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Vortices and a TQFT for Lefschetz fibrations on 4–manifolds

MICHAEL USHER

Adapting a construction of D Salamon involving the U.1/ vortex equations, we
explore the properties of a Floer theory for 3–manifolds that fiber over S1 which ex-
hibits several parallels with monopole Floer homology, and in all likelihood coincides
with it. The theory fits into a restricted analogue of a TQFT in which the cobordisms
are required to be equipped with Lefschetz fibrations, and has connections to the
dynamics of surface symplectomorphisms.

57R57; 57R56, 53D40

1 Background and summary of results

For some time it has been known that two of the most important invariants of smooth
closed 4–manifolds, the Donaldson and Seiberg–Witten invariants, can each be ex-
pressed in terms of .3 C 1/–dimensional topological quantum field theories (see
Donaldson [6], Marcolli and Wang [27], Kronheimer and Mrowka [19]). In such
a “TQFT,” to each oriented 3–manifold Y (perhaps equipped with additional data,
such as a spinc –structure), one associates canonically a group V .Y / satisfying, among
several other conditions, the property that a cobordism X from Y1 to Y2 functorially
induces a homomorphism FX W V .Y1/! V .Y2/. If X is a smooth closed oriented
4–manifold, divided into two pieces as X DX1[Y X2 with bC.Xi/> 0, one views X1

as a cobordism from the empty set ¿ to Y and X2 as a cobordism from ¿ to �Y (ie,
Y with its orientation reversed). One has a natural identification V .�Y /ŠV .Y /� , and
the 4–dimensional invariant IX is obtained by a natural calculation in V .Y / involving
the images of the maps FX1

and FX2
; IX is independent of the choice of splitting of

X into the two pieces X1 and X2 .

In the presence of a symplectic structure ! on the spinc 4–manifold .X; s/, the famous
work of C Taubes collected in [45] shows that the Seiberg–Witten invariant SWX .s/

agrees with a “Gromov invariant” Gr.X ;!/.˛s/ which counts pseudoholomorphic
submanifolds of X representing a homology class ˛s corresponding to s . Kronheimer
and Mrowka’s work [19] (see [20] for a summary) lays the full foundations for the TQFT
underlying SWX .s/, in which the role of the group V .Y / in the above description
is played by HM.Y; s; �/, where s is a spinc structure and � 2 H 2.Y IR/ is the

Published: 21 October 2006 DOI: 10.2140/agt.2006.6.1677



1678 Michael Usher

cohomology class of the perturbation used in the Seiberg–Witten equations. Given the
correspondence between SW and Gr , it is natural to expect that there might be a TQFT
underlying Gr which corresponds to Kronheimer–Mrowka’s field theory for HM .
Progress in this direction has been made by M Hutchings and his collaborators, who
introduce groups ECH.Y / (embedded contact homology) [16] and HP .Y / (periodic
Floer homology) [17], [15] in the case that Y is, respectively, a contact manifold or a
mapping torus. These groups are conjectured to agree with HM or the (conjecturally
equivalent) Heegaard Floer homology HFC under suitable hypotheses, and do so in
each of the several cases that have been computed. However, at this writing a number
of foundational questions (such as independence of the choice of almost complex
structure) remain to be settled for ECH and HP , and there do not presently exist
full-blown TQFT’s incorporating either one of them.

According to results of S Donaldson [5] and R Gompf [13], a smooth oriented 4–
manifold X admits a symplectic structure if and only if, possibly after blowing X

up at finitely many points, there is a Lefschetz fibration f W X ! S2 whose fibers
are homologically essential. Recall here that a Lefschetz fibration on an oriented
4–manifold is a map to a 2–manifold which is a submersion except at its only finitely
many critical points, near each of which there are orientation preserving complex
coordinates in terms of which the map has the form .z; w/ 7! zw . As such, the fibers
of f are all complex curves of some fixed arithmetic genus, all but finitely many of
which are smooth, with the singular fibers having at worst nodal singularities. In the
presence of a Lefschetz fibration f W X ! S2 (satisfying certain properties that can
always be achieved using the constructions of [5]), Donaldson and I Smith introduced
in [7] an invariant DS.X ;f /.˛/ (for ˛ 2H2.X IZ// which counts pseudoholomorphic
sections of a bundle of symmetric products constructed from f . In [46] it was shown
that this Donaldson–Smith invariant coincides with Taubes’ invariant Gr , and hence
also with the Seiberg–Witten invariant under the appropriate identification of H2.X IZ/

with the set of spinc structures on X .

The present paper concerns what might be described as a restricted TQFT which
underlies the 4–dimensional invariant DS . We view this TQFT as a covariant functor
to the category of modules over a certain ring A from a category whose objects
are closed oriented 3–manifolds Y equipped with fibrations f W Y ! S1 (along
with some additional structure indicated below) with fiber genus at least 2,1 with
Hom..Y�; f�/; .YC; fC// consisting of Lefschetz fibrations f W X !B over a base
with two boundary components @�B and @CB such that f �1.@˙B/ D Y˙ and

1Throughout this paper, the genera of the fibers of all surface fibrations will be implicitly assumed to
be at least two, unless indicated otherwise.
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f jY˙ D f˙ . The “additional structure” alluded to earlier on an object .Y; f / consists
of a homology class

h 2H1.Y IZ/;

a cohomology class
c 2H 2.Y IR/

which evaluates positively on the fibers of f , and

a real number � 2 .2�h\ Œfiber�;C1/:

To each such tuple .Y; f; h; c; �/ and suitable ring A (often, A will be a Novikov ring)
we associate an A–module HF.Y; f; h; c; � IA/. These groups have appeared in the
literature before: in a paper of D Salamon [39] they were conjectured to agree with
the (at the time not-yet-rigorously-defined) monopole Floer groups of Y . As will be
explained in more detail below, the fibration f W Y ! S1 singles out a canonical spinc

structure, which provides an identification of Spinc.Y / with H1.Y IZ/. Let sh be the
spinc structure corresponding to h 2H1.Y IZ/ under this identification. Salamon’s
conjecture can then be restated as saying that,

HF.Y; f; h; c; � IA/ŠHM.Y; sh; �.h; c; �/IA/;

where, in an appropriate normalization, �.h; c; �/ D 4�cC 2�c1.sh/. (The normal-
ization on � in this formula is such that c D 0 (if it were allowed) would correspond
to a “balanced perturbation” as in Kronheimer–Mrowka [19], ie, a perturbation as in
the hypothesis of Conjecture 1.1 of Lee [21]; our requirement that c pair positively
with the fiber thus ensures that reducible solutions to the Seiberg–Witten equations
will not enter the picture (so that HM .Y; sh; �.h; c; �// D 0 and there is just one
nontrivial monopole Floer group corresponding to the perturbation �.h; c; �/, making
the notation HM.Y; sh; �.h; c; �/IA/ unambiguous) and that, in case b1.Y /D 1, all
allowed values of c and � will put �.h; c; �/ on the same side of the “wall” familiar
from Seiberg–Witten theory.) Note here the general principle that the choice of h in
HF corresponds to the choice of a spinc structure in HM , while (given h) the choice
of c corresponds to the choice of a cohomology class of perturbation 2–forms in HM

(up to a scale factor determined by � ). We should caution that the fact that �.h; c; �/
is not a balanced perturbation means that in general HF is not conjectured to coincide
with the Heegaard Floer group HFC ; rather, they should be related by a change of
coefficients as detailed in [19, Chapter VIII].

The following four subsections summarize our results concerning these groups HF .
Section 2 contains the explicit construction of the groups, after which the results of
subsections 1.1, 1.2, 1.3 and 1.4 are proven in Sections 3, 4, 5 and 6, respectively.
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1.1 Coefficient rings

Typically, the natural choice for the coefficient ring A in HF.Y; f; h; c; � IA/ will
be a Novikov ring zƒh;c or ƒh;c which (as the notation indicates) depends on the
choices of h 2 H1.Y IZ/ and c 2 H 2.Y IR/. Let R be a ring (usually Z, Z=2, or
Q), G an abelian group, and N W G! R a homomorphism. Following the notation
of Lee [22], the Novikov ring Nov.G;N IR/ is defined to be the set of formal sumsP

g2G ag �g .ag 2R/ satisfying the property that for every C 2R we have #fgjag ¤

0 and N.g/ < C g<1, with addition and multiplication in Nov.G;N IR/ defined as
the obvious extensions of the corresponding operations on the group ring RŒG�. For
us the most common Novikov rings will be, aside from the universal Novikov ring
mentioned below,

(1) zƒh;c D Nov .kerhc1.sh/; �i; hc; �iIR/

and

(2) ƒh;c D Nov
�

kerhc1.sh/; �i

kerhc1.sh/; �i \ kerhc; �i
; hc; �iIR

�
where hc1.sh/; �i and hc; �i are the evaluation homomorphisms H2.Y IZ/! R.

Obviously, multiplying c by a positive constant leaves ƒh;c unchanged. Recall also
that HM.Y; s; �/ naturally has coefficients in

Nov .kerhc1.s/; �i; h2�.�c1.s/� �/; �iIR/ ;

which is the same as zƒh;c in the event that s D sh and � D �.h; c; �/, consistently
with Salamon’s conjecture.

One checks easily that ƒh;c as defined above embeds via the ring homomorphismX
agg 7!

X
agT hc;gi

as a subring of the universal Novikov ring

ƒR
Nov D

(X
i

aiT
�i jai 2R; .8C > 0/.#fi j�i < C g<1/

)
:

We obtain our groups HF as the homology of a chain complex CF.Y; f; h; c; �/

which naturally has its coefficients in zƒh;c . If A is any algebra over zƒh;c , then
HF.Y; f; h; c; � IA/ is by definition the homology of CF.Y; f; h; c; �/˝ zƒh;c

A. Of
course, as a particular example of this, the projection

kerhc1.sh/; �i !
kerhc1.sh/; �i

kerhc1.sh/; �i \ kerhc; �i
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makes ƒh;c into an algebra over zƒh;c .

Observe that when c D˙c1.sh/, ƒh;c is just the ring R over which we are working
while zƒh;c DRŒkerhc1.sh/; �i�, so no Novikov ring is needed in this case. This choice
of c corresponds to the choice made in the construction of periodic Floer homology;
see [15]. In this case, for any other zc 2H 2.X IR/ evaluating positively on the fibers
of f , zƒh;zc and ƒh;zc are obviously algebras over RŒkerhc1.sh/; �i�D zƒh;˙c1.sh/ , so
if hc1.sh/;fiberi ¤ 0 we have a well defined group HF.Y;F; h;˙c1.sh/; � I zƒh;zc/,
where the sign at the front of ˙c1.sh/ is chosen to make its evaluation on the fiber
positive.

We mention here that, while the presence of a Novikov ring such as zƒh;c as the natural
coefficient ring is a standard aspect of Floer theory, the fact that this Novikov ring is
described directly in terms of the homology of Y and is (crucially for the invariance
theorem below) independent of � is more subtle. This fact follows from two basic
ingredients: a formula from Perutz [35] for a certain cohomology class on the vortex
moduli space; and an expression for the evaluation of one of the terms in that formula
on certain cycles, derived below as Equation (10), which enables us to choose the forms
!c;h;� at the start of Section 2 in such a way as to arrange that zƒh;c be the appropriate
Novikov ring.

The following theorem, whose proof uses the � -independence of the Novikov ring
along with the difficult bifurcation analysis carried out by Y-J Lee in [22; 23], shows
that at least in the majority of cases, the groups HF are independent of � , and depend
on c only to the extent that c determines the appropriate coefficient ring.

Theorem 1.1 Writing d D hPD.h/;fiberi and letting g be the genus of the fibers of
f W Y ! S1 , assume that either d � g� 1 or d < .gC 1/=2. Then:

(i) CF.Y; f; h; c; �/ and CF.Y; f; h; c; � 0/ are canonically chain homotopy equiv-
alent whenever �; � 0 2 R are such that both chain complexes are defined.

(ii) Assume that zc and ˙c1.sh/ both evaluate positively on the fiber. Then for any
� > 2�d , CF.Y; f; h; zc; �/ is chain homotopy equivalent to

CF.Y; f; h;˙c1.sh/; �/˝RŒkerhc1.sh/;�i�
zƒh;zc :

A similar result holds for the dependence of HM.Y; s; �/ on �, as is shown in Section
31 of the current draft version of [19].
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1.2 Grading, module structure, duality, and local coefficients

The groups HF.Y; f; h; c; � IA/ share additional algebraic structure with the monopole
Floer groups, as has been observed independently in the thesis of T Perutz [35].
Throughout the paper, to a 3–manifold Y associate the graded ring

A.Y /D ZŒU �˝ƒ�.H1.Y /= torsion/;

where U is a formal variable of degree 2 and elements of H1.Y / have degree 1. Then:

Proposition 1.2 HF.Y; f; h; c; � IA/ is a naturally Z=2-graded, relatively Z=d.sh/-
graded module over A.Y /, where

d.sh/D gcd
T2H2.Y IZ/

hc1.sh/;T i

and the action of an element of degree p of A.Y / on HF.Y; f; h; c; � IA/ decreases
the relative grading by p .

Since HM likewise enjoys these properties (as seen, for instance, in [19, sections 3.1
and 3.2]), it is natural to embellish Salamon’s conjecture to state that the (conjectural)
isomorphism between HF and HM is an isomorphism of graded modules.

For the “Poincaré duality” property (which, like Proposition 1.2, also appears in [35]),
given .Y; f; h; c; �/, let .�Y; xf ; h; c; �/ be obtained by reversing the orientation of Y

and composing f with complex conjugation.

Proposition 1.3 There is a perfect pairing

h�; �iW CF.Y; f; h; c; � IA/˝CF.�Y; xf ;�h; c; � IA/!A

which satisfies
h@Y a; bi D ha; @�Y bi

and hence descends to a pairing which identifies HF.�Y; xf ;�h; c; � IA/ with the dual
of HF.Y; f; h; c; � IA/.

A handy device in monopole Floer theory is the use of “local coefficients” in HM ,
in which a singular 1–cycle  in Y gives rise to a twisted version HM.Y; s; �I� /

arising from a twisted coefficient system � on configuration space associated to  ;
homologous 1-cycles yield isomorphic coefficient systems and hence isomorphic Floer
groups, but a homology between the cycles must be specified in order to make these
isomorphisms canonical. A parallel situation, which seems most naturally expressed
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in terms of closed 2–forms on Y rather than their dual 1–cycles, exists for our Floer
groups, and we expect the resulting twisted groups to be isomorphic to their monopole
Floer counterparts:

Proposition 1.4 To each closed 2–form � 2�2.Y /, we may associate a local coef-
ficient system �� and hence Floer groups HF.Y; f; h; c; � I�� /. If �1; �2 are closed
2–forms, to each � 2 �1.Y / such that d� D �2 � �1 there is associated a canonical
isomorphism �� W ��1

! ��2
, which then induces an isomorphism of the associated

Floer groups.

1.3 Cobordisms

We define a category FCOB (for “fibered cobordism”) as follows. An object o of FCOB

is a quintuple oD .Y; f; h; c; �/ where, as before, Y is an oriented 3–manifold (we
allow Y to be empty, in which case f; h; c; � need not be specified), f W Y ! S1 is a
fibration, h2H1.Y IZ/, c 2H 2.Y IR/, and � 2 .2�h\ Œfiber�;C1/ (when h\ Œfiber�
is outside the interval Œ.gC1/=2;g�1/ Theorem 1.1 ensures that the Floer homology
HF.o/ associated to the object will be independent of � up to canonical isomorphism;
these isomorphisms will commute with the homomorphisms decribed below). A
morphism mD .X; zf ; �/ in Mor.o�; oC/ consists of a Lefschetz fibration zf W X !B

defined on a 4–manifold X with oriented boundary @X D .�Y�/
`

YC , with two-
dimensional image B having boundary components @�B , @CB ; here @˙BDS1 if Y˙
is nonempty, and otherwise @˙BD¿. We require zf �1.@˙B/D Y˙ and zf jY˙ D f˙ ,
and � D �CD �� . Furthermore, where we denote by @˙W H2.X; @X IZ/!H1.Y˙IZ/

the obvious maps induced by restriction to the boundary, we require that the sets

Cc�;cC D fzc 2H 2.X IR/jzcjY˙ D c˙g

and
Hh�;hC D f

zh 2H2.X; @X IZ/j@˙zhD h˙g

both be nonempty.

We also place the following additional structure on B :

Definition 1.5 A “starred surface with boundary” is an oriented surface B with (say)
genus g and n boundary components equipped with distinguished points, arcs, and
parametrized loops as follows:

(0) The distinguished points comprise one “interior base point” b , s � 0 ‘interior
special points” p1; : : : ;ps , and one “boundary base point” qj on each of the n

boundary components, and
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(1) There are nC s distinguished arcs, namely one from b to pi for each i and
one from b to qj for each j , one distinguished loop (namely the boundary
component) based at each qj , and 2g distinguished interior loops ˛1; : : : ; ˛g;

ˇ1; : : : ; ˇg , such that ˛1; : : : ; ˛g are based at b , are linearly independent in
H1.BIZ/, and represent homotopy classes having zero geometric intersection
number, and ˇ1; : : : ; ˇg are disjoint, with #.˛i \ ǰ /D ıij .

We require also that the distinguished arcs and loops have no intersections other than
the ones implied by the above conditions.

We equip the base B of the Lefschetz fibration zf W X ! B with the structure of a
starred surface with boundary, with interior special points comprising precisely the
critical values of zf , and with the boundary loop at @�B (resp. @CB ) negatively (resp.
positively) oriented. Finally, for technical reasons that shall appear in Lemma 5.1 and
its proof, in the event that g.B/ > 0 we take as given in the data of the morphism
m a set of cohomology classes bi 2H 2. zf �1.ˇi/IR/ with the property that there are
zc 2Cc�;cC ;

zh2Hh�;hC such that biD .zcC2�PD.zh/=�/j zf �1.ˇi /
for i D 1; : : : ;g.B/.

For the sake of conciseness, we shall nonetheless generally denote morphisms with the
notation mD .X; zf ; �/, suppressing our marking of B and our choice of classes in
the H 2. zf �1.ˇi/IR/:

Note that any two starred surfaces B1;B2 with interior base points b1; b2 nonempty
boundary may be glued along any of their common boundary components S1;S2

(if necessary after reversing the parametrization of one of the Si ) to obtain a new
starred surface B1 S1

]S2
B2 with (possibly empty) boundary as follows. We join the

corresponding boundary components at their corresponding boundary base points; this
in particular yields a path  from b1 to b2 . To get the new distinguished arcs, delete
the loop at the former boundary base point, and extend all the paths (and loops) based
at b2 in B2 to paths (and loops) based at b1 in B1]B2 by adding on the path  from
b1 to b2 . This construction applies equally well when B1 D B2 D B (as long as
S1 ¤ S2 ); in this case BS1

]S2
B will have genus one larger than B , and the path 

appears as a new ˛ -curve while the loop resulting from the fusing of the old boundary
components becomes a new ˇ -curve. In particular, a starred Riemann surface B with
genus g and n boundary components can be cut along its ˇ -curves to obtain a starred
Riemann surface B0 with genus 0 and nC 2g boundary components, so that B is
recovered from B0 by applying the gluing construction g times.2

2One might naturally ask whether it is really necessary to incorporate the complication of starred
surfaces into the theory; the reason we have done so is that it will help us construct certain 2–forms
on symmetric product bundles in an essentially canonical way. If we were only considering a single
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Given an object o D .Y; f; h; c; �/ of FCOB, we have a well-defined group
HF.oIƒR

Nov/, where again ƒR
Nov is the universal Novikov ring over the ring R; more

generally if � 2�2.Y / is closed we may consider the twisted Floer homology group
HF.oIƒR

Nov ˝ �� / . A crucial property of HF , a similar version of which was
independently discovered in [35], is that it is a functor from FCOB to the category
MODƒR

Nov
of modules over ƒR

Nov .

