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Cohomology of Coxeter groups
with group ring coefficients: II
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For any Coxeter group W , we define a filtration of H�.W IZW / by W –submodules
and then compute the associated graded terms. More generally, if U is a CW complex
on which W acts as a reflection group we compute the associated graded terms for
H�.U/ and, in the case where the action is proper and cocompact, for H�c .U/ .

20F55; 20C08, 20E42, 20F65, 20J06, 57M07

1 Introduction

The cohomology of a group G with coefficients in a left G–module M is denoted
H�.GIM /. We are primarily interested in the case where M is the group ring,
ZG . Since ZG is a G–bimodule, H�.GIZG/ inherits the structure of a right G–
module. When G is discrete and acts properly and cocompactly on a contractible CW
complex �, there is a natural topological interpretation for this cohomology group:
H�.GIZG/ŠH�c .�/, where H�c . / denotes finitely supported cellular cohomology.
The action of G on � induces a right action on cohomology and the above isomorphism
is one of right G–modules. For a general group G , not much is known about the
G–module structure on H�.GIZG/. For example, even in the above case where
G acts properly and cocompactly on a contractible �, we don’t believe it is known
whether or not H�.GIZG/ is always finitely generated as a G –module.

Here we deal with the case where G DW , a Coxeter group. In [5] the first author
computed H�.W IZW / as an abelian group but not as a W –module. We partially
remedy the situation here. We do not quite determine the W –module structure on
H�.W IZW /. Rather, we describe a certain decreasing filtration of H�.W IZW / by
W –submodules and compute the associated graded terms. In order to describe this
computation, we need some notation.
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1290 Davis, Dymara, Januszkiewicz and Okun

Suppose .W;S/ is a Coxeter system. (W is the group and S is the distinguished set
of involutions which generates W .) A subset T � S is spherical if the subgroup WT ,
generated by T , is finite. S denotes the set of spherical subsets of S , partially ordered
by inclusion.

Let A WD ZW denote the group ring. Let fewgw2W be its standard basis. For each
T 2 S , put

aT WD

X
u2WT

eu:

AT denotes the right ideal aT A. If T � U 2 S , then aU 2 AT (formula (3–2) of
Section 3); hence, AU � AT . Let A>T be the right W –submodule spanned by the
AU , with U © T .

For each w 2W , put In0.w/ WD fs 2 S j l.sw/ < l.w/g. It is a fact that In0.w/ 2 S .
Set b0w WD aIn0.w/ew . We will show in Lemma 3.1 that fb0wgw2W is also a basis for

A. Define bAT
to be the Z–submodule of A spanned by fb0w j w 2W; In0.w/D T g.

N.B. bAT
is not a W –submodule of A; however, bAT

�AT and, as we shall see in
Corollary 3.3, the natural map bAT

! AT =A>T is an isomorphism of free abelian
groups.

The Coxeter group W acts properly and cocompactly as a group generated by reflections
on a certain contractible complex † (see Davis [3]). A fundamental domain for the
W –action on † is a finite simplicial complex K , defined as the geometric realization
of the poset S . Since ∅ is an initial element of S , K is contractible. For each s 2 S ,
define Ks to be the geometric realization of S�fsg , where S�fsg WD fT 2 S j s 2 T g.
Ks is a subcomplex of K . For each U � S , put KU WD

S
s2U Ks . The calculation

of [5] was the following:

H�.W IA/DH�c .†/D
M
T2S

H�.K;KS�T /˝ bAT

We give a new proof of this calculation in Section 3 (Theorem 3.5). This proof involves
showing that a certain coefficient system on K decomposes as a direct sum and that
cohomology groups with coefficients in the summands are precisely the terms on the
right hand side of the above formula.

A similar formula should be true for buildings. By modifying the previous argument,
we prove such a formula in Section 6 in the case of a locally finite, thick, right-angled
building ˆ. In that section, A stands for the abelian group of finitely supported Z–

valued functions on (the set of chambers of) ˆ. We define analogs of the AT and bAT
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and in Theorem 6.6 we prove a formula of the form:

H i
c .jˆj/Š

M
T2S

Hi.K;K
S�T /˝ bAT

where jˆj is the geometric realization of ˆ.

Let us return to the question of determining the W –action on cohomology. There is a
decreasing filtration of right W –submodules of A (where AD ZW ):

F0 � � � �Fp � � � �

Here Fp is the submodule of A spanned by the AT with Card.T /� p . This induces
a filtration of H�.W IA/. The main result of this paper is the following. (A more
precise version of this result is stated as Theorem 4.5, below.)

Theorem In filtration degree p , the graded right W –module associated to the above
filtration of H�.W IA/ is isomorphic toM

T2S
Card.T /Dp

H�.K;KS�T /˝ .AT =A>T /

where AT =A>T is the right W –module defined above.

Corollary H�.W IA/ is finitely generated as a W –module.

In view of Davis [5], Davis et al [6], Dymara and Januszkiewicz [8], Kazhdan and
Lusztig [10] and Solomon [11], the above computation was a natural guess for the
W –module structure on H�.W IA/DH�c .†/. In particular, in [6] we calculated the
“weighted L2 –cohomology” of † and obtained a very similar answer (provided the
“weight” q lies in a certain range).

We actually proceed in somewhat more generality than indicated above. We consider an
action of W as a reflection group on a CW complex U with strict fundamental domain
X and then compute certain equivariant homology and cohomology groups of U with
coefficients in ZW . The equivariant (co)homology groups we are interested in have
the following well known interpretations: H W

� .U IZW /DH�.U/ and when the action
is proper and cocompact, H�

W
.U IZW /DH�c .U/. In Theorems 3.5 and 4.5 we prove

formulas similar to the ones above for H�c .U/ and H�.U/. In both cases the formulas
involve terms of the form H�.X;X

U / or H�.X;X U / with U � S . The difference is
that in homology only the spherical subsets U 2 S appear, while in cohomology only
cospherical U appear (ie, S �U 2 S ). In the case of homology we recover the results
of Davis [4].
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When ˆ is a building with a chamber transitive automorphism group G , one can try
to calculate H�c .jˆj/ as a G –module. We make some comments about this in the last
section. We first point out that the results of the previous sections hold when the group
ring is replaced by the Hecke algebra Aq associated to .W;S/ and a multiparameter
q. When ˆ is a building associated to a BN pair and q its thickness, then Aq is
closely related to the algebra of finitely supported functions on ˆ and hence, to the
cochains on jˆj. We state the natural conjecture (Conjecture 7.5) for the computation
of H�c .jˆj/ as a G –module and prove the cochain version of it as Theorem 7.3.

The first and the third authors were partially supported by NSF grant DMS 0405825.
The second author was partially supported by KBN grant 2 PO3A 017 25.

