Gromov's macroscopic dimension conjecture

DMITRY V BOLOTOV

In this note we construct a closed 4–manifold having torsion-free fundamental group and whose universal covering is of macroscopic dimension 3. This yields a counterexample to Gromov's conjecture about the falling of macroscopic dimension.

57R19; 57R20

1 Introduction

The following definition was given by M Gromov [2]:

Definition 1.1 Let V be a metric space. We say that $\dim_{\mathcal{E}} V \leq k$ if there is a k dimensional polyhedron P and a proper uniformly cobounded map $\phi: V \rightarrow P$ such that Diam $(\phi^{-1}(p)) \leq \varepsilon$ for all $p \in P$. A metric space V has macroscopic dim_{mc} $V \leq k$ if $\dim_{\varepsilon} V \leq k$ for some possibly large $\varepsilon < \infty$. If k is minimal, we say that $\dim_{\text{mc}} V = k$.

Gromov also stated the following questions which, for convenience, we state in the form of conjectures:

C1 Let (M^n, g) be a closed Riemannian n–manifold with torsion-free fundamental group, and let $(\widetilde{M}^n, \widetilde{g})$ be the universal covering of M^n with the pullback metric. Suppose that $\dim_{\rm mc}(\widetilde{M}^n, \widetilde{g}) < n$. Then $\dim_{\rm mc}(\widetilde{M}^n, \widetilde{g}) < n - 1$.

In [1] we proved C1 for the case $n = 3$.

Evidently, the following conjecture would imply C1 (see also (C) of Section 2):

C2 Let M^n be a closed n–manifold with torsion-free fundamental group π and let $f: M^n \to B\pi$ be a classifying map to the classifying space $B\pi$. Suppose that f is homotopic to a mapping into the $(n-1)$ –skeleton of $B\pi$. Then f is in fact homotopic to a mapping into the $(n - 2)$ –skeleton of $B\pi$.

In this note we show that both conjectures fail for $n \geq 4$.

We always assume that universal covering are equipped with the pullback metrics.

Published: 14 October 2006 DOI: 10.2140/agt.2006.6.1669

Framed cobordism, Pontryagin manifolds and classification of mappings to the sphere

Let M be a smooth compact manifold possibly with a boundary and let (N, v) and (N', w) be closed n–submanifolds in the interior of M with trivial normal bundles and framings v and w , respectively.

Definition 1.2 Two framed submanifolds (N, v) and (N', w) are *framed cobordant* if there exists a cobordism $X \subset M \times [0, 1]$ between N and N' and a framing u of X such that

 $u(x, t) = (v(x), 0)$ for $(x, t) \in N \times [0, \varepsilon)$, $u(x, t) = (w(x), 1)$ for $(x, t) \in N' \times (1 - \varepsilon, 1].$

Remark 1.3 If $(N', w) = \emptyset$ we say (N, v) is *framed cobordant to zero*.

Now let $f: M \to S^p$ be a smooth mapping and $y \in S^p$ be a regular value of f. Then f induces the following framing of the submanifold $f^{-1}(y) \subset M$. Choose a positively oriented basis $v = (v^1, \dots, v^p)$ for the tangent space $T(S^p)_y$. Notice that for each $x \in f^{-1}(y)$ the differential $df_x: TM_x \to T(S^p)_y$ vanishes on the subspace $Tf^{-1}(y)_x$ and isomorphically maps its orthogonal complement $Tf^{-1}(y)_x^{\perp}$ x onto $T(S^p)_y$. Hence there exists a unique vector

$$
w^i \in Tf^{-1}(y)_x^{\perp} \subset TM_x
$$

which is mapped by df_x to v^i . So we have an induced framing $w = f^*v$ of $f^{-1}(y)$.

Definition 1.4 This framed manifold $(f^{-1}(y), f^*v)$ will be called the *Pontryagin manifold* associated with f.

Theorem 1.5 (Milnor [3]) If y' is another regular value of f and v' is a positively oriented basis for $T(S^p)_{y'}$, then the framed manifold $(f^{-1}(y'), f^*v')$ is framed cobordant to $(f^{-1}(y), f^*v)$.

Theorem 1.6 (Milnor [3]) Two mappings from $(M, \partial M)$ to (S^p, s_0) are smoothly homotopic if and only if the associated Pontryagin manifolds are framed cobordant.