Denote by ¿ the object of FCOB whose underlying 3–manifold is the empty set. By
way of definition, we set HF.¿IƒR

Nov/Dƒ
R
Nov .

Given morphisms m0 2Mor.o0; o1/ and m1 2Mor.o1; o2/, we define the composite
morphism m1 ım0 2Mor.o0; o2/ by the obvious procedure of gluing the total spaces
X0 and X1 of the Lefschetz fibrations zf0; zf1 underlying m0 , m1 along their common
boundary component Y1 to obtain a new Lefschetz fibration f W X ! B ; as noted
earlier B inherits the structure of a starred surface with boundary from those of the
bases of the zfi . If we choose zc0 2 Cc0;c1

and zc1 2 Cc1;c2
, so that in particular zc0 and

zc1 have the same restriction to Y1 , then the Mayer–Vietoris sequence reveals that the
set of zc 2H 2.X IR/ such that zcjXi

D zci (i D 0; 1) is nonempty and is an affine space
over the image of the boundary map ıW H 1.Y IR/! H 2.X IR/. Poincaré duality
implies a parallel statement for the hi . In particular m1 ım0 is a morphism (for Cc0;c2

and Hh0;h2
are nonempty, and where relevant the ˇ -curves on B are just those on the

Bi , so we can use the same cohomology classes on the preimages of the ˇ -curves as
were used on the mi ).

Theorem 1.6 To each morphism m D .X; zf ; �/ from o� to oC , where o˙ D

.Y˙; f˙; h˙; c˙; �/, and to each closed form � 2�2.X / vanishing near the critical
points of f W X ! B , we may associate a homomorphism

Fm;� W A.X /˝HF.o�Iƒ
R
Nov˝�� jY� /!HF.oCIƒ

R
Nov˝�� jYC

/

where A.X /D ZŒU �˝ƒ�.H1.X IZ/= torsion/; in fact, each map Fm;� decomposes
naturally as a sum

Fm;� D

X
zh2Hh�;hC

F
m;�;zh

;

and these maps enjoy the following properties:

cobordism, say from o� to oC , it would suffice for the construction of the desired 2–form to replace the
starred surface structure with an auxiliary choice of a cohomology class from the set Cc�;cC . However,
we wish to compose our cobordisms, and the set of possible choices of cohomology class on the composed
cobordism having the appropriate restrictions to the pieces is generally a positive-dimensional affine space,
so that there is no canonical way to glue cohomology classes.
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(i) For morphisms m0 D .X0; f0; �/ from o0 D .Y0; f0; h0; c0; �/ to o1 D

.Y1; f1; h1; c1; �/ and m1 D .X1; f1; �/ from o1 to o2 D .Y2; f2; h2; c2; �/,
for � a closed 2-form on the total space X D X0 [Y X1 of the Lefschetz
fibration underlying m1 ı m0 , for zh0 2 Hh0;h1

; zh1 2 Hh1;h2
, and for v 2

HF.o0Iƒ
R
Nov˝�� jY0

/ we haveX
zh2Hh0;h2

W

zhjX0
Dzh0;zhjX1

Dzh1

F
m1ım0;�;zh

.U kCl
˝ 1˝ v/D

F
m1;� jX1

;zh0
.U k
˝ 1˝F

m0;� jX0
;zh1
.U l
˝ 1˝ v//:

(ii) Where i�W A.Y�/! A.X / is the map induced by the action of the inclusion
Y� �X on H1 , F

m;�;zh
is compatible with the module structure of HF in the

sense that, for � 2 A.Y�/ and v 2HF.o�Iƒ
R
Nov˝�� /,

F
m;�;zh

.1˝� � v/D F
m;�;zh

.i�.�/˝ v/:

(iii) Where �m2Mor.oC; o�/ is the morphism obtained by reversing the orientation
of the boundary components of the base of zf , with respect to the pairing in
Proposition 1.3 we have

hF
m;�;zh

.v/; wioC D hv;F�m;�;zh
.w/io� :

(iv) Suppose that zf W X ! † is a Lefschetz fibration on the closed manifold X

over the closed surface †, so that o� D oC D ¿, and Hh�;hC D H2.X IZ/.
Then for a certain homomorphism AW H2.X IZ/!R and for mD .X; f; �/ and
� 2�2.X / representing Œ� � 2H 2.X IR/ we have,

F
m;�;zh

.U r
˝ .�1 ^ � � � ^ �k/˝ 1/D T A.zh/ehŒ��;

zhiDS
.X ; zf /

.zhIptr ; �1; : : : ; �k/:(3)

Here DS
.X ; zf /

.zhIptr ; �1; : : : ; �k/ is the obvious extension of the Donaldson–
Smith invariant [7] to an invariant counting sections of the relative Hilbert scheme
of f which correspond to surfaces in X representing zh2H2.X IZ/ and passing
through r generic points and through generic cycles representing �1; : : : ; �k .

Our TQFT thus contains the Donaldson–Smith invariant, which, thanks to [45] and
[46], is known to agree with the four-dimensional Seiberg–Witten invariant under a
natural (given the symplectic or Lefschetz fibration structure on X ) correspondence
between H2.X IZ/ and Spinc.X /. As is well-known (and shown in detail in Chapter
VII of [19]), there is a TQFT in Seiberg–Witten theory whose cobordism maps enjoy
properties exactly parallel to those of Theorem 1.6, with the Seiberg–Witten invariant
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appearing in place of the (equivalent, by [45] and [46]) Donaldson–Smith invariant
in part (iv). As such, we may further embellish Salamon’s conjecture to state that the
conjectural isomorphisms between HF and HM commute with the cobordism maps;
the agreement of DS with SW would then be a shadow of this relationship.

In [35], Perutz uses and extends constructions similar to this in order to construct a
“Lagrangian matching invariant” for the singular Lefschetz fibrations constructed in
Auroux–Donaldson–Katzarkov [1] (which exist on blowups for any 4–manifold with
bC > 0, though it is not known whether Perutz’s invariant is independent of the choice
of singular Lefschetz fibration on a given 4–manifold), and conjectures that this new
invariant, too, agrees with the Seiberg–Witten invariant.

1.4 Relation to dynamics of surface symplectomorphisms

Given a symplectomorphism �W .†; !/! .†; !/ of a symplectic 2–manifold of genus
at least 2, form the mapping torus Y� D R �†=.t C 1;x/ � .t; �.x//; this fibers
over S1 and carries a fiberwise symplectic form !� obtained by pushing forward the
obvious form induced by ! on R�† via the projection R�†! Y� . Let j be an
almost complex structure on the fibers of f W Y�! S1 and h 2H1.Y� IZ/; where e is
the Euler class of the vertical tangent bundle of Y� ! S1 , under several assumptions
on � and j , including that Œ!� �2H 2.Y� IR/ is proportional to c1.sh/D eC2PD.h/,
the periodic Floer homology HP .�; h; j / is defined in [17] to be the homology of a
chain complex CP .�; h/ whose generators are “admissible orbit sets” ˛ D f.˛i ;mi/g

such that
P

i mi Œ˛i � D h. Here the ˛i are periodic orbits for � (which then give
rise naturally to loops in Y ), and the mi are positive integers such that mi D 1 if
˛i is hyperbolic. The matrix element h@˛; ˇi for the boundary operator @ of the
chain complex counts certain embedded holomorphic curves C in R� Y such that
C \ .ftg � Y / is asymptotic to ˛ (resp. ˇ ) as t !�1 (resp. t !C1). Note that
CP .�; h/ is independent of j as a graded group; the same is expected to be true of
HP .�; h; j /, but this has not yet been proven.

HP .�; h; j / is defined over the coefficient ring Z; more generally, if Œ!� � D c 2

H 2.X IR/, one could define a periodic Floer homology HP .�; h; c; j / over the same
Novikov ring zƒh;c as in (2).

Let d D h\ Œfiber�. � then induces a continuous (but usually not differentiable) map
Sd�W Sd†! Sd†, where Sd† is the d th symmetric product of †. Letting YSd�

denote the mapping torus of Sd� , h2H1.Y� IZ/ naturally determines a homotopy class
ph of sections of YSd� , and any generator ˛Df.˛i ;mi/g of CP .�; h/ corresponds to
a fixed point D˛ of Sd� such that the “constant section” of YSd� at D˛ represents ph
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(in such a situation we say D˛ is “in the ph -sector”). The admissibility condition on the
hyperbolic orbits in ˛ prevents this from being a one-to-one correspondence. Notably,
at least in some simple cases, one can perturb the (usually only Hölder continuous) map
Sd� to a smooth map ˆW Sd†!Sd† such that the fixed points of ˆ in the ph -sector
are precisely the D˛ for admissible ˛ ; the non-admissible fixed points disappear on
this perturbation to a smooth map. For instance, if � is given in local holomorphic
coordinates near one of its hyperbolic fixed points by xC iy 7! �xC i��1y where
� > 1 (ie, z 7! az C

p
a2� 1xz where a D .�C ��1/=2 > 1), then in terms of the

natural holomorphic coordinates �1 D z1C z2 , �2 D z1z2 near f0; 0g on S2†, S2�

is given by

.�1;�2/ 7!
�
a�1C

p
a2� 1�1; a

2�2C .a
2
� 1/�2C a

p
a2� 1.z1z2C z1z2/

�
D

�
a�1C

p
a2� 1�1; a

2�2C .a
2
� 1/�2C

a

2

p
a2� 1.j�1j

2
� j�2

1 � 4�2j/
�
:

One easily checks that leaving the first component of this function unchanged and
adding an appropriate small imaginary-valued function supported near the origin to the
second component results in a smooth function with no fixed points in the coordinate
neighborhood under consideration.

With this in mind, we state a basic property of our groups HF which suggests a
connection to HP .

Theorem 1.7 For any symplectomorphism � , HF.Y� ; f; h; Œ!� �; �/ arises as the
homology of a chain complex whose generators are the fixed points in the ph -sector of
a smooth map ˆ� W Sd†! Sd†, where ˆ� ! Sd� in C 0 -norm as � !1.

Note that the fixed points of ˆ� will, for large � , all be close to fixed points of Sd� ;
one would like to conclude that they will all be close to the fixed points coming from
the admissible orbit sets that generate HP , but it is not clear that this is the case.
We hope that further analysis of the maps ˆ� might make it possible to establish a
correspondence between the generators and flowlines for HP and those for HF when
� is large enough and hence to equate the two groups, but this seems out of reach at
present.

While we cannot go so far as to prove that HF and HP are equivalent, our results do
suffice to imply the existence of periodic points with certain periods for a certain class
of surface symplectomorphisms. Recall from Seidel [41] that a symplectomorphism
�W †! † is called monotone provided that, where Y� is the mapping torus of �
and !� is the form on Y� induced by the symplectic form on †, the cohomology
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classes e.T vtY�/ and [!� � are proportional. There are monotone symplectomor-
phisms in every mapping class, and if � is monotone then so is any  ı � where
 is the flow of any possibly-time-dependent vector field symplectically dual to a
(possibly-time-dependent) closed one-form representing an element of the image of
id � ��W H 1.†IR/ ! H 1.†IR/, so in particular the intersection of the space of
monotone symplectomorphisms of † with any component of the space of orientation-
preserving diffeomorphisms of † is infinite-dimensional. The following (which is a
special case of known results previously established by rather different means) is the
most general statement we can make about the dynamics of such symplectomorphisms.

Corollary 1.8 Let �W †! † be a monotone symplectomorphism of a surface of
genus g � 2. Then the induced map S2g�2�W S2g�2†! S2g�2† on the .2g� 2/th
symmetric product of † has a fixed point.

As will be clear from our proof, for � belonging to particular mapping classes the
number 2g�2 can be lowered depending on the properties of the Seiberg–Witten basic
classes of the total spaces of Lefschetz fibrations having � as monodromy (in particular,
if � is the monodromy around a loop of a Lefschetz fibration obtained via Donaldson’s
construction by blowing up a Lefschetz pencil, the basic class corresponding to a
section of square �1 forces � itself to have a fixed point). This connection seems to
deserve further study.

Note that a fixed point of S2g�2� is equivalent to, for some partition 2g � 2 DPm
iD1 nidi , periodic orbits o1; : : : ; om of � with minimal periods d1; : : : ; dm respec-

tively. For g > 2, Corollary 1.8 can also be deduced via elementary methods: by
considering the relationship of (what are now called) the Lefschetz numbers of the
iterates of � to the characteristic polynomial of the action of � on H 1.†IZ/, Nielsen
showed in [31] that an orientation-preserving homeomorphism � must have a periodic
point of period at most 2g� 2 and that this estimate is best possible; by examining his
argument more carefully one can show that it implies that one of the Lefschetz numbers
L.�/;L.S2�/;L.S2g�2�/ is nonzero, so that in any event S2g�2� has a fixed point.
Since Nielsen’s argument does not work for the case g D 2, he asked in [31] whether
orientation-preserving homeomorphisms of surfaces of genus 2 always have points
of period at most 2; this question remained open for decades before eventually being
answered affirmatively by Dicks and Llibre [4], using methods quite different from
those we use in the special case considered here.
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During the development of this work, I learned of the thesis [35] of T Perutz, which
(among several other things) develops ideas parallel to some of those discussed in this
paper. By and large, due to slight technical differences in our formulations, the proofs
given here are independent of similar results in [35] (a notable exception is that I appeal
to Perutz’s calculation of a certain cohomology class, which is needed in the proof of
Theorem 1.1 (which has no analogue in [35]) and simplifies some other arguments);
this leads to some redundancy between some results in [35] and parts of Sections 4 and
5 of this paper, which seems justified because it ensures that the relevant results are in
the particular form that we need, and hopefully makes this paper more readable than it
otherwise would be. I am very grateful to T Perutz for sending me his thesis and for
some interesting conversations. Thanks are also due to C Taubes for advice regarding
vortices which played an essential role in the proof of Theorem 1.7; to M Hutchings,
Y-J Lee, and T Mrowka for answering some questions regarding their work; and to the
anonymous referee for his or her detailed comments and useful suggestions. This work
was partially supported by an NSF postdoctoral fellowship.

2 Defining HF

Let Y; f; h; c; � be as in the previous section. Our groups HF.Y; f; h; c; �/ are defined,
adapting Salamon [39], as the Floer homologies of certain symplectomorphisms that
the monodromy of f induces on the symmetric products of the fibers of f . Note that
whereas [39] begins with an explicit presentation of Y as a mapping torus, we do not
begin with such data; since the fibration f W Y ! S1 only specifies the monodromy of
f up to smooth isotopy, we will need additional data to describe its symplectic behavior.
The triple .h; c; �/ (principally, just c ) provides these data: recall that h 2H1.X IZ/

was arbitrary; c 2H 2.X IR/ was a class having positive pairing with the fiber of f ,
and � > 2�h\ Œfiber�.

Set d D h\ Œfiber�. First, if d < 0, set HF.Y; f; h; c; � IA/D 0; this is consistent with
adjunction relations in monopole Floer theory. If d D 0, set HF.Y; f; h; c; � IA/DA

if hD 0 and HF.Y; f; h; c; � IA/D 0 otherwise. Restrict attention now to the case
d > 0.

We then have hcC 2�
�

PD.h/; Œfiber�i> 0, which enables us to use the Thurston trick
to find closed forms ! D !c;h;� 2�

2.Y / representing cC 2�
�

PD.h/ which restrict
symplectically to every fiber of f . The !–orthogonal complement of kerf� � T Y

then defines a horizontal subspace of T Y , and so picking a basepoint in S1 and flowing
along the horizontal lift of the vector field @� on S1 defines a symplectomorphism
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�! W †!†, where † denotes the fiber of f W Y ! S1 over the chosen basepoint in
S1 . We now show that the Hamiltonian isotopy class of the symplectomorphism �!
depends only on the class Œ!� D cC 2�

�
PD.h/ 2 H 2.Y IR/. (This fact is assuredly

well-known and we indicate the proof only for completeness.)

Proposition 2.1 Let f W Y ! S1 be a fibration, and !0; !1 two closed forms on Y

which restrict to each fiber as volume forms and represent the same class in H 2.Y IR/.
Then f�s!1C.1�s/!0

gs2Œ0;1� is a Hamiltonian isotopy from �!0
to �!1

.

Proof Note first that, for any t 2 S1 , !0 and !1 are nonvanishing 2–forms on the
2–manifold f �1.t/ which induce the same orientation, so the same statement applies to
!s WD s!1C.1�s/!0 for each s ; in particular the symplectomorphism f�s!1C.1�s/!0

g

is well-defined.

Since !0 and !1 are cohomologous, write !1 D !0Cd˛ . Now consider the fibration

� W Œ0; 1��Y ! Œ0; 1��S1

.s;y/ 7! .s; f .y//I

the form �D !0C d.s˛/ is then closed and restricts to each Y D ��1.fsg �S1/ as
!s . If we let s be the loop in Œ0; 1��S1 obtained by juxtaposing the paths (each with
domain Œ0; 1� for the parameter t ) t 7! .0; e2�it /, t 7! .st; 1/, t 7! .s; e�2� it /, and
t 7! .s.1� t/; 1/, then the monodromy around s (using the horizontal lift of Ps given
by the �–orthogonal complement of ker d� ) is �!s

ı��1
!0

(modulo the identification of
��1.0; 1/ with ��1.s; 1/ via horizontal translation). But according to Proposition 6.31
of McDuff and Salamon [28], since � 2�2.Œ0; s��Y / is closed and s is contractible,
the �–monodromy around s is Hamiltonian. Thus each �s differs from �0 by a
Hamiltonian isotopy, and the proposition is proven.

Thus, specifying the cohomology class cC 2�
�

PD.h/ 2H 2.Y IR/ specifies the mon-
odromy �! of the fibration f W Y ! S1 up to Hamiltonian symplectomorphism; this
makes it reasonable to expect basic symplectic properties (eg, Floer homology) of � to
depend only on c , h, and � . The reader might wonder at this point why we are using
the formula cC 2�

�
PD.h/ to refer to the cohomology class of the form on Y rather

than just, say, c (as is done in [35]); the reason is that with this choice we ensure that
the coefficient ring zƒh;c over which the still-to-be defined group HF.Y; f; h; c; �/ is
naturally a module will depend only on h and c and not on � (indeed, as will be seen
in the proof of Theorem 1.1, under a technical assumption on h\ Œfiber� this choice
ensures that the groups themselves are independent of � ).
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We now explain the definition of the groups HF when d > 0. Given the data
.Y; f; h; c; �/, we choose a closed, fiberwise symplectic form ! representing the
class cC 2�

�
PD.h/: As above, choosing a basepoint 1 2 S1 and using the horizontal

distribution induced by ! , we obtain a fiberwise symplectomorphism

.Y; !/Š

�
R�†

.t C 1;x/� .t; �!.x//
; !

�
;

where † D f �1.1/ and the symplectomorphism �! W .†; !j†/! .†; !j†/ is the
monodromy of f . We shall follow [39] to define a family of symplectic forms �d;!;�

on the symmetric products Sd†, and a family of maps ˆd;!;� W S
d†! Sd† which

are �d;!;� –symplectomorphisms.

These symplectomorphisms are obtained from a construction involving the U.1/ vortex
equations on the fiber †. This construction is carried out in Sections 4 and 5 of [39]; we
recall it here. Let L be a Hermitian line bundle on † of degree d . The configuration
space CL is defined as the space of pairs .A; �/ where A is a Hermitian connection
on L and � is a section of L (in practice these should be viewed as elements of
Sobolev spaces L2

k
for k > 2, but for the most part we shall suppress these standard

details; incidentally, our � will be .2�/�1=2 times the section ‚0 used in [39]). J

will denote an !–compatible complex structure on †. The U.1/ vortex equations for
a pair .A; �/ 2 CL are then

x@J ;A� D 0

iFA D �.1� j� j
2/!:(4)

Now the tangent space to CL is given by T.A;�/CL D �
1.†I iR/ ��0.E/. There

exists a universal symplectic form z‚ 2�2.CL/ given by

z‚..˛1; �1/; .˛2; �2//D�

Z
†

˛1 ^˛2C 2�

Z
†

=h�1; �2i!:

Where again J is an arbitrary complex structure on † compatible with ! ,

XJ D f.A; �/ 2 CLj
x@J ;A� D 0g

is a symplectic submanifold of .CL; z‚/. A Kähler structure is induced on both XJ

and CL by z‚ together with the complex structure .˛; �/ 7! .�˛; i�/.

