–component framed link L 2 Ln ,
which we define in Section 7.3, satisfies

JL D tr˝n
q .JT /;
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where T 2 BTn satisfies cl.T /DL.

1.2.3 Reduction to the colored link invariant Let k be a field, and V1; : : : ;Vn be
finite-dimensional left H –modules. Then the quantum invariant JLIV1;:::;Vn

of an
n–component colored link .LIV1; : : : ;Vn/ can be obtained from JL by

JLIV1;:::;Vn
D
�
xtrV1

q ˝ � � �˝
xtrVn

q

�
.JL/:

where xtrVi

q W H=N ! k is induced by the quantum trace trVi
q W H ! k. Hence if

cl.T /DL, T 2 BTn , we have

JLIV1;:::;Vn
D
�
trV1

q ˝ � � �˝ trVn
q

�
.JT /:

These facts can be summarized into a commutative diagram:

(1–2) BTn
J //

cln
��

H˝n Nn
iD1 tr

Vi
q

((PPPPPPPPPPPPPPP

tr˝n
q

��
Ln

J
// .H=N /˝n Nn

iD1
xtr

Vi
q

// k:

Given finite-dimensional left H –modules V1; : : : ;Vn , we are interested in the range
of JLIV1;:::;Vn

2 k for L 2 Ln . Since cln is surjective, it follows from (1–2) that

fJLIV1;:::;Vn
j L 2 Lng D

�
xtrV1

q ˝ � � �˝
xtrVn

q

�
.J.Ln//

D
�
trV1

q ˝ � � �˝ trVn
q

�
.J.BTn//:

(1–3)

Hence, to determine the range of the representation-colored link invariants, it suffices
to determine the images J.BTn/�H˝n for n� 0 and to study the maps trVi

q .

1.3 The category B acting on bottom tangles

To study bottom tangles, and, in particular, to determine the images J.BTn/�H˝n ,
it is useful to introduce a braided subcategory B of the category T of (uncolored)
framed, oriented tangles which acts on bottom tangles by composition.

Here we give a brief definition of B, assuming familiarity with the braided category
structure of T . For the details, see Section 3.

The objects of B are the expressions b˝n for n � 0. (Later, b is identified with an
object b D# ˝ " in T .) For m; n � 0, a morphism T from b˝m to b˝n is the
ambient isotopy class relative to endpoints of a framed, oriented tangle T satisfying
the following.
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(a) (b) (c)

T 0

T

Figure 2: (a) A morphism T 2 B.3; 2/ . (b) A bottom tangle T 0 2 BT3 . (c)
The composition T T 0 2 BT2 .

(1) There are 2m (resp. 2n) endpoints on the top (resp. bottom), where the orienta-
tions are as #" � � � #".

(2) For any m–component bottom tangle T 0 , the composition T T 0 (obtained by
stacking T 0 on the top of T ) is an n–component bottom tangle.

It follows that T consists of mC n arc components and no circle components. For
example, see Figure 2 (a). The set B.b˝m; b˝n/ of morphisms from b˝m to b˝n in
B is often denoted simply by B.m; n/. The composition of two morphisms in B is
pasting of two tangles vertically, and the identity morphism 1b˝m D#" � � � #" is a
tangle consisting of 2m vertical arcs. The monoidal structure is given by pasting two
tangles side by side. The braiding is defined in the usual way; ie, the braiding for the
generating object b 2 Ob.B/ and itself is given by

 b;b D :

For each n � 0, we can identify BTn with B.0; n/. The category B acts on BT D`
n�0 BTn via the functions

B.m; n/�BTm! BTn; .T;T 0/ 7! T T 0:

In the canonical way, one may regard this action as a functor

B.1;�/W B! Sets

from B to the category Sets of sets, which maps an object b˝n into BTn .

1.4 The braided functor JW B ! ModH

Let ModH denote the category of left H –modules, with the standard braided category
structure. Unless otherwise stated, we regard H as a left H –module with the left
adjoint action.

Algebraic & Geometric Topology, Volume 6 (2006)



Bottom tangles and universal invariants 1119

We study a braided functor
JW B!ModH ;

which is roughly described as follows. For the details, see Section 8. For objects, we
set J.b˝n/DH˝n , where H˝n is given the standard tensor product left H –module
structure. For T 2 B.m; n/, the left H –module homomorphism J.T /W H˝m!H˝n

maps x D
P

x1 ˝ � � � ˝ xm 2 H˝m to the element J.T /.x/ in H˝n obtained as
follows. Set

�b D 2 B.0; 1/;

and set for m� 0

�m D �
˝m
b D � � � 2 B.0;m/:

Consider a diagram for the composition T �m , and put the element xi on the i th
component (from the left) of �m for i D 1; : : : ;m, and put the copies of universal
R–matrix and the grouplike element on the strings of T as in the definition of JT .
Then the element J.T /.x/ 2 H˝n is read off from the diagram. (See Figure 21 in
Section 8.2 to get a hint for the definition.) We see in Section 8.2 that J.T / is a left
H –module homomorphism, and J is a well-defined braided functor.

1.5 Generators of the braided category B

Recall that a (strict) braided category M is said to be generated by a set X � Ob.M /

of objects and a set Y � Mor.M / of morphisms if every object of M is a tensor
product of finitely many copies of objects from X , and if every morphism of M is an
iterated tensor product and composition of finitely many copies of morphisms from Y

and the identity morphisms of the objects from X . In the category T , “tensor product
and composition” is “horizontal and vertical pasting of tangles”.

Theorem 1 (Theorem 5.16) As a braided subcategory of T , B is generated by the
object b and the morphisms

�b D ; �b D ; vC D ; v� D ; cC D ; c� D :

Consequently, any bottom tangle can be obtained by horizontal and vertical pasting
from finitely many copies of the above-listed tangles, the braidings  b;b;  

�1
b;b and

the identity 1b D# ". Theorem 1 implies that, as a category, B is generated by the
morphisms

f.i;j/ D b˝i
˝f ˝ b˝j

for i; j � 0 and f 2
˚
�b; �b; v˙; c˙;  

˙1
b;b

	
. Theorem 1 provides a convenient way to

generate all the bottom tangles, and hence all the links via closure operation.
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We can use Theorem 1 to determine the range J.BT/DfJT j T 2BTg of the universal
invariant of bottom tangles as follows. Theorem 1 and functoriality of J implies that
any morphism f in B is the composition of finitely many copies of the left H –module
homomorphisms

(1–4) J.f.i;j//D 1˝i
H
˝ J.f /˝ 1

˝j
H
;

for i; j � 0 and f 2 f�b; �b; v˙; c˙;  
˙1
b;b g. Hence we have the following characteri-

zation of the range of J for bottom tangles.

Theorem 2 The set J.BT/ is equal to the smallest subset of
`

n�0 H˝n con-
taining 1 2 k D H˝0 and stable under the functions J.f.i;j// for i; j � 0 and
f 2

˚
�b; �b; v˙; c˙;  

˙1
b;b

	
.

See Section 9.1 for some variants of Theorem 2, which may be more useful in applica-
tions than Theorem 2.

1.6 Hopf algebra action on bottom tangles

We define a kind of “Hopf algebra action” on the set BT, which is formulated as an
“exterior Hopf algebra” in the category B. Roughly speaking, this exterior Hopf algebra
in B is an “extension” of an algebra structure for the object b in B to a Hopf algebra
structure at the level of sets of morphisms in B. This “extension” is formulated as a
functor

FbW hHi ! Sets;

from the free strict braided category hHi generated by a Hopf algebra H to the category
Sets of sets, where each object H˝m , m� 0, is mapped to the set B.1; b˝m/D BTm .
This functor essentially consists of functions

(1–5) hHi.H˝m;H˝n/�BTm! BTn for m; n� 0;

which can be regarded as a left action of the category hHi on the graded set BT.

The two functors B.1;�/W B!Sets and FbW hHi!Sets are related as follows. Let hAi
denote the braided category freely generated by an algebra A. Note that the morphisms
�bW b

˝2! b and �bW 1! b in B define an algebra structure for the object b. Consider
the following diagram

hAi
iB;b

����! B

ihHi;H

??y ??yB.1;�/

hHi ����!
Fb

Sets:
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Here the two arrows iB;b and ihHi;H are the unique braided functors that map the algebra
structure for A into those of b and H, respectively. Both iB;b and ihHi;H are faithful.
The above diagram turns out to be commutative. In other words, the action of the
algebra structure in B on BT extends to an action by a Hopf algebra structure on BT.

Remark 1.2 The action of hHi on BT mentioned above extends to an action of a
category B of “bottom tangles in handlebodies” which we shortly explain in Section
14.4. Also, the above Hopf algebra action is closely related to the Hopf algebra
structure in the category C of cobordisms of connected, oriented surfaces with boundary
parameterized by a circle (see Crane–Yetter [8] and Kerler [40]), and also to the Hopf
algebra properties satisfied by claspers (see Habiro [22]).

Now we explain the relationship between the Hopf algebra action on BT and the
braided functor JW B!ModH . Let H be a ribbon Hopf algebra, hence in particular H

is quasitriangular. Recall that the transmutation H of a quasitriangular Hopf algebra
H is a braided Hopf algebra structure in ModH defined for the object H with the left
adjoint action in the braided category ModH , with the same algebra structure and the
same counit as H but with a twisted comultiplication �W H !H ˝H and a twisted
antipode S W H !H . For details, see Majid [55; 56]. The transmutation H yields a
braided functor FH W hHi !ModH , which maps the Hopf algebra structure of H into
that of H . Via FH , the category hHi acts on the H˝n as

hHi.H˝m;H˝n/�H˝m
!H˝n; .f;x/ 7! FH .f /.x/:

We have the following commutative diagram

hHi.H˝m;H˝n/�BTm ����! BTn

id�J

??y ??yJ

hHi.H˝m;H˝n/�H˝m ����! H˝n:

This means that the Hopf algebra action on the bottom tangles is mapped by the
universal invariant maps J W BTn!H˝n into the Hopf algebra action on the H˝n ,
defined by transmutation. This fact may be considered as a topological interpretation
of transmutation.

1.7 Local moves

The setting of bottom tangles and the category B is also useful in studying local moves
on bottom tangles, and hence on links. Recall that a type of local move can be defined
by specifying a pair of tangles .t; t 0/ in a 3–ball with the same set of endpoints and
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with the same orientations and framings at the endpoints. Two tangles u and u0 in
another 3–ball B are said to be related by a .t; t 0/–move if u0 is, up to ambient isotopy
which fixes endpoints, obtained from u by replacing a “subtangle” t in u with a copy
of t 0 . Here, by a subtangle of a tangle u in B we mean a tangle u\B0 contained in a
3–ball B0 � int B .

In the following, we restrict our attention to the case where both the tangles t and t 0

consist only of arcs. In this case, we can choose two bottom tangles T;T 0 2 BTn such
that the notion of .t; t 0/–move is the same as that of .T;T 0/–move.

The following result implies that the notion of .T;T 0/–move for bottom tangles, where
T;T 0 2 BTn , can be formulated in a totally algebraic way within the category B.

Theorem 3 (Consequence of Proposition 5.5 and Theorem 5.8) Let T;T 0 2 BTm

and U;U 0 2 BTn with m; n� 0. Then U and U 0 are related by a .T;T 0/–move if and
only if there is W 2 B.m; n/ such that U DW T and U 0 DW T 0 .

The setting of bottom tangles and the category B is useful in studying local moves on
bottom tangles. In Section 5, we formulate in algebraic terms the following typical
questions in the theory of local moves, under some mild conditions.

� When are two bottom tangles related by a sequence of a given set of local moves?
(Proposition 5.11.)

� When are two bottom tangles equivalent under the equivalence relation generated
by a given set of local moves? (Proposition 5.12.)

� When is a bottom tangle related to the trivial bottom tangle �n by just one local
move of a given type? (Theorem 5.14.)

� When is a bottom tangle equivalent to �n under the equivalence relation generated
by a given set of local moves? (Corollary 5.15.)

It is easy to modify the answers to the above questions for bottom tangles into those
for links, via closure. Some of the algebraic formulations of the above questions are
combined with the functor J in Section 9.1.

A remarkable application of the algebraic formulation of local moves is the following.
A delta move (see Murakami and Nakanishi [59]) or a Borromean transformation (see
Matveev [57]) can be defined as a .�3;B/–move, where B 2 BT3 is the Borromean
tangle depicted in Figure 3. An n–component link has a zero linking matrix if and only
if it is related to the n–component unlink by a sequence of delta moves [59]. Using
the obvious variation of this fact for bottom tangles, we obtain the following.
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Figure 3: The Borromean tangle B

Theorem 4 (Part of Corollary 9.13) A bottom tangle with zero linking matrix is
obtained by pasting finitely many copies of 1b;  b;b;  

�1
b;b ; �b; �b; C; �;B , where

C D ; � D 2 B.1; 2/:

For applications of Theorem 4 to the universal invariant of bottom tangles with zero
linking matrix, see Corollary 9.15, which states that the universal invariant associated
to a ribbon Hopf algebra H of n–component bottom tangles with zero linking matrix
is contained in a certain subset of H˝n . The case of the quantized enveloping algebra
Uh.g/ of simple Lie algebra g will be used in future publications [20] (for gD sl2 )
and [25] (for general g) to show that there is an invariant of integral homology spheres
with values in the completion lim

 �n
ZŒq�=..1� q/.1� q2/ � � � .1� qn// studied in [24],

which unifies the quantum g invariants at all roots of unity, as announced in [23], [67,
Conjecture 7.29].

1.8 Other applications

The setting of bottom tangles, the category B and the functor J can be applied to the
following notions in knot theory: unknotting number (Section 9.2), Seifert surface, knot
genus and boundary links (Section 9.3), unoriented spanning surface, crosscap number
and Z2 –boundary links (Section 9.4), clasper moves (Section 9.6), Goussarov–Vassiliev
finite type invariants (Section 9.7), twist moves and Fox’s congruence (Section 9.8),
ribbon knots (Section 11.2), and the Hennings 3–manifold invariants (Section 12).

1.9 Organization of the paper

Here we briefly explain the organization of the rest of the paper. Section 2 provides
some preliminary facts and notations about braided categories and Hopf algebras. In
Section 3, we recall the definition of the category T of framed oriented tangles, and
define the subcategory B of T . In Section 4, we study a subcategory B0 of B, which is
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used in Section 5, where we study local moves on tangles and give a set of generators
of B. Section 6 deals with the Hopf algebra action on bottom tangles. In Section 7,
we recall the definition of the universal tangle invariant and provide some necessary
facts. In Section 8, we define and study the braided functor JW B!ModH . In Section
9, we give several applications of the results in the previous sections to the values of
the universal invariant. In Section 10, we modify the functor J into a braided functor
zJW B!ModH , which is useful in the study of the universal invariants of bottom knots.
In Section 11, we define a refined version of the universal link invariant by giving a
necessary and sufficient condition that two bottom tangles have the same closures. In
Section 12, we reformulate the Hennings invariant of 3–manifolds in our setting, using
an algebraic version of Kirby calculus. In Section 13, we relate the structure of the sets
of bottom tangles to the sets of string links. In Section 14, we give some remarks.

Remark 1.3 Around the same time as the first preprint version of the present paper is
completed, a paper by Bruguières and Virelizier [6] appeared on the arXiv. Part of [6]
is closely related to part of the present paper. The present paper is independent of [6]
(except this Remark 1.3).

The notion of bottom tangle is equivalent to that of “ribbon handle” in [6]. Theorem 1
is related to [6, Theorems 1.1 and 3.1]. Section 12 is related to [6, Section 5]. Section
13 is closely related to [6].
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2 Braided categories and Hopf algebras

In this section, we fix some notations concerning monoidal and braided categories, and
braided Hopf algebras.

If C is a category, then the set (or class) of objects in C is denoted by Ob.C /, and the
set (or class) of morphisms in C is denoted by Mor.C /. For a; b 2 Ob.C /, the set of
morphisms from a to b is denoted by C.a; b/. For a 2Ob.C /, the identity morphism
1a 2 C.a; a/ of a is sometimes denoted by a.
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2.1 Monoidal and braided categories

We use the following notation for monoidal and braided categories. See Mac Lane [54]
for the definitions of monoidal and braided categories. If M is a monoidal category
(also called tensor category), then the tensor functor is denoted by ˝M and the unit
object by 1M . We omit the subscript M and write ˝M D˝ and 1M D 1 if there is
no fear of confusion. If M is a braided category, then the braiding of a; b 2 Ob.M/

is denoted by
 Ma;b D  a;bW a˝ b! b˝ a

for a; b 2 Ob.M/.

Definition of monoidal category involves also the associativity and the unitality con-
straints, which are functorial isomorphisms

a˝ .b˝ c/
'
! .a˝ b/˝ c; 1˝ a

'
! a; a˝ 1

'
! a:

A monoidal category is called strict if these constraints are identity morphisms. In what
follows, a strict monoidal category is simply called a “monoidal category”. Similarly,
a strict braided category is called a “braided category”. Also, we sometimes need
non-strict monoidal or braided categories, such as the category of left modules over
a Hopf algebra. When this is the case, we usually suppress the associativity and the
unitality constraints, and we argue as if they are strict monoidal or braided categories.
This should not cause confusion.

A strict monoidal functor from a (strict) monoidal category M to a (strict) monoidal
category M0 is a functor F WM!M0 such that

F˝D˝.F �F /WM�M!M0;
F.1M/D 1M0 ;

ie, a strict monoidal functor is a functor which (strictly) preserves ˝ and 1. Unless
otherwise stated, by a “monoidal functor” we mean a strict monoidal functor. A braided
functor from a braided category M to a braided category M0 is a monoidal functor
F WM!M0 such that F. M

a;b
/D  M

0

F.a/;F.b/
for all a; b 2 Ob.M/.

A monoidal category M is said to be generated by a set X � Ob.M / of objects
and a set Y � Mor.M / of morphisms if every object of M is a tensor product of
finitely many copies of objects from X , and every morphism of M is an iterated tensor
product and composition of finitely many copies of morphisms from Y and the identity
morphisms of the objects from X . A braided category M is said to be generated by
X � Ob.M / and Y �Mor.M / if M is generated as a monoidal category by X and
Y [

˚
 ˙1

x;y j x;y 2X
	

.

Algebraic & Geometric Topology, Volume 6 (2006)



1126 Kazuo Habiro

2.2 Algebras and Hopf algebras in braided categories

Here we fix the notations for algebras and Hopf algebras in a monoidal or braided
category. We refer the reader to Majid [55; 56] for the details.

An algebra (also called monoid) in a monoidal category M is an object A equipped
with morphisms �W A˝A!A (multiplication) and �W 1!A (unit) satisfying

�.�˝A/D �.A˝�/; �.�˝A/D 1A D �.A˝ �/:

A coalgebra C in M is an object C equipped with morphisms �W A ! A˝ A

(comultiplication) and �W A! 1 (counit) satisfying

.�˝A/�D .A˝�/�; .�˝A/�D 1A D .A˝ �/�:

A Hopf algebra in a braided category M is an object H in M equipped with an
algebra structure �; �, a coalgebra structure �; � and a morphism S W A!A (antipode)
satisfying

��D 11; ��D �˝ �; ��D �˝ �;

��D .�˝�/.A˝ A;A˝A/.�˝�/;

�.A˝S/�D �.S ˝A/�D ��:

Later, we sometimes use the notations �A D �, �A D �, �A D�, �A D � , SA D S ,
to distinguish structure morphisms from different Hopf algebras.

A Hopf algebra (in the usual sense) over a commutative, unital ring k can be regarded
as a Hopf algebra in the symmetric monoidal category of k–modules.

If A is an algebra in M, then let �Œn�
A
D �Œn�W A˝n!A (n� 0) denote the n–input

multiplication defined by �Œ0� D �, �Œ1� D 1A , and

�Œn� D �.�˝ 1/ � � � .�˝ 1˝.n�2//

for n� 2. Similarly, if C is an coalgebra, then let �Œn�
C
D�Œn�W C ! C˝n denote the

n–output comultiplication defined by �Œ0� D � , �Œ1� D 1C and

�Œn� D .�˝ 1˝.n�2// � � � .�˝ 1/�

for n� 2.

3 The category T of tangles and the subcategory B

In this section, we first recall the definition of the category T of framed, oriented
tangles. Then we give a precise definition of the braided subcategory B of T .
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Figure 4: A tangle T W # ˝ # ˝ "!"˝ #˝ #

In the rest of the paper, by an “isotopy” between two tangles we mean “ambient isotopy
fixing endpoints”. Thus, two tangles are said to be “isotopic” if they are ambient
isotopic relative to endpoints.

3.1 The category T of tangles

Here we recall the definition of the braided category T of framed, oriented tangles,
and fix the notations. For details, see Yetter [84; 86], Turaev [80; 81], Freyd and Yetter
[10], Shum [78] and Kassel [31].

The objects in the category T are the tensor words of symbols # and ", ie, the
expressions x1˝� � �˝xn with x1; : : : ;xn 2 f#;"g, n� 0. The tensor word of length
0 is denoted by 1D 1T . The morphisms T W w!w0 between w;w0 2 Ob.T / are the
isotopy classes of framed, oriented tangles in a cube Œ0; 1�3 such that the endpoints at
the top are described by w and those at the bottom by w0 , see Figure 4 for example.
We use the blackboard framing convention in the figures. In what follows, by “tangles”
we mean framed, oriented tangles unless otherwise stated. As usual, we systematically
confuse a morphism in T with a tangle representing it.

The composition gf of a composable pair .f;g/ of morphisms in T is obtained by
placing g below f , and the tensor product f ˝ g of two morphisms f and g is
obtained by placing g on the right of f . Graphically,

gf D

...

...

...

f

g ; f ˝g D

...

...

...

...
f g :

The braiding  w;w0 W w˝w0! w0˝w for w;w0 2 Ob.T / is the positive braiding of
parallel families of strings. For w 2 Ob.T /, the dual w� 2 Ob.T / of w is defined by
1� D 1, #�D", "�D#, and

.x1˝ � � �˝xn/
�
D x�n ˝ � � �˝x�1 .x1; : : : ;xn 2 f#;"g; n� 2/:
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For w 2 Ob.T /, let

evwW w�˝w! 1; coevwW 1! w˝w�

denote the duality morphisms. For each object w in T , let twW w! w denote the
positive full twist defined by

tw D .w˝ evw�/. w;w˝w�/.w˝ coevw/D

w

w

:

It is well known that T is generated as a monoidal category by the objects #;" and
the morphisms

 #;# D ;  �1
#;# D ; ev# D ; ev" D ; coev# D ; coev" D :

3.2 The braided subcategory B of T

Two tangles T;T 0 2 T .w;w0/, w;w0 2 Ob.T /, are said to be homotopic (to each
other) if there is a homotopy between T and T 0 which fixes the endpoints, where the
framings are ignored. We write T �h T 0 if T and T 0 are homotopic. Note that two
tangles are homotopic if and only if they are related by a finite sequence of isotopies,
crossing changes, and framing changes.