2 The construction of an example

Consider a circle bundle $S^3 \times S^1 \to S^2 \times S^1$ obtained by multiplying the Hopf circle bundle $S^3 \to S^2$ by S^1 . Take also the trivial circle bundle $T^4 = S^1 \times T^3 \to T^3$ and produce a connected sum

$$
M^4 = S^3 \times S^1 \#_{S^1} T^4
$$

of these circle bundles along small tubes consisting of the circle fibers equipped with natural trivialization. Clearly

(A) $M⁴$ is the total space of the circle bundle

$$
p: M^4 \to M^3 = S^2 \times S^1 \# T^3;
$$

- (B) $\pi_1(M^4) = \pi_1(M^3)$. Denote this group by π ;
- (C) $B\pi = S^1 \vee T^3$ and dim_{mc} $M^4 \leq 3$. Indeed, the classifying map $f: M^4 \rightarrow B\pi$ can be lifted to the proper cobounded (by Diam (M^4)) map \tilde{f} : $\tilde{M}^4 \to \tilde{B}\pi$ of the universal coverings; the universal coverings;
- (D) the classifying map $f: M^4 \to B\pi$ can be defined as the composition

$$
M^4 \stackrel{p}{\longrightarrow} S^2 \times S^1 \# T^3 \stackrel{f_1}{\longrightarrow} S^2 \times S^1 \vee T^3 \stackrel{f_2}{\longrightarrow} S^1 \vee T^3,
$$

where f_1 is a quotient map which maps a separating sphere S^2 to a point, and f_2 is the mapping which coincides with the projection onto the generating circle of $S^2 \times S^1$ and is the identity on T^3 -component.

Let $g: S^1 \vee T^3 \rightarrow S^3$ be a degree one map which maps S^1 to a point. Then the following composition $J = g \circ f_2 \circ f_1$: $M^3 \to S^3$ also has degree one.

Theorem 2.1 The mapping $f: M^4 \to B\pi$ is not homotopic into the 2–skeleton of $B\pi$.

Proof Let $\pi: E \to M^3$ be a two-dimensional vector bundle associated with the circle bundle p: $M^4 \rightarrow M^3$. Let E_0 denote E without zero section s: $M^3 \hookrightarrow E$ and j: $M^4 \hookrightarrow E_0$ be a unit circle subbundle of E.

The following diagram is homotopically commutative:

$$
M^4 \stackrel{j}{\hookrightarrow} E_0
$$

\n
$$
\downarrow p
$$

\n
$$
M^3 \stackrel{s}{\hookrightarrow} E
$$

\n
$$
M^3 \stackrel{s}{\hookrightarrow} E
$$

Obviously, j and s are homotopy equivalences.

Recall that we have the Thom isomorphism (see Milnor and Stasheff [4])

$$
\Phi: H^k(M^3; \Lambda) \to H^{k+2}(E, E_0; \Lambda)
$$

defined by

$$
\Phi(x) = (\pi^*x) \cup u,
$$

where Λ is a ring with unity, and u denotes the Thom class.

The Thom class u has the following properties [4]:

(a) If e is the Euler class of E then we have the Thom–Wu formula

$$
\Phi(e) = u \cup u.
$$

(b) $s^*(u) = e$.

Let

$$
M_p = M^4 \times I/(x \times 1 \sim p(x))
$$

be the cylinder of the map $p: M^4 \to M^3$. Then we have natural embeddings

$$
i_1
$$
: $M^4 \to M^4 \times 0 \subset M_p$ and i_2 : $M^3 \to M^3 \times 1 \subset M_p$

and a natural retraction r: $M_p \rightarrow M_3$. It is easy to see that M_p is just a D^2 -bundle associated to the circle bundle $p: M^4 \to M^3$ and $r|_{M^4} = p$.

Recall that the Thom space $(T(E), \infty)$ is the one point compactification of E. Denote $T(E)$ by T. Clearly, T is homeomorphic to the quotient space M_p/M^4 and

(1)
$$
H^*(T,\infty;\Lambda) \cong H^*(E,E_0;\Lambda)
$$

is a ring isomorphism (see Milnor and Stasheff [4] for more details).

If $g \circ f: M^4 \to S^3$ is nullhomotopic then we can extend the map $J: M_3 \times 1 \to S^3$ to a mapping $G: T \to S^3$. This means that the composition

$$
M^3 \xrightarrow{i_2} M_p \xrightarrow{\text{quotient}} T \xrightarrow{G} S^3
$$

has degree 1 and G^* : $H^3(S^3, s_0; \Lambda) \to H^3(T, \infty; \Lambda)$ is nontrivial.

