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Legendrian links and the spanning tree model
for Khovanov homology

HAO WU

We use the spanning tree model for Khovanov homology to study Legendrian
links. This leads to an alternative proof for Ng’s Khovanov bound for the Thurston–
Bennequin number and to both a necessary and a sufficient condition for this bound
to be sharp.

57M25; 57R17

1 Introduction

In [3], M. Khovanov constructed a categorification of the Jones polynomial. That is, to
any oriented link L, he associated a bigraded homology group H.L/, the Khovanov
homology, whose graded Euler characteristic is

�.H.L// WD
X
i;j

.�1/iqj rank.Hi;j .L//D .qC q�1/VL.q
2/;

where VL is the Jones polynomial, i is the homological grading of H.L/, and j is
the quantum grading of H.L/.

The Khovanov homology has led to many interesting new developments in knot theory
and related fields. See Lee [4; 5], Ng [6], Plamenevskaya [7] and Rasmussen [8]
for examples. It is still very difficult to compute the Khovanov homology in general.
Recently, A Champanerkar and I Kofman [2] and, independently, S Wehrli [11] con-
structed a spanning tree model for the Khovanov homology based on the spanning tree
expansion of the Jones polynomial introduced by M Thistlethwaite in [10]. Though
the spanning tree model does not completely determine the Khovanov homology, it
does greatly simplify the Khovanov chain complex used to compute the Khovanov
homology. In some cases, such simplifications are enough to deduce interesting results.
For example, Lee’s result on the Khovanov homology of alternating knots is reproved
in [2; 11] by the spanning tree model.

In this paper, we will use the spanning tree model for Khovanov homology to study
Legendrian links in the standard contact R3 . In particular, we give an alternative proof
of the following theorem of Ng.
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Theorem 1.1 (Ng [6]) For any Legendrian link L in the standard contact R3 ,

(1–1) tb.L/�minfk j
M

j�iDk

Hi;j .L/¤ 0g;

where tb is the Thurston–Bennequin number.

From our proof of Theorem 1.1, it’s easy to see that we have the following necessary
condition and sufficient condition for Ng’s Khovanov bound to be sharp, where good
spanning trees and bad spanning trees will be defined in Section 3.

Theorem 1.2 Let L be a Legendrian link.

(i) If Inequality (1–1) is an equality, then the front projection of L admits a good
spanning tree.

(ii) If there is an integer v , such that the front projection of L admits more good
v–spanning trees than bad .vC 2/–spanning trees, then Inequality (1–1) is an equality.

Specially, this theorem implies that Ng’s bound is sharp for alternating links.

Corollary 1.3 (Ng [6]) If L is an alternating link, then

(1–2) tb.L/Dminfk j
M

j�iDk

Hi;j .L/¤ 0g;

where tb.L/ is the maximal Thurston–Bennequin number for a Legendrian link
smoothly isotopic to L.

It is interesting to compare Theorem 1.2 to D Rutherford’s results in [9], where he
demonstrated that the Kauffman polynomial bound for the Thurston–Bennequin number
is sharp if and only if the front projection admits a ruling.

Question 1.4 Can we refine Theorem 1.2 to get a necessary and sufficient condition
for Ng’s Khovanov bound to be sharp in terms of spanning trees?
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2 The spanning tree model for Khovanov homology

In this section, we recall the construction of the spanning tree model of Khovanov
homology in [2]. For a similar construction, see also [11].

Let D be an oriented link diagram with an given ordering of crossings. Checkerboard
color the complementary regions of D . To each black region, assign a vertex, and, to
each crossing, assign an edge connecting the two vertices corresponding to the two
black regions incident on this crossing. The result is a planar graph G called a Tait
graph of the link diagram. The edges of G are ordered by the ordering of the crossings
in D . Assign a sign to each edge of G by the convention in Figure 1.

C �

Figure 1: Sign of an edge

In the rest of this section, we assume that the knot diagram D is connected as a subset
of R2 . (This can be easily arranged using Reidemeister moves.)