Now we define a braided subcategory B of T . Set

Ob.B/D fb˝m
j m� 0g � Ob.T /;

where bD#˝ "2 Ob.T /. Set

�b D coev# D 2 T .1; b/;

�n D �
˝n
b 2 T .1; b˝n/ for n� 0:

For m; n� 0, set

B.b˝m; b˝n/D fT 2 T .b˝m; b˝n/ j T �m �h �ng:

If T 2 B.b˝l ; b˝m/ and T 0 2 B.b˝m; b˝n/, then we have T 0T �l �h T 0�m �h �n ,
hence T 0T 2 B.b˝l ; b˝n/. Clearly, we have 1b˝n 2 B.b˝n; b˝n/. Hence Ob.B/ and
the B.b˝m; b˝n/ form a subcategory of T .

If T 2 B.b˝m; b˝n/ and T 0 2 B.b˝m0 ; b˝n0/, then we have

.T ˝T 0/�mCm0 D .T �m/˝ .T
0�m0/�h �n˝ �n0 D �nCn0 :

We also have 1 2 Ob.B/. Hence B is a monoidal subcategory of T .
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We have  ˙1
b;b �2 D �2 , hence  ˙1

b;b 2 B.b˝2; b˝2/. Since the object b generates
the monoid Ob.B/, it follows that  b˝m;b˝n 2 B.b˝.mCn/; b˝.mCn//. Hence B is a
braided subcategory of T .

For simplicity of notation, we set

B.m; n/D B.b˝m; b˝n/

for m; n� 0. We use the similar notation for subcategories of B defined later.

For n� 0, we have

B.0; n/D fT 2 T .1; b˝n/ j T �h �ng:

Hence we can naturally identify B.0; n/ with the set BTn of isotopy classes of n–
component bottom tangles.

4 The subcategory B0 of B

In this section, we introduce a braided subcategory B0 of B, and give a set of generators
of B0 . The category B0 is used in Section 5.

4.1 Definition of B0

Let B0 denote the subcategory of B with Ob.B0/D Ob.B/ and

B0.m; n/D fT 2 B.m; n/ j T �m D �ng

for m; n� 0. It is straightforward to check that the category B0 is well-defined and it
is a braided subcategory of B. Note that we have B0.0; n/D f�ng.

Set

C D
�
# ˝ b;" ";b

�
.coev#˝ b/D 2 B0.1; 2/;

� D
�
# ˝ �1

";b 
�1
b;"

�
.coev#˝ b/D 2 B0.1; 2/;

tC� D t#˝ t�1
"
2 B0.1; 1/:

Note that tC� is an isomorphism.

The purpose of this section is to prove the following theorem, which is used in Section
5.
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(a) (b) (c) (d)

C C 0
surgery
along C

surgery
along C 0

Figure 5: Here each string may be replaced with parallel strings.

Theorem 4.1 As a braided subcategory of B, B0 is generated by the object b and the
morphisms �b; �b; C; �; tC�; t

�1
C� .

The proof of Theorem 4.1 is given in Section 4.3, after giving a lemma on string links
in Section 4.2.

4.2 Clasper presentations for string links

To prove the case of “doubled string links” of Theorem 4.1 (see Section 4.3.1), we
need a lemma which presents an n–component string link as the result of surgery on
1#˝n along some claspers (see Goussarov [14] and Habiro [22]). In this and the next
subsections (but not elsewhere in this paper), a “clasper” means a “strict tree clasper
of degree 1” in the sense of [22], ie, a clasper consisting of two disc-leaves and one
edge which looks as depicted in Figure 5 (a). One can perform surgery on a clasper as
depicted in Figure 5 (b), see [22, Remark 2.4]. We also use the fact that the result of
surgery on another clasper C 0 depicted in Figure 5 (c) is as depicted in Figure 5 (d).

For n � 0, let SLn denote the submonoid of T .#˝n;#˝n/ consisting of the isotopy
classes of the n–component framed string links. Thus we have

SLn D
˚
T 2 T .#˝n;#˝n/ j T �h#

˝n
	
:

Lemma 4.2 If T 2 SLn , then there are mutually disjoint claspers C1; : : : ;Cr (r � 0)
for 1#˝n satisfying the following properties.

(1) The tangle T is obtained from 1#˝n by surgery along C1; : : : ;Cr and framing
change.

(2) 1#˝n and C1; : : : ;Cr is obtained by pasting horizontally and vertically finitely
many copies of the following:

,

edge

,

edge

,

edge

,

edge

,

edge

,

edge

.
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’
ˇ

ˇ0

(a) (b) (c) (d)

Figure 6

(a) (b) (c)

Ai;j D

1 i j np

� � �

� � �

� � �

� � � Ai;j D

1 i j np

� � �

� � �

� � �

� � � A�1
i;j
D

1 i j np

� � �

� � �

� � �

� � �

Figure 7

Proof In this proof, we can ignore the framings.

As is well known, we can express T as a “partially closed braid” in the sense that there
is an integer p � 1 and a pure braid ˇ 2 T .#˝np;#˝np/ of np strings such that

T D
�
#
˝n
˝ev"˝n.p�1/

��
 #˝n.p�1/;#˝nˇ˝ "˝n.p�1/

��
#
˝n
˝coev#˝n.p�1/

�
;

see Figure 6 (a). By isotopy, T can be expressed as in Figure 6 (b), where ˇ0 D
..t#˝n/˝.p�1/˝ #˝n/ˇ is a pure braid, and where the upward parts of the strings run
under, and are not involved in, the pure braid ˇ0 . We express ˇ0 as the product of
copies of generators Ai;j (1� i < j � np ) of the np–string pure braid group and their
inverses. Here Ai;j is as depicted in Figure 7 (a). (See Birman [2] for the generators
of the pure braid group.) Using claspers, we can express A˙1

i;j as depicted in Figure 7
(b), (c). Let T0 denote the string link obtained from the tangle depicted in Figure 6 (b)
by replacing the pure braid ˇ0 with 1#˝np . There are claspers C 0

1
; : : : ;C 0r (r � 0) for

T0 corresponding to the generators and inverses involved in ˇ0 such that surgery on
T0 along C 0

1
; : : : ;C 0r yields T , see eg Figure 6 (c). We can isotop T0;C

0
1
; : : : ;C 0r to

the identity braid 1#˝n and claspers C1; : : : ;Cr satisfying the desired properties, as is
easily seen from Figure 6 (d).
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The rest of this subsection is not necessary in the rest of the paper, but seems worth
mentioned. Let S denote the monoidal subcategory of T generated by the objects #,
b and the following morphisms

t#; t
�1
#
W #!#;  #;bW # ˝b! b˝ #;  �1

#;bW b˝ #!#˝b;

ıC D ; ı� D W #!#˝b; ˛ D W b˝ #!# :

Proposition 4.3 For n� 0, we have SLn D S.#˝n;#˝n/.

Proof The inclusion SLn � S.#˝n;#˝n/ easily follows from Lemma 4.2. We prove
the other inclusion S.#˝n;#˝n/ � SLn . Let S0 denote the monoidal subcategory
of T generated by the objects #, b and the morphisms  #;b ,  �1

#;b
, # ˝�b , ˛ . We

can prove that S0.#
˝n;#˝n/D f1#˝ng. Since any morphism in S is homotopic to a

morphism in S0 , the assertion follows.

Proposition 4.3 may be useful in studying quantum invariants of string links. For
another approach to string links, see Section 13.

4.3 Proof of Theorem 4.1

In this subsection we prove Theorem 4.1. Let B0
0

denote the braided subcategory of B

generated by the object b and the morphisms

�b; �b; C; �; tC�; t
�1
C�; tb; t

�1
b ;  0C; 

0
�;

where

 0C D ;  0� D W b! b˝2:

Since these morphisms are in B0 , it follows that B0
0

is a subcategory of B0 . Since

t˙1
b D �b�t

�1
C�;  0˙ D  

˙1
b;b �;

it follows that B0
0

is generated as a braided subcategory of B by the object b and the
morphisms �b; �b; C; �; tC�; t

�1
C� . Hence it suffices to prove that any morphism in

B0 is in B0
0

.
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surgery isotopy surgery isotopy

Figure 8

4.3.1 The case of doubled string links We here prove that if T 2 B0.n; n/ is ob-
tained from a framed string link T 0 2 SLn by doubling each component, then we have
T 2 B0

0
.n; n/.

By Lemma 4.2, there are mutually disjoint claspers C1; : : : ;Cr (r � 0) for 1b˝n and
integers l1; : : : ; ln 2 Z satisfying the following properties.

(1) zT D T
�
t
l1

b ˝ � � �˝ t
ln

b

�
is obtained from 1#˝n by surgery along C1; : : : ;Cr .

(2) 1#˝n and C1; : : : ;Cr is obtained by pasting horizontally and vertically finitely
many copies of the following:

; ;

edge

;

edge

;

edge

;

edge

;

edge

:

Surgery on each Ci moves the band intersecting the lower leaf of Ci and let it clasp
with the band intersecting the upper leaf of Ci , and we can isotop the result of surgery
to the tangle representing a morphism in B0

0
as depicted in Figure 8. Hence it follows

that zT is in B0
0

. Since t
l1

b ˝ � � �˝ t
ln

b 2 B0
0

, we have T 2 B0
0

.

4.3.2 The general case Suppose that a tangle T in Œ0; 1�3 represents a morphism
T 2 B0.m; n/. We also assume that the endpoints of T are contained in the two
intervals

˚
1
2

	
�Œ0; 1�� f�g, � D 0; 1.

For i D 1; : : : ;m, let ci denote the interval in
˚

1
2

	
� Œ0; 1� � f1g bounded by the

.2i�1/st and the 2i th upper endpoints of T . Set c D c1 [ � � � [ cm . Similarly, for
j D 1; : : : ; n, let dj denote the interval in

˚
1
2

	
� Œ0; 1��f0g bounded by the .2j�1/st

and the 2j th lower endpoints of T . Set d D d1[ � � � [ dn . Note that T [ c consists
of n mutually disjoint arcs e1; : : : ; en , such that @ej D @dj for j D 1; : : : ; n. Set
e D e1[ � � � [ en .
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ci ci0 ci00

dj

� � � � � � � � � � � �

� � � � � �

Figure 9: Here the small arrows determines the framing of e[ d near c [ d .

Consider T �m , which is regarded as a tangle in Œ0; 1�2 � Œ0; 2�, where the lower cube
Œ0; 1�2 � Œ0; 1� contains T and the upper cube Œ0; 1�2 � Œ1; 2� contains �m . Note that
e � Œ0; 1�2 � Œ0; 2� can be regarded as a tangle, and is equivalent to T �m , and hence,
by the assumption, equivalent to �n (after identifying Œ0; 1�3 and Œ0; 1�2 � Œ0; 2� in a
natural way). Hence for j D 1; : : : ; n, ej [ dj bounds a disc Dj in Œ0; 1�2 � Œ0; 2�,
where D1; : : : ;Dn are mutually disjoint. Here each Di is chosen so that the framing
of ei [di induced by Di is the same as the framing of ei [di induced by that of T .
(Here we use the convention that the framing of oriented tangle component is given by
the blackboard framing convention, see Figure 9.) Set D DD1[ � � � [Dn .

Let � W Œ0; 1�2�f1g! Œ0; 1�2 denote the projection. Using a small isotopy if necessary,
we may assume that for small � > 0 we have the following.

� N D �.c/� Œ1� �; 1� is a regular neighborhood of c in D .

� e nN � Œ0; 1�2 � Œ0; 1� �/.

For i D 1; : : : ;m, let Ui denote a small regular neighborhood of ci in Œ0; 1�2 � f1g.
Using an isotopy of Œ0; 1�2 � Œ0; 2� fixing Œ0; 1�3 , we can assume that for each i D

1; : : : ;m, we have�
�.Ui/� .1; 2�

�
\D D �.Ui/� fpi;1; : : : ;pi;li

g;

where 1 < pi;1 < � � � < pi;li
< 2, li � 0. Define a piecewise-linear homeomorphism

f W Œ0; 2�! Œ0; 1� by

f .t/D

(
t; if 0� t � 1� �;
�tC.1��/

1C�
; if 1� � � t � 2:
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Define zf W Œ0; 1�2�Œ0; 2�! Œ0; 1�3 by zf .x;y; t/D .x;y; f .t// for x;y2 Œ0; 1�, t 2 Œ0; 2�.
(Thus zf fixes Œ0; 1�2 � Œ0; 1� ��, and maps Œ0; 1�2 � Œ1� �; 2� onto Œ0; 1�2 � Œ1� �; 1�
linearly.) Set

D0 D zf .D nN /[N:

Note that D0 is a union of n immersed discs whose only singularities are ribbon
singularities

�.ci/� ff .pi;k/g for 1� i �m, 1� k � li :

For j D 1; : : : ; n, let D0j �D0 denote the unique immersed disc containing dj . Note
that @D0j D ej [ dj .

We prove the assertion by induction on the number l D l1 C � � � C lm of ribbon
singularities. There are two cases.

Case 1 l D 0, ie, there are no ribbon singularities in D0 . In this case, we claim that
T is equivalent to

.�
Œm1�
b ˝ � � �˝�

Œmn�
b /�ˇ;

where mj is the number of arcs ci contained in D0j for j D 1; : : : ; n, � is a doubled
braid, and ˇ is a doubled string link. This claim can be proved as follows. Choose
points xi 2 int ci for i D 1; : : : ;m, and yj 2 int dj for j D 1; : : : ; n. For each
i D 1; : : : ;m, let bi denote a proper arc in D0 which connects xi and yj.i/ , where
j .i/ is such that xi and yj are in the same component of D0 . Set b D b1[ � � � [ bm .
We may assume that for i ¤ i 0 the intersection bi \bi0 is either empty if y.i/¤ y.i 0/,
or the common endpoint yj if y.i/D y.i 0/. By small isotopy, we may assume that
for sufficiently small �0 > 0 the intersection .Œ0; 1�2 � Œ0; �0�/\ b consists of “stars”
rooted at y1; : : : ;yn . Here each star at yj consists of mj line segments, and each
b0iD .Œ0; 1�

2�Œ�0; 1�/\bi is an arc. Let D00 be a sufficiently small regular neighborhood
of c[ b[d in D0 so that D00\ .Œ0; 1�2 � Œ�0; 1�/ consists of mutually disjoint bicollar
neighborhoods of b0

1
; : : : ; b0m . There is an isotopy of Œ0; 1�3 which fixes c[ b[d and

deforms D0 to D00 . Set T 0D @D00 n .int c[ int d/, which is a tangle isotopic to T . By
an isotopy fixing Œ0; 1�2 � f�0g as a set, we may assume that .Œ0; 1�2 � Œ0; �0�/\T 0 is a
tangle of the form �

Œm1�
b ˝ � � �˝�

Œmn�
b , and .Œ0; 1�2 � Œ�0; 1�/\T 0 is a a tangle of the

form �ˇ , as desired. Hence we have the claim.

It follows from Section 4.3.1 that ˇ is a morphism in B0
0

. Obviously, � and �Œm1�
b ˝

� � �˝�
Œmn�
b are morphisms in B0

0
. Hence T is in B0

0
.

Case 2 l � 1, ie, there is at least one ribbon singularity in D0 . Suppose i 2 f1; : : : ;mg

with li � 1. Using isotopy of Œ0; 1�3 fixing .�.c/� Œ1� �; 1�/[ d , we see that T is
equivalent to

(4–1) T 0.b˝.i�1/
˝ ˙˝ b˝.n�i//;
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where T 0 2 T .b˝.mC1/; b˝n/. Here the ribbon singularity �.ci/� ff .pi;li
/g of D is

isotoped to the obvious ribbon singularity involved in the copy of ˙ in (4–1). Since
we have

T 0�mC1 D T 0.b˝.i�1/
˝ ˙˝ b˝.n�i//�m D T �m D �n;

it follows that T 0 2 B0.mC1; n/. Note that T 0 bounds ribbon discs with less singular-
ities than T by 1. By the induction assumption, it follows that T 0 is in B0

0
. Hence we

have T 2 B0
0
.m; n/.

This completes the proof of Theorem 4.1.

5 Local moves

In this section, we explain how the category B can be used in the study of local moves
on links and tangles.

5.1 Monoidal relations and monoidal congruences

In this subsection, we recall the notions of monoidal relations and monoidal congruences
in monoidal categories.

Two morphisms in a monoidal category M are said to be compatible if they have the
same source and the same target.

A monoidal relation in a monoidal category M is a binary relation R�Mor.M/�

Mor.M/ on Mor.M/ satisfying the following conditions.

(1) If .f; f 0/ 2R, then f and f 0 are compatible.

(2) If .f; f 0/ 2R, a 2Ob.M/, then .a˝f; a˝f 0/ 2R and .f ˝a; f 0˝a/ 2R.

(3) If .f; f 0/ 2 R, g 2Mor.M/ and target.f / D source.g/ (resp. source.f / D
target.g/), then .gf;gf 0/ 2R (resp. .fg; f 0g/ 2R).

For any relation X �Mor.M/�Mor.M/ satisfying the condition (1) above, there is
the smallest monoidal relation RX containing X , which is called the monoidal relation
in M generated by X . If X D f.f; f 0/g, then RX is also said to be generated by the
pair .f; f 0/.

Suppose f; f 0 2M.a; b/ and g;g0 2M.c; d/ with a; b; c; d 2Ob.M/. Then g and
g0 are related by the monoidal relation generated by .f; f 0/, if and only if there are
z; z0 2 Ob.M/ and morphisms h1 2M.c; z˝ a˝ z0/, h2 2M.z˝ b˝ z0; d/ such
that

(5–1) g D h2.z˝f ˝ z0/h1; g0 D h2.z˝f
0
˝ z0/h1:
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Lemma 5.1 Let M be a braided category and let .f; f 0/2M.1; b/ with b 2Ob.M/.
Then g;g0 2M.c; d/ (c; d 2 Ob.T /) are related by the monoidal relation generated
by .f; f 0/ if and only if there is h 2M.c˝ b; d/ such that

g D h.c˝f /; g0 D h.c˝f 0/:

Proof The “if” part is obvious. We prove the “only if” part. By assumption, there are
z; z0 2 Ob.M/ and h1 2M.c; z˝ z0/, h2 2M.z˝ b˝ z0; d/ satisfying (5–1). Set
hD h2.z˝ z0;b/.h1˝ b/. Then we have the assertion.

A monoidal congruence, also called four-sided congruence, in a monoidal category
M is a monoidal relation in M which is an equivalence relation. If � is a monoidal
congruence in a monoidal (resp. braided) category M, then the quotient category
M=� is equipped with a monoidal (resp. braided) category structure induced by that
of M.

Example 5.2 The notion of homotopy (see Section 3.2) for morphisms in T is a
monoidal congruence in T generated by f. #;#;  �1

#;#
/; .1#; t#/g.

5.2 Topological and algebraic definitions of local moves

In this subsection, we first recall a formulation of local moves on links and tangles,
and then we reformulate it in the setting of the category T .

Informally, a “local move” is an operation on a link (or a tangle) which replaces a tangle
in a link (or a tangle) contained in a 3–ball B with another tangle. The following is a
precise definition of the notion of local moves.

Definition 5.3 Two tangles t and t 0 in a 3–ball B are said to be compatible if we have
@t D @t 0 and t and t 0 have the same framings and the same orientations at the endpoints.
Let .t; t 0/ be a compatible pair of tangles in B . For two compatible tangles u and u0

in another 3–ball D , we say that u and u0 are .t; t 0/–related, or u0 is obtained from u

by a .t; t 0/–move, if there is an orientation-preserving embedding f W B ,! int D and
a tangle u00 in D isotopic to u0 such that

(5–2) f .t/D u\f .B/; f .t 0/D u00\f .B/; u n intf .B/D u00 n intf .B/;

where the orientations and framings are the same in the two 1–submanifolds in each
side of these three identities.

Now we give an algebraic formulation of local moves.
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Definition 5.4 Let .T;T 0/ be a compatible pair of morphisms in T . Let R.T;T 0/

be the monoidal relation generated by the pair .T;T 0/. For two morphisms U and
U 0 in T , we say that U and U 0 are .T;T 0/–related, or U 0 is obtained from U by a
.T;T 0/–move, if .U;U 0/ 2R.T;T 0/ .

The following shows that we can reduce the study of local moves defined by compatible
pairs of tangles in a 3–ball B to the study of local moves defined by compatible pairs
of morphisms in T .

Proposition 5.5 Let .t; t 0/ be a compatible pair of tangles in a 3–ball B , and let C

be a compatibility class of tangles in another 3–ball D . Then there is a compatible pair
.T;T 0/ of morphisms in T and an orientation-preserving homeomorphism gW D Š

Œ0; 1�3 such that two tangles u;u0 2 C are .t; t 0/–related if and only if the morphisms
in T represented by g.u/ and g.u0/ are .T;T 0/–related as morphisms in T .

Proof We choose an orientation-preserving homeomorphism hW B Š Œ0; 1�3 such that
we have h.@t/ D h.@t 0/ �

˚
1
2

	
� .0; 1/ � f0; 1g so that the tangles h.@t/; h.@t 0/ �

Œ0; 1�3 represents (compatible) morphisms in T . Similarly, we choose an orientation-
preserving homeomorphism gW D Š Œ0; 1�3 such that for any u 2 C we have g.@u/�˚

1
2

	
� .0; 1/�f0; 1g so that for u 2 C the tangle g.u/� Œ0; 1�3 represents a morphism

in T . Set T D h.t/;T 0 D h.t 0/� Œ0; 1�3 , which are regarded as morphisms in T .

It is easy to verify the “if” part. We prove the “only if” part below. Suppose u;u0 2 C

are .t; t 0/–related. By the definition, there is an orientation-preserving embedding
f W B ,! D and a tangle u00 2 C isotopic to u0 satisfying (5–2). We can assume
without loss of generality that u00 D u0 . Set

f 0 D gf h�1
W Œ0; 1�3 ,! Œ0; 1�3:

Then g.u/ and g.u0/, as tangles in Œ0; 1�3 , are related by a .T;T 0/–move via f 0 . By
applying an appropriate self-homeomorphism of Œ0; 1�3 fixing boundary to both g.u/

and g.u0/, we have in T

g.u/DW2.z˝T ˝ z0/W1; g.u0/DW2.z˝T 0˝ z0/W1;

where z; z0 2 Ob.T / and

W1 2 T .source.g.u//; z˝ source.T /˝ z0/;

W2 2 T .z˝ target.T /˝ z0; target.g.u///:

This shows that g.u/ and g.u0/ are .T;T 0/–related as morphisms in T .
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Definition 5.6 Two compatible pairs .T1;T
0
1
/ and .T2;T

0
2
/ of morphisms in T

are said to be equivalent to each other if there is an orientation-preserving self-
homeomorphism � (not necessarily fixing the boundary) of the cube Œ0; 1�3 such
that �.T1/D T2 and �.T 0

1
/D T 0

2
.