2 Preliminaries

Invariants and coinvariants Given a left W –module M and a subset T � S , we
have the Z–submodule M T �M of the WT –invariants defined by

(2–1) M T
WDM WT WD fx 2M j wx D x for all w 2WT g:

More generally, for any Z–submodule B �M , put

BT
WD B \M T :

For a right W –module M , the WT –coinvariants are defined as a quotient Z–module
of M :

(2–2) MT WDMWT
WDM ˝WT

ZŠM=MIT ;

where IT is the augmentation ideal of ZWT and Z is the trivial WT –module. For any
Z–submodule B �M , BT denotes the image of B in MT .

Z.W =WT / denotes the (left) permutation module defined by the W –action on W =WT .

Lemma 2.1 There are isomorphisms:

(i) HomW .Z.W =WT /;M /ŠM T ,

(ii) M ˝W Z.W =WT /ŠMT ,

where M is a left W –module in the first case and a right W –module in the second.

Proof

(i) HomW .Z.W =WT /;M / can be identified with the set of W –equivariant func-
tions f W W =WT ! M . Because of equivariance, for any such f , f .1WT / 2
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M T . Conversely, given any x0 2 M T , the formula f .wWT / D wx0 , gives a
well-defined f W W =WT ! M . So, f ! f .1WT / defines an isomorphism from
HomW .Z.W =WT /;M / to M T .

(ii) We have

M ˝W Z.W =WT /DM ˝W ZW ˝WT
ZDM ˝WT

ZDMT :

Remark 2.2 If M is a bimodule, then the right W –action on M gives both
HomW .Z.W =WT /;M / and M T the structure of right W –modules and the isomor-
phism in (i) is an isomorphism of right W –modules. Similarly, (ii) is an isomorphism
of left W –modules.

The basic construction Suppose X is a CW complex. Let P.X / denote the set of
cells in X and X .i/ the set of i –cells. Given cells c 2X .i/ and c0 2X .i�1/ , let Œc W c0�
denote the incidence number. Write c0 < c whenever the incidence number Œc W c0� is
nonzero. Extend this to a partial order on P.X /.

A mirror structure on a CW complex X is a family of subcomplexes .Xs/s2S indexed
by some set S (which for us will always be the fundamental set of generators for the
Coxeter group W ). For each T � S , define subcomplexes of X :

XT WD

\
s2T

Xs and X T
WD

[
s2T

Xs

and set X∅ WDX . For each cell c in X , set

S.c/ WD fs 2 S j c �Xsg:

Similarly, for each x 2X , S.x/ WD fs 2 S j x 2Xsg.

From the above data we construct another CW complex U.W;X /, with a cellular
W –action, as follows. Give W the discrete topology. Define an equivalence relation
� on W �X by .w;x/� .w0;x0/() x D x0 and wWS.x/ D w

0WS.x0/ . U.W;X /

is the quotient space .W � X /= � . The W –action on it is the obvious one. X

is a fundamental domain for this action in the strict sense: the natural inclusion
X ,! U.W;X /, which takes x to the class of .1;x/, induces a homeomorphism
X ! U.W;Z/=W .

When X is the complex K , discussed in the Introduction, U.W;K/ is the contractible
complex †.

Coefficient systems A system of coefficients on a CW complex X is a functor F from
P.X / to the category of abelian groups. Here the poset P.X / is regarded as a category
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with HomP.X /.c; d/ equal to a singleton whenever c � d and empty otherwise. The
functor F will be contravariant whenever we are dealing with chains, homology or
coinvariants and covariant in the case of cochains, cohomology or invariants. Define
chains and cochains with coefficients in F by

Ci.X IF/ WD
M

c2X .i/

F.c/ and C i.X IF/ WD
Y

c2X .i/

F.c/:

We regard both i –chains and i –cochains as functions f from X .i/ to
S
F.c/ such

that f .c/ 2 F.c/ for each c 2X .i/ . Boundary and coboundary maps are then defined
by the usual formulas:

@.f /.c/ WD
X

Œd W c�Fdc.f .d//

ı.f /.c/ WD
X

Œc W d �Fdc.f .d//

where, given an i –cell c , the first sum is over all .i C 1/–cells d which are incident
to c and the second sum is over all .i � 1/–cells d which are incident to c and where
Fdc W f .d/! f .c/ is the homomorphism corresponding to d > c (in the first case) or
c > d (in the second).

Examples 2.3 Suppose fXsgs2S is a mirror structure on X .

(i) (Invariants) Given a left W –module M , define a (covariant) system of coefficients
I.M / on X by

I.M /.c/ WDM S.c/:

If B �M is any Z–submodule of M , then we have a sub-coefficient system I.B/�
I.M /, defined by I.B/.c/ WD BS.c/ .

(ii) (Coinvariants) For a right W –module M , define a (contravariant) system of
coefficients C.M / on X by

C.M /.c/ WDMS.c/:

Similarly, for any Z–submodule B of M , C.B/.c/ WD BS.c/ .

The following observation is the key to our results. Suppose M is a left W –module
and that we have a direct sum decomposition (of Z–modules), M DB˚C , satisfying
the following condition:

(2–3) M T
D BT

˚C T for all T � S .
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Then we have a direct sum decomposition of coefficient systems: I.M /DI.B/˚I.C /.
This leads to a decomposition of cochain groups: C i.X I I.M // D C i.X I I.B//˚
C i.X I I.C / and a decomposition in cohomology:

(2–4) H�.X I I.M //DH�.X I I.B//˚H�.X I I.C //

Similarly, suppose M is a right W –module and M D B˚C is a Z–module decom-
position satisfying:

MT D BT ˚CT for all T � S

Then we get a decomposition of coefficient systems: C.M / D C.B/˚ C.C / and a
corresponding decomposition of homology groups:

(2–5) H�.X I C.M //DH�.X I C.B//˚H�.X I C.C //:

Equivariant (co)homology Given a discrete group G acting cellularly on a CW
complex �, we will associate a certain equivariant homology and cohomology groups.
Given a left G –module M , the G –equivariant cochains on � with coefficients in M

are defined by
C i

G.�IM / WD HomG.Ci.�/;M /:

Similarly, if M is a right G –module, we have the G –equivariant chains

C G
i .�IM / WDM ˝W Ci.�/;

where Ci.�/ denotes the group of cellular i –chains on �. (Some people think
that “equivariant (co)homology” refers to the (co)homology of ��G EG with local
coefficients in M . However, there are other equivariant theories, for example, the one
described above.)

If the G–action is free and the projection to the orbit space is a covering projection,
then equivariant (co)chains on � are equal to the (co)chains on the orbit space with
local coefficients in M . This is a useful viewpoint even when the action is not free. In
general, M does not induce a locally constant coefficient system on the orbit space.
Rather, it induces a coefficient system on the orbit space thought of as an “orbihedron”
or “complex of groups.” The theory of such coefficient systems can be found in
Haefliger [9]. These general coefficient systems on orbihedra are more general then
the type considered above. (They correspond to “lax functors” rather than to functors.)
However, as we shall see in Lemma 2.6, when �D U.W;X /, the induced coefficient
system on X coincides with one of the coefficient systems described in Examples 2.3.

