
Algebraic & Geometric Topology 6 (2006) 1413–1428 1413

Totally geodesic surfaces and homology

JASON DEBLOIS

We construct examples of hyperbolic rational homology spheres and hyperbolic
knot complements in rational homology spheres containing closed embedded totally
geodesic surfaces.

57M50; 57M27, 57M12

1 Introduction

Let M D H3=� , � � PSL2.C/ be an orientable hyperbolic 3–manifold, and let
f W F ! M be a proper immersion of a connected, orientable surface of genus at
least 2 such that f�W �1.F /! � is injective. F (or more precisely .f;F /) is said
to be totally geodesic if f�.�1.F // � � is conjugate into PSL2.R/. Thurston and
Bonahon have described the geometry of surface groups in hyperbolic 3–manifolds
as falling into three classes: doubly degenerate groups, quasi-Fuchsian groups and
groups with accidental parabolics. The class of totally geodesic surface groups is a
“positive codimension” subclass of the quasi-Fuchsian groups, so one may expect that
hyperbolic 3–manifolds containing totally geodesic surface groups are special.

Indeed, the presence of a totally geodesic surface in a hyperbolic 3–manifold has
important topological implications. Long showed that immersed totally geodesic
surfaces lift to embedded nonseparating surfaces in finite covers [7], proving the
virtual Haken and virtually positive ˇ1 conjectures for hyperbolic manifolds containing
totally geodesic surfaces. Given this, it is natural to wonder about the extent to which
topology constrains the existence of totally geodesic surfaces in hyperbolic 3–manifolds.
Menasco–Reid have made the following conjecture [11]:

Conjecture (Menasco–Reid) No hyperbolic knot complement in S3 contains a
closed embedded totally geodesic surface.

They proved this conjecture for alternating knots. The Menasco–Reid conjecture has
been shown true for many other classes of knots, including almost alternating knots
[2], Montesinos knots [13], toroidally alternating knots [1], 3–bridge and double torus
knots [5] and knots of braid index 3 [8] and 4 [9]. For a knot in one of the above
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families, any closed essential surface in its complement has a topological feature which
obstructs it from being even quasi-Fuchsian. In general, however, one cannot hope
to find such obstructions. Adams–Reid have given examples of closed embedded
quasi-Fuchsian surfaces in knot complements which volume calculations prove to be
not totally geodesic [3].

On the other hand, C Leininger has given evidence for a counterexample by constructing
a sequence of hyperbolic knot complements in S3 containing closed embedded surfaces
whose principal curvatures approach 0 [6]. In this paper, we take an alternate approach
to giving evidence for a counterexample.

Theorem 1 There exist infinitely many hyperbolic knot complements in rational
homology spheres containing closed embedded totally geodesic surfaces.

This answers a question of Reid—recorded as Question 6.2 in [6]—giving counterexam-
ples to the natural generalization of the Menasco–Reid conjecture to knot complements
in rational homology spheres. Thus the conjecture, if true, must reflect a deeper
topological feature of knot complements in S3 than simply their rational homology.

Prior to proving Theorem 1, in Section 2 we prove the following theorem.

Theorem 2 There exist infinitely many hyperbolic rational homology spheres contain-
ing closed embedded totally geodesic surfaces.

This seems of interest in its own right, and the proof introduces many of the techniques
we use in the proof of Theorem 1. Briefly, we find a two-cusped hyperbolic manifold
containing an embedded totally geodesic surface which remains totally geodesic under
certain orbifold surgeries on its boundary slopes and use the Alexander polynomial to
show that branched covers of these surgeries have no rational homology. In Section 3
we prove Theorem 1. In the final section, we give some idea of further directions and
questions suggested by our approach.

Acknowledgements The author thanks Cameron Gordon, Richard Kent, Chris Lein-
inger, Jessica Purcell and Alan Reid for helpful conversations. The author also thanks
the Centre Interfacultaire Bernoulli at EPF Lausanne for their hospitality during part of
this work.