One has an action of the gauge group G DL2
kC1

.†;S1/ by

u � .A; �/D .A�u�1du;u�/I

Algebraic & Geometric Topology, Volume 6 (2006)



Vortices and a TQFT for Lefschetz fibrations on 4–manifolds 1693

in fact this is a Hamiltonian action on CL , with moment map

�W .A; �/ 7! �iFAC � j� j
2

(where �! D 1). The set zM†;d .J; �/ of solutions to the vortex equations is thus
XJ \�

�1.�/, and the set

M†;d .J; �/D zM†;d .J; �/=G

of gauge equivalence classes of solutions to the vortex equations is the symplectic
reduction of XJ by the action of G .

An extension by O Garcia-Prada [11] of a theorem of C Taubes implies that the map

M†;d .J; �/! Sd .†;J /

which sends an equivalence class ŒA; � � to the zero set of � is an isomorphism of
complex manifolds. (We write Sd .†;J / here to emphasize that the complex structure,
and indeed even the C1 charts, on Sd† depend on the complex structure on †.) The
form z‚ on CL descends to a symplectic form ‚J ;� on each M†;d .J; �/.

Let J .†/ be the space of (almost) complex structures on †, and consider the space

zX D f.J;A; �/jJ 2 J .†/; .A; �/ 2 XJ g:

zX obviously fibers over J .†/ with fiber XJ , and z‚ defines a closed, fiberwise
symplectic form on this fibration. Carrying out the above symplectic reduction process
fiberwise, we obtain a closed, fiberwise symplectic form y‚� on the fibration

yX D f.J;D/jD 2 Sd .†;J /g ! J .†/:

 W Œ0; 1�! J .†/If

t 7! Jt

is a smooth path of almost complex structures on †, we then obtain a symplectic
fibration on  � yX with closed fiberwise symplectic 2–form  � y‚� . Using the parallel
translation given by the . � y‚� /–orthogonal complement of T vt � yX then gives a
symplectomorphism

(5) FfJt gW .S
d .†;J0/;‚J0;� /! .Sd .†;J1/;‚J1;� /:

With this preparation in hand, let us return to the data consisting of a fibration f W Y !
S1 along with h 2 H1.X IZ/, c 2 H 2.X IR/, and � 2 R; as earlier, we set d D

h\ .fiber/ and choose a fiberwise symplectic 2–form ! D !c;h;� representing cC
2�
�

PD.h/; letting �! be the resulting monodromy map †! †, the pair .f W Y !
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S1; !/ is identified as a symplectic fibration with the mapping torus of �! . Now let
xJ be an !–compatible almost complex structure on T vtY ; the datum of xJ amounts
to a path Jt of almost complex structures such that J1 D �

�
!J0 . Now if � is any

diffeomorphism of † and J any complex structure on † there is a tautological Kähler
isomorphism

Sd�W Sd .†; ��J /! Sd .†;J /

(we should caution here that if we were to instead view Sd� as a map Sd .†;J /!

Sd .†;J / it typically would not even be differentiable). We then set

ˆd;!;� D Sd�! ıFfJt gW .S
d .†;J0/;‚J0;� /! .Sd .†;J0/;‚J0;� /:

ˆd;!;� is the composition of two symplectomorphisms and hence is a symplectomor-
phism.

Proposition 2.2 If !0 and !1 are two representatives of cC 2�
�

PD.h/ as above, and
J0;t (resp. J1;t ) are !0 – (resp. !1 –) compatible almost complex structures, with Js;t

a family of .s!1 C .1� s/!0/–compatible almost complex structures interpolating
between them, then ˆd;!0;� is Hamiltonian equivalent to F�1

fJs;0g
ıˆd;!1;� ıFfJs;0g

.

Proof First note that, by the proof of Proposition 2.1, the forms !s D s!1C.1�s/!0

are all fiberwise symplectic on Y ; in light of this the family of almost complex structures
Js;t exists by the contractibility of J .†/. Defining �W Œ0; 1�2 ! J .†/, we have a
closed fiberwise symplectic 2–form �� y‚ on the fibration

�� yX D f.s; t;D/jD 2 Sd .†;Js;t /g ! Œ0; 1�2;

and since each

Sd�!s
W .Sd .†;Js;1/;‚Js;1;� /! .Sd .†;Js;0/;‚Js;0;� /

is a symplectomorphism, �� y‚ descends to the mapping torus

�� yX=.s; 1;D/� .s; 0;Sd�.D//;

making this fibration over the cylinder a locally Hamiltonian fibration. Now the
monodromy of this fibration around a loop similar to that in the proof of Proposition 2.1
(using, as usual, the form induced by �� y‚ to determine the horizontal distribution) is
F�1
fJs;0g

ıˆd;!1;� ıFfJs;0g
ıˆ�1

d;!0;�
. But since the loop is contractible this monodromy

is Hamiltonian by [28, Proposition 6.31].

We can now finally define HF.Y; f; h; c; �/. If ˆW .X; !/! .X; !/ is a symplecto-
morphism of a symplectic manifold X with nondegenerate fixed points, let Yˆ! S1
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denote the mapping torus of ˆ and !ˆ denote the 2–form on Yˆ induced by the
pullback of ! to R� Y . Recall then that, for P 2 �1.�.Yˆ//, the Floer homology
HF symp.ˆ;P/ is obtained, naı̈vely, by Floer–Morse theory on the subset of �.Yˆ/
consisting of sections representing the homotopy class P using the action 1–form

(6) Y .�/D�
Z 1

0

!ˆ. P .t/; �.t// dt;

for  2 P and � 2 TP D  �T vtY� (if ˆ has degenerate fixed points, a perturbation
is used; see Section 3 of [22], which is the most thorough reference for this subject).
The complex CF symp.ˆ;P/ is then generated by fixed points x of ˆ with the property
that the “constant section” of Yˆ at x belongs to the homotopy class P ; the boundary
operator counts holomorphic cylinders in R�Yˆ . CF symp naturally has its coefficients
in, depending on convention, either the Novikov ring

Nov
�

kerhc1.T
vtY�/; �i

kerhc1.T vtY�/; �i \ kerh!; �i
; h!; �iIR

�
or the larger Novikov ring

Nov
�
kerhc1.T

vtY�/; �i; h!; �iIR
�

for a ring R (in our context, for g=2C 1< d < g� 1, the virtual moduli methods of
Liu and Tian [24] are required, and so R will need to be a field of characteristic zero).

We consider the case X D Sd .†;J / and ˆDˆd;!;� . As is shown in [39, Section 7],
there is a one-to-one correspondence Ph$ h between

�1.�.Yˆd;!;�
// and fh 2H1.Y�! IZ/jh\ .fiber/D dg

(roughly speaking, a homotopy class P of sections of the bundle Yˆd;!;�
! S1 of

symmetric products corresponds to the homology class represented by the union of
points appearing in the divisors represented by some section in P ; we’ll be clearer
about this later).

As such, we can set

HF.Y; f; h; c; �/DHF symp.ˆd;!;� ;Ph/;

where, once again, ! is a fiberwise symplectic representative of cC 2�
�

PD.h/. By
Proposition 2.2 and the standard fact that HF symp is invariant under conjugation
by symplectomorphisms and under Hamiltonian isotopy, we see immediately that
HF.Y; f; h; c; �/ does not depend on the choice of ! . We shall soon verify that the
Novikov ring over which it is defined is as promised in the introduction, and that it is
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independent of � at least for d outside a certain range. First, however, a digression
regarding the topology of Yˆ is in order.

3 Basic properties of HF

3.1 Topology of (relative) symmetric products

We review here some basic facts regarding the cohomology of symmetric products. A
standard reference for some of this material is Macdonald [26]; for the relative versions
see also the appendices and Section 2.1 of [35].

First note that if † is a Riemann surface we obtain a natural map

"W H�.†IZ/!H�.Sd†IZ/

as follows. Inside the product †�Sd† we have a divisor DDf.p;D/2†�Sd†jp 2

Dg, where we view D 2Sd† as a set of points in † (in other references, such as [35],
D is called �, but we prefer to use � to denote the diagonal stratum in the symmetric
product). Letting �1 and �2 denote the projections of †�Sd† onto either factor, the
map " is defined by

"c D .�2/!.d[�
�
1 c/;

where dD PDŒD� 2H 2.†�Sd†IZ/. Note the simple geometric interpretation of
this map: if c 2H�.†IZ/, let A be a cycle Poincaré dual to c ; then the Poincaré dual
of "c is represented by a cycle whose image is the set fD 2 Sd†jD \A ¤ ¿g of
degree d effective divisors on † which contain a point of A.

Dually, there is a map

#W H�.S
d†IZ/!H�.†IZ/

A 7! .�1/�.d\�
!
2A/I

again we may intuitively visualize this as sending A 2H�.S
d†IZ/ to the homology

class in † represented by union of all the points in † which appear in the set of
divisors which is the image of some chain representing A. Note that for c 2H�.†IZ/

and A 2H�.S
d†IZ/, we have

h"c;Ai D h.�2/!.d[�
�
1 c/;Ai D hc; .�1/�.d\�

!
2A/i D hc;#Ai:

We can now describe the cohomology of Sd†; for proofs (in a somewhat different
language) see [26].

Proposition 3.1 (i) The map "W H 1.†IZ/!H 1.Sd†IZ/ is an isomorphism.
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(ii) Identifying H 1.†IZ/ with H 1.Sd†IZ/ by ", where ! is a positive generator
of H 2.†IZ/ and U D" ! , one has

H�.Sd†IZ/D
ZŒU �˝Zƒ

�H 1.†IZ/

hU i ˝ .1 ^ � � � ^ j /ji; j � 0; i C j > d; i 2H 1.†IZ//i

as graded rings. In particular H�.Sd†IZ/ is naturally a module over ZŒU �˝Z

ƒ�H 1.†IZ/.

We will also be interested in relative symmetric products associated to surface fibrations.
To wit, let � W X ! B be a fibration with fiber † a closed surface of genus g � 2 (B
is a compact manifold, possibly with boundary, in which case @X D ��1.@B/). By
choosing an almost complex structure J on T vtX and appealing to the parametrized
Riemann mapping theorem to obtain “restricted charts” which are smooth horizontally
and holomorphic vertically (see, eg, [7]), one can construct a fibration

…W Xd .�/! B

carrying a vertical almost complex structure zJ such that each fiber …�1.b/ is identified
as a complex manifold with .Sd��1.b/;J j��1.b//. The maps " and # extend to the
relative context: inside the fiber product

X��…Xd .�/

we have a codimension–2 submanifold

DD f.b;p;D/ 2 B �X �Xd .�/jp 2 �
�1.b/;D 2…�1.b/;p 2Dg

determining a class

ŒD� 2H2dC2.X��…Xd .�/; @.X��…Xd .�///:

Again let dD PDŒD� and define

"W H�.X IZ/!H�.Xd .�/IZ/

c 7! .�2/!.d[�
�
1 c/;

and similarly for #, where �1 and �2 are the projections from X��…Xd .�/ to X

and Xd .�/, respectively.

The following formula, proven using the family Atiyah–Singer theorem, expresses the
first Chern class of the vertical tangent bundle T vtXd .�/ (with its induced almost
complex structure) in terms of the Euler class of T vtX .
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Lemma 3.2 [35, Lemma 2.1.1] Assume that B is closed. Then

c1.T
vtXd .�//D

1

2

�
".e.T vtX //C .�2/!.d

2/
�
:

We now give a geometric interpretation of the class .�2/!.d
2/ appearing in Lemma

3.2. �� Xd .f / will denote the real–codimension 2 subvariety of Xd .f / consisting
of divisors D having one or more points repeated. � is easily seen to represent an
element Œ�� 2H2r�2Cdim B.Xd .f /; @Xd .f //.

Proposition 3.3 If B is closed, then .�2/!.d
2/D PDŒ��C ".e.T vtX //:

Proof Let v 2 �.T vtX / be a transversally-vanishing vertically-valued vector field
on X . v then induces a vertically-valued vector field V on X� �… Xd .�/ by, with
respect to the splitting T vt

.b;p;D/
X� �…Xd .�/D T vt

.b;p;D/
X ˚T vt

.b;p;D/
Xd .�/, setting

V .b;p;D/D .v.b;p/; 0/. So d2 is represented by the Poincaré dual of the vanishing
locus V of the projection of V jD to the normal bundle ND . This latter is easily seen
to be

f.b;p;D/ 2X� �…Xd .f /jD D 2pCD0 for some D0 2Xd�2.�/g

[f.b;p;D/ 2X� �…Xd .f /jv.p/D 0g:

Hence .�2/!.d
2/D PD.�2/�ŒV � is represented by the Poincaré dual of the homology

class represented by the union

�[fD 2Xd .f /jD\ v
�1.0/¤¿:g

But the second set in this union represents PD.".e.T vtX /// since v is a transversally
vanishing section of T vtX . The conclusion is then immediate.

3.2 Novikov rings

We shall now recall how exactly Novikov rings enter into the general picture of
symplectic Floer theory; [22] is a good reference for those seeking further details. After
this, we shall be prepared to verify that the Novikov ring over which HF.Y; f; h; c; �/

is defined is indeed the ring zƒh;c of the introduction. As many references exist for
technicalities relating to the relevant Fredholm theory and compactness, our treatment
shall be essentially formal, but our conclusion will remain valid in full generality, with
the exception that the ring R below needs to be a field of characteristic zero when the
virtual moduli methods of [24] are required. Returning to the notation of Section 2,
assume that ˆ W .X; !/! .X; !/ is a symplectomorphism. The configuration space for
HF symp.ˆ;P/ is then the space of sections of the mapping torus Yˆ of ˆ belonging
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to the homotopy class P , and generators for the Floer complex will be those sections
of Yˆ corresponding to fixed points of ˆ. We have a natural evaluation map

evP W H1.PIZ/!H2.YˆIZ/:

Let A0 2 H1.PIZ/ be such that hc1.T
vtYˆ/; ev.A0/i is a positive generator for

Im.hc1.T
vtYˆ/; ev.�/iW H1.PIZ/ ! Z/. Let pW zP ! P be the universal abelian

cover of the configuration space P , with covering group H1.PIZ/. One then has
a natural relative Z–grading zgr.zx; zy/ for any nondegenerate zx; zy 2 zP given by the
Maslov index, such that

(7) zgr.zx; zy/C zgr.zy; zz/D zgr.zx; zz/ and zgr.zx;A � zx/D hc1.T
vtYˆ/; ev.A/i:

Where F � P denotes the set of critical points for the action 1–form Y of (6), for all
x 2 F choose and fix lifts zx in zP with the property that

j zgr.zx; zy/j< hc1.T
vtYˆ/; ev.A0/i

for each x;y , as is possible using the second property in (7).

Where J is a generic R–invariant almost complex structure on R � T vt .Yˆ/, the
boundary operator for the Floer complex counts finite energy solutions

U W R�S1
! R�Yˆ

.s; t/ 7! .s;u.s; t//

to a perturbed Cauchy–Riemann equation x@J U DXH .U /; each of these is asymptotic
as s ! ˙1 to generators x˙ 2 F , and s 7! u.s; �/ determines a path in P from
x� to xC . This path then lifts to a unique path zu in zP from zx� to A � zxC for some
A 2H1.PIZ/. Accordingly, given A, let MJ ;H .x

�;xCIA/ be the set of those U

which, as above, satisfy x@J D XH .U / and determine a path s 7! zu.s; �/ in zP from
zx� to A � zxC . For generic Hamiltonian perturbations XH , this will be a manifold of
dimension zgr.zx�;A� zxC/ with a free R–action. Note that the choice of A0 determines
a splitting H1.PIZ/ D ZA0˚ ker.hc1.T

vtY /; ev.�/i/; let p2 denote the projection
onto the second summand in this splitting.

The Floer complex CF symp.ˆ;P/ is then the free module generated by the elements
of P over the Novikov ring

(8) Nov
�
kerhc1.T

vtYˆ/; ev.�/i; hŒ!ˆ�; ev.�/iIR
�
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where R is an arbitrary ring (the notation is as in the introduction); the differential is
given by the formula

@hx�i D
X

zgr.zx�;A�zxC/D1

#.M.x;yIA/=R/Œp2.A/�hx
C
i:

Here #.M.x;yIA/=R/ refers to a signed count of points in the indicated compact
0–manifold, using coherent orientations as in Floer and Hofer [10].

Recall now that HF.Y; f; h; c; �/ D HF symp.ˆd;!;� ;Ph/ where ! is a fiberwise
symplectic 2–form on Y representing cC 2�

�
PD.h/ and d D h\ .fiber/. We can be

somewhat clearer than before about the definition of the homotopy class Ph of sections
of Yˆd;!;�

corresponding to h; note that Yˆd;!;�
is the relative symmetric product

built from the fibration f W Y ! S1 ; Ph is characterized by the property that, where

evW �0.�.Yˆd;!;�
//!H1.Yˆd;!;�

IZ/

is the obvious evaluation map, we have #.ev.Ph//D h, the map # having been defined
in the last section.

Lemma 3.4 Let  2H1.Ph/, with ev. /D T 2H2.Yˆd;!;�
IZ/. Then

hPD.�/;T iYˆd;!;�
D h2PD.h/� e.T vtY /;#T iY

where � is the diagonal in the relative symmetric product Yˆd;!;�
.

Proof Assume  is represented by a loop ˛W S1! Ph . Define

z̨W S1
�S1

! S1
�Yˆd;!;�

.�; t/ 7! .�; ˛.�; t//

and let zT 2H2.S
1 �Yˆd;!;�

IZ/ be the class represented by z̨ . By perturbing ˛ , we
may assume that z̨ is transverse to the diagonal in S1 �Yˆd;!;�

(which is a relative
symmetric product over the torus, of course). Where i W Y Š f1g �Y ! S1 �Y is the
inclusion, we have

(9) # zT D i�.#T /C ŒS1�� h:

Let C D fp 2 S1 � Y j9D 2 Im.z̨/p 2 Dg be the image of the cycle in S1 � Y

representing #T , so that C is “swept out” by z̨ . Where v is a transversally vanishing
section of T vt .S1 �Y / all of whose zeroes occur over points in S1 �S1 which are
not contained in the finite set f.s; t/ 2 S1 � S1jz̨.s; t/ 2 �g and �t W Y ! Y is its
time–t flow, set

C t
D fp 2 S1

�Y j�t .p/ 2 C g:
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For t small, one sees that there is one intersection of C with C t for each point of
v�1.0/\C , and another intersection of C with C t for each intersection of the image
of z̨ with �, and that moreover these all occur with correctly–corresponding signs.
This shows that

hPD.# zT /;# zT iS1�Y D hPD.�/; zT iS1�Yˆd;!;�
Che.T vt .S1

�Y //;# zT iS1�Y :

But from (9) we see

hPD.# zT /;# zT iS1�Y D 2hPD.h/;#T iY ;

while it is straightforward to see that

hPD.�/; zT iS1�Yˆd;!;�
D hPD.�/;T iYˆd;!;�

and
e.T vt .S1

�Y /;# zT iS1�Y D he.T
vtY /;#T iY ;

proving the lemma.

We now invoke the following very useful calculation of Perutz.