Let T be a spanning tree of G . For an edge e 2 T , removing e from T divides T

into two connected components. Let cut.T; e/ be the set of edges of G connecting
these two connected components of T n e . e is said to be internally active if it has
the lowest ordering among the elements of cut.T; e/. A positive internally active edge
is denoted by L, and a negative internally active edge is denoted by L. An edge in
T that is not internally active is said to be internally inactive. A positive internally
inactive edge is denoted by D , and a negative internally inactive edge is denoted by D .
For an edge f … T , T [f contains a unique simple cycle. Let cyc.T; f / be the set of
edges in this simple cycle. f is said to be externally active if it has the lowest ordering
among the elements of cyc.T; f /. A positive externally active edge is denoted by l ,
and a negative externally active edge is denoted by l . An edge outside T that is not
externally active is said to be externally inactive. A positive externally inactive edge is
denoted by d , and a negative externally inactive edge is denoted by d . Note that, for
edges e and f with e 2 T and f … T , f 2 cut.T; e/ if and only if e 2 cyc.T; f /.

For any crossing in D , there are two ways to splice it, which are called the A–splicing
and the B –splicing. These are depicted in Figure 2.

Given a spanning tree T of the Tait graph G , one obtains a twisted unknot UT by
splicing each inactive crossing following the rules in Table 1. (cf [2], Proposition 2.)
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A B

Figure 2: Splicings of a crossing

Here, a twisted unknot is a diagram of the unknot obtained from the round circle by
only Reidemeister I moves.

D d D d

A B B A

Table 1: Splicing inactive crossings

The contribution of each active crossing to the writhe of UT is given in Table 2.

L l L l

� C C �

Table 2: Contribution of an active crossing to the writhe of UT

Denote by E˙.G/ the number of positive/negative edges of G , by V .G/ the number
of vertices of G . For type X of edges, denote by #XG.T / the number of edges of
type X in G computed using T . When G is clear from the context, we drop it from
the notation.

For a spanning tree T of G , define

u.T /D�w.UT /D #L.T /� #l.T /� #L.T /C #l.T /;

v.T /DEC.T /CE�.G nT /D #L.T /C #D.T /C #l.T /C #d.T /:

where w.�/ means the writhe. (Note that the normalization of v here is different from
that in [2].)

Define CT to be the bigraded free abelian group of rank two with one generator of
bidegree .u.T /; v.T //, and the other of bidegree .u.T /C 2; v.T /C 2/. In the rest of
this paper, we call the first grading the u–grading, and the second the v–grading.
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Define
C.D/D

M
T

CT ;

where the direct sum is taken over all spanning trees of G .

Theorem 2.1 (Champanerkar and Kofman [2]) There is a boundary map @ of bide-
gree .�1;�2/ on C.D/, so that .C.D/; @/ is a deformation retract of the Khovanov
chain complex. In particular, we have

Hi;j .D/ŠH u
v .C.D/; @/;

where both homologies are computed over Z, H u
v .C.D/; @/ is the subspace of

H.C.D/; @/ of homogeneous elements of bidegree .u; v/, and

uD j � i �w.D/C 1;

v D j � 2i C
EC.G/CE�.G/�w.D/

2
C 1:

Remark 2.2 Since the v–grading in [2] is sensitive to the choice of coloring, the
construction there is done under the assumption that EC.G/ � E�.G/. But we are
using a different normalization of the v–grading, which is invariant under reversing of
the coloring. So Theorem 2.1 is true for either coloring. The equivalence of Theorem
2.1 and the corresponding result in [2], and the invariance of our v–grading under
reversing of the coloring, can be easily deduced from the following discussion of dual
graphs.

Definition 2.3 Let G be a graph embedded in R2 . The dual graph G0 of G is a graph
embedded in R2 defined as following:

(i) All vertices of G0 are in R2 n G . And each connected component of R2 n G

contains exactly one vertex of G0 .

(ii) There is a one-to-one correspondence between edges of G and G0 , called the
dual relation, under which any edge e of G corresponds to an edge e0 of G0 that
transversally intersects e once, connects the vertices of G0 in the connected components
of R2 nG on both sides of e , and is disjoint from all other edges of G .