In the case of coefficients in the group ring, we have the following well-known inter-
pretation of equivariant (co)homology.
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Proposition 2.4 Suppose G acts cellularly on a CW complex �. Then

(i) C G
� .�IZG/Š C�.�/.

(ii) If the G-action is proper and there are only finitely many orbits of cells, then

C �G.�IZG/Š C �c .�/:

Proof

(i) C G
i .�IZG/D ZG˝ZG Ci.�/Š Ci.�/.

(ii) For any G –module M , HomG.M;ZG/Š Homc.M;Z/ (by Brown [2, Lemma
7.4, p age 208]) where Homc.M;Z/ denotes the set of Z–module maps f W M ! Z
such that for each m 2 M , f .gm/ D 0 for all but finitely many g 2 G . Hence,
C i

G
.�IZG/D HomG.Ci.�/;ZG/D Homc.Ci.�/;Z/D C i

c .�/.

Now let U D U.W;X /. W acts properly on U with compact quotient if and only if X

is compact and XU D∅ whenever U 62 S . In view of Proposition 2.4, when dealing
with the cohomology of U , we shall always assume that these conditions hold (ie, X is
compact and XU D∅ for all U 62 S ). However, in the formulas for the homology of
U , we need no extra assumptions on X . In the special case �D U , Proposition 2.4
becomes the following.

Corollary 2.5

(i) C W
� .U IZW /Š C�.U/.

(ii) C �
W
.U IZW /Š C �c .U/.

Lemma 2.6

(i) For any right W –module M , C W
� .U IM /Š C�.X I C.M //.

(ii) For any left W –module M , C �
W
.U IM /Š C �.X I I.M //.

Proof Any orbit of cells in U has the form W c for some unique cell c in X . As a
W –set, this orbit is isomorphic to W =WS.c/ . Hence, using Lemma 2.1, we get

C i
W .U IM /Š

M
c2X .i/

M S.c/
D C i.X I I.M //

C W
i .U IM /Š

M
c2X .i/

MS.c/ D Ci.X I C.M //:
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Remark The isomorphisms in Corollary 2.5 (ii) and Lemma 2.6 (ii) give

C i
c .U/Š C i

W .U IZW /Š C i.X I I.ZW //Š
M

c2X .i/

.ZW /S.c/:

The composition of these gives an isomorphism C i
c .U/!

L
c2X .i/.ZW /S.c/ , such

that its component corresponding to c 2X .i/ is given by

f !
X
w2W

f .w�1c/ew

where .ew/ is the standard basis for ZW . Similarly, the composition of the isomor-
phisms in Corollary 2.5 (i) and Lemma 2.6 (i) gives the obvious identification

Ci.U/Š
M

c2X .i/

.ZW /S.c/:

3 Group ring coefficients

Subsets of W For any U � S , put

XU WD fw 2W j l.sw/ > l.w/ for all s 2 U g

YU WD fw 2W j l.ws/ > l.w/ for all s 2 U g D .XU /
�1

XU (resp. YU ) is the set of elements in W which are .U;∅/–reduced (resp. .∅;U /–
reduced). XU (resp. YU ) is a set of representatives for WU nW (resp. W =WU ).

Given w 2W , set

In.w/ WD fs 2 S j l.ws/ < l.w/g;

In0.w/ WD fs 2 S j l.sw/ < l.w/g D In.w�1/:

In.w/ (resp. In0.w/) is the set of letters of S with which a reduced word for w can
end (resp. begin). By [3, Lemma 7.12], for any w 2W , In.w/ is a spherical subset.
We note that, for any T 2 S ,

wTXT D fw 2W j T � In0.w/g;

YS�T D fw 2W j T � In.w/g;

where wT 2 WT is the element of longest length. Thus, wTXT is also a set of
representatives for WT nW .

Algebraic & Geometric Topology, Volume 6 (2006)



1298 Davis, Dymara, Januszkiewicz and Okun

Symmetrization and alternation From now on, except in Section 6, A denotes the
group ring ZW . For each spherical subset T of S , define elements aT and hT in A

by

(3–1) aT WD

X
w2WT

ew and hT WD

X
w2WT

.�1/l.w/ew

called, respectively, symmetrization and alternation with respect to T . If T � U 2 S ,
define

c.U;T / WD
X

u2XT\WU

eu and d.U;T / WD
X

u2YT\WU

.�1/l.w/eu:

It is easily checked that

(3–2) aU D aT c.U;T / and hU D d.U;T /hT :

For any subset T of S , let AT denote the WT –invariants in A, defined as in (2–1).
Notice that AT is 0 if T 62 S and is equal to the right ideal aT A if T 2 S . Similarly,
for T 2 S , define H T to be the left ideal AhT and to be 0 otherwise. By (3–2),
AU � AT and H U �H T whenever T � U . Let AT denote the WT –coinvariants,
defined as in (2–2) and let IT denote the augmentation ideal of ZWT . For any s 2 S ,
note that AIfsg DH fsg . Hence, Afsg DA=H fsg . More generally, for any T � S ,

AIT D

X
s2T

H fsg so, AT DA=
X
s2T

H fsg:

Two bases for A For each w 2W , define elements b0w; bw 2A by

b0w WD aIn0.w/ew and bw WD ewhIn.w/:

Lemma 3.1 fb0w jw 2W g is a basis for A (as a Z–module). More generally, for any
T 2 S , fb0w j T � In0.w/g is a basis for AT .

Proof We first show fb0w j w 2 W g is a basis. The point is that the matrix which
expresses the b0w in terms of the ew has 1’s on the diagonal and is “upper triangular
with respect to word length.” In detail: first note that b0v is the sum of ev with various
ew having l.w/ < l.v/. Suppose

P
ˇwb0w D 0 is a nontrivial linear relation. Let

v 2W be an element with ˇv ¤ 0 and l.v/ maximum. Since the coefficient of ev in
the linear relation must be 0, we have ˇvD 0, a contradiction. Similarly, one shows, by
induction on word length, that each ev is a linear combination of b0w with l.w/� l.v/.
Hence, fb0wg spans A.
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To prove the second sentence, we must first show that b0w 2AT whenever T � In0.w/.
If this condition holds, then, by (3–2),

b0w D aIn0.w/ew D aT c.In0.w/;T /ew 2AT :

Note that T � In0.w/ if and only if w2wTXT . Since, by the previous paragraph, fb0w j
w 2wTXT g is linearly independent, it remains to show that it spans AT . Since wTXT

is a set of coset representatives for WT nW , a basis for AT is faT ew jw 2wTXT g. Let
ew WD c.In0.w/;T /ew . For w 2 wTXT , the matrix which expresses few j w 2 wTXT g

in terms of few j w 2 wTXT g has 1’s on the diagonal and is upper triangular with
respect to word length. So,

faT ew j w 2 wTXT g D fb
0
w j T � In0.w/g

is also a basis for AT .

Lemma 3.2 fbw j w 2W g is a basis for A. More generally, for any subset U of S ,
the projection A!AS�U maps fbw j U � In.w/g injectively to a basis for AS�U .

Proof The proof of the first sentence is omitted since it is similar to that of the first
sentence of the previous lemma.