Note that if .T1;T
0
1
/ and .T2;T

0
2
/ are equivalent pairs of mutually compatible mor-

phisms in T , then the notions of .T1;T
0
1
/–move and .T2;T

0
2
/–move are the same, ie,

two tangles U and U 0 are .T1;T
0
1
/–related if and only if U and U 0 are .T2;T

0
2
/–

related.

5.3 Local moves defined by pairs of bottom tangles

In the following we restrict our attention to local moves defined by pairs of mutually
homotopic tangles T and T 0 consisting only of arc components. Let us call such a
local move an arc local move. Arc local moves fit nicely into the setting of the category
B.

The following implies that, to study the arc local moves, it suffices to study the local
moves defined by pairs of bottom tangles.

Proposition 5.7 Let .T;T 0/ be a pair of mutually homotopic morphisms in T , each
consisting of n arc components and no circle components. Then there is a pair .T1;T

0
1
/

of mutually homotopic n–component bottom tangles which is equivalent to .T;T 0/.

Proof Set aD source.T / and b D target.T /. There is a (not unique) framed braid
ˇ 2 T .b˝ a�; b˝n/ such that

T1 D ˇ.T ˝ a�/coeva and T 01 D ˇ.T
0
˝ a�/coeva

are bottom tangles. Clearly, the two pairs .T;T 0/ and .T1;T
0
1
/ are equivalent, and T1

and T 0
1

are homotopic to each other. Hence we have the assertion.

We are in particular interested in arc local moves on bottom tangles. The following
theorem implies that the study of arc local moves on tangles in B is reduced to the
study of monoidal relations in B generated by pairs of bottom tangles.

Theorem 5.8 For T;T 0 2 BTn and U;U 0 2 B.k; l/, the following conditions are
equivalent.

(1) U and U 0 are .T;T 0/–related.

(2) U and U 0 are “.T;T 0/–related in B”, ie, related by the monoidal relation in B

generated by .T;T 0/.
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(3) There is a morphism W 2 B.kC n; l/ such that

(5–3) U DW .b˝k
˝T /; U 0 DW .b˝k

˝T 0/:

Proof By Lemma 5.1, (2) and (3) are equivalent. Obviously, (2) implies (1). We show
that (1) implies (3). By assumption, U and U 0 are .T;T 0/–related. By Lemma 5.1,
there is W 2 T .b˝.kCn/; b˝l/ satisfying (5–3). We have

W �kCn DW .b˝k
˝ �n/�k �h W .b˝k

˝T /�k D U�k �h �l ;

where we used the fact that T is a bottom tangle and U is a morphism in B. Hence
we have W 2 B.kC n; l/.

5.4 Admissible local moves

An n–component tangle t in a 3–ball B is said to be admissible if the pair .B; t/ is
homeomorphic to the pair .Œ0; 1�3; �n/. (In the literature, such a tangle is sometimes
called “trivial tangle”, but here we do not use this terminology, since it may give an
impression that a tangle is equivalent to a “standard” tangle such as �n .)

A compatible pair .t; t 0/ of tangles in a 3–ball B is called admissible if both t and t 0

are admissible. A local move defined by admissible pair is called an admissible local
move. In this subsection, we translate some well-known properties of admissible local
moves into our category-theoretical setting.

It follows from the previous subsections that, to study admissible local moves on
morphisms in B, it suffices to study the monoidal relations in B generated by pairs of
admissible bottom tangles with the same number of components.

For n� 0, let ABTn denote the subset of BTn consisting of admissible bottom tangles.
We set

ABTD
[
n�0

ABTn � BT :

Lemma 5.9 If T;T 0 2 ABTn , then there is V 2 ABTn such that the two pairs .T;T 0/
and .�n;V / are equivalent.

Proof Since T 2 ABTn , there is a framed pure braid ˇ 2 T .b˝n; b˝n/ of 2n–strings
such that ˇT D �n . Setting V D ˇT 0 , we can easily verify the assertion.

Lemma 5.9 above implies that, to study admissible local moves on morphisms in B, it
suffices to study the admissible local moves defined by pairs .�n;T / for T 2 ABTn .
Hence it is useful to make the following definition. If two tangles U and U 0 in B are
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.�n;T /–related, then we simply say that U and U 0 are T –related, or U 0 is obtained
from U by a T –move.

Now we consider sequences of admissible local moves.

Proposition 5.10 Let T1; : : : ;Tr 2 ABT, r � 0, and let U;U 0 2 B.k; l/ be two
morphisms in B. Then the following conditions are equivalent.

(1) There is a sequence U0 D U;U1; : : : ;Ur D U 0 of morphisms in B from U to
U 0 such that, for i D 1; : : : ; r , the tangles Ui�1 and Ui are Ti –related.

(2) U and U 0 are .T1˝ � � �˝Tr /–related.

Proof Obviously, (2) implies (1). We show that (1) implies (2). It is well known
(see, for example, [22, Lemma 3.21]) that if there is a sequence from a tangle U

to another tangle U 0 of admissible local moves, then T 0 can be obtained from T

by simultaneous application of admissible local moves of the same types as those
appearing in the sequence. Hence, after suitable isotopy of Œ0; 1�3 fixing the boundary,
there are mutually disjoint small cubes C1; : : : ;Cr in Œ0; 1�3 such that

� for i D 1; : : : ; r , the tangle Ci \U in Ci is equivalent to �ni
, where we set

ni D jTi j,
� the tangle obtained from U by replacing the copy of �ni

in Ci with a copy of
Ti for all i D 1; : : : ; r is equivalent to U 0 .

Using an isotopy of Œ0; 1�3 fixing the boundary which move the cubes C1; : : : ;Cr to
the upper right part of Œ0; 1�3 , we can express U and U 0 as

U DW .b˝k
˝ �n1C���Cnr

/; U 0 DW .b˝k
˝T1˝ � � �˝Tr /;

where W 2 T .b˝.kCn1C���Cnr /; b˝l/. One can easily verify W �kCn1C���Cnr
�h �l ,

hence W 2 B.kC n1C � � �C nr ; l/. Hence we have the assertion.

In the study of local moves, it is often useful to consider the relations on tangles defined
by several types of moves. Let M � ABT be a subset. For two tangles U and U 0 in
B, we say that U and U 0 are M –related, or U 0 is obtained from U by an M –move,
if there is T 2M such that U and U 0 are T –related.

For M � ABT, let M � denote the subset of ABT of the form T1˝ � � � ˝ Tr with
Ti 2M for i D 1; : : : ; r , r � 0. Note that M � � ABT. The following immediately
follows from Proposition 5.10.

Proposition 5.11 Let M �ABT. Then U;U 02B.k; l/ are related by a finite sequence
of M –moves if and only if U and U 0 are M �–related.
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For M � ABT, the M –equivalence is the equivalence relation on tangles generated
by the M –moves. Note that, for morphisms in B, the M –equivalence is the same as
the monoidal congruence in B generated by the set f.�jT j;T / j T 2M g.

A subset M �ABT is said to be inversion-closed if for each T 2M , there is a sequence
of M –moves from T to �jT j . In this case, two tangles U and U 0 are M –equivalent
if and only if there is a sequence of M –moves from U to U 0 .

Given any subset M � ABT, one can construct an inversion-closed subset M 0 � ABT

such that any two morphisms U and U 0 in B are M –equivalent if and only if there
is a sequence from U to U 0 of M 0–moves. For example, M 0 DM [f xT j T 2M g

satisfies this condition, where xT Dˇ�1�n with nD jT j and ˇ 2B.n; n/ a (not unique)
framed pure braid such that T D ˇ�n . (Note that the pair . xT ; �n/ is equivalent to
.�b;T /.)

By Proposition 5.11, we have the following.

Proposition 5.12 Let M � ABT be inversion-closed. Then U;U 0 2 B.k; l/ are
M –equivalent if and only if they are M �–related.

5.5 Tangles obtained from �n by an admissible local move

Let LB0 denote the braided subcategory of B0 generated by the object b and the
morphisms �b; �b; C; � , and let T denote the monoidal subcategory of B0 generated
by the object b and the morphisms tC� and t�1

C� . It is easy to see that for n� 0 we
have

T.n; n/D ft
k1

C�˝ � � �˝ t
kn

C� j k1; : : : ; kn 2 Zg;

and T.m; n/ is empty if m¤ n.

Lemma 5.13 For any morphism T 2B0.m; n/ with m; n�0, there are T 0 2 LB0.m; n/

and T 002T.m;m/ such that T DT 0T 00 . (The decomposition T DT 0T 00 is not unique.)

Proof Using Theorem 4.1 and the identities

tk
C��b D �b.t

k
C�˝ tk

C�/; tk
C��b D �b; .tk

C�˝ t l
C�/˙ D ˙t l

C�;

for k; l 2 Z, we can easily prove the assertion.

Theorem 5.14 Let T 2 ABTm and U 2 BTn . Then U is obtained from �n by one
T –move if and only if there is W 2 LB0.m; n/ such that U DW T .
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Proof The “if” part is obvious. We prove the “only if” part. Suppose that �n and
U 2BTn are T –related. By Theorem 5.8, there is W 0 2B.m; n/ such that �nDW 0�m

and U DW 0T . The first identity means that W 0 2B0.m; n/. By Lemma 5.13, we have
W 0 DW V , where W 2 LB0.m; n/ and V 2 T.m;m/. It is easy to see that V T D T .
Hence we have U DW 0T DW V T DW T .

For M �ABT, a bottom tangle T 2BTn is said to be M –trivial if T is M –equivalent
to �n . The following immediately follows from Proposition 5.12 and Theorem 5.14.

Corollary 5.15 Let M � ABT be inversion-closed, and let U 2 BTn . Then U is
M –trivial if and only if there are T 2M � and W 2 LB0.jT j; n/ such that U DW T .

5.6 Generators of B

Here we use the results in the previous subsections to obtain a simple set of generators
of B. Define morphisms v˙ 2 BT1 and c˙ 2 BT2 by

v˙ D .t
�1
#
˝ "/�b; c˙ D .# ˝. #;" ";#/

˙1
˝ "/.�b˝ �b/:

Graphically, we have

vC D ; v� D ; cC D ; c� D :

Note that a v˙–move is change of framing by 1, and a c˙–move is a crossing change.
Hence two morphisms in B are homotopic if and only if they are fvC; v�; cC; c�g–
equivalent.

Theorem 5.16 As a braided subcategory of T , B is generated by the object b and the
morphisms �b; �b; vC; v�; cC; c� .

Proof Let B0 denote the braided subcategory of T generated by the object b and the
morphisms �b; �b; vC; v�; cC; c� . It suffices to show that any tangle U 0 2 B.m; n/ is
a morphism in B0 .

Choose a tangle U 2 B0.m; n/ which is homotopic to U 0 , ie, fvC; v�; cC; c�g–
equivalent to U 0 . Since fvC; v�; cC; c�g is an inversion-closed subset of ABT,
Theorem 5.8 and Proposition 5.12 imply that there are T 2 fvC; v�; cC; c�g

� and
W 2 B.mCjT j; n/ such that

U DW .b˝m
˝ �jT j/;(5–4)

U 0 DW .b˝m
˝T /:(5–5)
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Since U is a morphism in B0 , (5–4) implies that W is a morphism in B0 . The
generators of B0 given in Theorem 4.1 are in B0 , since we have

˙ D .�b˝ b/.b˝ ˙1
b;b /.b˝�

Œ3�
b ˝ b/.c˙˝ b˝ c�/;

t˙1
C� D �

Œ3�
b .v�˝ b˝ v˙/:

Hence W is in B0 . Since b˝p ˝ T is in B0 , it follows from (5–5) that U 0 is in B0 .
This completes the proof.

Remark 5.17 The set of generators of B given in Theorem 5.16 is not minimal. One
can show, for example, that B is minimally generated as a braided subcategory of T
by the object b and the morphisms �b , vC , cC and c� .

Theorem 5.16 implies that each bottom tangle can be obtained as a result of horizontal
and vertical pasting of finitely many copies of the tangles 1b ,  ˙1

b;b , �b , �b , vC , v� ,
cC , c� .

In the following we give several corollaries to Theorem 5.16.

The following notation is useful in the rest of the paper. For f 2 B.m; n/ and i; j � 0,
set

f.i;j/ D b˝i
˝f ˝ b˝j

2 B.i CmC j ; i C nC j /:

The following corollary to Theorem 5.16 is sometimes useful.

Corollary 5.18 As a subcategory of T , B is generated by the objects b˝n , n� 0, and
the morphisms

. b;b/.i;j/; . 
�1
b;b /.i;j/ for i; j � 0;

f.i;0/ for f 2 f�b; �b; v˙; c˙g; i � 0:

Proof By Theorem 5.16, B is generated as a subcategory of T by the morphisms
f.i;j/ with f 2 f ˙1

b;b ; �b; �b; v˙; c˙g, i; j � 0. For f ¤  ˙1
b;b , we can express

f.i;j/ as a conjugate of f.iCj ;0/ by a doubled braid. (Here a doubled braid means a
morphism in the braided subcategory of B generated by the object b.) This implies the
assertion.

Corollary 5.19 (1) Each T 2 BTn can be expressed as

(5–6) T D
�
t
p1

C0
˝ � � �˝ t

pn

C0

��
�
Œj1�
b ˝ � � �˝�

Œjn�
b

�
ˇ
�
c
˝lC
C ˝ c˝l�

�

�
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Figure 10: An example of T with nD 5 , .p1; : : : ;p5/D .�2; 1; 2;�1; 0/ ,
.j1; : : : ; j5/D .3; 1; 0; 2; 2/ , and lC D l� D 2

with tC0D t#˝" .D�b.v�˝b//2B.1; 1/, p1; : : : ;pn2Z, j1; : : : ; jn�0, lC; l��0,
2.lCC l�/D j1C � � �C jn , and ˇ 2 B.2.lCC l�/; 2.lCC l�// a doubled braid. (For
example, see Figure 10.)

(2) Each T 2 BTn can be expressed up to framing change as

(5–7) T D
�
�
Œj1�
b ˝ � � �˝�

Œjn�
b

�
ˇ
�
c
˝lC
C ˝ c˝l�

�

�
where j1; : : : ; jn � 0, lC; l� � 0 with 2.lCC l�/ D j1C � � � C jn , and where ˇ 2
B.2.lCC l�/; 2.lCC l�// is a doubled braid.

Proof Note that composing b˝.i�1/˝ t
pi

C0
˝ b˝.n�i/ from the left to T 2 BTn just

changes the framing of the i th component of T by pi . Hence we have only to prove
(2). In the following we ignore the framing. It suffices to prove that if T is as in (5–7),
and U D f.r;s/ with f 2 f ˙1

b;b ; �b; �b; c˙g and r; s � 0 such that U T is well defined,
then U T has a decomposition similar to (5–7). In the following we use the notation

�
Œa1;a2;:::;ak �
b D �

Œa1�
b ˝�

Œa2�
b ˝ � � �˝�

Œak �
b

for a1; : : : ; ak � 0.

The case f D  b;b follows from

. b;b/.r;s/�
Œj1;:::;jn�
b D

�
Œj1;:::;jr ;jrC2;jrC1;jrC3;:::;jn�
b . 

b˝jrC1 ;b˝jrC2 /.j1C���Cjr ;jrC3C���Cjn/:

The case f D  �1
b;b is similar. The cases f D �b; �b follow from

�.r;s/�
Œj1;:::;jn�
b D �

Œj1;:::;jr ;jrC1CjrC2;jrC3;:::;jn�
b ;

�.r;s/�
Œj1;:::;jn�
b D �

Œj1;:::;jr ;0;jrC1;:::;jn�
b :
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For f D c˙ , we have

f.r;s/�
Œj1;:::;jn�
b ˇ.c

˝lC
C ˝ c˝l�

� /D

�
Œj1;:::;jr ;1;1;jrC1;:::;jn�
b .1˝.j1C���Cjr /˝ 

b˝.jrC1C���Cjn/;b˝2/

.ˇ˝ b˝2/.c
˝lC
C ˝ c˝l�

� ˝f /:

If f D c� , then we are done. The other case f D cC follows from

c
˝lC
C ˝ c˝l�

� ˝ cC D .b
˝lC ˝ b˝2;b˝2l� /.c

˝.lCC1/
C ˝ c˝l�

� /:

Remark 5.20 In Corollary 5.19 (1), we may assume that p1; : : : ;pn 2 f0; 1g. This
follows from the identity t˙2

C0
D �

Œ3�
b .c� ˝ b/. In particular, it follows that if each

component of T 2 BTn is of even framing, then T can be expressed as in Corollary
5.19 (1) with p1 D � � � D pn D 0. This fact is used in Section 14.2.5.

Let A denote the braided subcategory of B generated by the object b and the morphisms
�b and �b . (A is naturally isomorphic to the braided category hAi freely generated by
an algebra A, defined later in Section 6.2, but we do not need this fact.) Clearly, A is
a subcategory of LB0 (and hence of B0 ). We need the following corollary later.

Corollary 5.21 Any T 2 BTn can be expressed as a composition T D T 0T 00 with
T 0 2A.m; n/ and T 00 2 fv˙; c˙g

�\BTm , m� 0.

Proof This easily follows from Theorem 5.16, similarly to Corollary 5.19.

6 Hopf algebra action on bottom tangles

6.1 The braided category hHi freely generated by a Hopf algebra H

Let hHi denote the braided category freely generated by a Hopf algebra H. In other
words, hHi is a braided category with a Hopf algebra H such that if M is a braided
category and H is a Hopf algebra in M, then there is a unique braided functor
FH W hHi!M that maps the Hopf algebra structure of H into that of H . Such hHi is
unique up to isomorphism.

A more concrete definition of hHi (up to isomorphism) is sketched as follows. Set
Ob.hHi/ D fH˝n j n � 0g. Consider the expressions obtained by compositions and
tensor products from copies of the morphisms

11W 1! 1; 1HW H! H;  ˙1
H;HW H

˝2
! H˝2; �HW H

˝2
! H; �HW 1! H;

�HW H! H˝2; �HW H! 1; SHW H! H;
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where we understand 1D H˝0 and HD H˝1 , and define an equivalence relation on
such expressions generated by the axioms of braided category and Hopf algebra. Then
the morphisms in hHi are the equivalence classes of such expressions.

Note that if F W hHi!M is a braided functor of hHi into a braided category M, then
F.H/ 2 Ob.M/ is equipped with a Hopf algebra structure

.F.�H/;F.�H/;F.�H/;F.�H/;F.SH//:

Conversely, if H is a Hopf algebra in M, then there is a unique braided functor
F W hHi!M such that F maps the Hopf algebra structure of H into that of H . Hence
there is a canonical one-to-one correspondence between the Hopf algebras in a braided
category M and the braided functors from hHi to M.

For f 2 hHi.H˝m;H˝n/ (m; n� 0) and i; j � 0, set

f.i;j/ D H˝i
˝f ˝H˝j

2 hHi.H˝.mCiCj/;H˝.nCiCj//:

Note that hHi is generated as a category by the objects H˝i , i � 0, and the morphisms
f.i;j/ with f 2 f H;H;  

�1
H;H; �; �;�; �;Sg and i; j � 0. In the following, we write

. ˙1
H;H/.i;j/ D  

˙1
.i;j/

.

Lemma 6.1 As a category, hHi has a presentation with the generators f.i;j/ for
f 2 f H;H;  

�1
H;H; �; �;�; �;Sg and i; j � 0, and the relations

f.i;jCq0Ck/g.iCpCj ;k/ D g.iCp0Cj ;k/f.i;jCqCk/;(6–1)

 .i;j/ 
�1
.i;j/ D  

�1
.i;j/ .i;j/ D 1H˝.iCjC2/ ;(6–2) (

. p0;1/.i;j/f.i;jC1/Df.iC1;j/. p;1/.i;j/;

. 1;p0/.i;j/f.iC1;j/Df.i;jC1/. 1;p/.i;j/;
(6–3) (

�.i;j/�.i;jC1/ D �.i;j/�.iC1;j/ D 1H˝.iCjC1/ ;

�.i;j/�.i;jC1/ D �.i;j/�.iC1;j/;
(6–4) (

�.i;jC1/�.i;j/ D �.iC1;j/�.i;j/ D 1H˝.iCjC1/ ;

�.i;jC1/�.i;j/ D�.iC1;j/�.i;j/;
(6–5) 8̂<̂

:
�.i;j/�.i;j/ D 1H˝.iCj / ;

�.i;j/�.i;j/ D �.i;j/�.iC1;j/;

�.i;j/�.i;j/ D �.iC1;j/�.i;j/;

(6–6)

�.i;j/�.i;j/ D �.iC1;j/�.i;jC2/ .iC1;jC1/�.i;jC2/�.iC1;j/;(6–7)

�.i;j/S.i;jC1/�.i;j/ D �.i;j/S.iC1;j/�.i;j/ D �.i;j/�.i;j/;(6–8)
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for i; j ; k�0 and f;g2f H;H;  
�1
H;H; �; �;�; �;Sg with f W H˝p!H˝p0 , gW H˝q!

H˝q0 . Here, . p;1/.i;j/ and . 1;p/.i;j/ for p D 0; 1; 2 and i; j � 0 are defined by

. 0;1/.i;j/ D . 1;0/.i;j/ D 1H˝.iCjC1/ ; . 1;1/.i;j/ D  .i;j/;

. 2;1/.i;j/ D  .i;jC1/ .iC1;j/; . 1;2/.i;j/ D  .iC1;j/ .i;jC1/:

Proof We only give a sketch proof, since a detailed proof is long though straight-
forward. The relations given in the lemma are the ones derived from the axioms for
braided category and Hopf algebra, hence valid in hHi. We have to show, conversely,
that all the relations in hHi can be derived from the relations given in the lemma. It
suffices to show that the category hHi0 with the presentation given in the lemma is
a braided category with a Hopf algebra H. The relation (6–1) implies that hHi0 is a
monoidal category, since we can define the monoidal structure for hHi0 by

f.i;j/˝f
0
.i0;j 0/ D f.i;jCi0Cn0Cj 0/f

0
.iCmCjCi0;j 0/

for f; f 0 2 f H;H;  
�1
H;H; �; �;�; �;Sg, f W H

˝m ! H˝n , f 0W H˝m0 ! H˝n0 . The
relations (6–2) and (6–3) imply that hHi0 is a braided category, and the other relations
imply that H is a Hopf algebra in hHi0 .

6.2 External Hopf algebras in braided categories

Let hAi denote the braided category freely generated by an algebra AD .A; �A; �A/.
For a braided category M and an algebra A in M, let

iM;AW hAi !M

denote the unique braided functor that maps the algebra structure of A into the algebra
structure of A.