2 Theorem 2

Given a compact hyperbolic manifold M with totally geodesic boundary of genus g ,
gluing it to its mirror image SM along the boundary yields a closed manifold DM —the
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“double” of M —in which the former @M becomes an embedded totally geodesic
surface. One limitation of this construction is that this surface contributes half of its
first homology to the first homology of DM , so that ˇ1.DM /�g . This is well known,
but we include an argument to motivate our approach. Consider the relevant portion of
the rational homology Mayer–Vietoris sequence for DM :

� � � ! H1.@M;Q/
.i�;�j�/
�! H1.M;Q/˚H1. SM ;Q/! H1.DM;Q/! 0

The labeled maps i� and j� are the maps induced by inclusion of the surface into M

and SM , respectively. Recall that by the “half lives, half dies” lemma (see eg Hatcher
[4, Lemma 3.5]), the dimension of the kernel of i� is equal to g . Hence ˇ1.M /� g .
The gluing isometry @M ! @ SM (the identity) extends over M , thus Ker i�DKer j� ,
and so dim Im.i�;�j�/D g . Hence

H1.DM;Q/Š
H1.M;Q/˚H1. SM ;Q/

Im..i�;�j�//

has dimension at least g .

Considering the above picture gives hope that by cutting DM along @M and regluing
via some isometry �W @M ! @M to produce a “twisted double” D�M , one may
reduce the homological contribution of @M . For then j D i ı� , and if �� moves the
kernel of the inclusion off of itself, then the argument above shows that the homology of
D�M will be reduced. Below we apply this idea to a family of examples constructed
by Zimmerman and Paoluzzi [14] which build on the “Tripos” example of Thurston
[18].

a b c d

LL0T

Figure 1: The tangle T and its double and twisted double.

The complement in the ball of the tangle T in Figure 1 is one of the minimal volume
hyperbolic manifolds with totally geodesic boundary, obtained as an identification
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space of a regular ideal octahedron [12]. We will denote it by O1 . For n � 3, the
orbifold On with totally geodesic boundary consisting of the ball with cone locus T

of cone angle 2�=n has been explicitly described by Zimmerman and Paoluzzi [14]
as an identification space of a truncated tetrahedron. For each k < n with .k; n/D 1,
Zimmerman and Paoluzzi describe a hyperbolic manifold Mn;k which is an n–fold
branched cover of On . Topologically, Mn;k is the n–fold branched cover of the ball,
branched over T , obtained as the kernel of hx;yi D Z˚Z! Z=nZD hti via x 7! t ,
y 7! tk , where x and y are homology classes representing meridians of the two
components of T .

We recall a well-known fact about isometries of spheres with four cone points:

Fact Let S be a hyperbolic sphere with four cone points of equal cone angle ˛ ,
0 � ˛ � 2�=3, labeled a, b , c , d . Each of the following permutations of the cone
points may be realized by an orientation-preserving isometry:

.ab/.cd/ .ac/.bd/ .ad/.bc/

Using this fact and abusing notation, let � be the isometry .ab/.cd/ of @On , with
labels as in Figure 1. Doubling the tangle ball produces the link L0 in Figure 1, and
cutting along the separating 4–punctured sphere and regluing via � produces the link
L, a mutant of L0 in the classical terminology. Note that L and all of the orbifolds
D�On contain the mutation sphere as a totally geodesic surface, by the fact above. �
lifts to an isometry z� of @Mn;k , and the twisted double Dz�Mn;k is the corresponding
branched cover over L.

The homology of Dz�Mn;k can be described using the Alexander polynomial of L.
The two variable Alexander polynomial of L is

�L.x;y/D
1

x3
.x� 1/.xy � 1/.y � 1/2.x�y/:

For the regular Z–covering of S3 � L given by x 7! tk , y 7! t , the Alexander
polynomial is

�k
L.t/D .t � 1/�.tk ; t/D

1

t3k�1
.t � 1/5�k�1.t/�k.t/�kC1.t/

where �k.t/D tk�1C tk�2C� � �C tC1. By a theorem originally due to Sumners [17]
in the case of links, the first Betti number of Dz�Mn;k is the number of roots shared by
�k

L
.t/ and �n.t/. Since this number is 0 for many n and k , we have a more precise

version of Theorem 2.
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Theorem For n> 3 prime and k ¤ 0; 1; n�1, the manifold Dz�Mn;k is a hyperbolic
rational homology sphere containing an embedded totally geodesic surface.