Fix a subset U � S and let pW A! AS�U denote the projection. Since AS�U D

Z.W =WS�U /, fp.ew/ jw 2 YS�U g is the obvious basis for AS�U (as a Z–module).
Any element y 2A can be written in the form

(3–3) y D
X

w2YS�U

X
u2WS�U

˛wuewu:

Moreover, y 2AIS�U DKer.p/ if and only if
P

u2WS�U
˛wuD0 for each w2YS�U .

Let y be an element in the submodule spanned by fbw j U � In.w/g (D fbw j w 2
YS�U g), ie, let

y D
X

w2YS�U

ywbw:

Suppose p.y/ D 0. Let v 2 YS�U be such that yv ¤ 0 and l.v/ is maximum
with respect to this property. Since bv is the sum of ev and ˙1 times various ew
with l.w/ < l.v/, the coefficients ˛vu in (3–3) are 0 for all u ¤ 1 in WS�U . So,P
˛vu D 0 forces ˛vu D 0, a contradiction. Thus, fp.bw/ j w 2 YS�U g is linearly

independent in AS�U . The usual argument, using induction on word length, shows
that fp.bw/ j w 2 YS�U g spans AS�U .
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In view of Lemmas 3.1 and 3.2, for each T 2 S , we define Z–submodules of A:

bAT
WD Spanfb0w j In

0.w/D T g;bH T
WD Spanfbw j In.w/D T g:

A corollary to Lemma 3.1 is the following.

Corollary 3.3 For any U 2 S ,

AU
D

M
T2S�U

bAT
:

Consequently, given T 2 S , for any U � S we have:

(3–4) .bAT
/U D

(bAT
; if U � T ;

0; if U \ .S �T /¤∅.

It follows that the direct sum decomposition in Corollary 3.3 satisfies (2–3) and hence,
gives a decomposition of coefficient systems:

(3–5) I.A/D
M
T2S

I.bAT
/:

In terms of the bH T
, the version of this we are interested in is the following:

(3–6) . bH T
/U Š

( bH T
; if U � S �T ;

0; if U \T ¤∅.

In the above formula, by writing . bH T
/U Š bH T

, we mean that the projection A!AU

maps bH T
isomorphically onto . bH T

/U . To see that . bH T
/U D 0 when U \T ¤∅,

note that if s 2 T \U , then bH T
�H s �AIU .

The bH T
version of Corollary 3.3 is the following.

Corollary 3.4 For any U � S ,

AS�U D

M
T2S�U

. bH T
/S�U :
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So, the decomposition in Corollary 3.4 gives a decomposition of coefficient systems:

(3–7) C.A/D
M
T2S

C. bH T
/:

Hence, (2–4) and (2–5) apply to give the following calculation of (co)homology with
group ring coefficients.

Theorem 3.5 Let U D U.W;X /. Then

H i
c .U/Š

M
T2S

H i.X;X S�T /˝bAT
;

Hi.U/Š
M
T2S

Hi.X;X
T /˝ bH T

:

Proof To prove the first formula, note that by Proposition 2.4 and observation (2–4),

C i
c .U/D C i.X I I.A//D

M
T2S

C i.X I I.bAT
//:

Given a cell c 2X .i/ , by (3–4),

.bAT
/S.c/ D

(
0; if c �X S�T ;bAT

; otherwise.

Hence,

C i.X I I.bAT
//D ff W X .i/

! bAT
j f .c/D 0 if c �X S�T

g DC i.X;X S�T /˝ bAT
:

Combining these formulas and taking cohomology, we get the first formula.

To prove the second formula, note that by Proposition 2.4 and observation (2–5),

Ci.U/D Ci.X I C.A//D
M
T2S

Ci.X I C. bH T
//:

Given a cell c 2X .i/ , by (3–6),

. bH T
/S.c/ Š

(
0; if c �X T ;bH T

; otherwise.

Hence,
Ci.X I C. bH T

//D
M

c2X .i/

c 6�X T

bH T
Š Ci.X;X

T /˝ bH T
:
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Taking homology, we get the second formula.

Remark The first formula in Theorem 3.5 is one of the main results of [5]. (Actually,
only a special case is stated in [5]; however, the general result is stated in [7].) The
second formula is the main result of [4].

4 The W –module structure of H �
c .U/ and H�.U/

A is a W –bimodule. So, I.A/ is a system of right W –modules and H�.X I I.A//
(D H�c .U/) is a right W –module. Similarly, C.A/ is a system of left W –modules
and H�.X I C.A// (DH�.U/) is a left W –module.

For each nonnegative integer p , define

Fp WD

X
jT j�p

AT ; Ep WD

M
jT j<p

bAT
;(4–1)

F 0p WD
X
jT j�p

H T ; E0p WD
M
jT j<p

bH T
;(4–2)

where jT j WD Card.T /. As in Section 2, these give coefficient systemsI.Fp/ and
C.F 0p/ on X . Note that Fp is a right W –module and I.Fp/ is a coefficient system
of right W –submodules of I.A/. Similarly, C.F 0p/) is a system of left W –modules.
(However, Ep and E0p only have the structure of Z submodules of A.)

Lemma 4.1 We have decompositions (as Z–modules):

(i) AD Fp˚Ep and this induces a decomposition of coefficient systems, I.A/D
I.Fp/ ˚ I.Ep/.

(ii) AD F 0p˚E0p and this induces a decomposition of coefficient systems, C.A/D
C.F 0p/˚ C.E0p/.

Proof

(i) By the second formula in Corollary 3.3, Fp D
L
jT j�p

bAT
; hence, by the first

formula in the same corollary, AD Fp˚Ep . To get the decomposition of coefficient
systems, we must show that AU D .Fp/

U ˚ .Ep/
U for all U � S . Since AU DL

T�U
bAT

,

(4–3) AU
D

M
T�U
jT j�p

bAT
˚

M
T�U
jT j<p

bAT
:

Denote the first summation in (4–3) by B and the second one by C .
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Claim B D .Fp/
U .

Proof of Claim Obviously, B � .Fp/
U . Let x 2 .Fp/

U . Since x 2 Fp , we have

x D
X
jT j�p

˛T ;

where ˛T 2 bAT
. Since x 2AU ,

x D
X

T�U

ˇT ;

where ˇT 2 bAT
. But A D

L
T�S

bAT
, so the two decompositions of x coincide.

Therefore, ˛T D 0 unless T � U and

x D
X

T�U
jT j�p

˛T
2 B;

which proves that .Fp/
U � B .

Continuing with the proof of Lemma 4.1, note that a similar argument shows .Ep/
U D

C . Hence, AU D .Fp/
U ˚ .Ep/

U and (i) is proved.