Definition 6.2 An external Hopf algebra .H;F / in a braided category M is a pair
of an algebra H D .H; �H ; �H / in M and a functor F W hHi! Sets into the category
Sets of sets and functions such that we have a commutative square

hAi
iM;H

����! M

ihHi;H

??y ??yM.1;�/

hHi ����!
F

Sets:

Remark 6.3 The functor ihHi;HW hAi ! hHi is faithful. Hence we can identify hAi
with the braided subcategory of hHi generated by H, �H and �H . However, we do not
need this fact in the rest of the paper.
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1 � � � iC1 � � � iCjC1

T
L�.i;j/.T /

T 0 T 00

L�.i;j/.T / LS.i;j/.T /

T 000

Figure 11

Remark 6.4 To each Hopf algebra H in a braided category M, we can associate an
external Hopf algebra in M as follows. Let FH W hHi !M be the braided functor
which maps the Hopf algebra H into H . Then the pair ..H; �H ; �H /;M.1;FH .�///

is an external Hopf algebra in M. Therefore, the notion of external Hopf algebra in
M can be regarded as a generalization of the notion of Hopf algebra in M.

6.3 The external Hopf algebra structure in B

In this subsection, we define an external Hopf algebra .b;Fb/ in B. First note that
.b; �b; �b/ is an algebra in B. (This algebra structure of b cannot be extended to a
Hopf algebra structure in B in the usual sense, since there is no morphism �W b! 1 in
B.)

For i; j � 0 and T 2 BTiCjC1 , set

L�.i;j/.T /D .b
˝i
˝ .# ˝ b;"/˝ b˝j /T 0;

L�.i;j/.T /D T 00;

LS.i;j/.T /D .b
˝i
˝ ";#." ˝t#/˝ b˝j /T 000;

where T 0 2 T .1; b˝i˝ #˝ #˝ "˝ "˝b˝j / is obtained from T by duplicating the
.i C 1/st component of T , T 00 2 T .1; b˝.iCj// is obtained from T by removing the
.i C 1/st component of T , and T 000 2 T .1; b˝i˝ "˝ # ˝b˝j / is obtained from T

by reversing orientation of the .i C 1/st component of T , see Figure 11. We have

L�.i;j/.T / 2 BTiCjC2; L�.i;j/.T / 2 BTiCj ; LS.i;j/.T / 2 BTiCjC1 :

Hence there are functions
L�.i;j/W BTiCjC1! BTiCjC2;

L�.i;j/W BTiCjC1! BTiCj ;

LS.i;j/W BTiCjC1! BTiCjC1 :
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1 iC1 iC2 iCjC2

� � � � � �

1 iC1 iC2 iCjC2

� � � � � �

(a) (b)

Figure 12

Theorem 6.5 There is a unique external Hopf algebra ..b; �b; �b/;Fb/ in B with
FbW hHi ! Sets satisfying

Fb.�.i;j//D L�.i;j/; Fb.�.i;j//D L�.i;j/; Fb.S.i;j//D LS.i;j/(6–9)

for i; j � 0.

Proof We claim that there is a functor FbW hHi ! Sets satisfying (6–9) and

Fb. 
˙1
.i;j//D . 

˙1
b;b /.i;j/.�/;

Fb.�.i;j//D .�b/.i;j/.�/;

Fb.�.i;j//D .�b/.i;j/.�/;

for i; j � 0. If this claim is true, then one can easily check that Fb is unique and
.b;Fb/ is an external Hopf algebra in B.

To prove the above claim, it suffices to check that each relation in Lemma 6.1 are
mapped into a relation in B. For example, the relation (6–7) is mapped into

L�.i;j/..�b/.i;j/g/D.�b/.iC1;j/.�b/.i;jC2/. b;b/.iC1;jC1/
L�.i;jC2/

L�.iC1;j/.g/�
D..�b˝�b/.b˝ b;b˝ b//.i;j/ L�.i;jC2/

L�.iC1;j/.g/
�

(6–10)

for g 2 BTiCjC2 . This can be proved in a graphical way. If

g D

1 iC1 iC2 iCjC2

� � � � � � ;

then the left and the right hand sides of (6–10) are as depicted in Figure 12 (a) and
(b), respectively. As another example, (6–8) is mapped into the equivalence of Figure
13 (a), (b), and (c). It is straightforward to check the other relations, and we leave it
to the reader. The detail is to a certain extent similar to the proof of the existence of
the Hopf algebra in the category of cobordisms of surfaces with connected boundary
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(a) (b) (c)

Figure 13: Here, only the i th component is depicted in each figure.

(see Crane and Yetter [8] and Kerler [40]) and also to the proof of the Hopf algebra
relations satisfied by claspers [22]. See also Section 14.4.

Theorem 6.5 implies that there is a Hopf algebra action on the bottom tangles as we
mentioned in Section 1.6.

6.4 Adjoint actions and coactions

In this subsection, we consider the image by Fb of the left adjoint action and the left
adjoint coaction of H, which we need later.

Let adHW H
˝2! H denote the left adjoint action for H, which is defined by

adH D �
Œ3�
H .H˝ H;H/.H˝SH˝H/.�H˝H/:

For i; j � 0 and T 2 BTiCjC2 , we have

Fb..adH/.i;j//.T /

DFb..�
Œ3�
H .H˝ H;H/.H˝SH˝H/.�H˝H//.i;j//.T /

D.�
Œ3�
b /.i;j/.b˝ b;b/.i;j/Fb..H˝SH˝H/.i;j//.Fb..�H˝H/.i;j//.T //:

Hence Fb..adH/.i;j// maps T 2 BTiCjC1 to a bottom tangle as depicted in Figure 14
(a). By isotopy, we obtain a simpler tangle as in Figure 14 (b). (Note that the closures
cl.T / and cl.Fb..adH/.i;j//.T // are isotopic. This fact is used in Section 11.)

Let coadHW H! H˝2 denote the left adjoint coaction defined by

coadH D .�H˝H/.H˝ H;H/.H˝H˝SH/�
Œ3�
H :
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(b)(a)

Figure 14: (a) The tangle Fb..adH/.i;j//.T / 2 BTiCjC1 , with only the .i C
1/st component depicted. The dotted lines denote (parallel copies of) the
.i C 1/st and .i C 2/nd components of T . (b) A tangle isotopic to (a).

(c)(b)(a) (d) (e)

Figure 15: (a) The tangle Fb..coadH/.i;j//.T / 2 BTiCjC2 , where only the
.i C 1/st and .i C 2/nd components are depicted. (b) A tangle isotopic
to (a), which is .C/.i;j/T . (c) Another tangle isotopic to (a), which is
Fb..H˝ adH/.i;j//..cC ˝ b/.i;j/T / . (d) The tangle .�/.i;j/T with only
.i C 1/st component depicted. (e) A tangle isotopic to (d).

For i; j � 0 and T 2 BTiCjC1 , we have

Fb..coadH/.i;j//.T /

DFb...�H˝H/.H˝ H;H/.H˝H˝SH/�
Œ3�
H /.i;j//.T /

D.�b˝ b/.i;j/.b˝ b;b/.i;j/Fb..H˝H˝SH/.i;j//.Fb..�
Œ3�
H /.i;j//.T //:

Hence Fb..coadH/.i;j// maps T 2 BTiCjC1 to a .i C j C 2/–component bottom
tangle as depicted in Figure 15 (a). Since it is isotopic to Figure 15 (b) and (c), we
have

(6–11) Fb..coadH/.i;j//.T /D .C/.i;j/T D Fb..H˝ adH/.i;j//..cC˝ b/.i;j/T /:
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Since Figure 15 (d) and (e) are isotopic, we have

(6–12) .�/.i;j/T D Fb..SH˝H/.i;j//..C/.i;j/T /:

7 Universal tangle invariant associated to a ribbon Hopf al-
gebra

In this section, we give a definition of a universal tangle invariant associated to a ribbon
Hopf algebra.

7.1 Ribbon Hopf algebras

In this subsection, we recall the definition of ribbon Hopf algebra (see Reshetikhin and
Turaev [74]).

Let H D .H; �; �;�; �;S/ be a Hopf algebra over a commutative, unital ring k.

A universal R–matrix for H is an invertible element R2H˝2 satisfying the following
properties:

R�.x/R�1
D PH ;H�.x/ for all x 2H ;(7–1)

.�˝ 1/.R/DR13R23; .1˝�/.R/DR13R12:(7–2)

Here PH ;H W H
˝2!H˝2 , x˝y 7! y˝x , is the k–module homomorphism which

permutes the tensor factors, and

R12 DR˝ 1 2H˝3; R13 D .1˝PH ;H /.R12/ 2H˝3; R23 D 1˝R 2H˝3:

A Hopf algebra equipped with a universal R–matrix is called a quasitriangular Hopf
algebra.

In what follows, we freely use the notations

RD
X

˛˝ˇ and R�1
D

X
x̨ ˝ x̌ .D .S ˝ 1/.R//:

We also use the notations

RD
X

˛i ˝ˇi ; R�1
D

X
x̨i ˝

x̌
i ;

where i is any index, used to distinguish several copies of R˙1 .

A ribbon element for .H;R/ is a central element r 2H such that

r2
D uS.u/; S.r/D r; �.r/D 1; �.r/D .R21R/�1.r˝ r/;
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where R21 D PH ;H .R/D
P
ˇ˝˛ and uD

P
S.ˇ/˛ . Since u is invertible, so is r.

The triple .H;R; r/ is called a ribbon Hopf algebra.

The element � D ur�1 is grouplike, ie, �.�/D �˝ � , �.�/D 1. We also have

�x��1
D S2.x/ for all x 2H :

In what follows, we often use the Sweedler notation for comultiplication. For x 2H ,
we write

�.x/D
X

x.1/˝x.2/;

�Œn�.x/D
X

x.1/˝ � � �˝x.n/ for n� 1:

7.2 Adjoint action and universal quantum trace

We regard H as a left H –module with the (left) adjoint action

adD FW H˝2
!H; x˝y 7! x Fy;

defined by
x Fy D

X
x.1/yS.x.2// for x;y 2H :

Recall that ad is a left H –module homomorphism.

The function
H˝2

!H; x˝y 7! x Fy � �.x/y;

is a left H –module homomorphism. Hence the image

N D Spankfx Fy � �.x/y j x;y 2H g �H

is a left H –submodule of H . Note that H=N , the module of coinvariants, inherits
from H a trivial left H –module structure.

The definition of N above is compatible with (1–1) as follows.

Lemma 7.1 We have

N D Spankfxy �yS2.x/ j x;y 2H g:

Proof The assertion follows from

x Fy � �.x/y D
X�

x.1/yS.x.2//�yS.x.2//S
2.x.1//

�
;

xy �yS2.x/D
X�

x.1/ FyS2.x.2//� �.x.1//yS2.x.2//
�
;

for x;y 2H .
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˛ ˇ
x̨

x̌
1

1
�

��1

Figure 16: How to place elements in H on the strings in the tangle T

S.˛/ ˇ ˛ S.ˇ/ S.˛/ S.ˇ/
S.x̨/ x̌

x̨ S. x̌/ S.x̨/ S. x̌/

Figure 17: The cases of crossings with upward strings

As in Section 1.2.2, let trqW H !H=N denote the projection, and call it the universal
quantum trace for H . If k is a field and V is a finite-dimensional left H –module,
then the quantum trace in V

trV
q W H ! k

factors through trq . Here trV
q is defined by

trV
q .x/D trV .�.�x// for x 2H ;

where �W H ! Endk.V / denotes the left action of H on V , and

trV
W Endk.V /! k

denotes the trace in V .

7.3 Definition of the universal invariant

In this subsection, we recall the definition of the universal invariant of tangles associated
to a ribbon Hopf algebra H . The definition below is close to Ohtsuki’s one [65], but
we use different conventions and we make some modifications. In particular, for closed
components, we use the universal quantum trace instead of the universal trace.

Let T D T1[� � �[Tl [L1[� � �[Lm with l;m� 0 be a (framed, oriented) tangle in
a cube, consisting of l arc components T1; : : : ;Tl and m ordered circle components
L1; : : : ;Lm . First, assume that T is given by pasting copies of the tangles

#; ";  ˙1
#;#; ev#; ev"; coev#; coev":

(Later we consider a more general case.) We formally put elements of H on the strings
of T according to the rule depicted in Figure 16. We define
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x̨c

x̨d

x̨e

x̌
c

x̌
d

x̌
e

T1 �

S.˛a/

˛b

ˇa

S.ˇb/

�

1

L1

1

Figure 18: For the tangle T D T1[L1 , we have

JT D

X
x̨e
x̌

d x̨c1S.˛a/S.ˇb/� x̌e x̨d
x̌

c ˝ trq.�
�1�˛bˇa1/;

where RD
P
˛a˝ˇa , and R�1 D

P
x̨c ˝

x̌
c , etc.

(7–3) JT D

X
J.T1/˝ � � �˝J.Tl /˝J.L1/˝ � � �˝J.Lm/ 2H˝l

˝ .H=N /˝m

as follows. For each iD1; : : : ; l , we formally set J.Ti / to be the product of the elements
put on the component Ti obtained by reading the elements using the order determined
by the opposite orientation of Ti and writing them down from left to right. For each
j D 1; : : : ; s , we define J.Lj / by first obtaining a word w by reading the elements put
on Lj starting from any point on Lj , and setting formally J.Lj / D trq.�

�1w/. (Here,
it should be noted that each of the J.Ti / and the J.Lj / has only notational meaning
and does not define an element of H or H=N by itself.) For example, see Figure 18.

Now we check that JT does not depend on where we start reading the elements on
the closed components. Let Lj be a closed component of T and let x1; : : : ;xr be the
elements read off from Lj . Then we have formally J.Lj / D trq.�

�1x1x2 � � �xr /. If
we start from x2 , then the right hand side becomes

trq.�
�1x2 � � �xr x1/D trq.S

�2.x1/�
�1x2 � � �xr /D trq.�

�1x1x2 � � �xr /:

It follows that J.Li / does not depend on where we start reading the elements.

Now we can follow Ohtsuki’s arguments [65] to check that JT does not depend on
how we decompose T into copies of #, ",  ˙1

#;#
, ev# , ev" , coev# and coev" , and

that JT defines an isotopy invariant of framed, oriented, ordered tangles.

It is convenient to generalize the above definition to the case where T is given as
pasting of copies of the tangles #, ",  ˙1

a;b
(a; b 2 f#;"g), ev# , ev" , coev# and

coev" . In this case, we put elements of H on the components of T as depicted in
Figures 16 and 17. Then JT is defined in the same way as above. We can check that
JT is well defined as follows. For each tangle diagram T in Figure 17, we choose a
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˛ S.ˇ/
x̨

x̌

�

��1

T T 0

Figure 19

tangle diagram T 0 isotopic to T obtained by pasting copies of #, ",  ˙1
#;#

, ev# , ev" ,
coev# and coev" . Then we can verify that JT 0 in the first definition, is equal to JT in
the second definition given by Figure 17. For example, consider the second tangle in
Figure 17. Then T and T 0 are as depicted in Figure 19. We have

JT 0 D

X
x̨ ˝ � x̌��1

D

X
˛˝ �S�1.ˇ/��1

D

X
˛˝S.ˇ/D JT ;

where we used
P
x̨ ˝ x̌D

P
˛˝S�1.ˇ/. The other cases can be similarly proved.

Remark 7.2 To study invariants of tangles, it is sometimes useful to define a functorial
invariant. One can modify Kauffman and Radford’s functorial universal regular isotopy
invariant [38] to define a functorial universal invariant defined on T , ie, a braided
functor F W T !Cat.H / of T into a category Cat.H / defined as in [38]. However, we
do not do so here, since in the present paper we are interested in ordered links. Note that
the categories T and Cat.H / do not care about the order of the circle components. One
can still define a functorial universal invariant which distinguishes circle components
by using the category of colored tangles, but it would cause unnecessary complication
and we do not take this approach here.

7.4 Effect of closure operation

In Ohtsuki’s definition [65] of his version of the universal invariant, the universal trace
H ! H=I , with I D Spankfxy � yx j x;y 2 H g, is used. For our purposes, the
universal quantum trace is more natural and more useful than the universal trace. Note
that I is not a left H –submodule of H in general. The following proposition shows
another reason why the universal quantum trace is more convenient.

Proposition 7.3 If T 2 BTn , then we have

Jcl.T / D tr˝n
q .JT /:
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J.Ti / Ti

ev"
�

Figure 20

Proof Set LD cl.T /DL1[ � � � [Ln . We write

JT D

X
J.T1/˝ � � �˝J.Tn/ 2H˝n;

JL D

X
J.L1/˝ � � �˝J.Ln/ 2 .H=N /˝n;

For i D 1; : : : ; n, the part J.Li / is computed as follows. The diagram of Li is divided
into the diagram of Ti and the diagram of ev" . See Figure 20. Since we have Jev" D � ,
it follows that

J.Li / D trq.�
�1Jev"J.Ti //D trq.�

�1�J.Ti //D trq.J.Ti //:

This implies the assertion.

In Section 11, we give a definition of a more refined version of the universal invariants
of links.

7.5 Duplication, removal, and orientation-reversal

Let T be a tangle and let Ti be an arc component of T . Define a k–module homo-
morphism zSTi

W H !H by

zSTi
.x/D ��r.Ti /S.x/�s.Ti / for x 2H ;

where r.Ti/D 0 if Ti starts at the top and r.Ti/D 1 otherwise, and s.Ti/D 0 if Ti

ends at the bottom, and s.Ti/D 1 otherwise. For example, we have

zS#.x/D S.x/; zS".x/D �
�1S.x/� D S�1.x/;

zS .x/D zS .x/D S.x/�; zS .x/D zS .x/D ��1S.x/

for x 2H . We need the following result, which is almost standard.

Lemma 7.4 Let T DT1[� � �[Tn be a tangle with n arcs with n�1. For iD1; : : : ; n,
let �i.T / (resp. �i.T /, Si.T /) denote the tangle obtained from T by duplicating
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(resp. removing, orientation-reversing) the i th component Ti . Then we have

J�i .T / D .1
˝.i�1/

˝�˝ 1˝.n�i//.JT /;(7–4)

J�i .T / D .1
˝.i�1/

˝ �˝ 1˝.n�i//.JT /;(7–5)

JSi .T / D .1
˝.i�1/

˝ zSTi
˝ 1˝.n�i//.JT /:(7–6)

Proof The cases of �i.T / and �i.T / are standard. We prove the case of Si.T /,
which may probably be well known to the experts but does not seem to have appeared
in a way as general as here.

We can easily check (7–6) for T D  b;b;  
�1
b;b ; ; ; ; . For the general case,

we express T as an iterated composition and tensor product of finitely many copies of
the morphisms #, ",  ˙1

#;#
, , , , . We may assume that Ti involves at least

one crossing or critical point, since otherwise the assertion is obvious. We decompose
the component Ti into finitely many intervals Ti;1; : : : ;Ti;p with p � 1, where
� if one goes along Ti in the opposite direction to the orientation, then one

encounter the intervals in the order Ti;1; : : : ;Ti;p , and
� for each j D 1; : : : ;p , there is just one crossing or critical points in Ti;j .

For each j D 1; : : : ;p , let xj D J.Ti;j / denote the formal element put on the inter-
val Ti;j in the definition of JT . Then we have J.Ti / D x1x2 � � �xp . Let �Ti;j

denote the orientation reversal of Ti;j . Then it follows from the cases of T D

 b;b;  
�1
b;b ; ; ; ; that the formal element put on �Ti;j in the definition of

JSi .T / is zSTi;j
.xj /. Hence we have J.�Ti / D x0p � � �x

0
1

, where

x0j D J.�Ti;j / D
zSTi;j

.xj /D �
�r.Ti;j /S.xj /�

s.Ti;j /

for j D 1; : : : ;p . We have s.Ti;j / D r.Ti;j�1/ for j D 2; : : : ;p . We also have
s.Ti;1/D s.Ti/ and r.Ti;p/D r.Ti/. Hence it follows that

J.�Ti / D x0px0p�1 : : :x
0
1

D
�
��r.Ti;p/S.xp/�

s.Ti;p/
��
��r.Ti;p�1/S.xp�1/�

s.Ti;p�1/
�

: : :
�
��r.Ti;1/S.x1/�

s.Ti;1/
�

D ��r.Ti /S.xp/S.xp�1/ � � �S.x1/�
s.Ti /

D ��r.Ti /S.x1 : : :xp�1xp/�
s.Ti /

D ��r.Ti /S.J.Ti //�
s.Ti /

D zSTi
.J.Ti //:

Now the assertion immediately follows.
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8 The braided functor JW B ! ModH

In this section, we fix a ribbon Hopf algebra H over a commutative, unital ring k.

8.1 The category ModH of left H –modules

In this subsection, we recall some algebraic facts about the category ModH of left
H –modules. For details, see Majid [55; 56].

Let ModH denote the category of left H –modules and left H –module homomorphisms.
The category ModH is equipped with a (non-strict) monoidal category structure with
the tensor functor ˝W ModH �ModH !ModH given by tensor product over k with
the usual left H –module structure defined using comultiplication. The unit object is k
with the trivial left H –module structure. The braiding  V;W and its inverse of two
objects V and W are given by

 V;W .v˝w/D
X

ˇw˝˛v;  �1
V;W .v˝w/D

X
x̨w˝ x̌v;(8–1)

for v 2 V , w 2W .

We regard H as a left H –module using the adjoint action adD FW H˝2!H . By
(8–1), the braiding  H ;H W H

˝2!H˝2 and its inverse are given by

 H ;H .x˝y/D
X

.ˇ Fy/˝ .˛ Fx/;  �1
H ;H .x˝y/D

X
.x̨ Fy/˝ . x̌Fx/

for x;y 2H .

The transmutation [55; 56] of a quasitriangular Hopf algebra H is a Hopf algebra
H D .H; �; �;�; �;S/ in the braided category ModH , which is obtained by modifying
the Hopf algebra structure of H as follows. The algebra structure morphisms � and �,
and the counit � of H are the same as those of H . The comultiplication �W H!H˝2

and the antipode S W H !H are defined by

�.x/D
X

x.1/S.ˇ/˝ .˛ Fx.2//;(8–2)

S.x/D
X

ˇS.˛ Fx/;(8–3)

for x 2H . The morphisms �; �;�; �;S are all left H –module homomorphisms, and
H is a Hopf algebra in the braided category ModH .

Define cH
˙
2H˝2 by

(8–4) cH
˙ D .S ˝ 1/..R21R/˙1/:
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x1 x2

1

1

1

S. /̨

˛0

ˇ

S.̌ 0/

1

x3 �3

T

Figure 21: For the tangle T D .�b ˝ �b/.�b ˝ cC ˝ b/W b˝3 ! b˝2 de-
picted, and

P
x1 ˝ x2 ˝ x3 2 H˝3 , we have J.T /.