The techniques used above are obviously more generally applicable. Given any hy-
perbolic two-string tangle in a ball with totally geodesic boundary, one may double
it to get a 2–component hyperbolic link in S3 and then mutate along the separating
4–punctured sphere by an isometry. By the hyperbolic Dehn surgery theorem and
the fact above, for large enough n, .n; 0/ orbifold surgery on each component will
yield a hyperbolic orbifold with a separating totally geodesic orbisurface. Then n–fold
manifold branched covers can be constructed as above. One general observation about
such covers follows from the following well-known fact, originally due to Conway:

Fact The one variable Alexander polynomial of a link is not altered by mutation; ie,

�L0
.t; t/D�L.t; t/

when L is obtained from L0 by mutation along a 4–punctured sphere.

In our situation, this implies the following:

Corollary A 2–component link in S3 which is the twisted double of a tangle has no
integral homology spheres among its abelian branched covers.

Proof A link L0 which is the double of a tangle has Alexander polynomial 0. There-
fore by the fact above,

�1
L.t/D .t � 1/�L.t; t/D .t � 1/�L0

.t; t/D 0;

and so Dz�Mn;1 has positive first Betti number by Sumners’ theorem. The canonical
abelian n2 –fold branched cover of L covers Dz�Mn;1 and so also has positive first Betti
number. Since the other n–fold branched covers of L have n–torsion, no branched
covers of L have trivial first homology.

3 Theorem 1

In this section we construct hyperbolic knot complements in rational homology spheres
containing closed embedded totally geodesic surfaces. The following “commutative
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diagram” introduces the objects involved in the construction and the relationships
between them.

Nn
Dehn

filling
//

��

Mn
Dehn

filling
//

��

Sn

N
orbifold

filling
// On

Theorem 1 may now be more precisely stated as follows.

Theorem For each n� 3 odd, On is a one-cusped hyperbolic orbifold containing a
totally geodesic sphere with four cone points of order n, Mn is a branched covering of
On which is a one-cusped hyperbolic manifold, and Sn is a rational homology sphere.

Before beginning the proof, we give a brief sketch of the strategy. We give an explicit
polyhedral construction of a three-cusped hyperbolic manifold N containing an em-
bedded totally geodesic 4–punctured sphere which intersects two of the cusps. For
n� 3, we give the polyhedral decomposition of the orbifold On resulting from n–fold
orbifold surgery on the boundary slopes of this 4–punctured sphere. From this it is
evident that On is hyperbolic and the sphere remains totally geodesic. For odd n� 3,
we prove that On has a certain one-cusped n–fold manifold cover Mn with a surgery
Sn which is a rational homology sphere. This is accomplished by adapting an argument
of Sakuma [16] to relate the homology of the n–fold cover Nn!N corresponding
to Mn!On , to the homology of Sn . Mn is thus a hyperbolic knot complement in
a rational homology sphere, containing the closed embedded totally geodesic surface
which is a branched covering of the totally geodesic sphere with four cone points in
On .

Remark It follows from the construction that the ambient rational homology sphere
Sn covers an orbifold produced by n–fold orbifold surgery on each cusp of N . Thus
by the hyperbolic Dehn surgery theorem, Sn is hyperbolic for n>> 0.

The proof occupies the remainder of the section. We first discuss the orbifolds On .
For each n, the orbifold On decomposes into the two polyhedra in Figure 2. Realized
as a hyperbolic polyhedron, P

.n/
a is composed of two truncated tetrahedra, each of

which has two opposite edges of dihedral angle �=2 and all other dihedral angles
�=2n, glued along a face. This decomposition is indicated in Figure 2 by the lighter
dashed and dotted lines. The polyhedron P

.n/

b
has all edges with dihedral angle �=2
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except for those labeled otherwise and realized as a hyperbolic polyhedron it has all
combinatorial symmetries and all circled vertices at infinity. By Andreev’s theorem,
polyhedra with the desired properties exist in hyperbolic space. Certain face pairings
(described below) of P

.n/
a yield a compact hyperbolic orbifold with totally geodesic

boundary a sphere with four cone points of cone angle 2�=n. Faces of P
.n/

b
may be

glued to give a one-cusped hyperbolic orbifold with a torus cusp and totally geodesic
boundary isometric to the boundary of the gluing of P

.n/
a . On is formed by gluing

these orbifolds along their boundaries.