Theorem 3.5 [35, page 70]

Œ.�d;!;� /ˆd;!;�
�D 2�

�
� " Œ!���.�2/!.d

2/
�
2H 2.Yˆd;!;�

IR/:

With this in hand we can identify the Novikov ring over which HF.Y; f; c; h; �/ is
defined.

Combining Proposition 3.3 and Lemma 3.4 and using several times the duality between
" and #, we see that, for  2H1.PhIZ/, we have

(10) h.�2/!.d
2/; ev. /i D hPDŒ��C "e.T vtY /; ev. /i D h2PD.h/;# .ev. //i;

so by Lemma 3.2

(11) hc1.T
vtYˆd;!;�

/; ev. /i D
1

2
he.T vtY /C 2PD.h/;#ev. /i:

Meanwhile since we are choosing ! as a representative of cC 2�
�

PD.h/, we have

hŒ.�d;!;� /ˆd;!;�
�; ev. /i D 2�h�.cC 2�PD.h/=�/��.2PD.h//;#ev. /i

D 2��hc;#ev. /i:(12)
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Therefore, in light of (8), HF.Y; f; h; c; �/ is defined over the Novikov ring

Nov
�
kerhe.T vtY /C 2PD.h/; �i; hc; �iIR

�
:

In the introduction, allusions were made to “a spinc structure sh corresponding to
h 2 H1.Y IZ/;” we clarify that slightly here: in [39, Section 8], Salamon defines
a canonical spinc structure on the total space of f W Y ! S1 which has (rank 2,
Hermitian) spinor bundle S D C˚ T vtY (the reader who prefers to think of spinc

structures as given by nonvanishing vector fields can identify this as the structure
specified by a vector field which is transverse to the fibers of f ). sh is then defined by
tensoring S with a line bundle L such that c1.L/D PD.h/ and extending Clifford
multiplication trivially. Evidently, then,

c1.sh/D c1.L˚ .T
vtY ˝L//D e.T vtY /C 2PD.h/;

proving that the Novikov ring we are considering is precisely the ring zƒh;c specified
in Section 1.1. (If one instead uses the convention that the natural coefficient ring for
CF symp.ˆ;P/ is

Nov
�

kerhc1.T
vtYˆ/; ev.�/i

kerhc1.T vtYˆ/; ev.�/i \ hŒ!ˆ�; ev.�/i
; hŒ!ˆ�; ev.�/iIR

�
one evidently instead obtains the smaller ring ƒh;c here.)

3.3 Invariance

In this subsection, we shall prove Theorem 1.1. We remark first of all that for invariance
results such as Theorem 1.1 which equate the homologies of two Floer chain complexes
CF� and CFC which depend on different auxiliary data, the usual technique of proof
has for some time been the “method of continuation,” wherein one defines a chain
map CF�!CFC by counting finite-energy solutions to some modified version of the
Cauchy–Riemann equations on the cylinder Rt �S1 which has the property that such
solutions are asymptotic to generators of CF˙ as t !˙1. In our setting, in which
we consider the effect on HF.Y; f; h; c; �/ of varying the parameter � , naı̈ve attempts
to use this method do not appear to work. Indeed, the method of continuation would
suggest that, to equate HF.Y; f; h; c; ��/ with HF.Y; f; h; c; �C/ for (say) �� < �C ,
we should consider maps

uW R�S1
! R�Yd .f /

which satisfy a perturbed Cauchy–Riemann equation for an almost complex structure
on R�Yd .f /, which is compatible with a form � on R�Yd .f / which agrees with
the form induced by �d;!;�˙

as the R parameter approaches ˙1. But since �d;!;�C

and �d;!;�� are not cohomologous, such a form � could not be closed, and this would
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prevent us from obtaining the energy bounds on these maps u which are needed to
show the continuation method validly defines a map between the two chain complexes.

Instead of the continuation method, we make use of recent work of Lee [22; 23])
which will enable us to understand in fairly explicit terms how the chain complexes
CF.Y; f; h; c; �/ vary as � increases from �� to �C . It is interesting to note that A
Floer himself used a similar method in his original paper [9] on Lagrangian Floer
homology, though some details needed to justify this approach did not appear until
Lee’s work. Lee was concerned with torsion invariants rather than homology in her
work, and so did not explicitly prove an invariance theorem for homology, even though
such a theorem readily follows from her analysis (Lee also did not consider the effect of
smoothly varying the symplectic form; however this does not complicate the analysis
as long as the “H 1 –codirectionality” hypothesis discussed below is maintained). Since
this result may be useful in other contexts, we state it in general form here and give
an outline of the algebraic arguments needed in the proof, referring readers to [22]
and [23] for the subtle geometric and analytic arguments necessary to show that the
Floer complexes behave as we claim. Recall from [22, Definition 2.3.1] that a 2n-
dimensional symplectic manifold .X; !/ is wC–monotone provided that every sphere
with Chern number strictly between 0 and n� 1 has positive symplectic area.

Theorem 3.6 (Lee) Let f!tgt2Œ0;1� be a smooth family of symplectic forms on a man-
ifold X such that the symplectic manifolds .X; !t / are wC–monotone, let �t W X!X

be a smooth family of diffeomorphisms such that ��t !t D !t , and let P 2 �0.�.Y�t
//

be such that the action functionals Y t for the Floer complexes CF symp.�t ;P/ are
H 1 –codirectional, in the sense that, where K � �1.�.Y�t

// denotes the kernel of the
spectral flow homomorphism we have ŒYt �jK D f .t/ŒY0�jK where f is a nonnegative
continuous function; thus where ƒt is the Novikov ring over which CF symp.�t ;P/ is
naturally defined ƒ0 is a module over ƒt , with ƒ0 Dƒt when f .t/¤ 0. Then

CF symp.�0;P/ is chain homotopy equivalent to CF symp.�1;P/˝ƒ1
ƒ0:

We first explain how Theorem 1.1 follows from this result. In Theorem 1.1, we consider
two cases where we allow one entry from the standard data .Y; f; h; c; �/ to vary in a
one-parameter family; namely, we either:

(i) Let � vary from �� to �C (say �t D .1� t/��C t�C ), fixing .Y; f; h; c/, or

(ii) Let c vary from zc to ˛c1.sh/ (say ct D t˛c1.sh/C .1� t/zc ; here ˛ 2 R n f0g),
fixing .Y; f; h; �/.

Recall that in the statement of Theorem 1.1 we have assumed that either d � g� 1 or
d < .gC 1/=2; since �2.S

d†/ is an infinite cyclic group generated by a sphere on
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which the symplectic form is positive and c1 evaluates as d � gC 1 [26] this is the
assumption needed to ensure that Sd† is wC–monotone and so for Theorem 3.6 to
apply. For the range .gC 1/=2� d < g� 1 it seems likely that the methods of [24]
could be used to prove similar results to the ones we cite here, but this does not appear
to be at all straightforward.

In either case, let �t be the symplectic form obtained by Salamon’s construction using
the data at time t . The relevant action one–form, defined on the space of sections  of
Yd .f / representing the homotopy class Ph , is then

Y t
 .�/D�

Z 1

0

�t . P .s/; �.s// dsI

the action of this 1–form on loops in Ph is given by Equation (12). Meanwhile the action
of c1.T

vtYd .f // (which plays the role here of Lee’s spectral flow homomorphism
 W �1.Ph/! Z) is given by hc1.sh/;#ev.�/i: So in case (i) above, the classes of the
forms Y t in H 1.PhIR/ satisfy

ŒY t �jker D
�t

�0

ŒY0�jker 

while in case (ii)

ŒY t �jker D .1� t/ŒY1�jker :

Thus in both cases, our path of 1–forms Y t on the infinite-dimensional space Ph is
H 1 –codirectional. This fact makes Theorem 3.6 relevant to our situation.

We now briefly outline the facts from [22] which enter into the proof of Theorem
3.6. Lee’s work implies the existence of a “regular homotopy of Floer systems”
(RHFS) between the (partially-defined) flows on the space P � Y�t

which underlie
complexes CF symp.�0;P/ and CF.�1;P/. Namely, there is a path .Jt ;Ht /t2Œ0;1�
of !t –compatible almost complex structures and Hamiltonian perturbations such
that as t varies the chain complexes CF symp.�t ;P/ change only at certain values of
t corresponding to “handleslides” and (just finitely many) “death-births,” all in the
complement of a set Sreg of second category in Œ0; 1�; the Floer complex corresponding
to .Jt ;Ht / is well-defined for each t 2 Sreg .

If Œt0; t1�� Œ0; 1� is an interval in which the complex changes only by handleslides (that
is, Floer flow lines between generators of equal index; there may be infinitely many of
these, but only finitely many with energy below any given bound) and t0; t1 2 Sreg ,
the generators for the chain complex remain unchanged throughout the interval, while
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the differentials @0; @1 of the chain complexes at times t0; t1 are related by

h@1x;yŒp2.A/�i Dh@0x;yŒp2.A/�iC(13) X
z;B

X
s2MŒt0;t1�

hs
.x;zIB/

�.s/h@0z;yŒp2.B �A/�iC

X
z;C

X
s2MŒt0;t1�

hs
.z;yIC /

��.s/h@1x; zŒp2.C �A/�i

where in general MŒt0;t1�

hs
.u; vIB/ denotes the moduli space of handleslides between

the generators u and v having Novikov ring weight B , and for each handleslide s

�.s/D˙1 is a sign determined by coherent orientations.

If we then set

T x D xC
X
z;B

X
s2MI

hs
.x;zIB/

�.s/zŒp2.B/�;

then the matrix element h@0T x;yŒp2.A/�i is the sum of the first two terms on the
right hand side of (13), while hT @1x;yŒp2.A/�i is the difference of the term on
the left hand side and the last term on the right. Hence T defines a chain map
CF symp.�1;P/˝ƒ0 ! CF symp.�0;P/ (note that this is well-defined over ƒ0 as
a result of the finiteness condition on handleslides mentioned earlier). But T is an
invertible map (if we write T D I CU where U is the identity,

P1
nD0.�U /n will be

a well-defined endomorphism over the Novikov ring and will obviously be inverse to
T ), so it actually defines an isomorphism of chain complexes.

This reduces the invariance problem to showing that the Floer homology is unchanged
on intervals containing death-births, of which there are only finitely many. Let I � Œ0; 1�

be an open interval containing a single death or birth, say at xt (we’ll assume it’s a birth;
the death case may be obtained by reversing various arrows and inequality signs in the
discussion below). For t < t 0 < xt such that t; t 0 2 Sreg we have isomorphisms of chain
complexes

Tt;t 0 W CF symp.�t ;P/˝ƒ0! CF symp.�t 0 ;P/˝ƒ0

as above; these form a directed system indexed by a dense subset of ft 2 I jt < t 0g, so
we may let .CF�

xt
; @�/ be the direct limit of the CF symp.�t ;P/ under this directed

system. Likewise let .CFC
xt
; @C/ be the inverse limit of the directed system indexed by

the subset ft 2 I\Sregjt > xtg of I , given by the isomorphisms Tt;t 0 . We pass to these
limits in order to allow ourselves to ignore handleslides in the following discussion,
since xt might not be contained in any open interval over which there are no handleslides.
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Lee’s axioms for an RHFS in [22, Section 4] (see also Hutchings [14] for a more
explicit description in the finite dimensional context) imply the following description
of the relationship of .CFC

xt
; @C/ to .CF�

xt
; @�/. We have

CFC
xt
D CF�xt ˚ƒ0hx

C;x�i

for some two generators x˙ which differ in relative grading by 1; these new generators
are “born” from a degenerate critical point x0 of the action form Yxt which appears at
t Dxt .

Using Lee’s axioms RHFS2 and RHFS2c, one can deduce the following description
for the relationship between the Floer boundary operators @� and @C . There are maps
vW ƒ0 ! CF�

xt
, �W CF�

xt
! ƒ0 and an invertible element ˛ 2 ƒ0 such that, with

respect to an ordered basis for CFC
xt

consisting of an ordered basis for CF�
xt

followed
by .xC;x�/, the differential @C may be written in block form as

@C D

0@ @�C˛�1v ı� v 0

0 0 0

� ˛ 0

1A :
Note that the fact that .@C/2D 0 then implies that �ıvD�ı@�D @� ıvD 0. Define
a map i W CF�

xt
! CFC

xt
by the block matrix

i D

0@ Id

�˛�1�

0

1A
and a map pW CFC

xt
! CF�

xt
by

p D
�

Id 0 �˛�1v
�
:

The fact that � ı @� D 0 implies that i is a chain map, while the fact that @� ı v D 0

implies that p is a chain map. Now obviously p ı i is the identity, while defining
KW CFC

xt
! CFC

xt
by

K D

0@ 0 0 0

0 0 ˛�1

0 0 0

1A ;
one easily computes (using the fact that � ı v D 0) that

@CKCK@C D 1� i ıp D

0@ 0 0 ˛�1v

˛�1� 1 0

0 0 1

1A :
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i and p thus put CF�
xt

and CFCt into chain homotopy equivalence.

Theorem 3.6 is immediate from this, for the interval Œ0; 1� contains just finitely many
values of t (say t1; : : : ; tn ) at which death-births occur; write t0 D 0; tnC1 D 1).
Our treatment of handleslides shows that the chain complexes CF symp.�t ;P/˝ƒ0

are mutually isomorphic for all t 2 Sreg \ Œti ; tiC1�, and our treatment of births
shows that the direct limit limt<ti

! CF symp.�t ;P/˝ƒ0 under these isomorphisms is
chain homotopy equivalent to limt>ti

 CF symp.�t ;P/˝ƒ0 , implying that the various
CF symp.�t ;P/˝ƒ0 for all regular t in the entire interval are chain homotopy equiva-
lent. This completes our account of the proof of Theorem 3.6; as explained earlier, the
assumption that d 62 Œ.gC 1/=2;g� 1/ makes Theorem 1.1 a special case of this more
general result.

4 Further algebraic properties

With HF.Y; f; h; c; � IA/ defined as the Floer homology of the symplectomorphism
ˆd;!;� , the algebraic properties alluded to in Section 1.2 now follow quickly from stan-
dard properties of Floer homology. First, as always in Floer theory, we have a absolute
Z=2 grading provided here by the Lefschetz index: a generator of CF.Y; f; h; c; � IA/

is a fixed point p of (possibly a Hamiltonian perturbation of) ˆd;!;� , and the absolute
grading of p is just

sign det.Id � .dˆd;!;� /p/:

The relative grading also follows from the standard setup and equation (11); quite
generally the ambiguity in the relative grading of a generator of the Floer homology of
HF symp. IP/ of a symplectomorphism  in the fixed point class P is given by

2 gcd
2H1.P/

hc1.T
vtY /; ev. /i;

and in our case with  D ˆd;!;� and P D Ph , this is precisely the divisibility of
c1.sh/D e.T vtY�/C 2PD.h/, as stated in Proposition 1.2.

Poincaré duality for HF is still another simple consequence of the setup: replacing the
tuple oD .Y; f; h; c; �/ with xoD .�Y; xf ;�h; c; �/ of course preserves the orientations
of the fibers, while we have PD�Y .�h/D PDY .h/, so the same fiberwise symplectic
form ! representing cC 2�

�
PD˙Y .˙h/ can be used for both o and xo and the same

fiberwise complex structures Jt can be used on Y ! S1 and �Y ! S1 . Using these
same auxiliary data, the horizontal vector field whose flow we use to define the mon-
odromy ˆxo

d;!;�
in Salamon’s construction for xo will then be precisely the opposite of

the vector field which generates the monodromy ˆo
d;!;�

. Hence ˆxo
d;!;�

D .ˆo
d;!;�

/�1 .
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Now it is quite generally the case that, for Floer chain complexes CF symp. ;P/ of sym-
plectomorphisms  , CF symp. �1; xP/ is naturally the dual complex to CF symp. ;P/
under an appropriate identification P $ xP of fixed point classes: a fixed point of
 is of course also a fixed point of  �1 and, tautologically, two such are Nielsen–
equivalent for  iff they are for  �1 , so as groups CF symp. �1; xP/DCF symp. ;P/.
The differentials are related by the observation that since the mapping torus fibration
Y �1 ! S1 is (up to equivalence of fibrations) the conjugate of Y ! S1 , a cylinder
in R � Y which serves as a flowline from the generator a to the generator b in
CF symp. / is the same thing as a cylinder in R� Y �1 which serves as a flowline
from b to a in CF symp. �1/. In our context, the fixed point class Ph for ˆo

d;!;�

corresponds tautologically to the fixed point class P�h for ˆxo
d;!;�

, and so CF.o/ and
CF.xo/ are the same as groups and have dual differentials, which proves Proposition
1.3 (the pairing between CF.o/ and CF.xo/ promised therein is of course obtained by,
for generators x and y of the identical groups, setting hx; yi to be 1 if xD y and 0

otherwise and then extending linearly).

The only remaining item from Proposition 1.2 is the structure of HF.Y; h; c; � IA/ as
a module over

A.Y /D ZŒU �˝ƒ�.H1.Y IZ/= torsion/:

We obtain this by considering the quantum cap product structure in Floer theory, which
we describe here in the case that virtual cycle methods are not needed. Quite generally,
the boundary operator @W CF ! CF in a Floer theory with configuration space C
counts paths  W Œ�1;1�! C with prescribed endpoints which are (formally) gradient
lines for some Morse function on C . Letting M.x; yIA/ denote the moduli space of
flowlines from a generator x of CF to a generator y having relative homotopy class
A, if k denotes the common index of these flowlines then evaluation of the flowline at
time zero determines a k –dimensional chain ev�M.x; yIA/ in C . So if a 2 C k.CIZ/
we get a degree–.�k/ map

a�W CF ! CF

by setting
a � xD

X
y;A

ha; ev�M.x; yIA/iŒp2.A/�yI

considering the boundary components of the Mk.x; yIA/ reveals that a� is a chain
map. Further, the map that it induces on the Floer homology HF depends only on the
cohomology class of a, and the resulting map H�.CIZ/�HF!HF makes HF into
a module over H�.CIZ/. For more details on this see Viterbo [47] and Liu–Tian [25],
in the latter of which it is shown that the quantum cap product can be made compatible
with virtual cycle machinery.
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In our context, the configuration space C is a homotopy class Ph of sections of the
degree–d relative symmetric product Yd .f /!S1 of a fibered 3–manifold f W Y !S1 .
Thus the quantum cap product construction makes HF.Y; f; h; c; � IA/ into a module
over H�.PhIZ/. To obtain the asserted module structure over A.Y / (and so exhibit
still another parallel with the monopole and Heegaard Floer theories), we thus just need
to exhibit a natural graded ring homomorphism

ZŒU �˝ƒ�.H1.Y IZ/= torsion/!H�.PhIZ/;

where U has degree 2. In this direction, note that if gW K ! Ph is a chain of
dimension k , we get a dimension–.kC 1/ chain e.g/W S1 �K! Yd .f / by setting
e.g/.t; k/D .g.k//.t/; e evidently defines a degree–1 chain map

eW C�.PhIZ/! C�C1.Yd .f /IZ/I

dualizing this and passing to cohomology yields a homomorphism

e�W H�.Yd .f /IZ/!H��1.PhIZ/:

Recalling the map "W H�.Y IZ/!H�.Yd .f /IZ/, we now set

U D e� ." .PDŒpt �// 2H 2.PhIZ/

and use the homomorphism

H1.Y IZ/!H 1.PhIZ/

 7! e� " PD. /:

Note that the image of any torsion elements of H1.Y IZ/ will be trivial, and so the
above map factors through a map

H1.Y IZ/= torsion!H 1.PhIZ/:

Now that we have chosen an element U 2H 2.PhIZ/ and a homomorphism

H1.Y IZ/= torsion!H 1.PhIZ/;

a unique ring homomorphism

A.Y /D ZŒU �˝ƒ�.H1.Y IZ/= torsion/!H�.PhIZ/

is forced on us by the graded ring structure of H�.PhIZ/. This completes the proof
of the existence of the module structure over the promised ring.