P
x1 ˝ x2 ˝ x3/ DP

x1x2S.˛/S.ˇ0/˝˛0ˇx3 , where RD
P
˛˝ˇ D

P
˛0˝ˇ0 .

By abuse of notation, we denote by cH
˙

the k–module homomorphism k! H˝2

which maps 1 to cH
˙

.

Using �.x/R21RDR21R�.x/, x 2H , one can verify

(8–5) cH
˙ 2ModH .k;H˝2/:

8.2 Definition of JW B ! ModH

In this subsection, we define a braided functor

(8–6) JW B!ModH ;

which maps b 2 Ob.B/ to H 2 Ob.ModH /.

For T 2 B.m; n/ with m; n� 0, we define a k–module homomorphism

J.T /W H˝m
!H˝n

as follows. Consider a tangle diagram of T �m , see Figure 21. Given an elementP
x1˝� � �˝xm 2H˝m , we put xi on the i th component in �m for each i D 1; : : : ;m.

Moreover, we put elements in H to the components in T as in the definition of JT .
Then we obtain a tangle diagram consisting of n arcs, decorated with elements of H .
For i D 1; : : : ; n, let yi denote the word obtained by reading the elements on the i th
component of T �m . Then we set

J.T /
�X

x1˝ � � �˝xm

�
D

X
y1˝ � � �˝yn:

Clearly, J.T / is a k–module homomorphism, and does not depend on the choice of
the diagram of T . Note that if mD 0, then we have

J.T /.1/D JT :
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(a) (b)

S.˛/ ˇ

��1

(c)

x̨
S. x̌/

��1

(d)

S.˛/

˛0 S.ˇ0/

ˇ

(e)

x̨

S.x̨0/ x̌0

S. x̌/

(f)

x1 x2

(g)

x y

.1˝S/.�.˛// .1˝S/.�.ˇ//

Figure 22

It is also clear that J.T T 0/D J.T /J.T 0/ for any two composable pair of morphisms T

and T 0 in B, and that J.1˝n
b /D 1H˝n . This means that the correspondence T 7! J.T /

defines a functor
JkW B!Modk;

where Modk denotes the category of k–modules and k–module homomorphisms. We
give the category Modk the standard symmetric monoidal category structure. Then we
can easily check that Jk is a monoidal functor.

To prove that Jk lifts along the forgetful functor ModH ! Modk to a monoidal
functor (8–6), it suffices to show that if T is a morphism in B, then J.T / is a left
H –module homomorphism. By Theorem 5.16, we have only to check this prop-
erty for T 2 f ˙1

b;b ; �b; �b; v˙; c˙g. This follows from Proposition 8.1 below, since
�; v˙1; cH

˙
; �;  ˙1

H ;H
are left H –module homomorphisms. Proposition 8.1 also shows

that J is a braided functor.

Proposition 8.1 We have

J.�b/D �; J.v˙/D r˙1; J.c˙/D cH
˙ ; J.�b/D �; J. ˙1

b;b /D  
˙1
H ;H ;

for x;y 2 H . Here, by abuse of notation, we denote by r˙1 the corresponding
morphism in ModH .k;H /.

Proof For T D �b; v˙; c˙; �b , the homomorphism J.T / are easily computed using
Figure 22 (a)–(f). The case T D  H ;H is computed using Figure 22 (g), where

x˝y means x y

:

We have

J. b;b/.x˝y/D
X

ˇ.1/yS.ˇ.2//˝˛.1/xS.˛.2//

D

X
.ˇ Fy/˝ .˛ Fx/D  H ;H .x˝y/;
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where we write .�˝�/.R/D
P
˛.1/˝˛.2/˝ˇ.1/˝ˇ.2/ . We can similarly check

the case T D  �1
b;b .

An easy consequence of the braided functor J is the following, which is essentially
well known.

Proposition 8.2 (See Kerler [39, Corollary 12]) If T 2 BTn , then we have JT 2

ModH .k;H˝n/. In particular, if T 2 BT1 , then JT 2H is central.

8.3 The functor J as a morphism of external Hopf algebras

Note that, by Remark 6.4, the Hopf algebra structure of the transmutation H D

.H; �; �;�; �;S/ of H determines an external Hopf algebra ..H; �; �/;FH / in the
canonical way.

Theorem 8.3 The braided functor JW B! ModH maps the external Hopf algebra
.b;Fb/ in B into the external Hopf algebra .H;FH / in ModH in the following sense.

(1) J maps the algebra .b; �b; �b/ into the algebra .H; �; �/.

(2) By defining J0
H˝m D JW BTm!ModH .k;H˝m/ for m� 0, we obtain a natural

transformation J0W Fb) FH .

Proof The condition (1) follows immediately from Proposition 8.1.

The condition (2) is equivalent to that, for any morphism f W H˝m! H˝n in hHi, the
diagram

(8–7)

BTm
J

����! ModH .k;H˝m/

Fb.f /

??y ??yFH .f /

BTn
J

����! ModH .k;H˝n/

commutes. It suffices to prove (8–7) for f in a set of generators of hHi as a category.
Hence we can assume f D g.i;j/ with g 2 f H;H;  

�1
H;H; �H; �H; �H; �H;SHg and

i; j � 0. The condition (1) implies that we have (8–7) if g D  ˙1
H;H , �H or �H . To

prove the cases g D�H; �H;SH , it suffices to prove

J L�.i;j /.T /
D .1˝i

˝�˝ 1˝j /.JT /;(8–8)

JL�.i;j /.T / D .1
˝i
˝ �˝ 1˝j /.JT /;(8–9)

J LS.i;j /.T /
D .1˝i

˝S ˝ 1˝j /.JT /(8–10)
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for T 2 BTiCjC1 , i; j � 0. Note that (8–9) follows from Lemma 7.4.

We write
JT D

X
J.T1/˝ � � �˝J.TiCjC1/ D

X
y˝x˝y0;

where

x D J.TiC1/ 2H;

y D J.T1/˝ � � �˝J.Ti / 2H˝i ;

y0 D J.TiC2/˝ � � �˝J.TiCjC1/ 2H˝j :

By Figure 23, we have

J L�.i;j /.T /
D

X
y˝x.1/S.ˇ/˝˛.1/x.2/S.˛.2//˝y0

D

X
y˝x.1/S.ˇ/˝ .˛ Fx.2//˝y0

D

X
y˝�.x/˝y0

D .1˝i
˝�˝ 1˝j /.JT /;

and

J LS.i;j /.T /
D

X
y˝ˇ�˛.2/�

�1S.x/S.˛.1//˝y0

D

X
y˝ˇS2.˛.2//S.x/S.˛.1//˝y0

D

X
y˝ˇS.˛.1/xS.˛.2///˝y0

D

X
y˝ˇS.˛ Fx/˝y0

D

X
y˝S.x/˝y0

D .1˝i
˝S ˝ 1˝j /.JT /:

Hence we have (8–8) and (8–10).

Theorem 8.3 implies the relationship between the Hopf algebra action on the bottom
tangles and the functor J that we mentioned in the latter half of Section 1.6.

8.4 Topological proofs of algebraic identities

Theorem 8.3 means that, to a certain extent, the braided Hopf algebra structure of H

is explained in terms of the external Hopf algebra structure in B, which is defined
topologically. Thus, Theorem 8.3 can be regarded as a topological interpretation of
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x.1/ x.2/

˛.1/

S.˛.2//

S.ˇ/

��1S.x/

S.˛.1//
˛.2/

ˇ

�

Figure 23

transmutation of a ribbon Hopf algebra. We explain below that Theorem 8.3 can be
used in proving various identities for transmutation using isotopy of tangles.

For a k–module homomorphism f W H˝m!H˝n and i; j � 0, we set

f.i;j/ D 1˝i
H
˝f ˝ 1

˝j
H
W H˝.mCiCj/

!H˝.nCiCj/:

For f;g 2ModH .H
˝m;H˝n/, we write f � g if we have

f.i;j/.JT /D g.i;j/.JT /

for all i; j � 0 and T 2 BTiCjCm . Note that if mD 0, then f � g and f D g are
equivalent.

Remark 8.4 All the formulas of the form “f � g” that appear in what follows can
be replaced with “f D g”. One can prove this fact either by direct computation or
using the functor JB mentioned in Section 14.4 below. In the present paper, we content
ourselves with the weaker form “f � g”.

Let ad 2ModH .H
˝2;H / denote the left adjoint action for H defined by

adD �Œ3�.1˝ H ;H /..1˝S/�˝ 1/:

It is well known that ad D ad. As a first example of topological proofs, we show
that ad� ad. Since Figure 14 (a) and (b) are isotopic, we see that, for i; j � 0 and
T 2 BTiCjC2 ,

JFb..adH/.i;j //.T / D ad.i;j/.JT /

is calculated using Figure 24. Hence we have
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A
xiC2

�

Figure 24: The tangle Fb..adH/.i;j//.T / with only the .iC1/st component
depicted. Here we write JT D

P
x1˝ � � � ˝ xiCjC2 . The box labeled “A”

contains the tensor
P
.xiC1/.1/˝ �

�1S..xiC1/.2// .

ad.i;j/.JT /

D

X
x1˝ � � �˝xi ˝ .xiC1/.1/xiC2S..xiC1/.2//˝xiC3˝ � � �˝xiCjC2

D

X
x1˝ � � �˝xi ˝ .xiC1 FxiC2/˝xiC3˝ � � �˝xiCjC2

D ad.i;j/.JT /:

Hence we have ad� ad.

Let coad 2ModH .H;H
˝2/ denote the left adjoint coaction for H , defined by

coadD .�˝ 1/.1˝ H ;H .1˝S//�Œ3�:

By taking J of (6–11), we have

coad.i;j/.JT /D .J.C//.i;j/.JT /D .1H ˝ ad/.i;j/.c
H
C ˝ 1H /.i;j/.JT /;

where we used ad� ad. Hence we have

(8–11) J.C/� coad� .1H ˝ ad/.cH
C ˝ 1H /:

By taking J of (6–12), we have

J.�/.i;j/.JT /D .S ˝ 1H /.i;j/J.C/.i;j/.JT /:

Hence we have

(8–12) J.�/� .S ˝ 1H /coad:

We also note that the proof of external Hopf algebra axioms in B yields a topological
proof of the weak “�–version” of the identities in the axiom of Hopf algebra for H .
For example, one can derive the formula

��� .�˝�/.1H ˝ H ;H ˝ 1H /.�˝�/
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from Figure 12, and

�.1H ˝S/�� �.S ˝ 1H /�� ��

from Figure 13.

9 Values of universal invariants of bottom tangles

In this subsection, we study the set of values of universal invariants of bottom tangles. In
Section 9.1, we give several general results, and in later subsections we give applications
to some specific cases.

We fix a ribbon Hopf algebra H over a commutative, unital ring k.

9.1 Values of JT

We use the following notation. Let K �H˝m and L�H˝n be subsets. Set

K˝LD fx˝y j x 2K;y 2Lg �H˝.mCn/:

If x 2H , then set

K˝x DK˝fxg; x˝K D fxg˝K:

The category B acts on the left H –modules H˝n , n� 0, by the functions

jm;nW B.m; n/�H˝m
!H˝n; .T;x/ 7! T x D J.T /.x/:

If C is a subcategory of B, and if K �
S

i�0 H˝i , set

C �K D
[

m;n�0

jm;n.C.m; n/� .K\H˝m//:

Recall that A denotes the braided subcategory of B generated by the object b and the
morphisms �b and �b .

We have the following characterization of the possible values of the universal invariants
of bottom tangles.

Theorem 9.1 The set fJU j U 2 BTg of the values of JU for all the bottom tangles
U 2 BT is given by

(9–1) fJU j U 2 BTg DA � fJT j T 2 fv˙; c˙g
�
g:

Proof The result follows immediately from Corollary 5.21 and functoriality of J.
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Using Theorem 9.1, we obtain the following, which will be useful in studying the
universal invariants of bottom tangles.

Corollary 9.2 Let Ki �H˝i for i � 0, be subsets satisfying the following.

(1) 1 2K0 , 1; v˙1 2K1 , and cH
˙
2K2 .

(2) For m; n� 0, we have Km˝Kn �KmCn .

(3) For p; q � 0 we have

. ˙1
H ;H /.p;q/.KpCqC2/�KpCqC2;

�.p;q/.KpCqC2/�KpCqC1:

Then, for any U 2 BTn , n� 0, we have JU 2Kn .

Proof By (1) and (2), the Ki contain JT for T 2 fv˙; c˙g
� . By (1), (2) and (3), the

Ki are invariant under the action of A. Hence we have the assertion.

Using Theorem 5.14, we see that, for T 2 ABT, the set of the values of the universal
invariant of bottom tangles obtained from �n (n � 0) by one T –move is equal to
LB0 � fJT g. Similarly, by Corollary 5.15, we see that, for M � ABT inversion-closed,
the set of the values of the universal invariant of the M –trivial bottom tangles is equal
to LB0 � fJU j U 2M �g. From these observations we have the following results, which
will be useful in applications.

Corollary 9.3 Let T 2 ABTm , and let Ki �H˝i for i � 0 be subsets satisfying the
following conditions.

(1) JT 2Km .

(2) For p; q � 0 and f 2 f ˙1
H ;H

; �; �; coad; .S ˝ 1/coadg with f W b˝i ! b˝j ,
we have

f.p;q/.KpCqCi/�KpCqCj :

Then, for any U 2 BTn obtained from �n by one T –move, we have JU 2Kn .

Proof We have to show that LB0 � fJT g �
S

n Kn . Since JT 2Km , it suffices to show
that

S
n Kn is stable under the action of generators of LB0 . Since LB0 is as a category

generated by f.p;q/ with p; q � 0 and f 2 f�b; �b; C; �g, the condition (2) implies
that

S
n Kn is stable under the action of LB0 . Here we use (8–11) and (8–12) with �

replaced by D. (See Remark 8.4.)
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Corollary 9.4 Let M � ABT be inversion-closed, and let Ki � H˝i for i � 0 be
subsets satisfying the following conditions.

(1) 1 2K0 and 1 2K1 .

(2) For V 2M , we have JV 2KjV j .

(3) If k; l � 0, then we have Kk ˝Kl �KkCl .

(4) For p; q � 0 and f 2 f ˙1
H ;H

; �; coad; .S ˝ 1/coadg with f W H˝i ! H˝j ,
we have

f.p;q/.KpCqCi/�KpCqCj :

Then, for any M –trivial U 2 BTn , we have JU 2Kn .

Proof It suffices to check the conditions in Corollary 9.3, where T is an element of
M � . The condition (1) in Corollary 9.3, ie, JT 2KjT j , follows from (1), (2) and (3).
The condition (2) in Corollary 9.3 with f ¤ � follows from (4). The condition (2)
with f D � in Corollary 9.3 follows from (1), (3), and (4), since we have

�.p;q/.KpCq/D .1
˝p
˝ H˝q ;H /.KpCq˝ 1/:

The following will be useful in studying the set of M –equivalence classes of bottom
tangles for M � ABT.

Corollary 9.5 Let M � ABT, not necessarily inversion-closed. Let Ki �H˝i for
i � 0 be Z–submodules satisfying the following conditions.

(1) For each T 2M we have JT � 1˝jT j 2KjT j .

(2) For i � 0, we have

Ki ˝ 1�KiC1; Ki ˝ v
˙1
�KiC1; Ki ˝ cH

˙ �KiC2:

(3) For p; q � 0, we have

. ˙1
H ;H /.p;q/.KpCqC2/�KpCqC2;(9–2)

�.p;q/.KpCqC2/�KpCqC1:(9–3)

Then, for any pair U;U 0 2 BTn of M –equivalent bottom tangles, we have JU 0 �JU 2

Kn . Hence there is a well-defined function

BTn =.M –equivalence/!H˝n=Kn; ŒU � 7! ŒJU �

for each n� 0.
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Proof Since Kn �H˝n are Z–submodules for n� 0, we may assume without loss
of generality that U and U 0 are related by one T –move for T 2M . Set r D jT j. By
Theorem 5.8, there is W 2 B.r; n/ such that U DW �r and U 0 DW T . Hence we
have

JU 0 �JU D J.W /.JT � 1˝r / 2 J.W /.Kr /;

Therefore we have only to prove that J.W /.Kr /�Kn . By the assumptions, this holds
for each generator W of B as a subcategory of T , described in Corollary 5.18. Hence
we have the assertion.

9.2 Unknotting number

A positive crossing change is a local move on a tangle which replaces a negative crossing
with a positive crossing. A negative crossing change is the inverse operation. In our
terminology, a positive (resp. negative) crossing change is equivalent to a c�–move
(resp. cC–move).

A bottom knot is a 1–component bottom tangle.

Corollary 9.6 Let nC; n� � 0, and let Ki � H˝i , i � 1, be subsets satisfying the
following conditions.

(1) .cH
C /
˝n� ˝ .cH

� /
˝nC 2K2.nCCn�/ .

(2) For p; q � 0 and f 2 f ˙1
H ;H

; �; �; coad; .S ˝ 1/coadg with f W b˝i ! b˝j ,
we have

f.p;q/.KpCqCi/�KpCqCj :

Then, if a bottom knot T 2 BT1 of framing 0 is obtained from �b by nC positive
crossing changes and n� negative crossing changes up to framing change, we have
JT 2 r2.nC�n�/K1 .

Proof The result follows from Corollary 9.3, since T is obtained from �b by a
.c
˝n�
C ˝ c˝nC

� /–move and framing change by �2.nC� n�/.

Corollary 9.6 can be used to obtain an obstruction for a bottom knot T to be of
unknotting number at most n, since a bottom knot is of unknotting number n if and
only if, for some nC; n� � 0 with nCCn�D n, we have the situation in the statement
of Corollary 9.6. Also, we can use Corollary 9.6 to obtain an obstruction for a bottom
tangle to be positively unknottable, ie, obtained from �b by finitely many positive
crossing change up to framing change.
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(a)

iC1 iC2

(b)

iC1

D

(c)

iC1

D

(d)

iC1

(e)

iC1

surgery

Figure 25: (a) An .iCjC2/–component bottom tangle T . (b) The
.iCjC1/–component bottom tangle T 0DF..YH/.i;j//.T / , calculated using
(9–4). (c) T 0 calculated using (9–5). (d) Another picture of T 0 , in which the
.i C 1/st component bounds a Seifert surface of genus 1 . (d) A presentation
of T 0 using a clasper.

In the literature, versions of unknotting numbers with respect to various kinds of
admissible local moves are studied, see, for example, Murakami [58] or Murakami–
Nakanishi [59]. For M �ABT, a bottom knot T 2BT1 is said to be of “M –unknotting
number n” if T can be obtained from �1 by n applications of M –moves. One
can easily modify Corollary 9.6 to give obstructions for a bottom knot to be of M –
unknotting number� n.

9.3 Commutators and Seifert surfaces

For any Hopf algebra A in a braided category M, we define the commutator morphism
[22, Section 8.1] YA 2M.A˝2;A/ by

YA D �
Œ4�
A
.A˝ A;A˝A/.A˝SA˝SA˝A/.�A˝�A/:(9–4)

Using adjoint action, we obtain a simpler formula, which is sometimes more useful:

YA D �A.adA˝A/.A˝SA˝A/.A˝�A/:(9–5)

The function
Fb..YH/.i;j//W BTiCjC2! BTiCjC1

transforms a bottom tangle into another as illustrated in Figure 25.

For a ribbon Hopf algebra H , a (relatively) simple formula for the left H –module
homomorphism YH is as follows.
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Proposition 9.7 For
P

x˝y 2H˝2 , we have

YH

�X
x˝y

�
D

X�
x FˇS..˛ Fy/.1//

�
.˛ Fy/.2/;

where �.˛ Fy/D
P
.˛ Fy/.1/˝ .˛ Fy/.2/ .

Proof By computation, we have

(9–6) .S ˝ 1/�.y/D
X

ˇS..˛ Fy/.1//˝ .˛ Fy/.2/

for y 2H . Hence we have by (9–5)

YH

�X
x˝y

�
D�.ad˝H /.1˝ .S ˝ 1/�/

�X
x˝y

�
D

X
.x FˇS..˛ Fy/.1///.˛ Fy/.2/:

This completes the proof.

Remark 9.8 Proposition 9.7 holds also for the transmutation of a quasitriangular Hopf
algebra H which are not ribbon.

A Seifert surface of a bottom knot T in a cube Œ0; 1�3 is a compact, connected, oriented
surface F in Œ0; 1�3 such that @F D T [  and F \ .Œ0; 1�2 � f0g/ D  , where
 � Œ0; 1�2 � f0g is the line segment with @ D @T . Note that a Seifert surface of a
bottom knot T determines in the canonical way a Seifert surface of the closure of T .

Recall that a link L in S3 is boundary if the components of L bounds mutually
disjoint Seifert surfaces. Similarly, a bottom tangle T 2 BTn is said to be boundary if
the components of T are of framing 0 and bound mutually disjoint Seifert surfaces in
Œ0; 1�3 .

Theorem 9.9 Let Ki �H˝i , i � 0, be as in Corollary 9.2. Then, for any boundary
bottom tangle T DT1[� � �[Tn bounding mutually disjoint Seifert surfaces F1; : : : ;Fn

of genus g1; : : : ;gn , we have

JT 2 .�
Œg1�˝ � � �˝�Œgn�/Y

˝.g1C���Cgn/
H

.K2.g1C���Cgn//:

In particular, if a bottom knot bounds a Seifert surface of genus g , then we have

JT 2 �
Œg�Y

˝g
H
.K2g/:
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T D

F1

D.T 0/

Fn

� � �

� � �

� � �

� � �

� � �

� � �

� � �

Figure 26

Proof Set g D g1C � � �Cgn . By isotopy, we can arrange F1; : : : ;Fn as depicted in
Figure 26, where D.T 0/ 2 T .1; b˝4g/ is obtained from a bottom tangle T 0 2 BT2g

by doubling the components. (The surfaces bounded by the components of T should
be obvious from the figure.) We have

T D Fb..�
Œg1�
H ˝ � � �˝�

Œgn�
H /Y

˝g
H /.T 0/:

Hence

JT D FH ..�
Œg1�
H ˝ � � �˝�

Œgn�
H /Y

˝g
H /.JT 0/

D .�
Œg1�
H
˝ � � �˝�

Œgn�
H

/Y
˝g
H
.JT 0/:

By Corollary 9.2, we have JT 0 2K2g . Hence we have the assertion.

It is easy to verify that a link L is boundary if and only if there is a boundary bottom
tangle T such that the closure of T is equivalent to L. (However, there are many non-
boundary bottom tangles whose closures are boundary.) Hence we can use Theorem
9.9 to obtain JL for boundary links L. Also, the latter part of Theorem 9.9 can be
used to obtain an obstruction for a knot from being of genus� g .