�
2

�
2n

�
2

�
2n

�
2n

�
2n

�
n

�
n

�
n

�
n

�
n

�
n

�
n

�
n

�
n

�
n

P
.n/
a P

.n/

b

Figure 2: Cells for On

The geometric limit of the On as n!1 is N , a 3–cusped manifold which decomposes
into the two polyhedra in Figure 3. As above, realized as a convex polyhedron in
hyperbolic space Qa has all circled vertices at infinity. The edge of Qa connecting
face A to face C is finite length, as is the corresponding edge on the opposite vertex
of A; all others are ideal or half-ideal and all have dihedral angle �=2. Qa has a
reflective involution of order 2 corresponding to the involution of P

.n/
a interchanging

the two truncated tetrahedra. The fixed set of this involution on the back face is shown
as a dotted line, and notationally we regard Qa as having an edge there with dihedral
angle � , splitting the back face into two faces X5 and X6 . Qb is the regular all-right
hyperbolic ideal cuboctahedron.

Another remark on notation: the face opposite a face labeled with only a letter should
be interpreted as being labeled with that letter “prime”. For instance, the leftmost
triangular face of Qa has label C 0 . Also, each “back” triangular face of Qb takes
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X1 X2

X3X4

X5 X6

A

B

Y1
Y2

Y3
Y4

D

E

C

QbQa

F

v1

v3v4

v2

Figure 3: Cells for N

the label of the face with which it shares a vertex. For example, the lower left back
triangular face is Y 0

1
.

We first consider face pairings of Qa producing a manifold Na with two annulus cusps
and totally geodesic boundary. Let r , s and t be isometries realizing face pairings
X1 7! X3 , X6 7! X4 and X2 7! X5 , respectively. Poincaré’s polyhedron theorem
yields a presentation

h r; s; t j rst D 1 i

for the group generated by r , s and t . Note that this group is free on two generators,
say s and t , where by the relation r D t�1s�1 . Choose as the “boundary subgroup”
(among all possible conjugates) the subgroup fixing the hyperbolic plane through the
face A. A fundamental polyhedron for this group and its face-pairing isometries are
in Figure 5. Note that the boundary is a 4–punctured sphere, and two of the three
generators listed are the parabolics t�1s�1ts�1 and sts�1t , which generate the two
annulus cusp subgroups of h s; t i.

We now consider Qb and the 3–cusped quotient manifold Nb . For i 2 f1; 2; 3; 4g,
let fi be the isometry pairing the face Yi ! Y 0

iC1
so that vi 7! viC1 . Let g1 be the

hyperbolic isometry (that is, without twisting) sending E!E0 and g2 the hyperbolic
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isometry sending F ! F 0 . The polyhedron theorem gives presentation

hf1; f2; f3; f4;g1;g2 jf1g2f
�1

2 g�1
1 D 1;

f �1
2 g�1

2 f3g�1
1 D 1;

f3g�1
2 f �1

4 g1 D 1;

f �1
4 g2f1g1 D 1i

for the group generated by the face pairings. The first three generators and relations may
be eliminated from this presentation using Nielsen–Schreier transformations, yielding
a presentation

h f4;g1;g2 j f
�1

4 Œg2;g1�f4Œg2;g
�1
1 �D 1 i

(our commutator convention is Œx;y� D xyx�1y�1 ), where the first three relations
yield

f1 D g1g�1
2 g�1

1 f4g2g�1
1 g�1

2 ; f2 D g�1
2 g�1

1 f4g2g�1
1 and f3 D g�1

1 f4g2:

The second presentation makes clear that the homology of Nb is free of rank 3, since
each generator has exponent sum 0 in the relation. Faces D and D0 make up the totally
geodesic boundary of Nb . Figure 5 shows a fundamental polyhedron for the boundary
subgroup fixing D , together with the face pairings generating the boundary subgroup.

v1

f �1
1 .v2/

f �1
1 f �1

2 .v3/

f �1
1
f �1

2
f �1

3
.v4/

bob

ri ta

Figure 4: Closed cusp of Nb

Nb has two annulus cusps, each with two boundary components on the totally geo-
desic boundary, and one torus cusp. A fundamental domain for the torus cusp in the
horosphere centered at v1 is shown in Figure 4, together with face pairing isometries
generating the rank–2 parabolic subgroup fixing v1 . The generators shown are

bob D .f4g�1
1 /2f4g2g�1

1 g�1
2 and r i taD .f4g�1

1 /3f4g2g�1
1 g�1

2 :
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Note that .bob/�4.r i ta/3 is trivial in homology. This and r i ta � .bob/�1 D f4g�1
1

together generate the cusp subgroup fixing v1 . For later convenience, we now switch to
the conjugate of this subgroup by f �1

4
, fixing v4 and refer to the conjugated elements

m D f �1
4
.f4g�1

1
/f4 D g�1

1
f4 and l D f �1

4
..bob/�4.r i ta/3/f4 as a “meridian-

longitude” generating set for the closed cusp of Nb .