(ii) As before, by Corollary 3.4, ADF 0p˚E0p . To get the decomposition of coefficient
systems, we must show that AS�U D .F

0
p/S�U ˚ .E

0
p/S�U for all U � S . Since

AS�U D
L

T�U .
bH T

/S�U ,

(4–4) AS�U D

M
T�U
jT j�p

. bH T
/S�U ˚

M
T�U
jT j<p

. bH T
/S�U :

Denote the first summation in (4–4) by B0 and the second one by C 0 . We claim that
.F 0p/S�U D B0 . Obviously, B0 � .F 0p/S�U . Any x 2 Fp can be written in the form

x D
X
jT j�p

T ;

where T 2 bH T
. Since T 2 IS�U whenever T \ .S �U /¤∅, if T 6� U , we can

set T D 0 without changing the congruence class of x modulo IS�U . So, putting

y D
X

T�U
jT j�p

T ;
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we have y � x mod IS�U and y 2 B0 . So, .F 0p/S�U � B0 . A similar argument
shows .E0p/S�U D C 0 . Hence, AS�U D .F

0
p/S�U ˚ .E

0
p/S�U and (ii) is proved.

Corollary 4.2

(i) Fp ,!A induces H i.X I I.Fp// ,!H i.X I I.A// a W –equivariant embedding
with image a Z–module direct summand.

(ii) F 0p ,!A induces Hi.X I C.F 0p// ,!Hi.X I C.A// a W –equivariant embedding
with image a Z–module direct summand.

It follows that FpC1 ,! Fp induces H�.X I I.FpC1// ,!H�.X I I.Fp//, an embed-
ding of right W –modules. This gives an associated graded group of right W –modules:

H�.X I I.Fp//=H
�.X I I.FpC1//:

Similarly, we have an embedding H�.X I C.F 0pC1
// ,! H�.X I C.F 0p// of left W –

modules and an associated graded group of left W –modules. Our goal in this section
is to prove Theorem 4.5 below, which gives a complete computation of these graded
W –modules.

For each T 2 S , put

A>T
WD

X
U�T

AU and H>T
WD

X
U�T

H U :

AT =A>T is a right W –module and H T =H>T is a left W –module.

Example 4.3 (The sign representation) A∅=A>∅ is isomorphic to Z as an abelian
group. We can take the image b1 of the basis element b1 (D e1 ) as the generator.
Since asb1 2A>∅ , b1 � as D 0 for all s 2 S . Hence, b1 � s D�b1 . It follows that W

acts on A∅=A>∅ via the sign representation:

b1 �w D .�1/l.w/b1:

Example 4.4 (The case of a finite Coxeter group) If W is finite, then for any T �S ,
AT =A>T ˝Q can be identified with a (right) W –submodule of the rational group
algebra QW . Similarly, H T =H>T ˝Q is a (left) W –submodule of QW . L Solomon
proved in [11] that we have direct sum decompositions:

QW D
M
T�S

AT =A>T
˝Q

QW D
M
T�S

H T =H>T
˝Q
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Of course, there is no such decomposition over Z. For an arbitrary Coxeter group
W , a similar result for L2

q.W / (the “q–weighted L2 –completion” of the regular
representation) is proved in [6, Theorem 9.11].

Theorem 4.5 For each nonnegative integer p ,

(i) there is an isomorphism of right W –modules:

H�.X I I.Fp//=H
�.X I I.FpC1//Š

M
jT jDp

H�.X;X S�T /˝ .AT =A>T /I

(ii) there is an isomorphism of left W –modules:

H�.X I C.F 0p//=H�.X I C.F 0pC1//Š
M
jT jDp

H�.X;X
T /˝ .H T =H>T /:

In view of Corollary 2.5 and Lemma 2.6, this theorem gives a computation of the
W –modules associated to the corresponding filtrations of H�c .U/ and H�.U/. To
prove the theorem we first need the following lemma.

Lemma 4.6 There are isomorphisms of W –modules:

 W Fp=FpC1
Š
�!

M
jT jDp

AT =A>T and  0W F 0p=F
0
pC1

Š
�!

M
jT jDp

H T =H>T :

Proof The inclusion AT ,! Fp induces a map AT ! Fp=FpC1 and A>T is in
the kernel; so, we get AT =A>T ! Fp=FpC1 . Therefore, we have a map of right
W –modules:

�W
M
jT jDp

AT =A>T
! Fp=FpC1:

By Corollary 3.3, the inclusion bAT
,!AT induces an isomorphism (of Z–modules),bAT

! AT =A>T . Also, Fp D
L
jT jDp

bAT
˚ FpC1 . So, we have a commutative

diagram (of maps of Z–modules):L
jT jDp AT =A>T

�
�! Fp=FpC1

- %

L
jT jDp

bAT

Since the two slanted arrows are bijections, so is � . Therefore, � is an isomorphism
of right W –modules. Put  WD ��1 .

The definition of the second isomorphism  0 is similar.
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Here is some more notation. For any T � S , put

QhT i DAT =A>T ; Q0
hT i DH T =H>T :

Since the right W –module QhT i is neither a left W –module or even a Z–submodule
of a left W –module, the definition of its (left) WU –invariants as in (2–1) cannot be
applied directly. Similarly, the definition of (right) coinvariants from (2–2) does not
apply directly to Q0

hT i
. Nevertheless, for each U � S , define:

.QhT i/
U
WD .AT

\AU /=.A>T
\AU /

.Q0
hT i/U WD .H

T /U =.H
>T /U

These give coefficient systems of W –modules on X defined by

I.QhT i/.c/ WD .QhT i/S.c/

C.Q0
hT i/.c/ WD .Q

0
hT i/S.c/

respectively. As in (3–4) and (3–6),

.QhT i/
U
D

(
AT =A>T ; if U � T ;

0; otherwise
(4–5)

.Q0
hT i/U D

(
H T =H>T ; if U � S �T ;

0; otherwise:
(4–6)

Lemma 4.7

(i) H i.X I I.QhT i//DH i.X;X S�T /˝QhT i

(ii) Hi.X I C.Q0hT i//DH i.X;X T /˝Q0
hT i

Proof

(i) Using (4–5), we have

C i.X I I.QhT i//D ff W X .i/
!QhT i j f .c/D 0 if c �X S�T

g

D C i.X;X S�T
IQhT i/

Š C i.X;X S�T /˝QhT i:
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(ii) Using (4–6),

Ci.X I C.Q0hT i//D
M

c2X .i/

.Q0
hT i/S.c/

D

(
Q0
hT i
; if c 6�X T ;

0; if c �X T ;

D Ci.X;X
T /˝Q0

hT i:

Lemma 4.8 For any U � S ,

(i) the following sequence of right W –modules is exact,

0�!.FpC1/
U
�!.Fp/

U
z 
�!

M
jT jDp

.QhT i/
U
�! 0;

where z is the map induced by  and

(ii) the following sequence of left W –modules is exact,

0�!.F 0pC1/S�U�!.F
0
p/S�U

z 0

�!

M
jT jDp

.Q0
hT i/S�U�! 0;

where z 0 is the map induced by  0 .

Proof In the proof of Lemma 4.1, in formula (4–3), we showed

.Fp/
U
D

M
jT j�p
T�U

bAT
:

Put
B WD

M
jT jDp
T�U

bAT
;

B is a Z–submodule of .Fp/
U and it maps isomorphically onto .Fp/

U =.FpC1/
U .