Let $a \in H^*(E, E_0; \Lambda)$ denote a class corresponding to the class $G^*(\overline{s})$ by isomorphism (1), where \bar{s} is a generator of $H^3(S^3, \Lambda)$.

Let us consider the following exact sequence of pair :

$$
H^3(E, E_0; \Lambda) \stackrel{\xi}{\rightarrow} H^3(E; \Lambda) \stackrel{\psi}{\rightarrow} H^3(E_0; \Lambda)
$$

Since E is homotopy equivalent to M^3 , we have $H^i(E; \Lambda) = H^i(M^3; \Lambda)$. Clearly $s^* \xi(a) = J^*(\overline{s})$. (Note that $J^*(\overline{s})$ is a generator of $H^3(M^3; \Lambda)$).

Let us note that $e \mod 2$ is equal to the Stiefel–Whitney class w_2 which is nonzero. Indeed, the restriction of E onto the embedded sphere i: $S^2 \subset M^3$ is the vector bundle

associated with the Hopf circle bundle, and so $i^*w_2 \neq 0$. By the Thom construction above there exists a class $z \in H^1(M^3; \mathbb{Z}_2)$ such that $\Phi(z) = a$. Thus

$$
s^*\xi(a) = z \cup w_2 = \{ \text{generator of } H^3(M^3; \mathbb{Z}_2) \}.
$$

Recall the basic properties of Steenrod squares [6; 4]:

(1) For each *n*, *i* and $Y \subset X$ there exists an additive homomorphism

$$
Sqi: Hn(X, Y; \mathbb{Z}_2) \to Hn+i(X, Y; \mathbb{Z}_2).
$$

(2) If $f: (X, Y) \rightarrow (X', Y')$ is a continuous map of pairs, then

$$
Sq^i \circ f^* = f^* \circ Sq^i.
$$

- (3) If $a \in H^{n}(X, Y; \mathbb{Z}_2)$, then $Sq^{0}(a) = a$, $Sq^{n}(a) = a \cup a$ and $Sq^{i}(a) = 0$ for $i > n$.
- (4) We have Cartan's formula:

$$
Sq^{k}(a \cup b) = \sum_{i+j=k} Sq^{i}(a) \cup Sq^{j}(b).
$$

(5) $Sq^1 = w_1 \cup: H^{m-1}(M; \mathbb{Z}_2) \rightarrow H^m(M; \mathbb{Z}_2)$, where M is a closed smooth manifold and w_1 is the first Stiefel–Whitney class of the tangent bundle TM . This follows from the coincidence of the class w_1 with the first Wu class v_1 [4]. It is well known that $w_1 = 0$ if M is an orientable manifold.

Let us show that $Sq^{2}(\Phi(z)) \neq 0$. Using the properties above, it is easy to see that $Sq^{1}(z) = Sq^{2}(z) = 0$. Using the Thom–Wu formula (a), we have

$$
Sq2(\Phi(z)) = \pi_* z \cup Sq2(u)
$$

= $\pi_* z \cup u \cup u$
= $\pi_* z \cup \Phi(w_2) = \Phi(z \cup w_2) \neq 0$.

Whence $0 = G^*(Sq^2(\overline{s})) = Sq^2(G^*(\overline{s})) \neq 0$. This contradiction implies that the composition $g \circ f : M^4 \to S^3$ is not homotopic to zero and $f: M^4 \to B\pi$ can not be deformed into the 2–skeleton of $B\pi$. \Box

Corollary 2.2 The Pontryagin manifold $(p^{-1}(m), p^*(w))$ is not cobordant to zero, where (m, w) is any framed point of M^3 .

Proof Indeed, from Theorem 2.1 and Theorem 1.6 it follows that if $s \in S^3$ is a regular point of $g \circ f: M^4 \to S^3$, then the Pontryagin manifold $(f^{-1}(g^{-1}(s), f^*(g^*(v)))$ is not cobordant to zero, where v is a framing at s . Thus the Pontryagin manifold

 $(p^{-1}(m), p^*(w))$ for $(m, w) = (J^{-1}(s), (J^*(v))$ is also not cobordant to zero. Now the statement follows from Theorem 1.5 and regularity of the map $p: M^4 \to M^3$.

3 The main theorem

Definition 3.1 A metric space is called uniformly contractible (UC) if there exists an increasing function $Q: \mathbb{R}_+ \to \mathbb{R}_+$ such that each ball of radius r contracts to a point inside a ball of radius $Q(r)$.