A

r�1.C / t�1.B/

f �1
4
.D0/ D

f �1
4
f3

f �1
4
f2

f �1
1
f4

t�2s�2

sts�1t

t�1s�1ts�1

s.B0/ r.C 0/

Figure 5: Totally geodesic faces of Na and Nb

The totally geodesic 4–punctured spheres on the boundaries of Na and Nb are each
the double of a regular ideal rectangle, and we construct N by gluing Na to Nb along
them. Let us therefore assume that the polyhedra in Figure 3 are realized in hyperbolic
space in such a way that face A of Qa and face D of Qb are in the same hyperbolic
plane, with Qa and Qb in opposite half-spaces. Further arrange so that the polyhedra
are aligned in the way suggested by folding the page containing Figure 5 along the
dotted line down the center of the figure. With this arrangement, Maskit’s combination
theorem gives a presentation for the amalgamated group:

h f4;g1;g2; s; t jf
�1

4 Œg2;g1�f4Œg2;g
�1
1 �D 1;

t�2s�2
D f �1

4 g�1
2 g�1

1 f4g2g�1
1 ;

sts�1t D g2g1g�1
2 f �1

4 g1g2g�1
1 f4;

t�1s�1ts�1
D f �1

4 g�1
1 f4g2 i

The first relation comes from Nb and the others come from setting the boundary face
pairings equal to each other. Observe that the last relation can be solved for g2 . Using
Nielsen–Schreier transformations to eliminate g2 and the last relation results in the
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presentation:

h f4;g1; s; t jf
�2

4 g1Œf4t�1s�1ts�1;g1�f4Œf4t�1s�1ts�1;g�1
1 �g�2

1 f4g1 D 1

t�2s�2
D f �1

4 st�1stf �1
4 g�1

1 f 2
4 t�1s�1ts�1g�1

1 ;

sts�1t D f �1
4 g1f4t�1s�1ts�1g1st�1stf �2

4 g1f4t�1s�1ts�1g�1
1 f4 i

Replace g1 with the meridian generator m D g�1
1
f4 of the closed cusp of Nb and

add generators m1 D f
�1

4
mf4 and m2 D st�1stm1t�1s�1ts�1 , each conjugate to

m, yielding:

h f4;m;m1;m2; s; t jm1 D f
�1

4 mf4; m2 D st�1stm1t�1s�1ts�1

m�1
1 t�1s�1ts�1f4m�1m2mf �1

4 st�1stm1m�1
D 1

s2t2f �1
4 m2mf �1

4 D 1

t�1st�1s�1m�1f4t�1s�1ts�1f4m�1m�1
2 mD 1 i

Note that after abelianizing, each of the last two relations expresses f 2
4
D m2s2t2 ,

since m1 and m2 are conjugate to m and therefore identical in homology. In light
of this, we replace f4 by uD t�1s�1f4m�1 , which has order 2 in homology. This
yields the presentation:

h m;m1;m2; s; t;u j

m�1
1 m�1u�1t�1s�1mstumD 1(1)

m�1
2 st�1stm1t�1s�1ts�1

D 1(2)

m�1
1 t�1s�1t2um2u�1t�2stm1m�1

D 1(3)

s2t2m�1u�1t�1s�1m2u�1t�1s�1
D 1(4)

t�1st�1s�1m�1stumt�1s�1t2um�1
2 mD 1 i(5)

Let Ri denote the relation labeled .i/ in the presentation above. In the abelianization,
R1 sets m1 D m, R2 sets m2 D m1 , R3 disappears, and the last two relations set
u2 D 1. Therefore

H1.N /Š Z3
˚Z=2ZD hmi˚ hsi˚ hti˚ hui:

(In this paper we will generally blur the distinction between elements of �1 and their
homology classes.)