The image of B under  isM
jT jDp
T�U

AT =A>T
D

M
jT jDp
T�U

QhT i:

This proves (i).

The proof that the sequence in (ii) is short exact is similar.

Algebraic & Geometric Topology, Volume 6 (2006)



1308 Davis, Dymara, Januszkiewicz and Okun

Proof of Theorem 4.5

(i) By Lemma 4.8 (i), we have a short exact sequence of coefficient systems on X :

0�!I.FpC1/�!I.Fp/�!
M
jT jDp

I.QhT i/�! 0

inducing a short exact sequence of cochain complexes:

0�!C �.X I I.FpC1//�!C �.X I I.Fp//�!
M
jT jDp

C �.X I I.QhT i//�! 0:

By the argument for Corollary 4.2, H�.X I I.FpC1//!H�.X I I.Fp// is an injection
onto a (Z–module) direct summand. Hence, the long exact sequence in cohomology
decomposes into short exact sequences and we have:

H i.X I I.Fp//=H
i.X I I.FpC1//Š

M
jT jDp

H i.X I I.QhT i//

Š

M
jT jDp

H i.X;X S�T /˝ .AT =A>T /

where the second isomorphism comes from Lemma 4.7 (i).

(ii) The proof of (ii) is similar.

Remark 4.9 The decreasing filtration � Fp � FpC1 � � � of (4–1) gives a decreasing
filtration of cochain complexes

� � � � C �.X I I.Fp//� C �.X I I.FpC1// � � �

So, the quotient cochain complexes have the form C �.X I I.Fp/=I.FpC1//. Taking
homology, we get a spectral sequence with E1 –term:

E
pq
1
WDH pCq.X I I.Fp/=I.FpC1//

It converges to:

(4–7) E
pq
1 WD

H pCq.X I I.Fp//

Im.H pCq.X I I.FpC1///

So, the import of Theorem 4.5 is that E
pq
1
DE

pq
1 .
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5 H �.W IZW /

Let K denote the geometric realization of the poset S of spherical subsets. (The
simplicial complex K is contractible because it is a cone; the cone point corresponds
to the minimum element ∅ 2 S .) For each s 2 S , define a subcomplex Ks �K as
the geometric realization of S�fsg . Put † WD U.W;K/. (Alternatively, † could be
described as the geometric realization of the poset W S of all “spherical cosets,” ie,
the poset of all cosets of the form wWT , with w 2W and T 2 S .)

By construction W acts properly on †. It is proved in [3] that † is contractible.
Hence,

H�.W IZW /DH�c .†/:

As before, A WD ZW . The filtration A D F0 � � � �Fp � � � � gives H�c .†/ D

H�.KI I.A// the structure of a graded W –module. As in (4–7), let E
pq
1 is the

right W –module in filtration degree p associated to H pCq.KI I.A//. Theorem 4.5
then has the following corollary.

Theorem 5.1 The associated graded group of H pCq.W IZW / is given, as a right
W –module, by

E
pq
1 D

M
jT jDp

H pCq.K;KS�T /˝ .AT =A>T /:

It follows from Theorem 3.5 that we have a direct sum decomposition of Z–modules:

H�c .†/Š
M
T2S

H�.K;KS�T /˝ bAT
:

In view of Theorem 5.1, it is natural to conjecture that H�c .†/ decomposes as above into
a direct sum of right W –modules. However, in general, there is no such decomposition,
as we can see by considering the following example.

Example 5.2 Suppose W is the free product of 3 copies of Z=2. Then K is the cone
on 3 points. So, it has 3 edges. By Theorem 4.5, H 1.K;KS /˝A=A>∅ is a quotient
of H 1

c .†/. Let x 2 C 1.K/ be a cochain (D cocycle) which evaluates to 1 on one
of the edges, call it c , and to 0 on the other two edges. Choose s 2 S which is not a
vertex of c . Let y denote the image of x˝ 1 in H 1.K;KS /˝A=A>∅ . By Example
4.3, A=A>∅ has rank 1 as an abelian group and the W –action on it is given by the
sign representation. Hence, y � s D�y in H 1.K;KS /˝A=A>∅ . Suppose we had a
W –equivariant splitting 'W H 1.K;KS /˝A=A>∅!H 1

c .†/. When regarded as an
element of C 1

c .†/, xCx � s represents '.yCy � s/ in H 1
c .†/, ie, it represents 0. But
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q q q q q
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Figure 1: Cocycles x and x � s

x and �x � s are not cohomologous cocycles in C 1
c .†/. (One can see this by noting

that there is a line (D infinite 1–cycle) on which x evaluates to 1 and x � s to 0 ; see
Figure 1.) Hence, there can be no such splitting ' .

6 Buildings

A chamber system over S is a set ˆ of chambers together with a family of equivalence
relations on ˆ indexed by S . Two chambers are s–equivalent if they are equivalent
via the equivalence relation with index s ; they are s–adjacent if they are s–equivalent
and not equal. A gallery in ˆ is a finite sequence of chambers .'0; : : : ; 'k/ such that
'j�1 is adjacent to 'j ; 1� j � k . The type of this gallery is the word sD .s1; : : : ; sk/

where 'j�1 is sj –adjacent to 'j . If each sj belongs to a given subset T of S , then
the gallery is a T –gallery. A chamber system is connected (resp. T –connected) if
any two chambers can be joined by a gallery (resp. a T –gallery). The T –connected
components of a chamber system ˆ are its residues of type T . Given ' 2ˆ, Res.';T /
denotes the residue of type T containing ' .

Suppose .W;S/ is a Coxeter system and M D .mst / its Coxeter matrix. A building
of type .W;S/ (or of type M ) is a chamber system ˆ over S such that

(i) for all s 2 S , each s–equivalence class contains at least two chambers, and

(ii) there exists a W –valued distance function ıW ˆ�ˆ!W . (This means that
given a reduced word s for an element w 2 W , chambers ' and '0 can be
joined by a gallery of type s if and only if ı.'; '0/D w .

A residue of type T in a building is itself a building; its type is .WT ;T /. A building
of type .W;S/ is spherical if W is finite. A building has finite thickness if all s–
equivalence classes are finite, for all s 2 S . (This implies all spherical residues are
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finite.) A building is thick if all s–equivalence classes have at least 3 elements, for all
s 2 S .

Fix a base chamber '0 2ˆ. The folding map, � W ˆ!W , centered at '0 is defined
by �.'/ WD ı.'0; '/.

A Coxeter matrix M is right-angled if all its off-diagonal entries are 2 or 1. A
building is right-angled if its Coxeter matrix is.

Example 6.1 (Right-angled spherical buildings) If .W;S/ is right-angled and spher-
ical, then it has the form W DWs1

�� � ��Wsn
, with SDfs1; : : : sng (ie, W Š .Z=2/S ).