More geometrically, the map on HF.Y; f; h; c; � IA/ induced by the element

U r
˝ 1 ^ � � � ^ k 2 ZŒU �˝ƒ�.H1.Y IZ/= torsion/
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counts holomorphic sections

R�S1
! R�Yd .f /

.s; t/ 7! u.s; t/

with the property that the cycle obtained by taking the union of the points in the divisors
u.0; t/ for the various t 2 S1 contains a generic set of r points and meets generic
representatives of the classes 1; : : : ; k .

Finally, we explain the construction of the local coefficient systems �� for closed
forms � 2�2.Y /. First, we choose once and for all a de Rham representative ı of the
class PD.D/ 2H 2.Y �S1 Yd .f /IR/. Now from our initial data set .Y; f; h; c; �/ we
have constructed a closed form ! 2�2.Y / restricting to each fiber of f W Y !S1 as a
volume form; pulling back this form by �1W Y �S1 Yd .f /! Y gives a closed 2–form
on Y �S1 Yd .f / which restricts as a volume form to each fiber of �2W Y �S1 Yd .f /!

Yd .f /; this gives rise via integration down the fibers of �2 to a form–level extension

.�2/!W �
�.Y �S1 Yd .f //!���2.Yd .f //

of the Gysin map, and so to a form–level extension

"ıW �
�.Y /!��.Yd .f //(14)

� 7! .�2/!.ı^�
�
1 �/

of " which is a cochain map and so takes closed forms to closed forms. This yields
a local system �� on the configuration space Ph as follows: to each x 2 Ph take
.�� /x D R as the fiber over x; since an element of Ph gives rise via evaluation to a
loop in Yd .f /, a path  from x to y in Ph gives rise via evaluation to a cylinder
C � Yd .f / with boundary components prescribed by x and y, and we define the
isomorphism

�� .Œ �/W .�� /x! .�� /y

to be multiplication by

exp

 Z
C

"ı �

!
I

that "ı � is closed of course ensures that this depends only on the homotopy class of 
relative to its boundary. The resulting twisted Floer groups are then obtained by letting
the twisted Floer chain complex be the direct sum over the fixed points x of ˆd;!;�

of the groups �� .x/˝ zƒh;c (where x 2 Ph is the section of Y corresponding to x )
and weighting each term in the standard Floer differential (which corresponds to a path
 in Ph ) by �� .Œ �/; see [19, Section 2.7] for the analogous construction in Morse
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theory. If � 2�1.Y / satisfies d� D �2 � �1 , then if  is a path in Ph from x to y,
we have

��2
.Œ �/

��1
.Œ �/

D exp

 Z
C

"ı d�

!
D exp

 Z
C

d "ı �

!
D

exp.
R

y "ı �/

exp.
R

x "ı �/
;

��1
.x/! ��2

.x/and so

z 7! z exp
�Z

x
"ı �

�
defines an isomorphism of local systems ��1

Š ��2
, as claimed in the introduction.

The construction of the �� depends on a choice of de Rham representatives of the
classes PD.�/ 2H 2.Y �S1 Yd .f /IR/ and cC 2�

�
PD.h/ 2H 2.Y IR/; it is easy to

see that different choices of these representatives give rise to local systems which are
isomorphic, with the isomorphism depending on cohomologies between the different
choices.

5 Maps from cobordisms

The basic ingredient in the construction of the maps on HF obtained from “fibered
cobordisms” between objects .Y; f; h; c; �/ in the category FCOB is the fact that,
given a Lefschetz fibration f W X ! B with closed fibers, a fiberwise positive class
c 2H 2.X IR/, and a class h2H2.X; @X IZ/ with h\Œfiber�Dd >0, one can construct
a relative Hilbert scheme F W Xd .f /! B such that for regular values t of f one has
F�1.t/D Symdf �1.t/, and which carries a symplectic form � such that for each
component S of @B , .F�1.S/;�jF�1.S// is isomorphic as a locally Hamiltonian
fibration to the mapping torus Yˆd;!;�;S

, ˆd;!;�;S being the Salamon monodromy
map defining the Floer group HF.Y; f jf �1.S/; @Sh; cjf �1.S/; �/. In the case that @B
has two components and X is a morphism in FCOB from o� to oC , .Xd .f /;�/ then
defines a symplectic cobordism from the mapping torus used to define HF.o�/ to
that used to define HF.oC/, and the map between the Floer groups is obtained by
adding half-infinite cylindrical ends to this symplectic cobordism and then counting
pseudoholomorphic cylinders with prescribed asymptotics.

The construction of the relative Hilbert scheme Xd .f /, including the proof of the
crucial fact that it is smooth in spite of the presence of singular fibers in the Lefschetz
fibration f W X !B , is carried out in detail in Smith [42]. The existence of a natural
deformation equivalence class of symplectic structures on Xd .f / is also proven in
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[42], but in order to obtain the proper behavior of the symplectic form on @Xd .f / we
shall need somewhat more refined results, which we now set about proving.

Recall that in Section 2, given an object .Y; f; h; c; �/ in FCOB and a closed form
! 2�2.Y / representing cC 2�

�
PD.h/, when d > 0 we have obtained a symplectic

form �d;!;� on Sd† and a map ˆd;!;� W S
d† ! Sd† which preserves �d;!;� .

(When d � 0 we have set HF D 0 except when h D 0, in which case HF is the
coefficient ring A; in all such cases we hereby define the cobordism maps of this
section to be the identity, and so restrict attention to the case d > 0 hereinafter.) The
mapping torus Yˆd;!;�

then carries a closed fiberwise symplectic form .�d;!;� /ˆd;!;�
;

note that Yˆd;!;�
Š Yd .f / as fibrations over S1 . Recall also the definition of a starred

surface B in the introduction, which in particular specifies a set fˇ1; : : : ; ˇg.B/g of
disjoint curves on B .

Lemma 5.1 Fix � > 2�d , and let f W X ! B be a fibration by closed surfaces of
genus g � 2 over a compact connected starred surface B whose boundary decomposes
into connected components as @B D @1B [ � � � [ @nB: Write Yi D f

�1.@iB/, and
let ci 2 H 2.f �1.@iB/IR/, hi 2 H 1.f �1.@iB/IZ/, and bj 2 H 2.f �1. ǰ /IR/ be
such that there exist zc 2 H 2.X IR/, PD.zh/ 2 H 2.X IZ/ both evaluating positively
on the fibers (say hPD.zh/; Œfiber�i D d ) with ci D zcjYi

, PD.hi/ D PD.zh/jYi
, and

bj D .zcC2�PD.zh/=�/jf �1. ǰ /
. Let !i 2�

2.Yi/ be closed fiberwise symplectic forms
representing ci C 2�PD.hi/=� D .cC 2�PD.h/=�/jYi

2H 2.Yi IR/. Then there is a
fiberwise symplectic form z�D �

Ec;Eh;Eb
2 �2.Xd .f //, determined canonically up to

isotopy by the ci ; hi , and bj and independent of the choices of zc and zh, such that

Œ z�j.Yi /d .f /�D Œ.�d;!i ;� /ˆd;!i ;�
�

for each i .

Proof First note that if gW Z! S1 is a fibration and if ��; �C are cohomologous
closed fiberwise symplectic forms on Z (say �C D��Cd˛ ) which tame a common
fiberwise almost complex structure, then on Œ�1; 1�t�Z , if we set z�D��Cd.�.t/˛/

where �W Œ�1; 1�! Œ0; 1� is a smooth function which is identically zero near �1 and
identically 1 near 1, then z� is a closed fiberwise symplectic form on Z � Œ�1; 1�!

S1 � Œ�1; 1� which, for small � , restricts to Z � Œ�1;�1C �� as the pullback of ��
and to Z � Œ1� �; 1� as the pullback of �C . Using this device, in the context of the
lemma it becomes straightforward to construct a closed, fiberwise Kähler form z� over
all of B satisfying the desired properties as soon as we have constructed it over the
surface obtained by cutting B along its ˇ -curves in such a way that z� restricts over ǰ
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to �d;!j ;� , !j being a fiberwise symplectic representative of bj 2H 2.f �1. ǰ /IR/.
This observation reduces us to the case that B has genus zero.

Having made this reduction, consider first the case that B D S2 , which is simpler
in that here there are no boundary conditions for the form to satisfy; the only datum
given to us is the fibration map f W X !B , which is a bundle whose structure group is
the identity component Diff0.†/ of the diffeomorphism group of †. Now it follows
from Moser stability [29] that Diff0.†/ retracts to Symp.†; !/, while since g � 2

the Earle–Eells theorem [8] states that Diff0.†/ is contractible; hence the structure
group of the fibration reduces to Symp.†; !/, which is contractible. The fibration thus
admits a symplectic trivialization which is unique up to isotopy, giving us a canonical
symplectic identification of X with S2 �† with f being the projection to the first
factor, and this induces an identification Xd .f / with S2�Sd†. So we take for z� the
pullback of the Salamon form �d;!;� on any of the individual fibers. Having dispensed
with this trivial case, assume that B has at least one boundary component. Let z! be
a fiberwise symplectic form on the total space of f W X ! B which represents the
class zcC 2�PD.zh/=� 2H 2.X IR/ for an arbitrary choice of zc; zh as in the statement
of the lemma (such z! exists by the Thurston trick). After trivializing f over a tubular
neighborhood S � B of the contractible “star” consisting of the arcs from the interior
base point b to the boundary basepoints that are part of the data of the starred surface
B and modifying z! by an exact form, we can assume that z!jf �1.S/ is just the pullback
to f �1.S/ D S �† of a volume form ! on †. Let U .1/ be the union of S with
tubular neighborhoods of the boundary components (so U .1/ is a regular neighborhood
of a 1-skeleton for B since we’ve reduced to g.B/D 0).

Using Salamon’s construction we can obtain a closed fiberwise Kähler form z�.1/

over U .1/ as follows. Start with the trivial extension of Salamon’s form �D�d;!;�

on Sdf �1.0/ to S � Sdf �1.0/, and then, over the strips .��; �/ � @iB � U .1/

corresponding to the boundary components attach strips .��; �/� .Yi/d .f / to D2 �

Sdf �1.0/. To describe z�.1/ on these latter strips, let ˆi W S
df �1.0/! Sdf �1.0/

be the Salamon monodromy map associated to the mapping torus of the monodromy of
z! around these loops; the form on the strip .��; �/� .Yi/d .f / can then just be taken
to be the pullback of the form .�/ˆi

on .Yi/d .f /.

Now U .1/ has nC 1 boundary components C; @1B; : : : ; @nB with ŒC �D
P
Œ@iB� in

homology, and B is obtained by attaching a disc D0 to C . Since C is contractible in B ,
the z!–monodromy around it is Hamiltonian, from which it follows as in Proposition 2.2
that the z�–monodromy around C (which is just the composition of the monodromies
around the @iB ) is Hamiltonian as well. Write F W Xd .f /!B for the map defining
the relative symmetric product. Then picking p 2C D @D , z�jF�1.C / is cohomologous
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to the pullback of �jF�1.p/ to S1 � F�1.p/ as a result of the fact that they have
Hamiltonian–equivalent monodromies, and so just as in the first paragraph of this proof
we can interpolate between these two forms and so glue z�jF�1.C / to the pullback of
z�jF�1.p/ to D0 � F�1.p0/, thus producing the desired form z� on all of F�1.B/.
(The conclusion about Œ z�j.Yi /d .f /� follows from the fact that the monodromy of z�
around @iB is Hamiltonian–equivalent to the Salamon monodromy ˆd;!i ;� .)

In order to extend the previous lemma from genuine fibrations to Lefschetz fibrations,
consider now an elementary Lefschetz fibration pW E ! D2 , that is, a Lefschetz
fibration over the disc with just one singular fiber E0 , which lies over the origin and
contains just one node. If Y D @E , the image of the restriction map H 2.EIZ/!

H 2.Y IZ/ then has rank one, generated by .2� 2g/�1e.T vtY /. In particular, letting
c 2 H 2.EIR/ and h 2 H2.E; @EIZ/ meet the fibers positively, the class Œ!Y � D

cjY C
2�
�

PD.@h/ 2H 2.Y IR/ of the form !Y on Y used in the construction of the
Salamon monodromy map for the object .Y;pjY ; @h; c; �/ will be some negative (since
g � 2) multiple of e.T vtY /.

According to [34, Lemma 3.15] (which for our present purposes replaces an erroneous
lemma in [7] which we had referred to in earlier versions of this paper; we thank
the referee for pointing out this issue and suggesting a way of resolving it), where
� 2 H 2.EIZ/ restricts to the singular fiber E0 as the orientation class (so � is a
positive multiple of cC 2�

�
PD.h/), any cohomology class in H 2.Ed .p/IZ/ of form

s " �C t.d " �� .�2/!.d
2/=2/

with s; t > 0 is represented by Kähler forms. In particular, for � > 2�d , there are
Kähler forms on Ed .p/ whose restrictions to the boundary Yd .p/ represent the class
Œ.�d;!Y ;� /ˆd;!Y ;�

�D 2�.� " Œ!Y ���.�2/!.d
2// of Theorem 3.5.

This positions us to state the result underlying the construction of the maps induced by
fibered cobordisms.

Proposition 5.2 Let f W X ! B be a Lefschetz fibration on a 4–manifold X over a
starred surface B with boundary @B D @1B [ � � � [ @nB such that the critical values
of f are precisely the interior special points of B . Write Yi D f �1.@iB/, and
let ci 2 H 2.f �1.@iB/IR/, hi 2 H 1.f �1.@iB/IZ/, and bj 2 H 2.f �1. ǰ /IR/ be
such that there exist zc 2 H 2.X IR/, PD.zh/ 2 H 2.X IZ/ both evaluating positively
on the fibers (say hPD.zh/; Œfiber�i D d ) with ci D zcjYi

, PD.hi/ D PD.zh/jYi
, and

bj D .zc C 2�PD.zh/=�/jf �1. ǰ /
. Let !i 2 �

2.Yi/ be closed fiberwise symplectic
forms representing ci C 2�PD.hi/=� D .cC 2�PD.h/=�/jYi

2H 2.Yi IR/. Then for
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� > 2�d there is a fiberwise symplectic form z�D�
Ec;Eh;Eb
2�2.Xd .f //, determined

canonically up to isotopy by the ci ; hi ; � , and bj and independent of the choices of zc
and zh, such that

Œ z�j.Yi /d .f /�D Œ.�d;!i ;� /ˆd;!i ;�
�

for each i .

Proof Let p1; : : : ;pk be the critical values of f , so that since the pi are the interior
special points of B our data include arcs from the interior base point b of B to the
pi . Let U1; : : : ;Uk small disjoint neighborhoods of pi , and take an almost complex
structure on X with respect to which f W X ! B is pseudoholomorphic and whose
restriction to each f �1.Ui/ is integrable. Write B0 D B n[Ui and F W Xd .f /! B

for the map defining the relative Hilbert scheme. B0 then inherits from B the structure
of a starred surface with boundary; B0 has no interior special points, and has new
boundary components @Ui corresponding to the special points of B , with the arcs
from b to the new boundary components just given by the portions of the arcs from b

to the special points of B that lie in B0 .

We now apply Lemma 5.1 to B0 (taking for the boundary data c;PD.h/ on the
new boundary components f �1.@Ui/ appropriate multiples of e.T vtf �1.@Ui//).
This gives us a closed fiberwise symplectic form z�0D z�0

Ec;Eh;Eb
on F�1.B0/, while the

remarks before the proposition give us Kähler forms z�i on each F�1.Ui/; furthermore
the restrictions of z�0 and z�i to F�1.@Ui/ are cohomologous and have restrictions
which are compatible with the complex structures on each fiber of F�1.@Ui/! S1 .
But then it is straightforward to glue these together to obtain the desired form on the
total space: letting t be the first coordinate on Œ�1; 1��F�1.Ui/, �W Œ�1; 1�! Œ0; 1�

a monotone smooth function which is identically 0 near �1 and identically 1 near 1,
and ˛i 2�

1.F�1.@Ui// such that z�i D z�0Cd˛i , the form z�0Cd.�.t/˛i/ will be
a closed form equal to z�0 for t near �1 and to z�i for t near 1, and its restriction to
each fiber will be a convex combination of Kähler forms and so will be Kähler.

With this preparation, the existence of the maps promised in Theorem 1.6 follows from
an application of the fairly standard idea that a symplectic cobordism gives rise to
maps on Floer homology groups. Let mD .X; zf ; �/ be a morphism between objects
.Y˙; f˙; h˙; c˙; �/ in FCOB, so that in particular zf W X !B is a Lefschetz fibration
with boundary components Y˙ (either of which is allowed to be empty), and the sets

Hh�;hC D f
zh 2H2.X; @X IZ/j@˙zhD h˙ 2H1.Y˙IZ/g

and Cc�;cC D fzc 2H 2.X IZ/jzcjY˙ D c˙g
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are nonempty. Further, we have, as part of the data of the morphism, classes bj 2

H 2.f �1. ǰ /IR/ as in Proposition 5.2. From that Proposition, we then obtain a
fiberwise symplectic form z� on Xd . zf / restricting to a fiberwise Kähler form co-
homologous to the Salamon form �d;!˙;�

on the boundary components, where
!˙ 2 �

2.Y˙/ is a fiberwise symplectic representative of c˙ C
2�
�

PD.h˙/. Let
xf W xX ! xB be the Lefschetz fibration obtained by adding trivial cylindrical ends
.�1;�1�� Y� ! .�1;�1�� S1 and Œ1;1/� YC ! Œ1;1/� S1 to X ! B (of
course if one or both of Y˙ is the empty object we don’t add an end corresponding
to that object). Then our usual device involving a cutoff function gives us a closed,
fiberwise symplectic form x� on xXd . xf / extending z� 2�2.Xd . zf // and equal to the
pullback of �d;!�;� on .�1;�2� � .Y�/d .f / and to the pullback of �d;!C;� on
Œ2;1/� .YC/d .f /.

Note that our construction of z� is compatible with the composition of morphisms, in
the sense that if m0 2Mor.o0; o1/ and m1 2Mor.o1; o2/, then after isotoping the forms
z�i 2 �

2..Xi/d . zfi// obtained from Proposition 5.2 to coincide near their common
boundary component .Yi/d .fi/, the form z� on the relative Hilbert scheme associated
to m1 ım0 is (up to isotopy) obtained by gluing together the forms z�i coming from
the two pieces. This compatibility property is the main motivation for the additional
technical data that we have included in our definition of a morphism.

Now if ! xB is a volume form on the base and xF W xXd . xf /! xB is the map defining the
relative Hilbert scheme, then x�CK xF�! xB will be a symplectic form for large enough
K 2 R; let J be an almost complex structure on xXd . xf / which is compatible with this
symplectic structure, which makes xF a pseudoholomorphic map, and which agrees
with the standard complex structure on the relative Hilbert scheme on the preimages of
small neighborhoods of each of the critical points of xf . We shall define our maps on
the Floer homology groups by counting certain J –holomorphic sections of xF with
prescribed asymptotics in .Y˙/d .f /.

To be more specific about which sections are counted and how, consider any class
zh2Hh�;hC �H2.X; @X IZ/. Now the fiber product Xd .f /�B X contains a universal
divisor D (for regular values t 2B of X !B , D meets the fiber Sdf �1.t/�f �1.t/

over t in f.D;p/jp 2 Dg; the extension of D over the critical values follows from
the algebro-geometric description of the relative Hilbert scheme of an elementary
Lefschetz fibration, the details of which will not be relevant to us here). Hence
we get a map #W H2.Xd .f /; @Xd .f /IZ/ ! H2.X; @X IZ/ analogous to the map
on relative symmetric products considered earlier. Where �.Xd .f // denotes the
space of sections of Xd .f /, there is a natural evaluation map �0.�.Xd .f /// !
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H2.Xd .f /; @Xd .f /IZ/. Composing this with # gives a map

�0.�.Xd .f //!H2.X; @X IZ/

 7! h I

Lemma 4.1 of [42] shows that this map is injective.

