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Gromov’s macroscopic dimension conjecture

DMITRY V BOLOTOV

In this note we construct a closed 4–manifold having torsion-free fundamental group
and whose universal covering is of macroscopic dimension 3. This yields a coun-
terexample to Gromov’s conjecture about the falling of macroscopic dimension.

57R19; 57R20

1 Introduction

The following definition was given by M Gromov [2]:

Definition 1.1 Let V be a metric space. We say that dim" V � k if there is a k –
dimensional polyhedron P and a proper uniformly cobounded map �W V !P such that
Diam. ��1.p//� " for all p 2P . A metric space V has macroscopic dimmc V � k if
dim" V � k for some possibly large "<1. If k is minimal, we say that dimmc V D k .

Gromov also stated the following questions which, for convenience, we state in the
form of conjectures:

C1 Let .M n;g/ be a closed Riemannian n–manifold with torsion-free fundamental
group, and let . �M n; zg/ be the universal covering of M n with the pullback metric.
Suppose that dimmc. �M n; zg/ < n. Then dimmc. �M n; zg/ < n� 1.

In [1] we proved C1 for the case nD 3.

Evidently, the following conjecture would imply C1 (see also (C) of Section 2):

C2 Let M n be a closed n–manifold with torsion-free fundamental group � and let
f W M n! B� be a classifying map to the classifying space B� . Suppose that f is
homotopic to a mapping into the .n�1/–skeleton of B� . Then f is in fact homotopic
to a mapping into the .n� 2/–skeleton of B� .

In this note we show that both conjectures fail for n� 4.

We always assume that universal covering are equipped with the pullback metrics.
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Framed cobordism, Pontryagin manifolds and classification of mappings
to the sphere

Let M be a smooth compact manifold possibly with a boundary and let .N; v/ and
.N 0; w/ be closed n–submanifolds in the interior of M with trivial normal bundles
and framings v and w , respectively.

Definition 1.2 Two framed submanifolds .N; v/ and .N 0; w/ are framed cobordant
if there exists a cobordism X �M � Œ0; 1� between N and N 0 and a framing u of X

such that
u.x; t/ D .v.x/; 0/ for .x; t/ 2N � Œ0; "/;

u.x; t/ D .w.x/; 1/ for .x; t/ 2N 0 � .1� "; 1�:

Remark 1.3 If .N 0; w/D∅ we say .N; v/ is framed cobordant to zero.

Now let f W M ! Sp be a smooth mapping and y 2 Sp be a regular value of f .
Then f induces the following framing of the submanifold f �1.y/ �M . Choose
a positively oriented basis v D .v1 : : : ; vp/ for the tangent space T .Sp/y . Notice
that for each x 2 f �1.y/ the differential dfx W TMx ! T .Sp/y vanishes on the
subspace Tf �1.y/x and isomorphically maps its orthogonal complement Tf �1.y/?x
onto T .Sp/y . Hence there exists a unique vector

wi
2 Tf �1.y/?x � TMx

which is mapped by dfx to vi . So we have an induced framing w D f �v of f �1.y/.

Definition 1.4 This framed manifold .f �1.y/; f �v/ will be called the Pontryagin
manifold associated with f .

Theorem 1.5 (Milnor [3]) If y0 is another regular value of f and v0 is a positively
oriented basis for T .Sp/y0 , then the framed manifold .f �1.y0/; f �v0/ is framed
cobordant to .f �1.y/; f �v/.

Theorem 1.6 (Milnor [3]) Two mappings from .M; @M / to .Sp; s0/ are smoothly
homotopic if and only if the associated Pontryagin manifolds are framed cobordant.