9.4 Unoriented spanning surfaces

Here we consider the “unorientable version” of the previous subsection.

The crosscap number (see Clark [7] and Murakami–Yasuhara [60]) of an unframed
nontrivial knot K is the minimum number of the first Betti numbers of unorientable
surfaces bounded by K . The crosscap number of an unknot is defined to be 0.

Proposition 9.10 Let T be a 0–framed bottom knot of crosscap number c � 0 (ie,
the closure of T is of crosscap number c ). Then there is T 0 2 BTc such that

(9–7) JT D r4w.T 0/.��/˝c.JT 0/;

where w.T 0/ 2 Z is the writhe of the tangle T 0 .

Algebraic & Geometric Topology, Volume 6 (2006)



1174 Kazuo Habiro

(a) (b)

� � � � � �
b1 bc

D

double of T 0 double of T 0

Figure 27

Proof By assumption, the union of the bottom knot T and the line segment bounded
by the endpoints of T bounds a connected, compact, unorientable surface N of genus
c in the cube. Here the framing of T which is determined by N may differ from the
0–framing. (We ignore the framing until the end of this proof.) As is well known, N

can be obtained from a disc D by attaching c bands b1; : : : ; bc such that, for each
i D 1; : : : ; c , the union D [ bi is a Möbius band, and between the two components
of D \ bi there are no attaching region of the other band, see Figure 27 (a). Here
the dotted part is obtained from a c–component bottom tangle T 0 by replacing the
components with bands, using the framings. T can be isotoped as in Figure 27 (b).
Since the framing of the tangle depicted in Figure 27 (b) is 4w.T 0/, we have

T D .t#˝ "/
�4w.T 0/Fb..�H�H/

˝c/.JT 0/:

Hence we have the assertion.

The unorientable version of boundary link is Z2 –boundary link (see Hillman [27]).
A link L in S3 is called Z2 –boundary if the components of L bounds mutually
disjoint possibly unorientable surfaces. Similarly, a bottom tangle T 2 BTn is said
to be Z2 –boundary if the components of T are of framing 0 and bound mutually
disjoint possibly unorientable surfaces in Œ0; 1�3 . In the above definitions, “possibly
unorientable” can be replaced with “unorientable”. One can easily modify Theorem
9.9 into the Z2 –boundary case.

9.5 Borromean tangle and delta moves

We consider delta moves (see Murakami and Nakanishi [59]) or Borromean transforma-
tion (see Matveev [57]) on bottom tangles, which we mentioned in Section 1.7. In our
setting, a delta move can be defined as a B –move, where B 2 BT3 is the Borromean
tangle defined in Section 1.7.
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The following is an easily verified variant of a theorem of Murakami and Nakanishi
[59], which makes delta moves especially useful.

Proposition 9.11 (Murakami–Nakanishi [59]) Two n–component bottom tangles T

and T 0 have the same linking matrix if and only if there is a sequence of finitely many
delta moves (and isotopies) from T to T 0 . (Here the linking matrix of an n–component
bottom tangle T is defined to be the linking matrix of the closure of T .)

Using Proposition 9.11, we obtain the following results.

Corollary 9.12 For two n–component bottom tangles T and T 0 , the following
conditions are equivalent.

(1) T and T 0 have the same linking matrix.
(2) T and T 0 are delta move equivalent, ie, B –equivalent.
(3) For some k � 0 and W 2 B.3k; n/, we have

T DW �3k ; T 0 DWB˝k :

Proof The equivalence of (1) and (2) is just Proposition 9.11. The equivalence of
(2) and (3) follows from Proposition 5.12, since the set fBg is inversion-closed (see
[59]).

Corollary 9.13 The linking matrix of an n–component bottom tangle T is zero if and
only if there are k � 0 and W 2 LB0.3k; n/ such that we have T DWB˝k .

In particular, a bottom tangle with zero linking matrix is obtained by pasting finitely
many copies of 1b;  b;b;  

�1
b;b ; �b; �b; C; �;B .

Proof The result follows from Corollary 5.15, since T is of linking matrix 0 if and
only if T is B –trivial.

In some applications, the following form may be more useful.

Corollary 9.14 The linking matrix of an n–component bottom tangle T is zero if and
only if there are k � 0 and f 2 hHi.3k; n/ such that we have T D Fb.f /.B

˝k/.

Proof The “only if” part follows easily from Corollary 9.13, using

.C/.i;j/U D Fb..coadH/.i;j//.U /;

.�/.i;j/U D Fb...SH˝H/coadH/.i;j//.U /;

for i; j � 0, U 2 BTiCjC1 .

The “if” part follows from the easily verified fact that the set of bottom tangles with
zero linking matrices is closed under the Hopf algebra action.
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= ==

Figure 28

Now we apply the above results to the universal invariant. First we give a few formulas
for JB 2H˝3 . Using Figure 3, we can easily see that

(9–8) JB D

X
S2.˛5/ˇ2˛6S.ˇ1/˝˛1ˇ4˛2S.ˇ3/˝˛3S�2.ˇ6/˛4S.ˇ5/;

where RD
P
˛i ˝ˇi for i D 1; : : : ; 6. By Figure 28, we have

(9–9)
B D Fb.YH˝H˝H/.cC;2/D Fb.H˝YH˝H/..cC/

˝2/D Fb.H˝H˝YH/.cC;2/;

where cC;2 D .b˝ cC˝ b/cC 2 BT4 . By (9–9), it follows that

JB D .YH ˝ 1˝2
H
/.cH
C;2/D .1H ˝YH ˝ 1H /..c

H
C /
˝2/D .1˝2

H
˝YH /.c

H
C;2/;

where cH
C;2
D
P
.cH
C /Œ1�˝ cH

C ˝ .c
H
C /Œ2� 2H˝4 with cH

C D
P
.cH
C /Œ1�˝ .c

H
C /Œ2� .

One can apply Corollary 9.5 to the case M DfBg to obtain a result about the difference
of the universal invariants of bottom tangles which have the same linking matrix. We
do not give the explicit statement here.

For the bottom tangles with zero linking matrices, we can easily derive the following
result from Corollaries 9.13 and 9.14.

Corollary 9.15 Set either

X D f ˙1
H ;H ; �; coad; .S ˝ 1/coadg or X D f ˙1

H ;H ; �; �; Sg:

Let Ki �H˝i , i � 0, be subsets satisfying the following conditions.
(1) 1 2K0 , 1 2K1 , and JB 2K3 .
(2) If k; l � 0, then we have Kk ˝Kl �KkCl .
(3) For p; q � 0 and f 2X with f W H˝i!H˝j , we have

f.p;q/.KpCqCi/�KpCqCj :

Then, for any U 2 BTn with zero linking matrix, we have JU 2Kn .

As mentioned in Section 1.7, in future publications we will apply Corollary 9.15 to the
case where H is a quantized enveloping algebra.
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9.6 Clasper moves

In this subsection, we apply the settings in this paper to the clasper moves or Cn –moves
(see Goussarov [18] and Habiro [22]) which are closely related to the Goussarov–
Vassiliev finite type link invariants (see Vassiliev [82], Goussarov [16; 17], Birman [3],
Birman and Lin [4] and Bar-Natan [1]).

Recall that a simple Cn –moves in the sense of [22] is a local move on a tangle T

defined as surgery on a strict tree clasper C of degree n (ie, with nC 1 disc-leaves)
such that each disc-leaf of T intersects transversely with T by one point. A simple
Cn –move is a generalization of a crossing change (nD 1) and a delta move (nD 2). In
this subsection, for simplicity, we slightly modify the definition of a simple Cn –move
so that the sign of the intersection of C (which is defined as a surface homeomorphic to
a disc) and the strings of T are all positive or all negative. It is known (see, for example,
the author’s master’s thesis [21]) that this does not make any essential difference if
n� 2. Ie, the relations on tangles defined by the moves are the same.

We can use the results in the previous sections in the study of simple Cn –moves,
by redefining a simple Cn –move as an Mn –move, where Mn is an inversion-closed
subset of ABT defined as follows. Define Yn � hHi.H

˝n;H/ for n� 1 inductively by
Y1 D f1Hg and

Yn D fYH.f ˝g/ j f 2 Yi ;g 2 Yj ; i C j D ng for n� 2:

Thus Yn is the set of iterated commutators of class n. For example, we have Y2DfYHg

and Y3 D fYH.YH˝H/;YH.H˝YH/g. For n� 1, define Mn � ABTnC1 by

Mn D fFb.f ˝H˝n/.cC;n/ j f 2 Yng;

where we set

cC;n D .b
˝.n�1/

˝ cC˝ b˝.n�1// � � � .b˝ cC˝ b/cC 2 BT2n

for n � 1. (Here, the fact that each element of Mn is admissible follows from [22,
Lemma 3.20].) In particular, we have M1DfcCg and M2DfBg. For example, Figure
29 shows a clasper C for �5 such that surgery along C yields the tangle

Fb..YH.YH˝H/.YH˝H˝2//˝H˝4/.cC;4/ 2M4:

We can also define the Mn using the cocommutator morphism [22]

Y �H W H! H˝H
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C

Figure 29: The upper rectangle corresponds to cC;4 2 BT8 . The lower
rectangle corresponds to YH.YH˝H/.YH˝H˝2/ 2 Y4 .

(a)
iC1

(b)
iC1 iC2

(c)
iC1 iC2

(d)
iC1 iC2

(e)
iC1 iC2

Figure 30: (a) An .i C j C 1/–component bottom tangle T . (b) The .i C
j C 2/–component bottom tangle T 0 D F..Y �H /.i;j//.T / , calculated using
(9–10) (upper). (c) T 0 calculated using (9–10) (lower). (d) Another picture
of T 0 . (d) A presentation of T 0 using a clasper.

defined by

Y �H D .�H˝�H/.H˝SH˝SH˝H/.H˝ H;H˝H/�
Œ4�
H

D .H˝�H/.coadH˝H/.SH˝H/�H:
(9–10)

Note that the notion of cocommutator is dual to the notion of commutator. For i; j � 0,
the function

Fb..Y
�
H /.i;j//W BTiCjC1! BTiCjC2

transforms a bottom tangle into another as illustrated in Figure 30. For n� 1, define
Y�n � hHi.H;H˝n/ inductively by Y�

1
D f1Hg and

Y�n D f.f ˝g/Y �H j f 2 Y�i ;g 2 Y
�
j ; i C j D ng for n� 2:

Then we have for n� 1,

Mn D fFb.f ˝g/.cC/ j f 2 Y�i ;g 2 Y
�
j ; i C j D nC 1g;
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which follows by induction using (9–9) and

(9–11) B D Fb.Y
�
H ˝H/.cC/D Fb.H˝Y �H /.cC/:

(The above definition of Mn using Y �H is similar to the definition of local moves in [21],
where we defined a family of local moves without using claspers. See also Taniyama
and Yasuhara [79] for a similar definition.)

One can show that the notion of simple Cn –move and that of Mn –move are the same.

Remark 9.16 A general Cn –move, which may not be simple, is obtained by allowing
removal, orientation reversal and parallelization of strings in the tangles which define
the move. Hence it can be redefined as an M 0

n –move, where the set M 0
n � ABT is

defined by

M 0
n D

n
Fb

�nC1O
iD1

�
Œci Idi �
H

�
.f /

ˇ̌̌
c1; : : : ; cnC1; d1; : : : ; dnC1 � 0; f 2Mn

o
;

where we set

�
ŒcId �
H D .H˝c

˝S˝d
H /�ŒcCd �

2 hHi.H;H˝.cCd//

for c; d � 0. As special cases, the following local moves in the literature can be
redefined algebraically:

(1) A pass-move (see Kauffman [33] and Figure 31 (a)), which characterizes the Arf
invariant of knots, is the same as a Fb..�

Œ1I1�
H /˝2/.cC/–move.

(2) A ]–move (see Murakami [58] and Figure 31 (b)) is the same as a Fb.�
˝2
H /.cC/–

move. (This is a framed version. In applications to unframed or 0–framed knots,
one should take framings into account.)

(3) A D.�/–move (see Nakanishi [63] and Figure 31 (c)), which preserves the stable
equivalence class of the Goeritz matrix (see Goeritz [12] and Gordon–Litherland
[13]) of (possibly unorientable) spanning surfaces of knots, can be redefined by
setting

D.�/D fFb..�H/
ŒiI2�i�

˝ .�H/
Œj I2�j �

˝ .�H/
ŒkI2�k�/.B/ j 0� i; j ; k � 2g:

It is known that the D.�/–equivalence is the same as an oriented version of
it, which can be defined as the Fb.�

˝3
H /.B/–equivalence, ie, the case i D j D

k D 2.

(4) A doubled-delta move (see Naik–Stanford [61] and Figure 31 (d)), which char-
acterizes the S –equivalence class of Seifert matrices of knots, can be defined as
a Fb..�

Œ1I1�
H /˝3/.B/–move, which is the case i D j D k D 1 of D.�/–move.
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(a)

pass-move

(b)

]–move

(c)

D.�/–move

(d)

doubled-delta
move

Figure 31: (a) A pass-move. (b) A ]–move. (c) A D.�/–move. (Here the
orientations of strings are arbitrary.) (d) A doubled-delta move.

We postpone to future publications a more systematic study of the clasper moves in
a category-theoretical setting, which was announced in [22]. For this purpose the
category B (see Section 14.4 below) is more useful than B.

9.7 Goussarov–Vassiliev filtrations on tangles

In this subsection, we give an algebraic formulation of Goussarov–Vassiliev invariants
using the setting of the category B.

9.7.1 Four-sided ideals in a monoidal Ab–category Here we recall the notion of
four-sided ideal in a monoidal Ab–category, which can be regarded as the linearized
version of the notion of four-sided congruence in a monoidal category.

Let C be a (strict) monoidal Ab–category, ie, a monoidal category C such that for
each pair X;Y 2 Ob.C / the set C.X;Y / is equipped with a structure of a Z–module,
and the composition and the tensor product are bilinear.

A four-sided ideal I D .I.X;Y //X ;Y 2Ob.C / in a monoidal Ab–category C is a family
of Z–submodules I.X;Y / of C.X;Y / for X;Y 2 Ob.C / such that

(1) if f 2 I.X;Y / and g 2 C.Y;Z/ (resp. g 2 C.Z;X /), then we have gf 2

I.X;Z/ (resp. fg 2 I.Z;Y /),

(2) if f 2 I.X;Y / and g 2 C.X 0;Y 0/, then we have f ˝g 2 I.X ˝X 0;Y ˝Y 0/

and g˝f 2 I.X 0˝X;Y 0˝Y /.

By abuse of notation, we denote by I , the union
S

X ;Y 2Ob.C / I.X;Y /.
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Let S �Mor.C / be a set of morphisms in C . Then there is the smallest four-sided
ideal IS in C such that S � IS . The four-sided ideal IS is said to be generated by
S . For X;X 0 2 Ob.C /, IS .X;X

0/ is Z–spanned by the elements

(9–12) f 0.g˝ s˝g0/f;

where s 2 S , and f; f 0;g;g0 2Mor.C / are such that the expression (9–12) gives a
well-defined morphisms in C.X;X 0/.

For two four-sided ideals I and I 0 in a monoidal Ab–category C , the product I 0I of
I 0 and I is defined to be the smallest four-sided ideal in C such that if .g; f / 2 I 0�I

is a composable pair, then gf 2 II 0 . It follows that f 2 I and g 2 I 0 implies
f ˝g;g˝f 2 I 0I . For X;Y 2 Ob.C /, then we have

I 0I.X;Y /D
X

Z2Ob.C /

I 0.Z;Y /I.X;Z/:

For n � 0, let In denote the nth power of I , which is defined by I0 D Mor.C /,
I1 D I , and In D In�1I for n� 2.

Lemma 9.17 Let C be a braided Ab–category and let I be a four-sided ideal in
C generated by S �

Q
X2Ob.C / C.1;X /. Then In.X;Y / (X;Y 2 Ob.C /) is Z–

spanned by the elements of the form f .X ˝ s1˝ � � �˝ sn/, where s1; : : : ; sn 2 S and
f 2 C.X ˝ target.s1˝ � � �˝ sn/;Y /.

Proof The proof is sketched as follows. Each element of In is a Z–linear combination
of morphisms, each obtained as an iterated composition and tensor product of finitely
many morphisms of C involving n copies of elements s1; : : : ; sn of S . By the
assumption, one can arrange (using braidings) the copies s1; : : : ; sn involved in each
term of an element of In to be placed side by side as in s1˝ � � � ˝ sn in the upper
right corner, ie, we obtain a term of the form f .X ˝ s1˝ � � �˝ sn/, as desired.

9.7.2 Goussarov–Vassiliev filtration for ZT Here we recall a formulation of Gouss-
arov–Vassiliev filtration using the category T of framed, oriented tangles, which is
given by Kassel and Turaev [32].

Let ZT denote the category of Z–linear tangles. Ie, we have Ob.ZT / D Ob.T /,
and for w;w0 2 Ob.T /, the set ZT .w;w0/ is the free Z–module generated by the set
T .w;w0/. ZT is a braided Ab–category.

Let I denote the four-sided ideal in ZT generated by the morphism

 � D  #;#� 
�1
#;# 2 ZT .#˝2;#˝2/:
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For n � 0, let In denote the nth power of I . In is equal to the four-sided ideal in
ZT generated by the morphism . �/˝n . For w;w0 2 Ob.T /, the filtration

(9–13) ZT .w;w0/D I0.w;w0/� I1.w;w0/� I2.w;w0/� � � �

is known [32] to be the same as the Goussarov–Vassiliev filtration for ZT .w;w0/.

Remark 9.18 There is an alternative, perhaps more natural, definition of the Gouss-
arov–Vassiliev filtration for framed tangles, which involves the difference t#� 1# of
framing change as well as  � . In the present paper, we do not consider this version
for simplicity.

9.7.3 Goussarov–Vassiliev filtration for ZB Now we consider the case of tangles
in B. The definition of the category ZB of Z–linear tangles in B is obvious. For
i; j � 0, the Goussarov–Vassiliev filtration for the tangles in B.i; j / is given by the
Z–submodules

.ZB\ In/.i; j / WD ZB.i; j /\ In.b˝i ; b˝j /

for n� 0. Clearly, this defines a four-sided ideal ZB\ In in ZB.

Set
c� D �2� cC 2 ZB.0; 2/;

and let IB denote the four-sided ideal in ZB generated by c� .

The following result gives a definition of the Goussarov–Vassiliev filtration for tangles
in B, and in particular for bottom tangles, defined algebraically in ZB. Thus the setting
in the present paper is expected to be useful in the study of Goussarov–Vassiliev finite
type invariants.

Theorem 9.19 For each n� 0, we have

(9–14) ZB\ In
D In

B:

For bottom tangles, we also have

(9–15) In
B.0;m/D ZB.2n;m/.c�/˝n

�
D ff .c�/˝n

j f 2 ZB.2n;m/g
�
:

Proof We have

c� D .# ˝ #;"˝ "/. 
�
˝ "˝ "/coev#˝# 2 I.1; b˝2/;(9–16)

 � D .# ˝ #˝ev#˝#/.# ˝ 
�1
#;"˝ "˝ #˝ #/.c

�
˝ #˝ #/:(9–17)

By (9–16), we have IB � I , and hence In
B � In for n� 0. Since In

B � ZB, we have
In

B � ZB\ In .
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We show the other inclusion. Suppose that f 2 .ZB\In/.l;m/. By (9–16) and (9–17),
I is generated by c� as a four-sided ideal in ZT . By Lemma 9.17, we have

f D g0.b˝l
˝ .c�/˝n/;

where g0 2 ZT .b˝.lC2n/; b˝m/. We can write

g0 D
X

h2T .b˝.lC2n/;b˝m/

phh; ph 2 Z:

Set
g D

X
h2B.lC2n;m/

phh 2 ZB.l C 2n;m/

We have .g�g0/.b˝l ˝ .c�/˝n/D 0, since if h 2 T .b˝.lC2n/; b˝m/ nB.l C 2n;m/,
then h�lC2n is not homotopic to �m . Hence

f D g.b˝l
˝ .c�/˝n/ 2 In

B:

Hence we have ZB\ In � In
B .

The identity (9–15) follows from the above argument with l D 0. This completes the
proof.

Remark 9.20 It is easy to generalize this subsection to the case of skein modules
(see Przytycki [69]) involving bottom tangles. Let k be a commutative, unital ring,
and consider the k–linear braided categories kT and kB. A skein element is just a
morphism f 2 kT .w;w0/, w;w0 2 Ob.kT / D Ob.T /. For a set S � Mor.kT / of
skein elements, let IS denote the four-sided ideal in kT generated by S . Then the
quotient (k–linear, braided) category kT =IS is known as the skein category defined
by S as the set of skein relations.

Suppose S �
S

n�0 k BTn �Mor.kB/. Thus S is a set of skein elements involving
only bottom tangles. Let IB

S
denote the four-sided ideal in kB generated by S . Then

we have the following generalization of Theorem 9.19:

kB\ IS D IB
S ;

IB
S .0; n/D

X
l�0

kB.l; n/.S \k BTl/:

Thus, analogously to the case of local moves, it follows that skein theory defined by
skein elements of compatible tangles consisting of arcs can be formulated within the
setting of kB using skein elements of bottom tangles.
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(a)

t2
2;1

–move

(b)

Figure 32: (a) A t2
2;1

–move. (b) The tangle t2
2;1
2 BT3 .

9.8 Twist moves

A twist move is a local move on a tangle which performs a power of full twist on a
parallel family of strings. A type of a twist move is determined by a triple of integers
.n; i; j / with i; j � 0, where the move performs n full twists on a parallel family of i

downward strings and j upward strings. Let us call it a tn
i;j –move. In our notation, a

tn
i;j –move is the same as a .#˝i ˝ "˝j ; tn

#˝i˝"˝j /–move. For example, see Figure
32 (a).

Note that a tn
1;0

–move is just an n–full twist of a string, and is the same as vn –move,
where vn 2 BT1 is the nth convolution power of v� defined by

vn D

(
�
Œn�
b v
˝n
� if n� 0;

�
Œ�n�
b v

˝.�n/
C if n� 0:

Using an idea similar to the one in Remark 9.16, we see that an tn
i;j –move is the same

as Fb.�
ŒiIj �
H /.vn/–move. (�ŒiIj �H is defined in Remark 9.16.) By abuse of notation, set

tn
i;j D Fb.�

ŒiIj �
H /.vn/ 2 BTiCj ;

which should not cause confusion. Note that tn
i;j is admissible.