Our maps F
m;�;zh

in Theorem 1.6 will be the maps induced on homology of certain

chain maps zF
m;�;zh

on the Floer chain complexes. As always taking d D zh\ Œfiber�, if

our class zh 2H2.X; @X IZ/ is not in the image of . 7! h / we then define zF
m;�;zh

to

be zero; otherwise let zh denote the unique preimage of zh under . 7! h /. zFm;�;zh

will then be constructed using pseudoholomorphic sections of xF W xXd .f /! xB in the
homotopy class zh , with weights depending on � and h.

We now define the promised maps

zF
m;�;zh

.U r
˝ �1 ^ � � � ^ �k ˝ �/W CF.o�Iƒ

R
Nov˝�� /! CF.oCIƒ

R
Nov˝�� /

where r � 0 and �i 2H1.X IZ/. Assume first that neither of o˙ is the empty object.
Then CF.o˙Iƒ

R
Nov/ is freely generated over ƒR

Nov by the “constant sections” x of
.Y˙/d .f / corresponding to the fixed points of Salamon’s symplectomorphism ˆd;!˙;�

.
If x� is a generator of CF.o�Iƒ

R
Nov/ and xC is a generator of CF.oCIƒ

R
Nov/, and if

J is an almost complex structure on xXd . xf / which is compatible with the symplectic
structure, which makes the projection xXd . xf / ! xB pseudoholomorphic for some
chosen complex structure on xB , and which agrees with the Kähler structure near the
singular fibers, then let

M
J ;m;zh

.x�; xC/

denote the moduli space of J –holomorphic sections of xXd . xf / which

(i) are asymptotic to a cylinder on x� on the .Y�/d .f�/ end of xXd . xf /,

(ii) are asymptotic to a cylinder on xC on the .YC/d .fC/ end of xXd . xf /, and

(iii) represent the homotopy class zh .

Provided that d 62 Œ.g C 1/=2;g � 1/, so that the wC–monotonicity condition of
[22] holds (implying that moduli spaces will generically not contain bubble trees
involving multiply covered spheres of negative Chern number3), M

J ;m;zh
.x�; xC/ will,

for generic J , be a smooth manifold of a certain dimension ı.zh/ which admits a
compactification xM

J ;m;zh
.x�; xC/ by

3Superficially, one would also need to rule out bubbles in the singular fibers of the relative Hilbert
scheme; however, [7, Lemma 4.8] shows that any such bubble would be homologous to a sphere in a
smooth fiber, so such bubbles do not complicate the analysis.
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(i) “broken sections” consisting of a chain of Floer flowlines in .Y�/d .f�/, followed
by a section of xXd . xf /, followed by a chain of Floer flowlines in .YC/d .fC/.
Each section in the entire chain begins where the previous one ends, and the
homotopy class of the whole sequence is zh ;

(ii) “cusp sections” consisting of a section of xXd . xf /, together with spherical bubbles
in various fibers of xXd . xf /; and

(iii) combinations of (i) and (ii).

These additional strata will have codimension at least 1, and the only codimension one
strata will be those made up of broken sections with just one Floer flowline component.
When d 2 Œ.g� 1/=2;g� 1/, so that virtual moduli methods are required, we can still
find rational chains in an ambient space containing M

J ;m;zh
.x�; xC/ which satisfy

properties parallel to these; see [24].

The dimension ı.zh/ is obtained as follows (see [40, Theorem 3.3.11]): take an arbitrary
section s of Xd .f / representing the class zh . s�T vtXd .f / is then a symplectic
bundle over the open 2–manifold B and so is trivial; choosing any trivialization � we
can then compute the Conley–Zehnder indices ��

CZ
.x˙/ of T vt .Y˙/d .f˙/jx˙ with

respect to the trivialization; then

ı.zh/D ��CZ .xC/��
�
CZ .x�/C 2d�.B/

is independent of the various choices and is the desired virtual dimension.

Now if ˛ 2�2. xXd . xf // is any closed form, then the integral of ˛ over any cylinder in
xXd . xf / representing an element of M

J ;m;zh
.x�; xC/ depends only on zh; x�; and xC ;

denote this common value by ˛.zh; x�; xC/. This remark in particular applies to both
the forms " � (which we can easily make sense of thanks to the fact that we assumed
in the statement of Theorem 1.6 that � vanishes near the critical points of f ) and to
the form x� introduced after Proposition 5.2. For x� 2A� , we set

zF
m;�;zh

.U k
˝ �1 ^ � � � ^ �l ˝ x�/

D

X
xC2AC

T
x�.zh;x�;xC/e"�.

zh;x�;xC/hx�jU r
˝ �1 ^ � � � ^ �k jxCi;

hx�jU r
˝ �1 ^ � � � ^ �k jxCiwhere

is defined by:

� if ı.zh/¤ 2kC l , then hx�jU r ˝ �1 ^ � � � ^ �k jxCi D 0.
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� if ı.zh/D 2kC l , let A1; : : : ;Ar be generic representatives of the class PD."

PDŒpt �/ 2 H 2d�2. xXd . xf //, and let D�1
; : : : ;D�k

be generic representatives
of the classes PD." PD.�i// 2H 2d�1. xXd . xf //. The set

M
J ;m;zh

.A1; : : : ;Ar ;D1; : : : ;Dk I x�; xC/D

f.u;x1; : : : ;xr ;y1; : : : ;yk/ 2MJ ;m;zh
.x�; xC/�Br

�Bk
j

u.xi/ 2Ai ;u.yj / 2Dj 8i; j g

will have virtual dimension ı.zh/C2.2kCl/�4k�3lD 0, and we let hx�jU r˝

�1 ^ � � � ^ �k jxCi be the signed number of elements in this set for generic J

(counted virtually as in [24; 25] if necessary).

Since the chains Ai have even codimension and the Di have odd codimension, this
construction induces a map

zFm;�;hW A.X /˝CF.o�Iƒ
R
Nov˝�� /! CF.oCIƒ

R
Nov˝�� /;

which might depend on the additional choices (the finiteness condition for the Novikov
ring is trivial, since there are only finitely many pairs .x�; xC/ and so x�.zh; x�; xC/
takes just finitely many values for a given choice of zh).

Lemma 5.3 Given a morphism mD .X; zf ; �/ between the objects

o˙ D .Y˙; f˙; h˙; c˙; �/

and a closed form � 2�2.X / which vanishes near the critical points of X , for each
zh 2Hh�;hC , the map

zF
m;�;zh
W A.X /˝CF.o�Iƒ

R
Nov˝�� jY� /! CF.oCIƒ

R
Nov˝�� jYC

/

is a chain map, and the induced map on homology

F
m;�;zh
W A.X /˝HF.o�Iƒ

R
Nov˝�� jY� /!HF.oCIƒ

R
Nov˝�� jYC

/

is independent of the choices of chains Ai ;Dj and of the almost complex structure J .
The sum zFm;� D

P
zh2Hh�;hC

zF
m;�;zh

is a well-defined chain map CF.o�Iƒ
R
Nov/!

CF.oCIƒ
R
Nov/. Furthermore if X D Œ0; 1��Y� is the trivial cobordism, then F

m;�;zh

coincides with the map defining the A.Y /–module structure of HF.o�Iƒ
R
Nov˝��Y�

/.

Proof To see that
P
zh2Hh�;hC

zF
m;�;zh

is well-defined we just need to check the

finiteness condition for the Novikov ring. However this follows directly from Gromov
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compactness, which ensures that for any c the set

fu 2 [zh;x�;xC
xM

J ;m;zh
.x�; xC/j

Z
B

u� x�< cg

is compact, together with the definition that �.zh; x�; xC/D
R

B u� x� for any section u

in the homotopy class zh which is asymptotic to x˙ .

Now for the trivial cobordism, x� is just the pullback of the Salamon form �d;!;�

on Yd .f / to R � Yd .f /. Also, using the exactness of H2.@I � Y IZ/! H2.I �

Y IZ/! H2.I � Y; @I � Y IZ/! H1.@I � Y IZ/ and the fact that the first map is
a surjection, the difference between any two elements of Hh�;hC lies in the image
of H2.I � Y IZ/! H2.I � Y; @I � Y IZ/ and so is zero. So in this case Hh�;hC

is a singleton fzhg and zFm;� D
zF
m;�;zh

. The complex CF.Y; f; h; c; � IƒR
Nov˝�� / is

generated over ƒR
Nov by the fixed points x, and the differential just counts holomorphic

sections u of R�Yd .f /, weighted by T
R

R�S1 u��d;!;� e
R

R�S1 u�."�/ . In particular,

zF
m;�;zh

.1˝ 1˝ �/W CF.oIƒR
Nov˝�� /! CF.oIƒR

Nov˝�� /

is none other than the identity (corresponding to sections of form R�fxg) plus the Floer
boundary operator. Furthermore, by taking all the chains Ai ;Dj 2 C�.R�Yd .f /IZ/

to be contained in f0g �Yd .f /, comparing with section 4 reveals that

zF
m;�;zh
W ZŒU �˝ƒ�.H1.R�Y IZ/= torsion/˝CF.oIƒR

Nov˝�� /!CF.oCIƒ
R
Nov˝�� /

is a chain map which induces the ZŒU �˝ƒ�.H1.Y IZ/= torsion/–module structure on
HF.oIƒR

Nov˝�� /. This proves the last statement of the lemma.

To see that, for general morphisms m and for each zh 2 Hh�;hC , zF
m;�;zh

defines a
chain map, let @˙ be the Floer boundary operators for o˙ . We can then write, for any
generators x˙ of o˙ ,

h@C zFm;�;zh
.U r
˝ �1 ^ � � � ^ �k ˝ x�/; xCi D‚zh.x�; xC/T

x�.zh;x�;xC/e"�.
zh;x�;xC/

and

h zF
m;�;zh

.U r
˝ �1 ^ � � � ^ �k ˝ @�x�/; xCi D‰zh.x�; xC/T

x�.zh;x�;xC/e"�.
zh;x�;xC/:

Here all terms are zero except when ı.zh/D 2kC l C 1, in which case ‚zh.x�; xC/ is
the signed count of broken sections from x� to xC consisting of a section of xXd . xf / in
the relative homotopy class zh followed by a flowline for CF.oC/ and which satisfy
incidence conditions corresponding to r and the �i , while ‰zh.x�; xC/ is the signed
count of broken sections from x� to xC consisting of a flowline for CF.o�/ followed
by a section of xXd . xf / in the class zh which satisfy these same incidence conditions.
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Note that if s0#s1 is a broken section from x� to xC consisting of a section s0 of
xXd . xf / asymptotic at its negative end to x� and at its positive end to a generator (say

y) of CF.oC/, followed by a flowline s1 for CF.oC/ from y to xC (the latter which
extends to a map Œ�1;1��S1! .YC/d .fC/), then extending s0 by concatenating it
with s1jŒ�1;T ��S1 for T 2R[f�1;1g defines a homotopy rel .YC/d .fC/ between
s0 and the broken section s0#s1 . Hence for any such s0#s1 , s0 belongs to the relative
homotopy class zh if and only if the broken section s0#s1 does, and so ‚zh.x�; xC/
may equally well be described as the signed count of broken sections from x� to xC
consisting of a section of xXd . xf / in followed by a flowline for CF.oC/ such that the
(concatenated) broken section belongs to zh and satisfies certain incidence conditions;
a similar description applies to ‰zh.x�; xC/. But then a standard argument shows
that ‰zh.x�; xC/ D ‚zh.x�; xC/, for their difference counts the oriented number of
boundary points of the 1-manifold M

J ;m;zh
.A1; : : : ;Ar ;D1; : : : ;Dk I x�; xC/.

Thus @C zFm;�;zh
D zF

m;�;zh
@� , and, summing over zh 2 Hh�;hC , @C zFm;� D

zFm;�@� .
The fact that the induced maps F

m;�;zh
on homology are independent of J and of the

choices of chains giving the incidence conditions now follows by standard cobordism
arguments: for example if D1;D

0
1

are both representatives of PD." PD.�1// (say
D1 �D0

1
D @E ), then a consideration of the boundary components of the moduli

spaces M
J ;m;zh

.A1; : : : ;Ar ;E;D2; : : : ;Dk/ shows that replacing D1 by D0
1

in the

definition of zF
m;�;zh

does not affect the induced map F
m;�;zh

on homology.

We have been assuming that our morphism m D .X; zf ; �/ is a morphism between
nonempty objects o˙ D .Y˙; f˙; h˙; c˙; �/; the construction of F

m;�;zh
in the case in

which one or both of the fibered 3–manifolds Y˙ underlying o˙ is empty is a simple
modification of what we have already done. If the “incoming” boundary component
Y� is empty but YC ¤¿, then we are to define a map

F
m;�;zh
W A.X /˝ƒR

Nov!HF.oCIƒ
R
Nov˝�� /I

this is done as before by first defining maps zF
m;�;zh

to CF.oCIƒ
R
Nov˝�� / for classes

zh 2H2.X;YCIZ/ such that @zhD hC and ı.zh/D 2r C k by

zF
m;�;zh

.U r
˝ �1 ^ � � � ^ �k ˝ 1/

D

X
xC2AC

T
x�.zh;xC/e"�.

zh;xC/#M
J ;m;zh

.A1; : : : ;Ar ;D1; : : : ;Dk I xC/;

where the notation is as before; of course since B now only has one boundary component
there is only one asymptotic condition to specify in expressions such as x�.zh; xC/ and
#M

J ;m;zh
.A1; : : : ;Ar ;D1; : : : ;Dk I xC/. Consideration of the boundary of the spaces
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M
J ;m;zh

.A1; : : : ;Ar ;D1; : : : ;Dk I xC/ when ı.zh/ D 1 reveals that @CF
m;�;zh

D 0;
F

m;�;zh
is then the map on homology induced by this sum, and is independent of the

additional choices exactly as in Lemma 5.3

Dually, if Y� ¤ ¿ but YC D ¿, and if x� is a generator of CF.o�/, we define
zF
m;�;zh

.U r ˝ �1 ^ : : :^ �k ˝ x�/ by counting pseudoholomorphic sections of xXd . xf /

which are asymptotic at the boundary to x� and which satisfy the usual incidence
conditions corresponding to r , �1; : : : ; �k , with the usual weights T

x�.zh;x�/e"�.
zh;x�/ ;

this is a chain map exactly as in the previous case, and F
m;�;zh
W A.X /˝HF.o�IZ/!

ƒR
Nov is the induced map on homology.

We pause to consider the simplest nontrivial case, where Y� D¿ and YC D S1 �†

with the obvious fibration �1 , and hCD d ŒS1�pt � with c proportional to PD.h/, so
that mD .D2�†;�1; �/ gives a morphism from o�D¿ to oCD .YC; �1; hC; cC; �/.
Now as in Proposition 3.1(ii) we have a natural surjection …W ZŒU �˝ƒ�H1.D

2 �

†IZ/�H�.Sd†IZ/. Meanwhile the monodromy of a fiberwise symplectic form on
S1 �† in the class cCC 2�PD.hC/=� is Hamiltonian, so the Salamon monodromy
ˆd;!;� W S

d†!Sd† is also Hamiltonian, so that the Floer homology HF.oCIƒ
R
Nov/

is isomorphic to H�.Sd†IƒR
Nov/. It follows directly from the relevant definitions that

our map

Fm;0W ZŒU �˝ƒ�H1.D
2
�†IZ/˝ƒR

Nov!HF.oCIƒ
R
Nov/

factors through …W ZŒU � ˝ ƒ�H1.D
2 � †IZ/ � H�.Sd†IZ/ to give a map

H�.Sd†IƒR
Nov/!HF.oCIƒ

R
Nov/ which is none other than the Piunikhin–Salamon–

Schwarz isomorphism between the cohomology of Sd† and its Hamiltonian Floer
homology, constructed in [37]. Note that the monopole and Heegaard Floer homologies
of S1�† in the corresponding spinc structure are also known to be given by H�.Sd†/

when d < g�1 [30; 32]. On the other hand, for d > g�1 we obtain H�.Sd†/ rather
than H�.S2g�2�d†/ as in [30; 32]; this discrepancy results from the fact that for
this range of d we cannot choose c and � to have the property that the corresponding
Seiberg–Witten theory perturbation class �.h; c; �/ mentioned in the introduction is
zero.

Finally, in the case when Y� D YC D ¿, so that the morphism m corresponds to a
Lefschetz fibration zf W X!B on a closed manifold, we define F

m;�;zh
W A.X /˝ƒR

Nov!

ƒR
Nov by once again counting pseudoholomorphic sections of the relative Hilbert

scheme xXd . xf /; since @X D¿ the relevant classes zh belong to H2.X IZ/, and by [42,
Proposition 4.3] the virtual dimension ı.zh/ of the space M

J ;m;zh
of pseudoholomorphic

sections of xXf . xf / in the homotopy class zh is hPD.zh/� �X ; zhi. If ı.zh/¤ 2r C k
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we put F
m;�;zh

.U r ˝ �1 ^ � � � �k/D 0; otherwise we put

F
m;�;zh

.U r
˝ �1 ^ � � � �k/D T hŒ��;zhieh"Œ��;zhi#M

J ;m;zh
.A1; : : : ;Ar ;D1; : : : ;Dk/:

#M
J ;m;zh

.A1; : : : ;Ar ;D1; : : : ;Dk/ is independent of J and of the choices of Ai and
Dj , and indeed is (by definition) the Donaldson–Smith invariant

DS.X ;f /.zhIptr ; �1; : : : ; �k/:

Setting Fm;� D
P
zh2H2.X IZ/

F
m;�;zh

then completes the definition of the maps Fm;�

in all cases, and also establishes part (iv) of Theorem 1.6 (noting that h" Œ� �; zhi D
hŒ� �;# zhi D hŒ� �;

zhi).

Along the same lines, we could also use Lefschetz fibrations over surfaces with an
arbitrary number n of boundary components to obtain “quantum multiplication” maps
HF.o1Iƒ

R
Nov/˝� � �˝HF.on�1Iƒ

R
Nov/!HF.onIƒ

R
Nov/ for suitable objects oi , but

we shall not develop this here.

Now that we have defined the maps Fm;� , the various parts of Theorem 1.6 follow fairly
quickly. Part (i) is obtained by standard gluing arguments: if mD .X; zf ; �/Dm1 ım0

with m0 D .X0; zf0; �/ 2Mor.o0; o1/;m1 D .X1; zf1; �/ 2Mor.o1; o2/, writing o1 D

.Y1; f1; h1; c1; �/ we may choose the form x� on xXd . xf / to restrict to a neighborhood
of .Y1/d .f1/ as the pullback of the Salamon form �d;!;� ; varying the complex
structure on the base xB (and recalling that the almost complex structure J on xXd . xf /

is constrained to make the projection to xB pseudoholomorphic, so this also varies J )
metrically identifies this neighborhood N of .Y1/d .f1/ with Œ�T;T �� .Y1/d .f1/ for
arbitrarily large T . Let JT denote a generic almost complex structure obtained in this
way. Choose representatives A1; : : : ;Ak of PD." PDŒpt �/ 2H2d�2. xXd . xf // which
are contained in the “m1 side” .X1/d . zf1/� xXd . xf / (and are outside the neighborhood
N of .Y1/d .f1/ mentioned above), and representatives AkC1; : : : ;AkCl of PD."