2 The construction of an example

Consider a circle bundle S3 �S1! S2 �S1 obtained by multiplying the Hopf circle
bundle S3! S2 by S1 . Take also the trivial circle bundle T 4 D S1�T 3! T 3 and
produce a connected sum

M 4
D S3

�S1#S1T 4
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of these circle bundles along small tubes consisting of the circle fibers equipped with
natural trivialization. Clearly

(A) M 4 is the total space of the circle bundle

pW M 4
!M 3

D S2
�S1#T 3

I

(B) �1.M
4/D �1.M

3/. Denote this group by � ;

(C) B� DS1_T 3 and dimmc M 4� 3. Indeed, the classifying map f W M 4!B�

can be lifted to the proper cobounded (by Diam.M 4/) map zf W �M 4!eB� of
the universal coverings;

(D) the classifying map f W M 4! B� can be defined as the composition

M 4 p
�! S2

�S1#T 3 f1
�! S2

�S1
_T 3 f2

�! S1
_T 3;

where f1 is a quotient map which maps a separating sphere S2 to a point, and
f2 is the mapping which coincides with the projection onto the generating circle
of S2 �S1 and is the identity on T 3 –component.

Let gW S1 _ T 3 ! S3 be a degree one map which maps S1 to a point. Then the
following composition J D g ıf2 ıf1W M

3! S3 also has degree one.

Theorem 2.1 The mapping f W M 4! B� is not homotopic into the 2–skeleton of
B� .

Proof Let � W E!M 3 be a two-dimensional vector bundle associated with the circle
bundle pW M 4 ! M 3 . Let E0 denote E without zero section sW M 3 ,! E and
j W M 4 ,!E0 be a unit circle subbundle of E .

The following diagram is homotopically commutative:

M 4
j
,! E0??yp

??yembedding

M 3 s
,! E

Obviously, j and s are homotopy equivalences.

Recall that we have the Thom isomorphism (see Milnor and Stasheff [4])

ˆW H k.M 3
Iƒ/!H kC2.E;E0Iƒ/

defined by
ˆ.x/D .��x/[u;
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where ƒ is a ring with unity, and u denotes the Thom class.

The Thom class u has the following properties [4]:

(a) If e is the Euler class of E then we have the Thom–Wu formula

ˆ.e/D u[u:

(b) s�.u/D e .

Let
Mp D M 4

� I=.x � 1� p.x//

be the cylinder of the map pW M 4!M 3 . Then we have natural embeddings

i1W M
4
!M 4

� 0�Mp and i2W M
3
!M 3

� 1�Mp

and a natural retraction r W Mp!M3 . It is easy to see that Mp is just a D2 –bundle
associated to the circle bundle pW M 4!M 3 and r jM 4 D p .

Recall that the Thom space .T .E/;1/ is the one point compactification of E . Denote
T .E/ by T . Clearly, T is homeomorphic to the quotient space Mp=M

4 and

(1) H�.T;1Iƒ/ŠH�.E;E0Iƒ/

is a ring isomorphism (see Milnor and Stasheff [4] for more details).

If g ıf W M 4! S3 is nullhomotopic then we can extend the map J W M3 � 1! S3

to a mapping GW T ! S3 . This means that the composition

M 3 i2
�!Mp

quotient
�! T

G
�! S3

has degree 1 and G�W H 3.S3; s0Iƒ/!H 3.T;1Iƒ/ is nontrivial.

Let a2H�.E;E0Iƒ/ denote a class corresponding to the class G�.xs/ by isomorphism
(1), where xs is a generator of H 3.S3; ƒ/.

Let us consider the following exact sequence of pair :

H 3.E;E0Iƒ/
�
!H 3.EIƒ/

 
!H 3.E0Iƒ/

Since E is homotopy equivalent to M 3 , we have H i.EIƒ/DH i.M 3Iƒ/. Clearly
s��.a/D J�.xs/. (Note that J�.xs/ is a generator of H 3.M 3Iƒ/).