A building of type .Wsi
; fsig/ is simply a set ˆi with at least 2 elements (it is thick if

it has at least 3 elements). It follows that any right-angled spherical building ˆ has
the form ˆDˆ1 � � � � �ˆn . Fix a base chamber '0 D .x1; : : : ;xn/ 2ˆ, giving us a
folding map � W ˆ!W . Let Lˆ be the set of ' 2ˆ such that �.'/ is the longest
element in W . Clearly, Lˆ D .ˆ1�x1/� � � � � .ˆn�xn/. So, when ˆ is thick, Lˆ
is also a right-angled spherical building.

In what follows ˆ is a building of finite thickness and type .W;S/. � W ˆ!W is a
folding map. For the remainder of this section, A denotes the abelian group of finitely
supported (Z–valued) functions on ˆ and for any subset T of S , AT �A denotes
the subgroup of functions which are constant on T –residues. For each w 2W , put
Out.w/ WD S � In.w/, where In.w/ was defined in Section 3.

Lemma 6.2 Suppose that .ˆ; �/ is a spherical building equipped with a folding map.
For ' 2ˆ, let g' be the characteristic function of Res.';Out.�.'///. For any T � S ,
put BT D fg' j Out.�.'//� T g. Then BT is a basis of AT .

Proof First we check that fg'g'2ˆ is linearly independent. Suppose we have a linear
relation

P
'2ˆ ˛'g' D 0. Choose  with shortest �. / such that ˛ ¤ 0. Then

0D .
P
'2ˆ ˛'g'/. /D ˛ , contradiction.

Put C T WD f' 2 ˆ j ' is the shortest element of Res.';T /g. Then C T is a set of
representatives for the set of T –residues of ˆ. Notice that T � Out.�.'// if and
only if ' 2 C T . Therefore, Card.BT /D Card.C T /D rank.AT /. Let eR denote the
characteristic function of a residue R in ˆ. Put R' WD Res.';T /. The standard basis
for AT is feR'

g'2C T . Suppose T �Out.�.'//. Then g' D
P

eR where R ranges
over the T –residues in Res.';Out.�.'///. In other words, the matrix which expresses
fg'g'2C T in terms of the eR'

has 1’s on the diagonal and is upper triangular when
C T is ordered with respect to l.�.'//. Hence, BT is also a basis for AT
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Now suppose ˆ is right-angled, thick and infinite. Let R be a spherical residue in
ˆ, and U � S its type. Let LR denote the set of chambers ' 2 R which have the
longest possible �.'/. By Example 6.1, LR is a right-angled spherical building of
type .WU ;U /. For each spherical residue R, fix a folding map �LR

W LR ! WU .
Note that �LR

is totally different from (the restriction of) � .

Definition 6.3 Let ' 2ˆ, U D In.�.'// and RDR' WD Res.';U /. Then ' 2LR .
Define f' to be the characteristic function of Resˆ.';Out.�LR

.'///, where Out. /
is computed in WU .

We claim that the restriction of f' to LR is the function g' obtained by applying
Lemma 6.2 to .LR; �LR

/. To see this, it is enough to check the following fact: for any
T �U , the intersection of a T –residue in ˆ with LR is either empty or is a T –residue
in LR . Let  2LR and let pW R!WU be the  –based folding map. Then p maps
ResR. ;T / and ResLR

. ;T / onto WT , while any other T –residue in LR is mapped
onto a nontrivial coset of WT in WU . It follows that ResR. ;T /\LRDResLR

. ;T /.

Observe that if g' is constant on T –residues in LR , then T � Out.�LR
.'// and

hence, f' is constant on T –residues in ˆ. Also, the support of f' is contained in
R' .

Not every spherical residue is of the form R' . Call a spherical residue R greedy, if for
some (hence, every) ' 2LR , we have RD Res.'; In.�.'///. For a greedy residue R

of type U and a subset T � U , put BR;T D ff' j ' 2LR; Out.�LR
.'//� T g (for

convenience, put BR;T D ∅ if T 6� U ). Then ff jLR
j f 2 BR;T g coincides with

the basis BT associated to .LR; �LR
/ in Lemma 6.2. Therefore, BR;T is linearly

independent. In particular, the set BR;∅ D ff' j ' 2LRg is linearly independent.

For any spherical T � S we put BT D
S

BR;T , where the union is over all greedy
residues. Also put B D B∅ D ff' j ' 2ˆg. The next result is the analog of Lemma
3.1.

Theorem 6.4 For each T 2 S , BT is a basis of AT .

Proof First we check that B is linearly independent. Let
P
'2ˆ ˛'f' D 0. Suppose

 2ˆ is an element with ˛ ¤ 0 and maximum l.�. //. Let RDRes. ; In.�. ///.
Then

P
'2ˆ ˛'f' jLR

D
P
'2LR

˛'f' jLR
. Since the set ff' j ' 2LRg is a linearly

independent, we have ˛' D 0 for ' 2LR . In particular ˛ D 0, contradiction.

Suppose now that f 2AT is not a linear combination of elements of BT . Choose such
an f with minimum M WDmaxfl.�.'// jf .'/¤0g. Let  2ˆ be such that f . /¤0
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and `.�. // DM . Let R D Res. ; In.�. ///. Clearly, U D In.�. // � T . Let
.Ri/iD0;:::;N be the collection of U –residues in ˆ that are U –connected components
of ��1.�.R// (where R0 DR). These residues are pairwise disjoint. We also note
that they are greedy. Indeed, (1) R0 is greedy by its definition, (2) the notion of
greediness for a residue depends only on its image under � and (3) �.Ri/D �.R0/.
The restrictions to LRi

of functions from BRi ;T form a basis of the space of functions
on LRi

constant on T –residues – in fact, this is exactly the basis produced by applying
Lemma 6.2 to LRi

. Since the restriction of f to LRi
is constant on T –residues,

there exists fRi
2 Span.BRi ;T / whose restriction to LRi

coincides with that of f .
Let ef D f �

PN
iD0 fRi

. Then ef is in AT , is not in Span.BT / and has value
0 on ��1.�. //. Observe also that if ' 62 ��1.�. // and `.�.'// D M , thenef .'/ D f .'/. Therefore, we can repeat our procedure for all such ' , and finally
obtain a counterexample to AT D Span.BT / with smaller M , a contradiction.

Put bB T
WDBT �

S
U�T BU and bAT

WD Span.bB T
/. Just as in Section 3, Theorem

6.4 has the following corollary.

Corollary 6.5 (Compare Corollary 3.3)

AU
D

M
T�U

bAT
:

As in Examples 2.3, given a mirror structure .Xs/s2S on a CW complex X , we get a
covariant coefficient system I.A/ on X defined by I.A/.c/ WD AS.c/ . As in (3–5),
Corollary 6.5 means that we have a decomposition of coefficient systems:

(6–1) I.A/D
M
T2S

I. bAT
/;

where I. bAT
/.c/ WD bAT

\AS.c/ .