The boundary slopes of the totally geodesic 4–punctured sphere coming from @Na

and @Nb are represented in �1.N / by t�1s�1ts�1 and sts�1t . Let On be the finite
volume hyperbolic orbifold produced by performing face identifications on P

.n/
a and
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P
.n/

b
corresponding to those on Qa and Qb . On is geometrically produced by n–fold

orbifold filling on each of the above boundary slopes of N . Appealing to the polyhedral
decomposition, we see that the separating 4–punctured sphere remains totally geodesic,
becoming a sphere with four cone points of order n. Our knots in rational homology
spheres are certain manifold covers of the On . In order to understand the homology of
these manifold covers, we compute the homology of the corresponding abelian covers
of N .

Let pW eN !N be the maximal free abelian cover; that is, eN is the cover corresponding
to the kernel of the map �1.N /! H1.N /! Z3 D hx;y; zi given by:

m 7! x s 7! y t 7! z u 7! 1

Let X be a standard presentation 2–complex for �1.N / and eX the 2–complex
covering X corresponding to eN ! N . Then the first homology and Alexander
module of eX are naturally isomorphic to those of eN , since N is homotopy equivalent
to a cell complex obtained from X by adding cells of dimension three and above.
The covering group Z3 acts freely on the chain complex of eX , so that it is a free
ZŒx;x�1;y;y�1; z; z�1�–module. Below we give a presentation matrix for the Alex-
ander module of eX :0BBBBBBBBB@

1�yzCxyz

x2yz
0 �1 �

y2z2

x
�1CyzCz2

xz2

�
1
x

y2

x
x�1

x
0 0

0 �
1
x

z
xy

yz
x

�
1
x

x�1
x2yz

�
.x�1/.yCz/

xz
x�1
xyz

y.x�z/
x

1�2xCxz
xz2

x�1
x2z

�
y.x�1/.y�1/

xz
.x�1/.�1Cy�z/

xyz
y.�xCxyCxyz�yz/

x
xCy�2xy

xz2

x�1
x2 0 �

z.x�1/
xy

�
yz.xCyz/

x
yCxz

xz

1CCCCCCCCCA
The rows of the matrix above correspond to lifts of the generators for �1.N / sharing
a basepoint, ordered as f zm; �m1; �m2; zs; zt ; zug reading from the top down. These gen-
erate C1. eX / as a ZŒx;x�1;y;y�1; z; z�1�–module. The columns are the Fox free
derivatives of the relations in terms of the generators, giving a basis for the image of
@C2. eX /. For a generator g above, let pg be the determinant of the square matrix
obtained by deleting the row corresponding to zg . These polynomials are:

pm D �.x�4z�2/.x� 1/2.y � 1/.z� 1/.yC zC 4yzCy2zCyz2/

pm1
D .x�4z�2/.x� 1/2.y � 1/.z� 1/.yC zC 4yzCy2zCyz2/

pm2
D �.x�4z�2/.x� 1/2.y � 1/.z� 1/.yC zC 4yzCy2zCyz2/

ps D .x�4z�2/.x� 1/.y � 1/2.z� 1/.yC zC 4yzCy2zCyz2/

pt D �.x�4z�2/.x� 1/.y � 1/.z� 1/2.yC zC 4yzCy2zCyz2/

pu D 0
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The Alexander polynomial of H1. eN / is the greatest common factor:

�.x;y; z/D .x� 1/.y � 1/.z� 1/.yC zC 4yzCy2zCyz2/

up to multiplication by an invertible element of ZŒx;x�1;y;y�1; z; z�1�.

Let N1 be the infinite cyclic cover of N factoring through eN given by:

m 7! x2 s 7! x t 7! x u 7! 1

Then the chain complex of N1 is a ƒ–module, where ƒDZŒx;x�1� and specializing
the above picture yields an Alexander polynomial

�1.x/ D .x2� 1/.x� 1/2.2xC 4x2C 2x3/

D 2x.x� 1/3.xC 1/3:

Let Nn be the n–fold cyclic cover of N factoring through N1 . For n odd, Nn has
three cusps, since m, sts�1t , and t�1s�1ts�1 map to x˙2 , which generates Z=nZ.
Let Sn be the closed manifold obtained by filling Nn along the slopes covering m,
sts�1t , and t�1s�1ts�1 . Theorem 1 follows quickly from the following lemma.

Lemma 1 For odd n� 3, Sn is a rational homology sphere.

Proof The proof is adapted from an analogous proof of Sakuma concerning link
complements in S3 .