Note that a tn
i;j –move changes the writhe of a tangle by n.i � j /2 . (Here the writhe of

a tangle is the number of positive crossing minus the number of negative crossings.)
In the literature, twist moves are often considered in the unframed context. The
modification to the unframed case is easy. For example, two 0–framed knots are related
by unframed tn

i;j –move if they are related by a sequence of a framed tn
i;j –move and a

framed t
�n.i�j/2

1;0
–move. The latter move multiplies the universal invariant associated

to a ribbon Hopf algebra by the factor of the power rn.i�j/2 of the ribbon element r.
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Twist moves have long been studied in knot theory. For a recent survey, see Przytycki
[70]. Here we give a few examples from the literature with translations into our setting.
For simplicity, we only give suitable framed versions of the notions in the literature.

For integers n; k � 0, a framed version of Fox’s notion of congruence modulo .n; k/
(see Fox [9], Nakanishi–Suzuki [64] and Nakanishi [62]) can be defined as the FCn;k –
equivalence, where we set

FCn;k D ft
n
i;j j i � j � 0 .mod k/g � ABT :

For integer n, a framed version of t2n –move (see Przytycki [68]) can be defined as tn
2;0

–
move, and a framed version of xt2n –move can be defined as tn

1;1
–move. Nakanishi’s

4–move conjecture [64; 62], which is still open, can be restated that any knot is
ft2

2;0
; t2

1;1
g–equivalent to an unknot.

We expect that the above “algebraic redefinitions” of twist moves and equivalence
relations are useful in the study of these notions in terms of quantum invariants, by
applying the results in Section 9.1.

10 The functor zJW B ! ModH and universal invariants of
bottom knots

The following idea may be useful in studying the universal invariants of bottom knots.

10.1 The functor zJW B ! ModH

Let H be a ribbon Hopf algebra over a commutative, unital ring k, and let Z.H /

denote the center of H . Let zH denote H regarded as a Z.H /–algebra. For n� 0, let
zH˝n denote the n–fold iterated tensor product of zH , ie, n–fold tensor product of H

over Z.H /, regarded as a Z.H /–algebra. In particular, we have zH˝0 DZ.H /. Let

�nW H
˝n
! zH˝n

denote the natural map, which is surjective if n� 1.

The functor JW B! ModH induces another functor zJW B! ModH as follows. For
n� 0, set zJ.b˝n/D zH˝n , which is given the left H –module structure induced by that
of H˝n . (This left H –module structure of zH˝n does not restrict to the Z.H /–module
structure of zH˝n .)

For each f 2 B.m; n/, the left H –module homomorphism zJ.f /W zH˝m! zH˝n is
induced by J.f /W H˝m!H˝n as follows. If m> 0, then zJ.f / is defined to be the
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unique map such that the following diagram commutes

(10–1)

H˝m
J.f /
����! H˝n

�m

??y ??y�n
zH˝m ����!

zJ.f /

zH˝n:

If mD 0, then set

(10–2) zJ.f /.z/D z�n.J.f /.1// for z 2Z.H /:

Note that commutativity of the diagram (10–1) holds also for mD0. It is straightforward
to check that the above defines a well-defined functor zJ.

For m; n� 0, let
�m;nW zH

˝m
˝k zH

˝n
! zH˝.mCn/

denote the natural map. The �m;n form a natural transformation

�W zJ.�/˝zJ.�/!zJ.�˝�/

of functors from B�B to ModH .

It is straightforward to see that the triple .zJ; �; �0/ is an ordinary braided functor, ie a
ordinary monoidal functor which preserves braiding. (By “ordinary monoidal functor”,
we mean a “monoidal functor” in the ordinary sense, see Mac Lane [54, Chapter XI,
Section 2].)

The �n form a monoidal natural transformation �W J) zJ (in the ordinary sense) of
ordinary monoidal functors from B to ModH .

10.2 Universal invariant of bottom knots

Since �1W H DH˝1! zH˝1DH is the identity, the functor zJ can be used in computing
JT D J.T /.1/ for a bottom knot T 2BT1 . For example, we have the following version
of Corollary 9.2 for nD 1.

Proposition 10.1 Let Ki �
zH˝i for i � 0, be Z.H /–submodules satisfying the

following.

(1) 1 2K0 , 1; v˙1 2K1 , and �2.cH
˙
/ 2K2 .

(2) For m; n� 0, we have Km˝Z.H /Kn �KmCn .
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(3) For p; q � 0 we have

. z ˙1
H ;H /.p;q/.KpCqC2/�KpCqC2;

z�.p;q/.KpCqC2/�KpCqC1;

where

. z H ;H /.p;q/ DzJ.. b;b/.p;q//W zH
˝.pCqC2/

! zH˝.pCqC2/

is induced by . H ;H /.p;q/W H
˝.pCqC2/!H˝.pCqC2/ , and

z�.p;q/ DzJ..�b/.p;q//W zH
˝.pCqC2/

! zH˝.pCqC1/

is induced by �.p;q/W H˝.pCqC2/!H˝.pCqC1/ .

Then, for any bottom knot U 2 BT1 , we have JU 2K1 .

Proof This is easily verified using Corollary 9.2.

Corollaries 9.3, 9.4, 9.5, 9.6 and 9.15 have similar versions for bottom knots.

Remark 10.2 One can replace Z.H / in this section with any k–subalgebra of Z.H /.

Remark 10.3 For n � 0, zH˝n has a natural Z.H /–module structure induced by
multiplication of elements of Z.H / on one of the tensor factors in H˝n . For each f 2
B.m; n/, the map zJ.f / is a Z.H /–module map. One can show that there is a monoidal
functor zJ0W B!ModZ.H / of B into the category ModZ.H / of Z.H /–modules which
maps each object b˝n into zH˝n and each morphism f into zJ0.f /DzJ.f /.

11 Band-reembedding of bottom tangles

11.1 Refined universal invariants of links

As in Section 1.1, for n� 0, let Ln denote the set of isotopy classes of n–component,
framed, oriented, ordered links for n� 0. There is a surjective function

clW BTn! Ln; T 7! cl.T /:

We study an algebraic condition for two bottom tangles to yield the same closure.
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(a)

W D

(b)

T D

(c)

T 0 D

Figure 33: (a) A bottom tangle W 2 BT4 . (b) The tangle T D Fb..�H ˝

H/˝2/.W / 2 BT2 . (c) The tangle T 0 D Fb.ad˝2
H /.W / 2 BT2 .

Definition 11.1 Two bottom tangles T;T 0 2 BTn are said to be related by a band-
reembedding if there is W 2 BT2n such that

T D Fb..�H˝H/˝n/.W /; T 0 D Fb.ad˝n
H /.W /:(11–1)

See Figure 33 for an example.

If we regard a bottom tangle as a based link in a natural way, then band-reembedding
corresponds to changing the basing.

Proposition 11.2 Two bottom tangles T;T 0 2BTn are related by a band-reembedding
if and only if cl.T /D cl.T 0/.

Proof Suppose that T and T 0 are related by a band-reembedding with W 2 BT2n

as in Definition 11.1. Note that the tangle T is obtained from W by removing the
components of W of odd indices, and the tangle T 0 is obtained from the composition
tangle 1˝n

b T by reembedding the n bands in 1b˝n along the components of W of
odd indices. Hence we easily see that cl.T /D cl.T 0/.

Conversely, if cl.T / D cl.T 0/, then we can express T 0 as a result from 1b˝nT by
reembedding the n bands in 1b˝n , and we can arrange by isotopy that there is W 2BT2n

satisfying (11–1).

Let H be a ribbon Hopf algebra. Proposition 11.2 implies that if two bottom tangles
T;T 0 2 BTn satisfies cl.T /D cl.T 0/, then there is W 2 BT2n such that

JT D .�˝ 1H /
˝n.JW /; JT 0 D ad˝n.JW /:

If Ki �H˝i for i D 0; 1; 2; : : : are as in Corollary 9.2, then we have

(11–2) JT 0 �JT 2 .ad˝n
� .�˝ 1H /

˝n/.K2n/:
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Hence we have the following.

Theorem 11.3 Let Kn �H˝n for nD 0; 1; 2; : : : be Z–submodules satisfying the
conditions of Corollary 9.2. Set

(11–3) K0n D .ad˝n
� .�˝ 1H /

˝n/.K2n/:

Then, for each n� 0, the function

J W BTn!Kn; T 7! JT ;

induces a link invariant
xJ W Ln!Kn=K

0
n

Note that if we set Kn DH˝n in Theorem 11.3, then we get the usual definition of
universal invariant of links.

Remark 11.4 The idea of Theorem 11.3 can also be used to obtain “more refined”
universal invariants for more special classes of links. For example, let us consider
links and bottom tangles of zero linking matrices. Suppose in Proposition 11.2 that
T and T 0 are of zero linking matrices. Note that the tangle W 2 BT2n satisfying
(11–1) is not necessarily of zero linking matrix, but the n–component bottom tangle
Fb..�H˝H/˝n/.W /, which is equivalent to T , is of zero linking matrix. Hence we
can replace the conditions for the Kn in Corollary 9.2 with weaker ones. We hope to
give details of this idea in future publications.

11.2 Ribbon discs

We close this section with a result which is closely related to Proposition 11.2.

A ribbon disc for a bottom knot T is a ribbon disc for the knot T [  , where  �
Œ0; 1�2 � f0g is the line segment such that @ D @T . Clearly, a bottom knot admits a
ribbon disc if and only if the closure cl.T / of T is a ribbon knot.

Theorem 11.5 For any bottom knot T 2 BT1 , the following conditions are equivalent.

(1) T admits a ribbon disc.

(2) There is an integer n� 0 and a bottom tangle W 2 BT2n such that

�˝n
b D Fb..�H˝H/˝n/.W /;(11–4)

T D �
Œn�
b Fb.ad˝n

H /.W /:(11–5)
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(a)

b1

b2

D0

D1
D2

(b)

Figure 34: (a) A ribbon bottom knot T and a ribbon disc decomposed as
D0[D1[D2[ b1[ b2 . (b) The bottom tangle T 0 .

Proof A ribbon disc bounded by T can be decomposed into nC 1 mutually disjoint
discs D0;D1; : : : ;Dn and n mutually disjoint bands b1; : : : ; bn for some n � 0

satisfying the following conditions.

(1) For each i D 1; : : : ; n the band bi joins D0 and Di ,

(2) D0 is a disc attached to the bottom square of the cube along a line segment,

(3) The only singularities of the ribbon disc are ribbon singularities in Di \ bj for
1� i; j � n. (We do not allow ribbon singularity in D0 .)

For example, see Figure 34 (a).

Let T 0 2 BTn be the bottom tangle obtained from T by removing D0 and regarding
the rest as an n–component bottom tangle, see Figure 34 (b). Then cl.T 0/D cl.�n/

is an unlink. It follows from Proposition 11.2 that T 0 and �n are related by band-
reembedding. Since T D �

Œn�
b T 0 , we have the assertion.

Remark 11.6 In Theorem 11.5, one can replace (11–4) with

(11–6) T D �
Œn�
b Fb.Y

˝n
H /.W /:

We sketch how to prove this claim. For a ribbon bottom knot T , there is a Seifert
surface F of genus n� 0 for T and simple closed curves c1; : : : ; cn in F satisfying
the following conditions.

(1) c1; : : : ; cn generates a Lagrangian subgroup of H1.F IZ/' Z2n .

(2) As a framed link in the cube, c1 [ � � � [ cn is a 0–framed unlink. Here the
framings of ci are induced by the surface F .

(The Seifert surface obtained from a ribbon disc by smoothing the singularities in
a canonical way has the above property.) By isotopy one can arrange the curves
c1; : : : ; cn as in Figure 35. The part bounded by a rectangle is a double of a bottom
tangle W 2 BT2n satisfying (11–4) and (11–6).
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T D

D.W /

� � �

� � �

c1
F

cn

Figure 35

12 Algebraic versions of Kirby moves and Hennings 3–man-
ifold invariants

An important application of the universal invariants is to the Hennings invariant of
3–manifolds and its generalizations. Hennings [26] introduced a class of invariants
of 3–manifolds associated to quantum groups, which use right integrals and no finite-
dimensional representations. The Hennings invariants are studied further by Kauffman
and Radford [37], Ohtsuki [66], Lyubashenko [53], Kerler [39; 41], Sawin [77], Vire-
lizier [83], etc. As mentioned in, or at least obvious from, these papers, the Hennings
invariants can be formulated using universal link invariants.

In this section, we reformulate the Hennings 3–manifold invariants using universal
invariants of bottom tangles. For closely related constructions, see Kerler [39] and
Virelizier [83].

For a Hopf algebra A in a braided category, we set

hA D .�A˝A/.A˝�A/W A
˝2
!A˝2:

The morphism hA is invertible with the inverse

h�1
A D .�A˝A/.A˝SA˝A/.A˝�A/:

For the transmutation H of a ribbon Hopf algebra H , we have

hH D .�H ˝ 1H /.1H ˝�/;

which should not be confused with

hH D .�H ˝ 1H /.1H ˝�H /

defined for the Hopf algebra H in the symmetric monoidal category Modk .

The following is a version of Kirby’s theorem [44]. Note that each move is formulated
in an algebraic way. Therefore we may regard the following as an algebraic version of
Kirby’s theorem.
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1 2

� � �

n 1 2

� � �

n nC1

U U

stabilization

Figure 36: A stabilization move U $ U ˝ vC

1 2

� � �

n 1 2

� � �

n

handle-slide

Figure 37: A handle slide move

Theorem 12.1 For two bottom tangles T and T 0 , the two 3–manifolds MT D

.S3/cl.T / and MT 0 D .S
3/cl.T 0/ obtained from S3 by surgery along cl.T / and cl.T 0/,

respectively, are orientation-preserving homeomorphic if and only if T and T 0 are
related by a sequence of the following moves.

(1) Band-reembedding.

(2) Stabilization: Replacing U 2BTn with U˝v˙2BTnC1 , or its inverse operation.

(3) Handle slide: Replacing U 2 BTn (n � 2) with Fb.hH˝H˝.n�2//.U /, or its
inverse operation.

(4) Braiding: Replacing U 2 BTn with ˇU , where ˇ 2 B.n; n/ is a doubled braid.

Proof First we see the effects of the moves listed above.

(1) A band-reembedding does not change the closure, hence the result of surgery.

(2) The effect of stabilization move U $ U ˝ vC is depicted in Figure 36. The case
of v� is similar. The closures cl.U / and cl.U ˝ v˙/D cl.U /t cl.v˙/ are related by
Kirby’s stabilization move. Hence they have the same result of surgery.

(3) The effect of handle slide move U $U 0 WDFb.hH˝H˝.n�2//.U / is depicted in
Figure 37. It is easy to see that the closures cl.U / and cl.U 0/ are related by a Kirby
handle slide move of the first component over the second. Hence they have the same
result of surgery.
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1 2 � � � n 1 2 � � � n

braiding

Figure 38: An example of braiding move

(4) A braiding move (see Figure 38) just changes the order of the components at the
closure level, and hence does not change the result of surgery.

The “if” part of the theorem follows from the above observations. To prove the “only if”
part, we assume that MT and MT 0 are orientation-preserving homeomorphic to each
other. By Kirby’s theorem, there is a sequence from cl.T / to cl.T 0/ of stabilizations,
handle slides, orientation changes of components, and changes of ordering. It suffices
to prove that if cl.T / and cl.T 0/ are related by one of these moves, then T and T 0

are related by the moves listed in the theorem.

If cl.T / and cl.T 0/ are related by change of ordering, then it is easy to see that T and
T 0 are related by a braiding move and a band-reembedding.

If cl.T / and cl.T 0/ are related by stabilization, ie, cl.T 0/D cl.T /tO˙ , where O˙
is an unknot of framing ˙1, then T 0 and T ˝ v� are related by a band-reembedding.

Suppose cl.T / and cl.T 0/ are related by handle slide of a component of cl.T / over
another component of cl.T /. By conjugating with change of ordering, we may assume
that the first component of cl.T / is slid over the second component of cl.T /. Then
there is T 00 2BTn such that T 00 is obtained from T by a band-reembedding, and T 0 is
obtained from T 00 by a handle slide move or its inverse. For example, see Figure 39.

Suppose cl.T / and cl.T 0/ are related by orientation change of i th components with
1� i � n. It suffices to show that cl.T / and cl.T 0/ are related by a sequence of handle
slides, changes of orientation, changes of ordering and stabilizations. We may assume
i D 1 by change of ordering. Using stabilization, we may safely assume n� 2. Now
we see that change of orientation of the first component can be achieved by a sequence
of handle slides and change of ordering. Suppose that LDL1[L2 is an 2–component
link. There is a sequence of moves LD L0! L1! � � � ! L4 D �L1 [L2 , with
Li DLi

1
[Li

2
as depicted in Figure 40. (Note here that, in the move L1!L2 , we

can slide the second component over the first by conjugating the handle slide move by
changing of the ordering.) Hence we have the assertion.
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T D

1 2

handle slide
for closure

1 2

D T 0

band
reembedding isotopy

T 00 D

1 2

handle slide

1 2

Figure 39: Here only the first and the second components are depicted in each figure
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2

slide L0
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2

L1
1
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2 slide L1

2

over L1
1

L2
2

L2
1

isotopy L2
2

L2
1

slide L2
1

over L2
2

L3
2

L3
1

change the
ordering

L4
1

L4
2

Figure 40

Lemma 12.2 If f W H ! k is a left H –module homomorphism, then we have

.1H ˝f /�D .1H ˝f /�D .f ˝ 1H /�:

Proof The lemma is probably well known. We prove it for completeness.

The first identity is proved using (8–2) as follows.

.1˝f /�.x/D .1˝f /.
X

x.1/S.ˇ/˝˛ Fx.2//

D

X
x.1/S.ˇ/˝f .˛ Fx.2//D

X
x.1/S.ˇ/˝ �.˛/f .x.2//

D

X
x.1/˝f .x.2//D .1˝f /�.x/:
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The identity .f ˝ 1/�.x/D .1˝f /�.x/ follows similarly by using the identity

�.x/D
X

.ˇ Fx.2//˝˛x.1/ for x 2H:

Now we formulate the Hennings invariant in our setting. If �W H ! k is a left H –
module homomorphism and a left integral on H , then we can define a 3–manifold
invariant. This invariant is essentially the same as the Hennings invariant defined using
the right integral, since left and right integrals interchange under application of the
antipode.

Proposition 12.3 Let �W H ! k be a left H –module homomorphism. Then the
following conditions are equivalent.

(1) � is a left integral on H , ie,

(12–1) .1˝�/�D ��W H !H:

(2) � is a two-sided integral on H in ModH , ie,

(12–2) .1˝�/�D .�˝ 1/�D ��W H !H:

Suppose either (hence both) of the above holds, and also suppose that �.r˙1/ 2 k is
invertible. Then there is a unique invariant �H ;�.M / 2 k of connected, oriented, closed
3–manifolds M such that for each bottom tangle T 2 BTn we have

(12–3) �H ;�.MT /D
�˝n.JT /

�.r�1/�C.T /�.r/��.T /
;

where �C.T / (resp. ��.T /) is the number (with multiplicity) of the positive (resp.
negative) eigenvalues of the linking matrix of T , and MT D .S

3/cl.T / denote the result
from S3 of surgery along cl.T /.

Proof The first assertion follows from Lemma 12.2.

In the following, we show that the right hand side of (12–3) is invariant under the
moves described in Theorem 12.1.

First we consider the stabilization move. Suppose T 2BTn and T 0DT ˝v˙ 2BTnC1 .
Then one can easily verify �H ;�.MT /D �H ;�.MT 0/ using

�˝.nC1/.JT˝v˙
/D �˝n.JT / ��.r˙1/:

Since the other moves does not change the number of components and the number
of positive (resp. negative) eigenvalues of the linking matrix, it suffices to verify that
�˝n.JT /D �

˝n.JT 0/ for T;T 0 2 BTn related by each of the other moves.
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Suppose T and T 0 are related by a band-reembedding. Then there is W 2 BT2n

satisfying (11–1). Since � is a left H –module homomorphism, we have

�˝n.JT /D �
˝n.�˝ 1H /

˝n.JW /D �
˝nad˝n.JW /D �

˝n.JT 0/:

Suppose that T and T 0 are related by a handle slide, ie, T 0 D Fb.hH˝H˝.n�2//.T /.
Since � is a two-sided integral on H , we have

�˝n.JT 0/D �
˝n.hH ˝ 1

˝.n�2/
H

/.JT /

D �˝n..�H ˝ 1H /.1H ˝�/˝ 1
˝.n�2/
H

/.JT /

D .��H ˝�
˝.n�2//.1H ˝ .1H ˝�/�˝ 1

˝.n�2/
H

/.JT /

D .��H ˝�
˝.n�2//.1H ˝ �H�˝ 1

˝.n�2/
H

/.JT /

D �˝n.JT /:

Suppose that T and T 0 are related by a braiding move. We may assume that T 0 D

. ˙1
b;b /.i�1;n�i�1/T with 1� i � n� 1. Since .�˝�/ H ;H D �˝�, it follows that

�˝n.JT 0/D �
˝n. ˙1

H ;H /.i�1;n�i�1/.JT /D �
˝n.JT /:

This completes the proof.

Remark 12.4 One can verify that the invariant �H ;�.M / is equal (up to a factor
determined only by the first Betti number of M ) to the Hennings invariant of M

associated to the right integral �S W H ! k.

Remark 12.5 Some results in Section 9 can be used together with Proposition 12.3
to obtain results on the range of values of the Hennings invariants for various class of
3–manifolds. Recall from Hennings [26] and Ohtsuki [65] (see also Virelizier [83]) that
the sl2 Reshetikhin–Turaev invariants can be defined using a universal link invariant
associated to a finite-dimensional quantum group Uq.sl2/

0 at a root of unity, and a
certain trace function on Uq.sl2/

0 . Hence results in Section 9 can also be used to study
the range of values of the Reshetikhin–Turaev invariants.

13 String links and bottom tangles

An n–component string link T DT1[� � �[Tn is a tangle consisting n arcs T1; : : : ;Tn ,
such that for i D 1; : : : ; n the i th component Ti runs from the i th upper endpoint to
the i th lower endpoint. In other words, T is a morphism T 2 T .#˝n;#˝n/ homotopic
to #˝n . (Here and in what follows, the endpoints are counted from the left.) The
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(a) (b)

Figure 41: (a) A string link. (b) Its closure.

closure operation is as depicted in Figure 41 (a), (b). One can use string links to study
links via the closure operation.

As in Section 4.2, we denote by SLn the submonoid of T .#˝n;#˝n/ consisting of the
isotopy classes of the n–component framed string links.

Of course, there are many orientation-preserving self-homeomorphisms of a cube
Œ0; 1�3 , which transform n–component string links into n–component bottom tangles
and induces a bijection SLn Š BTn . In this sense, one can think of the notion of string
links and the notion of bottom tangles are equivalent. However, SLn and BTn are not
equally convenient. For example, the monoid structure in the SLn can not be defined in
each BTn as conveniently as in SLn , and also that the external Hopf algebra structure
in the BTn can not be defined in the SLn as conveniently as in the BTn . It depends on
the contexts which is more useful.