Let us note that e mod 2 is equal to the Stiefel–Whitney class w2 which is nonzero.
Indeed, the restriction of E onto the embedded sphere i W S2�M 3 is the vector bundle
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associated with the Hopf circle bundle, and so i�w2 6D 0. By the Thom construction
above there exists a class z 2H 1.M 3IZ2/ such that ˆ.z/D a. Thus

s��.a/D z[w2 D fgenerator of H 3.M 3
IZ2/g:

Recall the basic properties of Steenrod squares [6; 4]:

(1) For each n; i and Y �X there exists an additive homomorphism

Sqi
W H n.X;Y IZ2/!H nCi.X;Y IZ2/:

(2) If f W .X;Y /! .X 0;Y 0/ is a continuous map of pairs, then

Sqi
ıf � D f � ıSqi :

(3) If a 2 H n.X;Y IZ2/, then Sq0.a/ D a, Sqn.a/ D a[ a and Sqi.a/ D 0 for
i > n:

(4) We have Cartan’s formula:

Sqk.a[ b/D
X

iCjDk

Sqi.a/[Sqj .b/:

(5) Sq1
D w1[W H

m�1.M IZ2/ ! H m.M IZ2/, where M is a closed smooth
manifold and w1 is the first Stiefel–Whitney class of the tangent bundle TM .
This follows from the coincidence of the class w1 with the first Wu class v1 [4].
It is well known that w1 D 0 if M is an orientable manifold.

Let us show that Sq2.ˆ.z// 6D 0. Using the properties above, it is easy to see that
Sq1.z/D Sq2.z/D 0. Using the Thom–Wu formula (a), we have

Sq2.ˆ.z//D ��z[Sq2.u/

D ��z[u[u

D ��z[ˆ.w2/Dˆ.z[w2/ 6D 0:

Whence 0 D G�.Sq2.xs// D Sq2.G�.xs// 6D 0. This contradiction implies that the
composition g ı f W M 4! S3 is not homotopic to zero and f W M 4! B� can not
be deformed into the 2–skeleton of B� .

Corollary 2.2 The Pontryagin manifold .p�1.m/;p�.w// is not cobordant to zero,
where .m; w/ is any framed point of M 3 .

Proof Indeed, from Theorem 2.1 and Theorem 1.6 it follows that if s 2S3 is a regular
point of g ı f W M 4! S3 , then the Pontryagin manifold .f �1.g�1.s/; f �.g�.v//

is not cobordant to zero, where v is a framing at s . Thus the Pontryagin manifold
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.p�1.m/;p�.w// for .m; w/D .J�1.s/; .J�.v// is also not cobordant to zero. Now
the statement follows from Theorem 1.5 and regularity of the map pW M 4!M 3 .

3 The main theorem

Definition 3.1 A metric space is called uniformly contractible (UC) if there exists an
increasing function QW RC! RC such that each ball of radius r contracts to a point
inside a ball of radius Q.r/.

It is well known that the universal covering of a compact K.�; 1/ space is UC (see
Gromov [2] for more details).

Denote by � the distance function on eB� .

Lemma 3.2 Let zf W �M 4 ! eB� be a lifting of a classifying map to the universal
coverings. If dimmc �M 4 � 2, then there exists a short homotopy zF W �M 4 � I !eB�
of zf such that zF .x; 0/D zf .x/ and zF .x; 1/ is a through mapping

zF .x; 1/W �M 4
! P2

!eB� ;
where P2 is a 2–dimensional polyhedron and “short homotopy” means that we have
�. zf .x/; zF .x; t//� const for each x 2 �M 4 , t 2 I .

Proof Let hW �M 4!P be a proper cobounded continuous map to some 2–dimensional
polyhedron P . Using a simplicial approximation of h, we can suppose that h is a
simplicial map between such triangulations of �M 4 and P , that the preimage of the
star of each vertex is uniformly bounded (recall that h is proper). Since zf is a quasi-
isometry, the zf –image zf .h�1.St.v/// of the preimage of the star of each vertex
v 2 P is bounded by some constant d . Let Mh be the cylinder of h with natural
triangulation consisting of the triangulations of �M 4 and P and the triangulations of
the simplices fv0; : : : ; vk ; h.vk/; : : : ; h.vp/g, where fv0; : : : ; vpg is a simplex in �M 4

with v0 < v1 < : : : ; < vp [5].