The geometric realization of a building Given a CW complex X with mirror struc-
ture, define an equivalence relation � on ˆ�X by .';x/ � .'0;x0/ if and only if
x D x0 and ı.'; '0/ 2WS.x/ . The X –realization of ˆ, denoted U.ˆ;X /, is defined
by

(6–2) U.ˆ;X / WD .ˆ�X /=� :

(ˆ has the discrete topology.) When X DK (the geometric realization of S ), U.ˆ;K/
is denoted by jˆj and called the geometric realization of ˆ.
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As in Corollary 2.5 and Lemma 2.6, identify C �.U.ˆ;X // with C �.X I I.A//. Using
(6–1), the proof of Theorem 3.5 goes through to give the following.

Theorem 6.6 Suppose ˆ is a right-angled, thick, infinite building. Then

H i
c .U.ˆ;X //Š

M
T2S

H i.X;X S�T /˝ bAT
:

In particular,

H i
c .jˆj/Š

M
T2S

Hi.K;K
S�T /˝ bAT

:

Remark A similar result for any building of finite thickness is claimed in [7, Theorem
5.8]; however, there is a mistake in the proof.

7 Hecke algebra coefficients

In this section we work over the rational numbers Q rather than Z.

Let i W S ! I be a function to some index set I such that i.s/D i.s0/ whenever s

and s0 are conjugate in W . Let qD .qi/i2I be a fixed I –tuple of rational numbers.
Write qs instead of qi.s/ . If s1 � � � sl is a reduced expression for an element w 2W ,
then the number qs1

� � � qsl
is independent of the choice of reduced expression. We

write it as qw . The Hecke algebra Aq of W is a deformation of the group algebra
QW which is equal to QW when each qs D 1. As a rational vector space, it has the
same basis fewgw2W as does QW . Multiplication is determined by the rules:

ewew0 D eww0 ; if l.ww0/D l.w/C l.w0/

e2
s D .qs � 1/esC qs:

Given a special subgroup WT , Aq.WT / denotes the Hecke algebra of WT . It is a subal-
gebra of Aq . There are ring homomorphisms ˛W Aq.WT /!Q and ˇW Aq.WT /!Q,
defined by ˛.ew/ WD qw and ˇ.ew/ WD .�1/l.w/ , respectively. Given a left Aq –module
M and a subset T of S , put

M T
WD fx 2M j ax D ˛.a/x for all a 2Aq.WT /g:

This gives a coefficient system I.M / on X in the same way as Examples 2.3.

As in [6], for each T 2 S , we modify the formulas in (3–1) to define elements aT and
hT in Aq by

aT WD
1

WT .q/

X
w2WT

ew and hT WD
1

WT .q�1/

X
w2WT

.�1/l.w/q�1
w ew
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where
WT .q/ WD

X
w2WT

qw; and WT .q�1/ WD
X
w2WT

q�1
w :

Put AT
q WD aT Aq , H T

q WDAqhT . (If T 62 S , AT
q WD 0, H T

q WD 0.)

For each subset U of S , put

.Aq/U WDAq˝Aq.WU / QDAq=AqIU ;

where Aq.WU / acts on Q via the symmetric character ˛U and IU WD
P

s2U H s
q is

the augmentation ideal of Aq.WU /. AU
q is a right Aq –module and .Aq/U is a left

Aq –module.

We have decreasing filtrations .Fp/ and .F 0p/ of Aq , defined exactly as in (4–1) and
(4–2).

If X and U are as before, then the proof of Theorem 4.5 gives the following.

Theorem 7.1 With notation as above, for each nonnegative integer p ,

(i) there is an isomorphism of right Aq –modules:

H�.X I I.Fp//=H
�.X I I.FpC1//Š

M
jT jDp

H�.X;X S�T /˝ .AT
q =A

>T
q /I

(ii) there is an isomorphism of left Aq –modules:

H�.X I C.F 0p//=H�.X I C.F 0pC1//Š
M
jT jDp

H�.X;X
T /˝ .H T

q =H
>T
q /:

BN pairs The importance of Hecke algebras lies in their relationship to buildings
and BN pairs (eg, see Bourbaki [1, Exercises 22 and 24, pages 56–58]). Suppose that
.G;B/ is a BN pair. Associated to .G;B/ we have a Coxeter system .W;S/ and for
each s 2 S , a subgroup Gs of G such that Gs DB [BsB . Put ˆ WDG=B . For each
subset T of S , put GT WDBWT B . Two cosets gB and g0B are s–equivalent if they
have the same image in G=Gs . This gives ˆ the structure of a building. ˆ has finite
thickness if .Gs W B/ <1 for all s 2 S . If this is the case, put qs D .Gs W B/� 1 and
regard qD .qs/ as an I –tuple, where I is the set of conjugacy classes of elements in
S .

Let F.G=B/ denote the Q vector space of finitely supported, Q–valued functions on
G=B . The left G–action on G=B gives F.G=B/ the structure of a right G–module.
For any T � S , we have a projection pT W G=B!G=GT . By pulling back via pT ,
we can identify F.G=GT / with a G –submodule of F.G=B/.
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Regard F.G=B/ as a subset of all Q–valued functions on G . The Hecke algebra can
be identified with the subspace of F.G=B/ consisting of those functions which are
invariant under the B –action on F.G=B/ (induced from the left B –action on G=B ).
Under this identification, the basis element ew 2Aq is identified with the characteristic
function of the double coset, C.w�1/ WD Bw�1B and the idempotent aT with the
characteristic function of GT (D BWT B ).

Given f 2 F.G=B/ and a 2Aq their convolution is defined by

.a�f /.h/ WD

Z
G

a.g�1h/f .g/dg:

Here we are integrating with respect to Haar measure dg normalized so that the measure
of B is 1. So, Aq acts from the left on F.G=B/ by convolution, (In fact, Aq is the
intertwining algebra (D the commutant) of G on F.G=B/.)

Lemma 7.2 For any T 2 S ,

AT
q ˝Aq F.G=B/D F.G=GT /:

Proof Let
P

i aT ˛i˝fi be a typical element of the left-hand side. It can be rewritten
as 1˝

P
aT �˛i � fi . The universal map to F.G=B/ consists of taking the second

factor. Since aT is the characteristic function of GT , aT �˛i � fi lies in F.G=GT /;
so, the image of this map is the right-hand side.

Theorem 7.3
C i

c .jˆjIQ/D C i.KI I.Aq//˝Aq F.G=B/

Proof This is a direct consequence of Lemma 7.2, since

C i
c .jˆjIQ/D

M
c2K .i/

F.G=GS.c//:

The natural conjecture is the following.

Conjecture 7.4
H i

c .jˆj/DH i.KI I.Aq//˝Aq F.G=B/:

The filtration .Fp/ induces a filtration of H�.KI I.Aq// and hence, of H�c .jˆj/. So,
Lemma 7.2 leads us to the following.
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Conjecture 7.5 In filtration degree p , the associated graded group of H�c .jˆj/ is
given, as a right G –module, byM

jT jDp

H�.K;KS�T /˝FT =F>T ;

where FT WD F.G=GT / and F>T denotes the submodule spanned by the FU with
U © T .
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