In the following, we define a preferred bijection

�nW BTn! SLn;

which enables one to translate results about the bottom tangles into results about the
string links and vice versa. We define a monoid structure of each BTn such that �n

is a monoid homomorphism. We also study several other structures on BTn and SLn

and consider the algebraic counterparts for a ribbon Hopf algebra. The proofs are
straightforward and left to the reader.

For n � 0, we give b˝n 2 Ob.T / the standard tensor product algebra structure (see
Majid [55, Section 2])

�b˝n W b˝n
˝ b˝n

! b˝n; �b˝n W 1! b˝n;

induced by the algebra structure .b; �b; �b/, ie, �b˝0 D 11 , �b˝1 D �,

�b˝n D .�b˝�b˝.n�1//.b˝ b˝.n�1/;b˝ b˝.n�1// for n� 2;
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(a) (b) (c)

D

(d)

D D

Figure 42: (a) Multiplication �b˝3 . (b) Unit �b˝3 . (c) Associativity. (d) Unitality.

and �b˝n D �n for n� 0. See Figure 42 for example.

We define a monoid structure for BTn with multiplication

z�n D �W BTn �BTn! BTn; .T;T 0/ 7! T �T 0

defined by

(13–1) T �T 0 D �b˝n.T ˝T 0/D

T T 0

for T;T 0 2 BTn , where the figure in the right hand side is for n D 3. Then the set
BTn has a monoid structure with multiplication z�n and with unit �n .

We give #2 Ob.T / a left b–module structure defined by the left action

˛# D#˝ev# D W b˝ #!# :

For n� 0, this left b–module structure induces in the canonical way a left b˝n –module
structure for #˝n

˛#˝n W b˝n
˝ #
˝n
!#
˝n;

ie, ˛#˝n is defined inductively by

˛#˝0 D 11; ˛#˝1 D ˛;

˛#˝n D .˛#˝˛#˝.n�1//.b˝ b˝.n�1/;#˝ #
˝.n�1// for n� 2:

For example, see Figure 43.

Now we define a function �nW BTn! SLn for n� 0 by

�n.T /D ˛#˝n.T˝ #˝n/
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(a) (b)

D

(c)

D

Figure 43: (a) Left action ˛#˝3 . (b) Associativity. (c) Unitality.

for T 2 BTn . In a certain sense, �n.T / is the result of “letting T act on #˝n ”. For
example, if T 2 BT3 , then

�3.T /D

T

D T :

The function �n is invertible with the inverse ��1
n W SLn! BTn given by

��1
n .L/D �n.T˝ "

˝n/coev#˝n ;

where
�nW #

˝n
˝ "
˝n
! b˝n

is defined inductively by

�0 D 11; �nC1 D .# ˝ b˝n;"/.# ˝�n˝ "/

for n� 1. For example, if L 2 SL3 , then

��1
3 .L/D

L

D L :

The function �n is a monoid isomorphism, ie,

�n.T �T 0/D �n.T /�n.T
0/; �n.�n/D#

˝n

for T;T 0 2 BTn .

As is well known, there is a “coalgebra-like” structure on the SLn . For T 2 SLn

and i D 1; : : : ; n, let �i.T / 2 SLnC1 (resp. �i.T / 2 SLn�1 ) be obtained from T by
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duplicating (resp. removing) the i th component. These operations define monoid
homomorphisms

�i W SLn! SLnC1; �i W SLn! SLn�1 :

The following diagrams commutes.

(13–2)

BTn

L�.i�1;n�i/

�������! BTnC1

�n

??y ??y�nC1

SLn ����!
�i

SLnC1

BTn

L�.i�1;n�i/

������! BTn�1

�n

??y ??y�n�1

SLn ����!
�i

SLn�1 :

Thus the “coalgebra-like” structure of the SLn corresponds via the �n to the “coalgebra-
like” structure in the BTn .

Now we translate the above observations into the universal invariant level. Let H be a
ribbon Hopf algebra over a commutative, unital ring k.

Define a k–module homomorphism � 0nW H
˝n!H˝n , n� 0, by � 0

0
D 1k , � 0

1
D 1H ,

and for n� 2

� 0n D
�
1
˝.n�2/
H

˝�2

��
1
˝.n�3/
H

˝�3

�
� � � .1H ˝�n�1/�n;

where �nW H
˝n!H˝n , n� 2, is defined by

�n

�X
x1˝ � � �˝xn

�
D

X
x1ˇ˝ .˛.1/ Fx2/˝ � � �˝ .˛.n�1/ Fxn/:

Then the effects of �n on the universal invariants is given by

(13–3) J�n.T / D �
0
n.JT / for T 2 BTn ;

which can be used in translating results about the universal invariant of bottom tangles
into results about the universal invariant of string links.

We denote by H˝n the n–fold tensor product of H in the braided category ModH .
Thus H˝n is equipped with the standard algebra structure in ModH , with the multi-
plication

�
n
W H˝n

˝H˝n
!H˝n

given by �
n
D J.�b˝n/ and with the unit in H˝n by 1˝n

H
.

The map � 0n defines a k–algebra isomorphism

� 0nW H
˝n
!H˝n;
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where H˝n is equipped with the standard algebra structure. In other words, we have

� 0n.�n
.x˝y//D � 0n.x/�

0
n.y/

for x;y 2H˝n , and � 0n.1
˝n
H
/D 1˝n

H
.

We have algebraic analogues of the diagrams in (13–2)

H˝n
�i

����! H˝.nC1/

� 0n

??y ??y� 0nC1

H˝n ����!
�i

H˝.nC1/

H˝n
�i
����! H˝.n�1/

� 0n

??y ??y� 0n�1

H˝n ����!
�i

H˝.n�1/

where �i D 1˝.i�1/˝�˝1˝.n�i/ , �i D 1˝.i�1/˝�˝1˝.n�i/ and �i D 1˝.i�1/˝

�˝1˝.n�i/ . If nD iD1, then the commutativity of the diagram on the left, �D ��1
2
�,

above coincides (8–2), the definition of the transmuted comultiplication �.

14 Remarks

14.1 Direct applications of the category B for representation-colored link
invariants

We have argued that the setting of universal invariants is useful in the study of
representation-colored link invariants. However, it would be worth describing how to
apply the setting of the category B to the study of representation-colored link invariants
without using universal invariants.

Let H be a ribbon Hopf algebra over a field k, and let V be a finite-dimensional left H –
module. Let FT

V
W T !ModH denote the canonical braided functor from the category

T of framed, oriented tangles to the category ModH of left H –modules, which maps
the object # to V . Let us denote the restriction of FT

V
to B by FV W B! ModH .

Then FV maps the object b into V ˝ V � , which we identify with the k–algebra
E D Endk.V / of k–vector space endomorphisms of V . As one can easily verify, the
algebra structure of b is mapped into that of E , ie, FV .�b/D�E , and FV .�b/D �E ,
where �E W E˝E!E and �E W k!E are the structure morphisms for the algebra
E . Also, the images by FV of the other generating morphisms of B are determined by

FV .v˙/.1k/D �V .r˙1/;

FV .c˙/.1k/D .�V ˝ �V /.c
H
˙ /;
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where �V W H!E denotes the left action of H on V , ie, �V .x/.v/D x �v for x 2H ,
v 2 V . In fact, we have for each T 2 BTn

FV .T /.1k/D �
˝n
V
.JT /:

Many results for universal invariants in the previous sections can be modified into
versions for FV . For example, the following is a version of Corollary 9.2.

Proposition 14.1 Let Ki �E˝i for i � 0, be subsets satisfying the following.

(1) 1k 2K0 , 1E ; �V .r˙1/ 2K1 , and .�V ˝ �V /.c
H
˙
/ 2K2 .

(2) For m; n� 0, we have Km˝Kn �KmCn .

(3) For p; q � 0 we have

.1˝p
˝ ˙1

E;E ˝ 1˝q/.KpCqC2/�KpCqC2;

.1˝p
˝�E ˝ 1˝q/.KpCqC2/�KpCqC1;

where  E;E D FV . b;b/W E˝E!E˝E is the braiding of two copies of E

in ModH .

Then, for any T 2 BTn , n� 0, we have FV .T / 2Kn .

Note that �V can be regarded as a morphism �V W H !E in ModH . In fact, �V is
an algebra-morphism, ie, �V�H D �E.�V ˝ �V /, �V �H D �E . One can check that
the morphisms �˝i

V
W H˝i!E˝i , i � 0, form a natural transformation

�W J) FV W B!ModH ;

ie, the following diagram is commutative for i; j � 0, T 2 B.i; j /

H˝i
J.T /
����! H˝j

�
˝i
V

??y ??y�˝j

V

E˝i ����!
FV .T /

E˝j :

14.2 Generalizations

14.2.1 Non-strict version Bq of B and the Kontsevich invariant Recall that there
is a non-strict version T q of T , ie, the category of q–tangles (see Le and Murakami
[47]), whose objects are parenthesized tensor words in # and " such as

.# ˝ #/˝ ." ˝.# ˝ "//
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and whose morphisms are isotopy classes of tangles. In a natural way, one can define
non-strict braided subcategories Bq (resp. B

q
0

) of B whose objects are parenthesized
tensor words of bD#˝", such as .b˝b/˝b, and the morphisms are isotopy classes
of tangles in B (resp. B0 ). The results for B and B0 in Sections 4, 5 and 6 can be
easily generalized to results for the non-strict braided categories Bq and B

q
0

. Recall
[47] that the Kontsevich invariant can be formulated as a (non-strict) monoidal functor
ZW T q!A of T q into a certain “category of diagrams”. It is natural to expect that
the non-strict versions of the results for B and B0 in the present paper can be applied
to the Kontsevich invariant and can give some integrality results for the Kontsevich
invariant.

14.2.2 Ribbon Hopf algebras in symmetric monoidal category Universal invari-
ant of links and tangles can be defined for any ribbon Hopf algebra H in any symmetric
monoidal category M. If T is a tangle consisting of n arcs and no circles, then the
universal invariant JT takes values in M.1M;H˝n/, where 1M is the unit object in
M. Most of the results in Section 8 can be generalized to this setting. In particular,
there is a braided functor JW B! ModH such that J.b/ D H , where ModH is the
category of left H –modules in M, and H is given the left H –module structure via
the adjoint action.

We comment on two interesting special cases below.

14.2.3 Complete ribbon Hopf algebras and quantized enveloping algebras The
universal invariant of tangles can also be defined for any ribbon complete Hopf algebra
H over a linearly topologized, commutative, unital ring k. The construction of universal
invariant can be generalized to ribbon complete Hopf algebras in an obvious way. This
case may be considered as the special case of Section 14.2.2, since H is a ribbon Hopf
algebra in the category of complete k–modules.

An important example of a complete ribbon Hopf algebra is the h–adic quantized
enveloping algebra Uh.g/ of a simple Lie algebra g. In future papers [20; 25], we will
consider this case and prove some integrality results of the universal invariants.

14.2.4 Universal invariants and virtual tangles Kauffman [36] introduced virtual
knot theory (see also Goussarov, Polyak and Viro [15], Kamada and Kamada [30],
and Sakai [75; 76]). A virtual link is a diagram in a plane similar to a link diagram
but allowing “virtual crossings”. There is a preferred equivalence relation among
virtual links called “virtual isotopy”, and two virtually isotopic virtual links are usually
regarded as the same. There is also a weaker notion of equivalence called “virtual
regular isotopy”, and it is observed by Kauffman [36] that many quantum link invariants
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can be extended to invariants of virtual regular isotopy classes of virtual links. The
notion of virtual links are naturally generalized to that of virtual tangles. Virtual framed
isotopy is generated by virtual regular isotopy and the move

$ :

An extreme case of Section 14.2.2 is the case of the symmetric monoidal category hHr i

freely generated by a ribbon Hopf algebra Hr . The universal tangle invariant JT in this
case is very closely related to virtual tangles. We can construct a canonical bijection
between the set hHr i.1;H˝n

r / and the set of the virtual framed isotopy classes of
n–component “virtual bottom tangles”. For T 2 BTn , the universal invariant JT takes
values in ModHr

.1;H˝n
r /� hHr i.1;H˝n

r /. Thus, the universal invariant associated to
Hr takes values in the virtual bottom tangles. For n� 0, the function

J0;n D JW BTn

�
D B.0; n/

�
!ModHr

.1;H˝n
r /; T 7! J.T /;

is injective. We conjecture that J0;n is surjective. If this is true, then we can regard it
as an algebraic characterization of bottom tangles among virtual bottom tangles. We
can formulate similar conjectures for general tangles and links. This may be regarded
as a new way to view virtual knot theory in an algebraically natural way. (We also
remark here that there is another (perhaps more natural) way to formulate virtual knot
theory in a category-theoretic setting, which uses the tangle invariant associated to the
symmetric monoidal category hHr ;Vi freely generated by a ribbon Hopf algebra Hr

and a left Hr –module V with left dual.) We plan to give the details of the above in
future publications.

14.2.5 Quasitriangular Hopf algebras and even bottom tangles We can general-
ize our setting to a quasitriangular Hopf algebra, which may not be ribbon. For a
similar idea of defining quantum invariants associated to quasitriangular Hopf algebras,
see Sawin [77].

It is convenient to restrict our attention to even-framed bottom tangles up to regular
isotopy. Here a tangle T is even-framed if the closure of each component of T is
of even framing, or, in other words, each component of T has even number of self
crossings. Let Bev denote the subcategory of B such that Ob.Bev/ D Ob.B/ and
Bev.m; n/ consists of T 2 B.m; n/ even-framed. Then we have the following.

(1) Bev is a braided subcategory of B.

(2) Bev is generated as a braided subcategory of B by the object b and the morphism
�b; �b; cC; c� . (This follows from Remark 5.20.)
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(3) Bev inherits from B an external Hopf algebra structure.

(4) There is a braided functor JevW Bev ! ModH , defined similarly to the ribbon
case, and we have an analogue of Theorem 8.3. Hence we have a topological
interpretation of transmutation of a quasitriangular Hopf algebra. If H is ribbon,
then Jev is the restriction of J to Bev .

14.3 The functor LJ

The functor JW B!ModH is not faithful for any ribbon Hopf algebra H . For example,
we have J.t#˝ "/ D J.# ˝t"/ for any H but we have t#˝ "¤# ˝t" . Using the
construction by Kauffman [35], one can construct a functor LJW B! Cat.H /, which
distinguishes more tangles than J. Here Cat.H / is the category defined in [35], and LJ
is just the restriction to B of the functor F W T ! Cat.H / defined in [35]. Since each
T 2 B.m; n/ consists of mC n arc components, LJ.T / can be defined as an element
of H˝.mCn/ . If we take H as the Hopf algebra in the braided category hHr i freely
generated by a ribbon Hopf algebra as in Section 14.2.4, then LJ is faithful.

We have not studied the functor LJ in the present paper because our aim of introducing the
category B is to provide a useful tool to study bottom tangles. The functor JW B!ModH

is more suitable than LJ for this purpose.

14.4 The category B of bottom tangles in handlebodies

In future papers, we will give details of the following.

Let B denote the category of bottom tangles in handlebodies, which is roughly defined
as follows. For n � 0, let Vn denote a “standard handlebody of genus n”, which is
obtained from the cube Œ0; 1�3 by adding n handles in a canonical way, see Figure
44 (a). An n–component bottom tangle in Vn is a framed, oriented tangle T in Vn

consisting of n arc components T1; : : : ;Tn , such that, for i D 1; : : : ; n, Ti starts at
the 2i th endpoint on the bottom and end at the .2i � 1/st endpoint on the bottom. See
Figure 44 (b) for example, which we usually draw as the projected diagram as in (c).

The category B is defined as follows. Set Ob.B/D f0; 1; 2; : : :g. For m; n � 0, the
set B.m; n/ is the set of isotopy classes of n–component bottom tangles in Vm . For
T 2 B.l;m/ and T 0 2 B.m; n/, the composition T 0T 2 B.l; n/ is represented by the
l –component tangle in Vn obtained as follows. First let ET denote the “exterior of
T in Vl ”, ie, the closure of Vl nNT , with NT a tubular neighborhood of T in Vl .
Note that ET may be regarded as a cobordism from the connected oriented surfaces
Fl;1 of genus l with one boundary component to Fm;1 . Thus there is a natural way to
identify the “bottom surface” of NT with the “top surface” of Vm . By gluing ET and
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(a)

V2

(b)

T1

T2

T3

(c)

T1

T2

T3

Figure 44: (a) A standard handlebody V2 of genus 2 . (b) A 3–component
bottom tangle T D T1[T2[T3 in V2 . (c) A diagram for T .

(a) (b) (c)

Figure 45: (a) A bottom tangle T 2B.1; 2/ . (b) A bottom tangle T 02B.2; 3/ .
(c) The composition T 0T 2 B.1; 3/ .

Vm along these surfaces, we obtain a 3–manifold ET [Vm , naturally identified with
Vl . The tangle T 0 , viewed as a tangle in ET [Vm Š Vl , represents the composition
T 0T . Figure 45 shows an example. For n � 0, the identity morphism 1nW n! n is
represented by the bottom tangle depicted in Figure 46. We can prove that the category
B is well defined. The category B has the monoidal structure given by horizontal
pasting.

There is a functor �W B! B such that �.b˝n/D n, and, for T 2 B.m; n/, the tangle
�.T / 2 B.m; n/ is obtained from T by pasting a copy of the identity bottom tangle
1b˝m on the top of T . This functor is monoidal, and the braiding structure for B

induces that for B via � , see Figure 46.

Also, there is a Hopf algebra structure HBD .1; �B; �B; �B; �B;SB/ in the usual sense
for the object 1 2 Ob.B/. Graphically, the structure morphisms �B; �B; �B; �B;SB
for B is as depicted in Figure 46.

The external Hopf algebra structure in B is mapped by � into the external Hopf algebra
structure in B associated to HB .
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12  1;1
 �1

1;1

�B �B �B �B SB

Figure 46: The morphisms 12 ,  1;1 ,  �1
1;1

, �B , �B , �B , �B and SB in B

For n� 0, the function
�W BTn! B.0; n/

is bijective. Hence we can identify the set B.0; n/ with the set of n–component bottom
tangles. (However, �W B.m; n/! B.m; n/ is neither injective nor surjective in general.
Hence the functor � is neither full nor faithful.) Using Theorem 5.16, we can prove
that B is generated as a braided category by the morphisms

(14–1) �B; �B; �B; �B;SB;S
�1
B ; vB;C; vB;�;

where vB;˙ D �.v˙/.

There is a natural, faithful, braided functor i W B ! C , where C is the category of
cobordisms of surfaces with connected boundary as introduced by Crane and Yetter
[8] and by Kerler [40], independently. The objects of C are the nonnegative integers
0; 1; 2; : : :, the morphisms from m to n are (certain equivalence classes of) cobordisms
from Fm to Fn , where Fm is a compact, connected, oriented surface of genus n with
@FmŠS1 . (See also Habiro [22], Kerler [39; 42], Kerler–Lyubashenko [43] and Yetter
[85] for descriptions of C .) This functor i maps T 2 B.m; n/ into the cobordism ET

defined above. In the following, we regard B as a braided subcategory of C via i .
Recall from [8] and [40] that C is a braided category, and there is a Hopf algebra
hD .1; �h; �h; �h; �h;Sh/ in C with the underlying object 1, which corresponds to the
punctured torus F1 .

The category B can be identified with the subcategory of C such that Ob.B/D Ob.C/
and

B.m; n/D
˚
f 2 C.m; n/ j �˝n

h f D �˝m
h
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C

Figure 47: The cobordism B� is obtained from the trivial cobordism �˝3
B by

surgery along the Y –graph C .

for m; n � 0. Recall from [42] that C is generated as a braided category by the
generators of B listed in (14–1) and an integral �h of the Hopf algebra h. This integral
�h for h is not contained in B .

For each ribbon Hopf algebra H , we can define a braided functor

JBW B!ModH

such that J D JB� . The functor JB maps the Hopf algebra HB in B into the trans-
mutation H of H . If H is finite-dimensional ribbon Hopf algebra over a field k,
and is factorizable (see Reshetikhin and Semenov-Tian-Shansky [73]) – that is, the
function Homk.H;k/!H , f 7! .1˝f /.cH

C /, is an isomorphism – then JB extends
to Kerler’s functorial version of the Hennings invariant [39; 41]

(14–2) J
zC
W zC!ModH :

An interesting extension of B is the braided subcategory xB of C generated by the
objects and morphisms of B and the morphism B� 2 C.3; 0/ described in Figure 47.
One can show that the category xB is the same as the category of bottom tangles in
homology handlebodies, which is defined in the same way as B but the bottom tangles
are contained in a homology handlebody. (Recall that a homology handlebody can
be characterized as a 3–manifold which is obtainable as the result from a standard
handlebody of surgery along finitely many Y –graphs, see Habegger [19].) For each
n� 0, the monoid xB.n; n/ contains the Lagrangian submonoid Ln (see Levine [52]) of
the monoid of homology cobordisms (see Goussarov [14] and Habiro [22]) of a compact,
connected, oriented surface †n;1 of genus 1 and with one boundary component, and
hence contains the monoid of homology cylinders (or homologically trivial cobordisms)
HCn;1 over †n;1 and the Torelli group In;1 of †n;1 . Here the Lagrangian subgroup of
H1†n;1 ' Z2n , which is necessary to specify Ln , is generated by the meridians of the
handles in Vn . The monoid xB.n; n/ does not contain the whole mapping class group
Mn;1 . In fact, xB.n; n/\Mn;1 is precisely the Lagrangian subgroup of Mn;1 . The
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subgroup B.n; n/\Mn;1 of xB.n; n/\Mn;1 corresponds to the handlebody group
Hn;1 , which is the group of isotopy classes of self-homeomorphisms of handlebody of
genus n fixing a disc in the boundary pointwise.

14.5 Surgery on 3–manifolds as monoidal relation

The idea of identifying the relations on tangles defined by local moves with monoidal
relations in the monoidal category T of tangles can be generalized to 3–manifolds
as follows. Matveev [57] defined a class of surgery operations on 3–manifolds called
V –surgeries. A special case of V –surgery removes a handlebody from a 3–manifold
and reglues it back in a different way. Here V D .V1;V2/ is a pair of two handlebodies
V1;V2 of the same genus with boundaries identified, and determines a type of surgery.
We call such surgery admissible. For each such V , there is a (not unique) pair .f1; f2/

of morphisms f1 and f2 of the same source and target in the monoidal category C of
cobordisms of surfaces with connected boundary (see Crane–Yetter [8], Kerler [40]
and Section 14.4). For 3–manifolds representing morphisms in C , the equivalence
relations of 3–manifolds generated by V –surgeries is the same as the monoidal relation
in C generated by the pair .f1; f2/. Thus, one can formulate the theory of admissible
surgeries in an algebraic way.
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