Consider the map zf0W .Mh/
0!eB� from 0–skeleton .Mh/

0 of Mh which coincides
with zf on the lower base of .Mh/

0 and with the composition zf ı t0 on the upper base
of .Mh/

0 , where t0W .P /
0! �M 4 is a section of h defined on the 0–skeleton .P /0 of

P . Since eB� is uniformly contractible, we can extend zf0 to Mh using the function
Q of the definition of UC-spaces as follows:

By the construction above, zf0 –image of every two neighbouring vertexes of Mh

lies into a ball of radius d . Therefore we can extend the map zf0 to a mapping
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zf1W .Mh/
1 ! eB� such that �. zf .x/; zf1.x; t// � d , x 2 . �M 4/0 . The zf1 –image

of the boundary of arbitrary 2–simplex of Mh lies into a ball of radius 3d . So we
can extend zf1 to a mapping zf2W .Mh/

2!eB� so that �. zf .x/; zf2.x; t//� 4Q.3d/,
x 2 . �M 4/1 . Similarly, continue zf2 to mappings zf3; : : : ; zf5 defined on skeletons
.Mh/

3; : : : ; .Mh/
5 DMh respectively, so that �. zf .x/; zf5.x; t// � c , where c is a

constant.

Main Theorem dimmc �M 4 D 3.

Proof Let qW eB� ! eB�=.eB� nD3/ Š S3 be a quotient map, where D3 is an
embedded open 3–dimensional ball.

Suppose that dimmc �M 4 � 2 and let hW �M 4! P be a proper cobounded continuous
map to some 2–dimensional polyhedron P as in Lemma 3.2. It is not difficult to find a
compact smooth submanifold with boundary W � �M 4 such that W contains a ball of
arbitrary fixed radius r . Since zf is a quasi-isometry, using Lemma 3.2 we can choose
r big enough such that xD3 � zf .W / and zF .@W � I/\ xD3 D ∅, where zF denotes
the short homotopy from Lemma 3.2. Thus we have a homotopy

q ı zF W .W; @W /� I ! .S3; s0/

which maps @W � I into the base point s0 . Since dim P D 2, from Lemma 3.2
it follows that q ı zF .x; 1/ is homotopic to zero. Therefore q ı zF .x; 0/ D q ı zf is
homotopic to zero (and q ı zf is smoothly homotopic to zero [3]). Let .s; v/ be a
framed regular point in S3 for the map q ı zf . Then the Pontryagin manifold

. zf �1
ı q�1.s/; zf �q�.v//

must be cobordant to zero (see Theorem 1.6). Let .e�;w/ be a framed nullcobordism
which is embedded in W � I with the boundary . zf �1 ı q�1.s/; zf �q�.v//.

Consider the covering map � W �M 4�I!M 4�I . Then �. zf �1 ıq�1.s/; zf �q�.v// is
an embedded framed submanifold of M 4 which coincides with the Pontryagin manifold
.p�1.m/;p�.�// of some framed point .m; �/ 2M 3 . And �.e�;w/ is an immersed
framed submanifold of M 4 � I . Using the Whitney Embedding Theorem [7], we can
make a small perturbation of �.e�;w/ identically on the small collar of the boundary
to obtain a framed nullcobordism with the boundary �. zf �1 ı q�1.s/; zf �q�.v//. But
this is impossible by Corollary 2.2.

Remark 3.3 By similar arguments one can prove that

dimmc.
CM 4 �T p /D pC 3:
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Question Does M 4 �T p admit a PSC–metric for some p?
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