PDŒpt �/2H2d�2. xXd . xf // which are contained in the “m2 side” .X2/d . zf2/� xXd . xf /

and are also disjoint from N . Once T is large enough, it follows from gluing theorems
that in special cases date back at least to [9] (the argument in [38, Section 3.3] can be
rather directly applied to our case, the only essential difference being that here we glue
at two points rather than one) that the moduli spaces M

JT ;m;zh
.A1; : : : ;AkCl I x0; x2/

of pseudoholomorphic sections will, for generic JT and appropriate generic J 0;J 1

on . xX0/f . xf0/; . xX1/f . xf1/; be in a one-to-one, orientation-preserving correspondence

Algebraic & Geometric Topology, Volume 6 (2006)



1724 Michael Usher

(which preserves the Novikov–ring and local–coefficient weights) with[
x�

1
;xC

1
2A1;

C.zh0;zhY1
zh1/Dzh

�
M

J 0;m0;zh0
.A1; : : : ;Ak I x0; x�1 /�MJ ;R�.Y1/d .f /;zhY1

.x�1 ; x
C

1
/�

M
J 1;m1;zh1

.AkC1; : : : ;AkCl I xC1 ; x2/

�
;

where the notation C.zh0; zhY ; zh1/D zh means that there exist an asymptotically constant
section s0 of . xX0/f . xf0/ representing zh0

(say approaching � 2 �..Y1/d .f // at the
positive end of B0 ), a section sY of Rt �Yd .f / representing zhY

which is asymptotic
to ˙ 2 �..Y1/d .f // as t ! ˙1, and an asymptotically constant section s1 of
. xX1/f . xf1/ representing zh1

which approaches C at the negative end of B1 , and that
when these sections are glued along their corresponding asymptotic limits to obtain a
section s0#sY #s1 of xXd . xf /, s0#sY #s1 represents the homotopy class zh (we allow,
of course, sY to be the trivial section R� � ). Summing over those zh with hjXi

D zhi

(i D 0; 1), this one-to-one correspondence then translates into the language of our
cobordism maps as the statement thatX
zh2Hh0;h2

zhjXi
Dzhi

zF
m1ım0;�;zh

.U kCl
˝ 1˝ x/

D zF
m1;� jX1

;zh0

�
U k
˝ 1˝ .1C @o1

/ zF
m0;� jX0

;zh1
.U l
˝ 1˝ x/

�
;

and passing to the induced maps on homology proves part (i) of Theorem 1.6.

Part (ii) of Theorem 1.6, which asserts that where i�W A.Y�/! A.X / is induced by
the inclusion Y� �X we have

(15) F
m;�;zh

.1˝� � x/D F
m;�;zh

.i�.�/˝ x/;

follows from the last part of Lemma 5.3 and a similar gluing argument. Here we use
the fact that xXd . xf / contains a half–infinite cylinder on .Y�/d .f�/, take the chains
Ai ;Dj to be contained in some fixed ft0g � .Y�/d .f�/ in this cylinder, and send the
length T of the cylinder to 1. The right hand side of (15) counts sections satisfying
the incidence conditions given by Ai ;Dj for any finite T ; as T becomes large these
sections approach the broken sections (consisting of a section of R � .Y�/d .f�/

followed by a section of xXd . xf /) counted by the left hand side of (15).

The duality statement comprising part (iii) of Theorem 1.6 follows immediately from
the definition of Fm;� : the quantities

hF
m;�;zh

.x�/; xCioC and hx�;F�m;�;zh
.xC/i

count precisely the same objects (namely holomorphic sections of xXd . xf / asymptotic
to x˙ at the boundary components .Y˙/d .f˙/ in the relative homotopy class zh ), and
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do so with identical weights (since the relevant forms x� and " � are the same for m

as for �m); hence these quantities are equal.

Since part (iv) has already been established, the proof of Theorem 1.6 is now complete.

6 Periodic points of symplectomorphisms and asymptotics
for the parallel translation of vortices

Let us first prove Corollary 1.8 assuming Theorem 1.7. Note that for any diffeomorphism
�W †!† there is a Lefschetz fibration f W X !S2 with fiber † over some point and
all fibers irreducible such that the preimage of the equator  in S2 is isomorphic as a
smooth fibration to the mapping torus Y� of � (for by [33, Theorem 2.2] one can factor
the mapping class of � as a product of right-handed Dehn twists along nonseparating
loops to get a Lefschetz fibration over the disc such that the monodromy around the
boundary is isotopic to � , and then complete this factorization to a factorization of the
identity as a product of right-handed Dehn twists along nonseparating loops in order
to complete the Lefschetz fibration to a Lefschetz fibration over the whole sphere),
such that bC.X / > 1 (if the initially–constructed Lefschetz fibration does not satisfy
this property, then its fiber sum with itself will, by, eg, [43, Lemma 3.1]). Now T vtX

is a well-defined complex line bundle on the complement of a set of codimension
four (namely C ri t.f /) in X and so extends from the complement of a neighborhood
of C ri t.f / to a complex line bundle on all of X , and then hc1.T

vtX /; Œ†�i < 0.
Hence there are, by the proof of [13, Theorem 10.2.18], symplectic forms ˇ on
X in classes of form �c1.T

vtX /CMf �!S2 for large M . We wish to say that
DS.PD.�X /Ipt0/ ¤ 0 where �X is the canonical class; if our Lefschetz fibration
were obtained by blowing up a high degree Lefschetz pencil on a manifold with
bC> b1C1 we could deduce this directly from the main result of [7]. For more general
Lefschetz fibrations, Taubes’ theorems [45] show that, with respect to the symplectic
structure ˇ , we have GrX .PD.�X // D ˙1, and hence, by the main theorem of
[46],4 DS.PD.�X /Ipt0/D˙1; meanwhile all other classes ˛ 2H2.X IZ/ differing
from PD.�X / by a torsion element have GrX .˛/ D DS.˛Ipt0/ D 0. So where

4In the statement of the main theorem of [46], there is a hypothesis on the area of the fiber of the
Lefschetz fibration. However, for any Lefschetz fibration f W X ! S2 with all fibers irreducible, the main
theorem of [46] still applies to show that Gr.˛I �/ D DS.˛I �/ for any class ˛ 2 H2.X IZ/ satisfying
dD˛\Œ†�>g�1 , since then the virtual dimension of the space of pseudoholomorphic curves representing
any class of form ˛�nŒ†� with n> 0 will be smaller than the virtual dimension of pseudoholomorphic
representatives of ˛ , and so the Gromov–Taubes moduli spaces for the class ˛ will, for generic almost
complex structures making f pseudoholomorphic, not contain any curves with fiber components; ensuring
that this be the case was the only role played by the hypothesis on the area of the fiber in [46].
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h D PD.�X jY� / 2 H1.Y� IZ/ and c D ˇjY� D �c1.T
vtY�/, we conclude that the

compositionX
zh2H2.X IZ/W

PD.zh/jY�D�X jY�

F
X ;�;zh

.1˝ �/W RDHF.¿IR/!HF.Y� ; f; h; c; � I�� jY�
/

! RDHF.¿IR/

is nonzero for certain choices of � 2 �2.X / (and for arbitrary � ), and so
HF.Y� ; f; h; c; � I�� jY� /¤ 0. The monotonicity assumption on � implies that !�
(after rescaling) belongs to the class cC 2�

�
PD.h/, and so may be used in the definition

of HF.Y� ; f; h; c; �/. Hence, for all � > 2�d , noting that hh;fiberiD 2g�2, the sym-
plectomorphism ˆ2g�2;!� ;� has a fixed point. But as �!1, ˆ2g�2;!� ;�!S2g�2�

by Theorem 1.7, so the latter map has a fixed point as well.

As was alluded to in the introduction, the same argument reveals that for d > g� 1

Sd� has a fixed point whenever � is monotone and there is a Lefschetz fibration
f W X !S2 with irreducible fibers having monodromy around some loop isotopic to �
whose total space has the property that, for some homology class zh2H2.X IZ/ having
intersection number d with the fibers, the sum of the Gromov–Taubes invariants in
classes congruent to zh mod torsion and mod restriction to Y� is nonzero (with the
slight modification that for the class c of the fiberwise symplectic form one should use
c D�c1.T

vtX /� 2�
�

PD.zh/, with � large enough to ensure that this class is positive
on the fibers). As mentioned in footnote 4, the requirement that d > g� 1 along with
the irreducibility of the fibers suffice to replace the assumption on the symplectic areas
of zh and Œ†� in the main theorem of [46]. The same reasoning can also be applied
to certain non-monotone symplectomorphisms � , provided that there is a Lefschetz
fibration containing the mapping torus of � as the preimage of some circle in the base,
and carrying a symplectic form in a cohomology class which restricts appropriately to
this mapping torus.

We turn finally to the proof of Theorem 1.7. We consider a symplectomorphism
�W .†; !/! .†; !/ of a symplectic 2–manifold. ! induces on the mapping torus
Y� a closed fiberwise symplectic form !� in the cohomology class c 2 H 2.Y IR/.
In Section 2 we have, for each large enough � , chosen closed fiberwise symplectic
forms !� on Y� representing the classes cC 2�PD.h/=� ; since the homology will
be independent of the particular forms in these classes that we choose we may as well
assume that !� ! !� as � !1, and (using the Moser trick) that the restriction of
!� to some fixed base fiber is proportional to ! . The monodromies �� of the !�

then converge to � , and so from the definition of the chain complex CF it follows
that Theorem 1.7 can be translated into the statement that the parallel transport map
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FfJt gW S
d .†;J0/ ! Sd .†;J1/ of (5) approaches the identity as the parameter �

tends to 1.

In proving this, we shall make use of the asymptotic properties of the vortices themselves
for large � . Recall that the vortex equations are obtained by fixing a degree d Hermitian
line bundle L on the Kähler curve .†; !;J /; they read

x@J ;A� D 0

iFA D �.1� j� j
2/!:(16)

where the unknown .A; �/ consists of a connection A in L and a not–identically–zero
section � of L. In the case that .†; !;J / is R2 with its standard symplectic and
complex structure, solutions for general � can be obtained from those from the case
� D 1 by pulling back via the dilation z 7!

p
�z . The case of the standard plane

with � D 1 was exhaustively analyzed in [18, Chapter III]; in particular, according to
Theorem III.8.5, the curvature satisfies an exponential decay condition which translates
to the general � case as

j � iFAj �M �e�c
p
� jzj;

where c can be taken to be any constant smaller than 2. We shall be needing analogous
(though somewhat weaker) results for the vortices on general .†; !;J /. The referee
has pointed out that bounds similar to what we prove (at least for a fixed J ) can
be deduced from estimates on solutions to the Seiberg–Witten equations from [44]
(in particular 1.24 (6)) by specializing to the case where the four–manifold under
consideration is †�T 2 with a product metric; however, we shall still give our proof
of these bounds because the proof is simpler (though similar in spirit) in the purely
two-dimensional case, because we need to see explicitly that the estimates are uniform
when we vary J in a compact 1–parameter family, and because some of the necessary
ingredients will reappear later when we analyze a certain Green’s function. Readers
familiar with the proofs of such bounds might skip Lemma 6.1 through Theorem 6.3.

Throughout our discussion, we work with a fixed Hermitian line bundle L! † of
degree d > 0 over a fixed compact symplectic 2–manifold .†; !/. To connect this
to the setup in Section 2, we should note that in that section the closed fiberwise
symplectic form !� restricts to † as hc;Œ†�iC2�d=�

hc;Œ†�i
times ! . As such, the parameter

� in (16) would be � C 2�d
hc;Œ†�i

in the notation of Section 2. Since we are interested
here in the behavior of the vortex equations as � !1 and since hc; Œ†�i > 0, this
distinction is immaterial to our present concerns and we shall henceforth suppress it.

We will also fix a smooth path fJtgt2Œ0;1� of almost complex structures on †; together
with ! , these induce metrics gt . Consider the vortex equations (16) where J is one of
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the almost complex structures appearing in the path Jt . We shall be making a variety
of estimates on some quantities relating to solutions of these equations, which shall
involve certain constants; these constants may be taken independent of � and of J

provided that J is chosen from within the fixed smooth 1–parameter family fJtgt2Œ0;1� ,
but might not apply to an entirely arbitrary choice of J . More specifically, where g

is the metric induced by ! and J , the constants may depend on any or all of: the
minimal or maximal curvature of the Riemannian 2–manifold .†;g/; the injectivity
radius r0 of .†;g/; the diameter of .†;g/; or the maximum of the Jacobians of the
exponential maps expg

p W Br0=2.0/!† for p 2†.

First, we prove a direct analogue for the case of a general Riemann surface to a pair of
properties proven for the case of the flat plane in [18]. Let

� D max
t2Œ0;1�;p2†

f0;� secgt
.p/g;

where secgt
.p/ is the sectional curvature of † at p in the metric gt .

Lemma 6.1 Any solution .A; �/ to (16) satisfies:

w WD 1� j� j2 � 0 jdA� j � 2�1=2wC 2���1=2;

provided that � � � .

Proof First note that, for any section � of a holomorphic line bundle V with unitary
connection A over any Kähler manifold M , one has

.dA
x@A�/.v; w/Drv�wx@A� �rw�vx@A� � .x@A�/.Œv; w�/

D
1

2
FA�.v;w/C

i

2
.r2
v;iw� �r

2
w;iv�/;

as can be seen by expanding out �u@A� Dru�C iriu� and then using the fact that
M is Kähler to move various factors of i past covariant derivatives.

In particular

dA
x@A�.v; iv/D

1

2
FA�.v; iv/�

i

2
.r2
v;v�Cr

2
iv;iv�/;

so that if M is 1–complex dimensional we see that

�dA
x@A� D

1

2
�FA� �

i

2
��;

where � is the Hodge star operator induced by the metric and �D �dA � dA is the
(negative) Laplacian on sections of V induced by A. Applying this to our vortex
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.A; �/ on †, since x@A� D 0 and �iFA D �.1� j� j
2/, we see

(17) �� C �.1� j� j2/� D 0:

Now
�j� j2 D 2Reh��; �iC 2jdA� j

2;

while (17) implies that h��; �i is real, so that

h��; �i D�j� j2=2� jdA� j
2:

Hence taking the inner product of (17) with � and setting w D 1� j� j2 yields

(18) ��wC 2� j� j2w D 2jdA� j
2:

In particular if z0 2† were such that w.z0/ < 0, we would have .��w/.z0/ > 0, so
that z0 could not be a local minimum for w . So since † is compact and wW †! R

cannot attain a negative local minimum, we have w � 0 everywhere.

Now �� D�dA �dA� D�� iFA� D��w� , where we have used that, since dA� has
type .1; 0/, �dA� D�idA� . So setting hD dA� 2�

1;0.L/, we see

dA � dA � hD dA.��w�/D��.whC �dw/D��.wh� �.x�hC � xh//

D �h.1� 2w/C ��� xh;

while

�dA � dAhD �dA � dAdA� D�i� � dA.w�/

D�i� � .�.�x�h� � xh/Cwh/D�i� � ..2w� 1/h� �� xh/

D �.1� 2w/h� ��� xh;

where in the last equality we have used that since h has type .1; 0/, �hD �ih and
�xhD i xh. So following [18, Section III.6] by writing �A D �dA � dAC dA � dA�, we
see

�AhD 2�h.1� 2w/:

Further, on L–valued 1–forms there is a Weitzenböck formula (see, eg, [18, III.6.15];
[36, Chapter 7])

t rr2
A D�AC .�FA/�C sec;

so since h has type .1; 0/ and so .�FA/� hD .�� iFA/hD��wh, we obtain

t rr2
AhD �.2� 5wC sec =�/h;

from which Kato’s inequality [18, III.6.20] provides

jhj�jhj � �.2� �=� � 5w/jhj2:
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Hence

jhj�.2
p
�.wC �=�/� jhj/� 2

p
� jhj

�
2�w.1�w/� 2jhj2

�
C .5wC �=� � 2/� jhj2

D
p
� jhj

�
4�.1�w/wC

p
� jhj.5wC �=� � 2/� 4jhj2

�
D
p
� jhj

�
.2
p
�.wC �=�/� jhj/

�
2
p
�
w.1�w/

wC �=�
C 4jhj

��
� � jhj2

�
.2� �=� � 5w/�

�
2w.1�w/

wC �=�
� 8.wC �=�/

��
�
p
� jhj

�
.2
p
�.wC �=�/� jhj/

�
2
p
�
w.1�w/

wC �=�
C 4jhj

��
;

where we have used the fact that, since 0 � w � 1 and �=� � 1, we have 2w
wC�=�

�

2
1C�=�

� 2� �=� .

So we see that wherever 2�1=2wC2���1=2�jhj is negative (which forces jhj>0 since
we’ve already shown that w� 0 everywhere) we have �.2�1=2wC2���1=2�jhj/ < 0.
But then 2�1=2wC 2���1=2 � jhjW †! R cannot attain a negative local minimum,
which by the compactness of † forces jdA� j D jhj � 2�1=2wC 2���1=2 everywhere.

Proposition 6.2 There is a constant C > 0 with the property that, for all sufficiently
large � if .A; �/ is a solution to (16) with J 2 fJtgt2Œ0;1� and w D 1� j� j2 , we have,
for each z0 2†,

w.z0/minfd.z0;p/j�.p/D 0g �
C
p
�
;

where d.�; �/ denotes the distance measured in the metric g induced by J and ! .

Proof First note that the first statement of Lemma 6.1 shows that j� j � 1, so
jd.wC �=�/j D j2Reh�; dA�ij � 2jdA� j � 4

p
�.wC �=�/. So if  is an arc–length

parametrized path in †, say from z to z0 and having length l , we have

log
�
w.z0/C �=�

w.z/C �=�

�
D

Z l

0

d

dt
log.w. .t//C �=�/ dt �

Z l

0

jd.wC �=�/j

jwC �=� j
dt

� 4
p
� l :

Thus, for any z; z0 2†,

w.z0/C �=� � .w.z/C �=�/e�4
p
�d.z;z0/:
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We claim now that w D 1� j� j2 is equal to either 0 or 1 at each of its local maxima.
Indeed, note that, again writing h D dA� 2 �

1;0.L/, we have dw D �d j� j2 D

�.x�hC � xh/, and �dw D�� .x�hC � xh/D i x�h� i� xh, so that

dwC i � dw D�2x�h;

so at a putative local maximum z of w with w.z/ 62 f0; 1g (so �.z/¤ 0), we necessarily
have h.z/ D 0. Meanwhile since w takes values only in Œ0; 1� we must also have
w.z/.1�w.z// > 0, so recalling the equation

��wC 2�w.1�w/D jhj2

we see that �w.z/ > 0, in contradiction with the fact that z was taken to be a local
maximum.

Suppose now that

N ��1=2
�minfd.z0;p/j�.p/D 0g � .N � 1/��1=2 .N 2 N/:

Since w is everywhere nonnegative and is strictly less than 1 on B.N�1/��1=2.z0/,
we deduce that for k D 1; : : : ;N � 1; supBk=

p
� .z0/

w must be attained at some point

zk with d.zk ; z0/ D k��1=2 ; in particular w.zk/ � w.z0/. This together with the
conclusion of the first paragraph of the proof shows that, on each of the disjoint balls
Bk D B 1

2
p
�

.zk/ (k D 0; : : : ;N � 1),

wjBk
� e�2w.z0/� �=�:

Now for some constant A (related to the Jacobian of the exponential map on balls of
radius smaller than the injectivity radius, if � is large enough) we have vol.Bk/�A��1

for each k , and so since w � 0 throughout †Z
†

w! �

N�1X
kD0

Z
Bk

w! �ANe�2w.z0/�
�1
�A���2:

But the original vortex equations imply thatZ
†

w! D ��1

Z
†

�iFA D 2�d��1:

Thus
w.z0/minfd.z0;p/j�.p/D 0g � w.z0/N �

�1=2
� C��1=2

for an appropriate choice of C .