The chain complex of Nn is isomorphic to C�.N1/ ˝ .ƒ=.x
n � 1//. Note that

xn � 1 D .x � 1/�n , where �n.x/ D xn�1C xn�2C : : :C xC 1. Sakuma observes
that the short exact sequence of coefficient modules

0! Z
�n
�!ƒ=.xn

� 1/!ƒ=.�n/! 0

where the map on the left is multiplication by �n , gives rise to a short exact sequence
in homology

0! H1.N /
tr
�! H1.Nn/! H1.N1/=�nH1.N1/! 0

where t r is the transfer map, t r.h/D hCx:hC� � �Cxn�1:h for a homology class h.
Define Hn D H1.N1/=�nH1.N1/. Since the Alexander polynomial of N1 does not
share roots with �n , Hn is a torsion Z–module.

The lemma follows from a comparison between H1.Sn/ and Hn . The Mayer–Vietoris
sequence implies that H1.Sn/ is obtained as the quotient of H1.Nn/ by the subgroup
generated by transfers of the meridians. If N were a link complement in S3 , it would
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immediately follow that Hn DH1.Sn/, since the homology of a link complement is
generated by meridians. In our case we have

Hn D H1.Nn/=h t r.m/; t r.s/; t r.t/; t r.u/ i;

whereas
H1.Sn/D H1.Nn/=h t r.m/; t r.2s/; t r.2t/ i:

However one observes that H1.Sn/! Hn is an extension of degree at most 8 (since u

has order 2 in H1.N /), and so H1.Sn/ is also a torsion group.

Let Mn be the manifold obtained by filling two of the three cusps of Nn along the slopes
covering sts�1t and t�1s�1ts�1 . We have geometrically described Mn as a branched
cover of On , produced by n–fold orbifold filling along sts�1t and t�1s�1ts�1 . There
is a closed totally geodesic surface in Mn covering the totally geodesic sphere with
four cone points in On . A closed manifold Sn is produced by filling the remaining
cusp of Mn along the meridian covering m. Since Sn is a rational homology sphere,
Mn is a knot complement in a rational homology sphere, and we have proven Theorem
1.

4 Further directions

Performing ordinary Dehn filling along the three meridians of N specified in the
previous section yields a manifold S , which is easily seen to be the connected sum of
two spherical manifolds. The half arising from the truncated tetrahedra is the quotient
of S3 , regarded as the set of unit quaternions, by the subgroup hi; j ; ki. The half
arising from the cuboctahedron is the lens space L.4; 1/. The manifolds Sn may be
regarded as n–fold branched covers over the three-component link L in S consisting
of the cores of the filling tori.

Since the meridians t�1s�1ts�1 and sts�1t represent squares of primitive elements
in the homology of N , any cover of S branched over L will have nontrivial homology
of order 2 coming from the transfers of s and t . However, it is possible that techniques
similar to those above may be used to create knot complements in integral homology
spheres. If the manifold N above—in addition to its geometric properties—had trivial
nonperipheral integral homology, then S would be an integral homology sphere. Porti
[15] has supplied a formula in terms of the Alexander polynomial for the order of the
homology of a cover of an integral homology sphere branched over a link, generalizing
work of Mayberry–Murasugi in the case of S3 [10]. Using this formula, the order of
the homology of branched covers of S could be easily checked.
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In fact, the Menasco–Reid conjecture itself may be approached using a variation of
these techniques. A genus n� 1 handlebody may be obtained as the n–fold branched
cover of a ball over the trivial 2–string tangle, so knot complements in the genus n� 1

handlebody may be obtained as n–fold branched covers over the trivial tangle of a
knot complement in the ball. In analogy with Section 3, allowing the complement of
T to play the role of Na we ask the following:

Question Does there exist a hyperbolic 3–manifold with one rank 2 and two rank 1

cusps, which is the complement of a tangle in the ball, with totally geodesic boundary
isometric to the totally geodesic boundary of the complement of the tangle T ?

Such a manifold would furnish an analog of the manifold Nb in Section 3. If the
glued manifold N was a 2–component link complement in S3 , with an unknotted
component intersecting the totally geodesic Conway sphere, and this sphere remained
totally geodesic under the right orbifold surgery along its boundary slopes, branched
covers would give a counterexample to the Menasco–Reid conjecture. In any case,
Thurston’s hyperbolic Dehn surgery theorem implies that as n!1, the resulting
surfaces would have principal curvature approaching 0, furnishing new examples of
the phenomenon discovered by Leininger in [6] (although unlike Leininger’s examples
this would not give bounded genus).
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