It is well known that the universal covering of a compact $K(\tau, 1)$ space is UC (see Gromov [2] for more details).

Denote by ρ the distance function on $\widetilde{B\pi}$.

Lemma 3.2 Let \tilde{f} : $\tilde{M}^4 \rightarrow \tilde{B}\pi$ be a lifting of a classifying map to the universal coverings. If dim_{mc} $\widetilde{M}^4 \le 2$, then there exists a short homotopy \vec{F} : $\widetilde{M}^4 \times I \to \widetilde{B\pi}$ of \widetilde{f} such that $\widetilde{F}(x, 0) = \widetilde{f}(x)$ and $\widetilde{F}(x, 1)$ is a through mapping of \tilde{f} such that $\tilde{F}(x, 0) = \tilde{f}(x)$ and $\tilde{F}(x, 1)$ is a through mapping

$$
\widetilde{F}(x,1): \widetilde{M}^4 \to P^2 \to \widetilde{B\pi},
$$

 $\widetilde{F}(x, 1)$: $\widetilde{M}^4 \to P^2 \to \widetilde{B\pi}$,
where P^2 is a 2-dimensional polyhedron and "short homotopy" means that we have $\rho(\tilde{f}(x), \tilde{F}(x,t)) \leq \text{const for each } x \in \tilde{M}^4, t \in I.$

Proof Let $h: \widetilde{M}^4 \to P$ be a proper cobounded continuous map to some 2–dimensional polyhedron P. Using a simplicial approximation of h , we can suppose that h is a simplicial map between such triangulations of \widetilde{M}^4 and P, that the preimage of the star of each vertex is uniformly bounded (recall that h is proper). Since \tilde{f} is a quasiisometry, the \tilde{f} –image $\tilde{f}(h^{-1}(St(v)))$ of the preimage of the star of each vertex $v \in P$ is bounded by some constant d. Let M_h be the cylinder of h with natural triangulation consisting of the triangulations of \widetilde{M}^4 and P and the triangulations of the simplices $\{v_0, \ldots, v_k, h(v_k), \ldots, h(v_p)\}$, where $\{v_0, \ldots, v_p\}$ is a simplex in \widetilde{M}^4 with $v_0 < v_1 < \ldots < v_p$ [5].

Consider the map \tilde{f}_0 : $(M_h)^0 \to \tilde{B} \pi$ from 0-skeleton $(M_h)^0$ of M_h which coincides Consider the map \tilde{f}_0 : $(M_h)^0 \to \tilde{B}\pi$ from 0–skeleton $(M_h)^0$ of M_h which coincides with \tilde{f} on the lower base of $(M_h)^0$ and with the composition $\tilde{f} \circ t_0$ on the upper base of $(M_h)^0$, where t_0 : $(P)^0 \rightarrow \widetilde{M}^4$ is a section of h defined on the 0–skeleton $(P)^0$ of P. Since $\overline{B\pi}$ is uniformly contractible, we can extend \tilde{f}_0 to M_h using the function Q of the definition of UC-spaces as follows: Q of the definition of UC-spaces as follows:

By the construction above, \tilde{f}_0 -image of every two neighbouring vertexes of M_h lies into a ball of radius d. Therefore we can extend the map \tilde{f}_0 to a mapping

 $\widetilde{f}_1: (M_h)^1 \to \widetilde{B\pi}$ such that $\rho(\widetilde{f}(x), \widetilde{f}_1(x,t)) \leq d$, $x \in (\widetilde{M}^4)^0$. The \widetilde{f}_1 -image of the boundary of arbitrary 2-simplex of M_h lies into a ball of radius 3d. So we of the boundary of arbitrary 2–simplex of M_h lies into a ball of radius 3d. So we can extend \tilde{f}_1 to a mapping \tilde{f}_2 : $(M_h)^2 \to \tilde{B}\pi$ so that $\rho(\tilde{f}(x), \tilde{f}_2(x, t)) \le 4Q(3d)$,
 $x \in (\tilde{M}^4)^1$. Similarly, continue \tilde{f}_2 to mappings $\tilde{f}_3, \ldots, \tilde{f}_5$ defined on skeletons $x \in (\widetilde{M}^4)^1$. Similarly, continue f_2 to mappings $\widetilde{f_3}, \ldots, \widetilde{f_5}$ defined on skeletons $(M_h)^3, \ldots, (M_h)^5 = M_h$ respectively, so that $\rho(\tilde{f}(x), \tilde{f}_5(x, t)) \leq c$, where c is a constant. \Box

Main Theorem dim_{mc} $\widetilde{M}^4 = 3$.