Having taken these first steps, we can now prove a basic exponential decay estimate
for vortices.
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Theorem 6.3 There are constants R;M; �0 > 0 with the property that, if .A; �/ is a
solution to (16) with J 2 fJtgt2Œ0;1� and w D 1� j� j2 , we have, for each z 2† and
for � � �0 ,

w.z/ WD 1� j�.z/j2 � ���1
CM

X
fpW�.p/D0g

�
e�
p
�d.z;p/

C e�R
p
�
�
:

Proof According to Lemma 6.1 and Equation (18), we have

��wC 2�w.1�w/D 2jdA� j
2
� 8�.wC �=�/2;

so that

��w � �w.34w� 2/ wherever w > �=� :

Meanwhile, according to Proposition 6.2, where

V D fz 2† W d.z; ��1.0//� 68C��1=2
g;

at each z 2 V we have w.z/� 1=68, and so

��w � �
3

2
�w on V \fw > �=�g:

Now note that if q 2† and ˛W R�0!R , the function uq;˛.z/D e�
p
�˛.d.q;z// satisfies

(wherever all terms exist)

�uq;˛.z/D
�
�˛0.d.q; z//2�

p
�.˛00.d.q; z//�

p
�˛0.d.q; z//�.d.q; z//

�
uq;˛.z/:

Also, if the curvature of .†;g/ is bounded above by K > 0, then it follows from
Theorem 6.2.1 and the discussion before Lemma 9.1.1 in [36] that where R is the
minimum of �

2
p

K
and the injectivity radius of .†;g/, we have �.d.q; z// � 0 as

long as d.q; z/�R.

Take for ˛ a smooth function with the following properties:

(i) ˛.0/D 0,

(ii) 0� ˛0.t/� 6=5, with ˛0.t/D 6=5 for t <R=2,

(iii) ˛.t/DR for t �R,

(iv) �3=R� ˛00.t/� 0.
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Then since uq;˛ is positive everywhere and is constant outside the region that �d.q; �/

is known to be nonnegative, we have

�uq;˛ �

�
36

25
� C

3
p
�

R

�
uq;˛

�
3

2
�uq;˛

provided that
p
� � 50=R.

Also, assuming that � is large enough that 68C��1=2 �R=2, if d.q; z/D 68C��1=2

then uq;˛.z/D e�408C=5 . Hence setting M D e408C=5 and

uDM
X

p2��1.0/

up;˛;

we have uj@V � 1>
1

68
� wj@V

and �.u�w/�
3

2
�.u�w/ on V \fw > �=�g:

But then, as usual, �.u�w/ < 0 anywhere on V \fw > �=�g that u�w is negative,
so that u�w cannot attain a negative local minimum on V \fw > �=�g. In particular,
then, uC �=� �w also cannot attain a negative local minimum on V \fw > �=�g, so
since uC �=� �w is obviously positive where w � �=� , uC �=� �w cannot attain a
negative local minimum anywhere on V . So since u�w > 0 on @V we deduce that
w � uC �=� througout V , and indeed throughout † since away from V we have
u� 1�w . The proof is then completed by noting that the construction of ˛ ensures
that, for each p 2 ��1.0/, we have

up;˛.z/� e�
p
�d.p;z/

C e�R
p
� :

Now the parallel translation inducing the map FfJt gW S
d .†;J0/! Sd .†;J1/ that

we are investigating is, by [39, Theorem 5.1], given by

FfJt g.ŒA; � �/D ŒA.1/; �.1/�

where .A.t/; �.t// solves the ODE

i PA.t/D 2�Reh�.t/; �.t/i i P�.t/D x@�A.t/�.t/
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with initial condition .A.0/; �.0// D .A; �/ where �.t/ 2 �0;1.L/ is the unique
solution to

(19) x@Jt ;A.t/
x@�Jt ;A.t/

�.t/C � j�.t/j2�D
1

2
.dA.t/�.t// ı PJ .t/:

(Recall that the isomorphism between the set of gauge equivalence classes of vortices
takes ŒA; � � to the vanishing locus of � . Also, to compare to [39], our terms � and � are
1=
p

2� times the corresponding terms ‚0; ‚1 , respectively, in [39]. The reader may
calculate directly or consult the proof of [39, Theorem 5.1] to see that .A.t/; �.t// so
defined does indeed satisfy (16) with J D Jt for all t and that this recipe is consistent
with the symplectic parallel transport description discussed in Section 2.)

Our goal is to show that FfJt g is close to the identity; we shall accomplish this by
obtaining upper bounds on jx@�

Jt ;A.t/
�.t/j where �.t/ solves (19). Now where

G.x;p/W �0;1.L/jp!�0;1.L/jx

denotes the Green’s kernel for the operator

x@J ;A
x@�J ;AC � j� j

2
W �0;1.L/!�0;1.L/

we have

�.t/.x/D
1

2

Z
†

G.x;p/
�
.dA.t/�.t;p// ı PJ .t;p/

�
!pI

the desired upper bounds on jx@�
Jt ;A.t/

�.t/j will follow from our already–obtained

exponential decay bounds on w.t/D 1� j�.t/j2 (and hence on jdA.t/�.t/j by Lemma
6.1), together with bounds on the derivatives of the Green’s kernel.

We now set about deriving these Green’s kernel estimates. Let .A; �/ be an arbitrary
solution to (16) (with J taken from the path fJtgt2Œ0;1� ; with this J understood, we
shall just write x@A for x@J ;A ). Note that x@Ax@�AC � j� j

2 is manifestly positive definite,
and in fact the Weitzenböck formula used in the proof of Lemma 6.4 below allows us
to rewrite this operator as 1

2
.r�

A
rAC �.1Cj� j

2/C sec/, and so as long as � > 4� (as
we shall assume hereinafter) its spectrum is bounded below by �=4.

We first obtain estimates on G.x;p/ for p close to x . In this direction, consider the
effect of replacing the metric g induced by J and ! by zg D �g . Then, since on
1–forms we have x@�zg

A
D��zg @A�zg D �

�1x@
�g

A
we see that G is also the Green’s kernel

(using the metric zg ) for the operator

x@Ax@
�zg

A
Cj� j2W �0;1.L/!�0;1.L/;
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where by Lemma 6.1 we have � –independent bounds

0� j� j2 � 1; jd j� j2jzg � 3=2

for the potential term j� j2 . Furthermore (18) gives

�zgj� j2C 2j� j2.1� j� j2/D jdA� j
2
zgI

differentiating this and repeatedly using the bounds of Lemma 6.1 and the fact that
�iFA D �.1� j� j

2/ gives, for all k , � –independent constants Ck such that

j.�zg/k j� j2j � Ck ; jd.�
zg/k j� j2jzg � Ck :

Using the approach of [3, Chapitre III, E.III] (adapted from the case of the Laplacian on
functions to that of a more general Laplace type operator on sections of a vector bundle
as in [12]) one then finds, for a fixed c < inf i nj rad.†; zg/, uniform–in–� estimates
on the c–neighborhood of the diagonal in .†; zg/� .†; zg/ for the C 1 –accuracy of
the third-order asymptotic approximation S3.t;x;y/ to the heat kernel S.t;x;y/ for
x@Ax@
�zg

A
Cj� j2 . (Note that since the functions Kk of [3, Chapitre III, Lemme E.III.6]

vanish outside the c–neighborhood of the diagonal the term V on page 212 can be
replaced by the maximal volume of a ball of radius c in the .†; zg/, which is bounded
independently of � .) Since the spectrum of x@Ax@

�zg

A
C j� j2 is bounded below by 1=4,

we may then integrate with respect to t to see that these estimates imply a uniform
bound on the C 1 –norm of the difference between a cut-off version of the third-order
Hadamard expansion of the Green’s kernel and the actual kernel G (see, eg, [2, section
II.2]; the relevant coefficients in the expansion may be found on page 336 of [12],
and the salient point for our purposes is that the k th derivatives of the potential term
j� j2 only contribute a correction factor proportional to the 2.k C 1/th power of the
distance and so do not substantially affect the rate at which G.x;p/ diverges near the
diagonal). As a result, there is a � –independent constant C > 0 such that, whenever
distzg.x;p/� c , we have

jG.x;p/j � C.1Cj log dzg.x;p/j/; jx@
�zg

A
G.x;p/jzg �

C

dzg.x;p/
;

where in the second formula we are viewing p as fixed, so that x 7! G.x;p/ is an
element of .�0;1.L/jp/

�˝�0;1.L/, and then taking x@�zg
A

of this section (with respect
to x ). Scaling back, these relations translate to:

jG.x;p/j � C.1Cj log �1=2dg.x;p/j/; jx@
�g

A
G.x;p/jg �

C

dg.x;p/
(20)

whenever dg.x;p/� c��1=2
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since the zg D �g–norm of a given element of Hom.�0;1.L/jp;Ljx/ is �1=2 times
its g–norm. Hereinafter we use g to measure all distances and norms and to take all
adjoints, and so we shall drop g from notations such as x@�g

A
.

Lemma 6.4 Fix p 2†, view G.p; �/ as a section of Hom.T 0;1
p †˝Ljp; ƒ

0;1†˝L/,
and write

ˇ D x@�AG.p; �/ 2 �.Hom.T 0;1
p †˝Ljp;L//:

Then provided that � � �=8 we have the differential inequality

�
�
4jˇj2C 81� jGj2

�
�

3

2
�
�
4jˇj2C 81� jGj2

�
on † n fpg:

Proof First, on † n fpg, we have by the definition of G

(21) x@Ax@
�
AGC � j� j2G D 0:

Now

hx@Ax@
�
AG;Gi D h�

1

2
�G;Gi D �

1

2

�
ht rr2

AG;Gi � .�iFAC sec/jGj2
�

D�
1

4
�jGj2C

1

2
jrAGj2C

�

2
.1C sec =� � j� j2/jGj2;

where in the second equality we have used the Weitzenböck formula on L–valued
1–forms � D t rr2

A
� .�FA/ � � sec and the fact that �G D iG since G has type

.0; 1/. Hence taking the inner product of (21) with G gives

(22) �
1

4
�jGj2C

�

2
.1C sec =� Cj� j2/jGj2C

1

2
jrAGj2 D 0

Meanwhile, applying x@�
A

to (21) gives

(23) x@�A
x@AˇC � j� j

2ˇ D i� � .x�@A� ^G/

(we have used that @Ax� D 0 here). Now since �D t rr2
A

on sections of L, we have

Rehx@�A
x@Aˇ; ˇi D �

1

2
Reht rr2

Aˇ; ˇi D �
1

4
�jˇj2C

1

2
jrAˇj

2;

while
j � .x�@A� ^G/j � 2�1=2

j� j.9=8� j� j2/jGj

by Lemma 6.1 and the assumption ���1 � 1=8; so taking the real part of the inner
product of (23) with ˇ shows

(24) �
1

4
�jˇj2C � j� j2ˇC

1

2
jrAˇj

2
� 2�3=2

j� j.9=8� j� j2/jGjjˇj:
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But now note that jrAGj2 � jx@�
A

Gj2 D jˇj2 , while jrAˇj
2 � jx@Aˇj

2 D jx@Ax@
�
A

Gj2 D

�2j� j4jGj2 by (21). Substituting these relations into (22) and (24) and using that, by
assumption, sec� �� � ��=8, yields

1

4
�jGj2 �

�

2
.
7

8
Cj� j2/jGj2C

1

2
jˇj2(25)

1

4
�jˇj2 �

�2

2
j� j4jGj2C � j� j2jˇj2�

9

4
�3=2
j� jjGjjˇj

But since
81

16
�2
jGj2C 4� j� j2jˇj2 � 9�3=2

j� jjGjjˇj;

adding 81� times the first inequality of (25) to 4 times the second gives

�

�
81

4
� jGj2Cjˇj2

�
� �2

�
243

8
C

81

2
j� j2C 2j� j4

�
jGj2C

81

2
� jˇj2

�
3

2
�

�
81

4
� jGj2Cjˇj2

�
;

as desired.

Corollary 6.5 Where R is the constant from Theorem 6.3, there is a constant K such
that, for all sufficiently large � and for all p;x 2† with d.p;x/� c��1=2 we have

4jˇ.x;p/j2C 81� jG.x;p/j2 �K.e�
p
�d.x;p/

C e�R
p
� /� log �:

Proof Let u.x/ D e�
p
�˛.d.p;x// where ˛W R�0 ! R is the same function as in

the proof of Theorem 6.3 (so that in particular, we have �u � 3
2
�u and u.x/ �

e�
p
�d.p;x/C e�R

p
� ). Now if d.p;x/D c��1=2 , the local estimates (20) show that

4jˇ.x;p/j2C 81� jG.x;p/j2 �A� log �

for an appropriate constant A, so we can choose K independently of � , p such
that, when d.p;x/ D c��1=2 , Ku.x/� log � D Ke�6c=5� log � � 4jˇ.x;p/j2 C

81� jG.x;p/j2 . So since

�
�
Ku� log � �

�
4jˇj2C 81� jGj2

��
�

3

2
�
�
Ku� log � �

�
4jˇj2C 81� jGj2

��
on † nBc��1=2.p/ and

Ku� log � j@B
c��1=2 .p/ � 4jˇj2C 81� jGj2

ˇ̌̌
@B

c��1=2 .p/
;

we deduce by the usual argument that Ku� log � �
�
4jˇj2C 81� jGj2

�
cannot attain a

negative local minimum and hence must be nonnegative throughout †nBc��1=2.p/.
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In particular, after renaming K , we have

jˇ.x;p/j �K.e�
p
�d.x;p/=2

C e�R
p
�=2/�1=2 log �

when d.x;p/� c��1=2 .

In light of this corollary, together with Theorem 6.3, the local Green’s kernel bound
(20) and the parallel transport prescription (19), we can get bounds on

j P�.x/j �

 
sup
j PJ j

2

!Z
†

jˇ.x;y/jjdA�.y/j!y

from simple bounds on integrals over † of various expressions involving functions of
form e�a

p
�d.q;�/ for a a constant and q 2†. Namely, note first that if r < i nj rad.†/

and C >0 are constants such that for each z2†, expz W f.x;y/2R2jx2Cy2< r2g!†

is a diffeomorphism onto its image with Jacobian at most C , then we have, for any
z 2†, Z

†

e�a
p
�d.z;x/!x � vol.†/e�a

p
�r
CC

Z 2�

0

Z r

0

e�a
p
���d�d�

� vol.†/e�a
p
�r
C

2�C

a2�
:

Along the same lines, if x; z 2 † are two given points, for any y 2 †, adding the
equations d.z;y/C d.x; z/ � d.x;y/, and 2.d.x;y/C d.z;y// � 2d.x; z/ shows
that

3.d.x;y/C d.z;y//� 2d.x;y/C d.x; z/;

and so Z
†

e�a
p
�d.x;y/e�a

p
�d.z;y/!y � e�a

p
�d.x;z/=3

Z
†

e�2a
p
�d.x;y/=3!y

� e�a
p
�d.x;z/=3.

C 0

a2�
CBe�ar

p
� /(26)

for certain constants B , C 0 .

Finally, noting that given x 2†, where C is the same Jacobian bound as earlier, and
we assume that � is large enough that c��1=2 < r , we haveZ

B
c��1=2 .x/

1

d.x;y/
!y � C

Z 2�

0

Z c��1=2

0

�d�d�

�
D

2�Cc
p
�
:
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So if d.x; z/� 2c��1=2 , so that d.y; z/� 2d.x; z/ for each y 2 Bc��1=2.x/, we getZ
B

c��1=2 .x/

e�
p
�d.y;z/

d.x;y/
!y �D��1=2e�

p
�d.x;z/=2

for some constant D while if d.x; z/� 2c��1=2 then e�
p
�d.x;z/=2 � e�c , so thatZ

B
c��1=2 .x/

e�
p
�d.y;z/

d.x;y/
!y �D��1=2e�

p
�d.x;z/=2

still holds, possibly after increasing the (still x; z; and � –independent) constant D .

So recalling our estimates

jˇ.x;y/j �
C

d.x;y/
when d.x;y/� c��1=2

jˇ.x;y/j �K.e�
p
�d.x;y/=2

C e�R
p
�=2/�1=2 log � when d.x;y/� c��1=2

jdA�.y/j�2�1=2w.y/C2���1=2
�4���1=2

C2M �1=2
X

fpW�.p/D0g

�
e�
p
�d.y;p/

Ce�R
p
�
�

we deduce

Corollary 6.6 There are constants L; b > 0, depending only on the path of almost
complex structures fJtgt2Œ0;1� , such that if � is sufficiently large the path .A.t/; �.t//
of Jt –vortices is obtained by (19), we have, for all t ,

j P�.t/.x/j �L

0@��1
C .log �/

X
pW�.t/.p/D0

.e�b
p
�d.x;p/

C �e�b
p
� /

1A :
In particular, since �.t/, being a not–identically–zero section of a degree d holomorphic
line bundle, vanishes at no more than d points, we have, where w.t;x/D1�j�.t;x/j2�

0, ˇ̌̌̌
@w

@t

ˇ̌̌̌
� j� jj P� j � 2dL log �

everywhere (we restrict here to � large enough that ��1 C d�e�b
p
� � d ). So if

jhj � .4dL log �/�1 and x 2 † is such that w.t C h;x/ D 1, we must have had
w.t;x/� 1=2. Referring back to the notation in Theorem 6.3, assuming that � is large
enough that ���1 CMde�R

p
� � 1=4, this implies that one of the d expressions

e�
p
�d.x;p/ for p 2 �.t/�1.0/ must be at least .4dM /�1 , so that d.x;p/� B��1=2

where the constant B is independent of t . So since the points where w.t C h; �/ is
equal to 1 are those where �.t C h/ vanishes, we deduce that for all t 2 Œ0; 1�, if
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jhj � .4dL log �/�1 , then each zero of �.t Ch/ is a distance at most B��1=2 from a
zero of �.t/, and vice versa, where the “vice versa” part comes from just replacing
t by t C h and h by �h. But then we can subdivide Œ0; 1� into at most .5dL log �/
intervals each of length at most .4dL log �/�1 and apply this fact to the endpoints of
each interval to deduce that

Corollary 6.7 Where N D 5dLB , each zero of �.1/ lies a distance at most
N ��1=2 log � from some zero of �.0/, and vice versa.

Thus since the parallel transport map

FfJt gW S
d .†;J0/! Sd .†; ��!J0/ .��!J0 D J1/

sends the zero set of �.0/ to that of �.1/, we deduce that, as �!1, FfJt g converges
in C 0 norm to the identity, and so the �d;!;� –symplectomorphisms ˆd;!;� DSd�! ı

FfJt g converge in C 0 -norm to Sd�! W S
d†! Sd† as � !1.
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[20] P B Kronheimer, T S Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space
surgeries arXiv:math.GT/0310164

[21] Y-J Lee, Heegaard splittings and Seiberg-Witten monopoles, from: “Geometry and
topology of manifolds”, Fields Inst. Commun. 47, Amer. Math. Soc., Providence, RI
(2005) 173–202 MR2189932

[22] Y-J Lee, Reidemeister torsion in Floer-Novikov theory and counting pseudo-
holomorphic tori. I, J. Symplectic Geom. 3 (2005) 221–311 MR2199540

[23] Y-J Lee, Reidemeister torsion in Floer-Novikov theory and counting pseudo-
holomorphic tori. II, J. Symplectic Geom. 3 (2005) 385–480 MR2198782

[24] G Liu, G Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998)
1–74 MR1642105

[25] G Liu, G Tian, On the equivalence of multiplicative structures in Floer homology and
quantum homology, Acta Math. Sin. .Engl. Ser./ 15 (1999) 53–80 MR1701133

[26] I G Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962) 319–343
MR0151460

[27] M Marcolli, B-L Wang, Equivariant Seiberg-Witten Floer homology, Comm. Anal.
Geom. 9 (2001) 451–639 MR1895135

Algebraic & Geometric Topology, Volume 6 (2006)



1742 Michael Usher

[28] D McDuff, D Salamon, Introduction to symplectic topology, second edition, Oxford
Mathematical Monographs, The Clarendon Press Oxford University Press, New York
(1998) MR1698616

[29] J Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965)
286–294 MR0182927
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