Proof Let $q: \widetilde{B\pi} \to \widetilde{B\pi}/(\widetilde{B\pi} \setminus D^3) \cong S^3$ be a quotient map, where D^3 is an embedded open 3-dimensional ball. embedded open 3–dimensional ball.

Suppose that dim_{mc} $\widetilde{M}^4 \leq 2$ and let h: $\widetilde{M}^4 \to P$ be a proper cobounded continuous map to some 2–dimensional polyhedron P as in Lemma 3.2. It is not difficult to find a compact smooth submanifold with boundary $W \subset \widetilde{M}^4$ such that W contains a ball of arbitrary fixed radius r. Since \tilde{f} is a quasi-isometry, using Lemma 3.2 we can choose r big enough such that $\overline{D}^3 \subset \overline{\widetilde{f}(W)}$ and $\overline{\widetilde{F}}(\partial W \times I) \cap \overline{D}^3 = \emptyset$, where $\overline{\widetilde{F}}$ denotes the short homotopy from Lemma 3.2. Thus we have a homotopy

$$
q \circ \widetilde{F} \colon (W, \partial W) \times I \to (S^3, s_0)
$$

which maps $\partial W \times I$ into the base point s_0 . Since dim $P = 2$, from Lemma 3.2 it follows that $q \circ \tilde{F}(x, 1)$ is homotopic to zero. Therefore $q \circ \tilde{F}(x, 0) = q \circ \tilde{f}$ is homotopic to zero (and $q \circ \tilde{f}$ is smoothly homotopic to zero [3]). Let (s, v) be a framed regular point in S^3 for the map $q \circ \tilde{f}$. Then the Pontryagin manifold

$$
(\widetilde{f}^{-1}\circ q^{-1}(s),\widetilde{f}^*q^*(v))
$$

must be cobordant to zero (see Theorem 1.6). Let $(\widetilde{\Omega}, w)$ be a framed nullcobordism which is embedded in $W \times I$ with the boundary $(\tilde{f}^{-1} \circ q^{-1}(s), \tilde{f}^*q^*(v))$.

Consider the covering map $\tau \colon \widetilde{M}^4 \times I \to M^4 \times I$. Then $\tau(\widetilde{f}^{-1} \circ q^{-1}(s), \widetilde{f}^*q^*(v))$ is an embedded framed submanifold of $M⁴$ which coincides with the Pontryagin manifold $(p^{-1}(m), p^*(v))$ of some framed point $(m, v) \in M^3$. And $\tau(\widetilde{\Omega}, w)$ is an immersed framed submanifold of $M^4 \times I$. Using the Whitney Embedding Theorem [7], we can make a small perturbation of $\tau(\tilde{\Omega}, w)$ identically on the small collar of the boundary to obtain a framed nullcobordism with the boundary $\tau(\tilde{f}^{-1} \circ q^{-1}(s), \tilde{f}^*q^*(v))$. But this is impossible by Corollary 2.2. \Box

Remark 3.3 By similar arguments one can prove that

$$
\dim_{\rm mc}(M^4 \times T^p) = p + 3.
$$

Question Does $M^4 \times T^p$ admit a PSC-metric for some p?

Acknowledgements I thank Professor Gromov for useful discussions and attention to this work during my visit to the IHES in December 2005. Also I thank the referee for the useful remarks and S Maksimenko for the help in preparation of the article.

References

- [1] D V Bolotov, *Macroscopic dimension of 3-manifolds*, Math. Phys. Anal. Geom. 6 (2003) 291–299 MR1997917
- [2] M Gromov, *Positive curvature, macroscopic dimension, spectral gaps and higher signatures*, Preprint (1996)
- [3] J W Milnor, *Topology from the differentiable viewpoint*, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va. (1965) MR0226651
- [4] J W Milnor, J D Stasheff, *Characteristic classes*, Princeton University Press, Princeton, NJ (1974) MR0440554Annals of Mathematics Studies, No. 76
- [5] E H Spanier, *Algebraic topology*, McGraw-Hill Book Co., New York (1966) MR0210112
- [6] N E Steenrod, *Cohomology operations*, Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J. (1962) MR0145525
- [7] **H Whitney**, *Differentiable manifolds*, Ann. of Math. (2) 37 (1936) 645–680 MR1503303

B Verkin Institute for Low Temperature Physics Lenina ave 47, Kharkov 61103, Ukraine

bolotov@univer.kharkov.ua

Received: 2 March 2006