If the edges of G are signed, then the edges of G0 are signed so that dual edges have
opposite signs. If the edges of G are ordered, then we order the edges of G0 so that
the dual relation of edges preserves the ordering of edges.

Note that the dual of the dual of a graph is the original graph. Also, the two Tait graphs
of a link diagram obtained by reversing the coloring are duals of each other.
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Figure 3: Dual Graphs

Lemma 2.4 Let G be a graph embedded in R2 , and G0 its dual. Assume that both G

and G0 are connected. Then there is a one-to-one correspondence between spanning
trees of G and G0 , which is called the dual relation, so that, for any spanning tree T of
G , its dual spanning tree T 0 of G0 is defined by e0 2 T 0 if and only if e … T , where e0

is the dual of e .

Moreover, if edges of G are signed and ordered, and the edges of G0 are signed and
ordered as in Definition 2.3, then, for any spanning tree T of G with dual spanning
tree T 0 of G0 , and edge e of G with dual edge e0 , we have

e is of type L under T , e0 is of type l under T 0I

e is of type D under T , e0 is of type d under T 0I

e is of type l under T , e0 is of type L under T 0I

e is of type d under T , e0 is of type D under T 0:

Proof We call a subgraph of G a spanning subgraph if it contains all the vertices
of G . For any spanning subgraph H of G , define its dual spanning subgraph H 0 of
G0 by e0 2 H 0 if and only if e … H for any pair of dual edges e and e0 . This is a
one-to-one correspondence between spanning subgraphs of G and G0 , called the dual
relation. We need to show that a spanning subgraph of G is a tree if and only if its
dual is a tree.

We compactify R2 to S2 by adding a single point at1. Let H be a spanning subgraph
of G , and H 0 its dual spanning subgraph of G0 . Slightly thicken H in S2 . We get
a surface UH with boundary which has H as a deformation retract. Let VH 0 be the
closure of S2 nUH in S2 . Then VH 0 is a surface with boundary, and has H 0 as a
deformation retract. Note that UH [VH 0 D S2 , and UH \VH 0 D @UH D @VH 0 . It’s
clear that:
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H is a spanning tree. , UH is a disk. , VH 0 is a disk. , H 0 is a spanning tree.

Thus, the dual relation gives a one-to-one correspondence between spanning trees of
G and G0 .

Now let T be a spanning tree of G and T 0 its dual spanning tree of G0 . Let e be an
edge of T , and e0 its dual edge. Then e0 …T 0 . Let f be an edge of G not contained in
T . Then f 0 , the dual of f , is contained in T 0 . If f 2 cut.T; e/, then e 2 cyc.T; f /,
ie, e is contained in the unique simple cycle in T [ f . So f 0 is the unique edge in
T 0 connecting vertices on two sides this cycle. Thus, the two connected components
of T 0 n f 0 are on each side of this cycle. Note that e0 connects vertices on two sides
of this cycle. So e0 2 cut.T 0; f 0/, ie, f 0 2 cyc.T 0; e0/. If f 0 2 cyc.T 0; e0/, then
e0 2 cut.T 0; f 0/, and, by the above argument, one can check that e 2 cyc.T; f /, ie,
f 2 cut.T; e/. Thus, the dual relation of edges gives a one-to-one correspondence
between cut.T; e/ and cyc.T 0; e0/. This correspondence implies the second half of the
lemma.

3 Legendrian links and Khovanov homology

All Legendrian links in this paper are in the standard contact R3 , which is defined by
the contact form ˛ D dz�ydx .

The front diagram of a Legendrian link is its projection onto the xz–plane. It’s a
immersion of circles into xz–plane with cusps and transversal self-intersections, but
no vertical tangencies. Using the equation y D dz

dx
, it’s easy to check that a Legendrian

link is uniquely determined by its front projection. After a small perturbation, we
assume that all self-intersections are transversal double points (crossings) with pairwise
different x–coordinates. In the rest of this paper, we will order the crossings of a front
diagram by their x–coordinates so that the order of crossings increases from left to
right. It’s easy to see that, at any double point of the front diagram, the branch with
smaller slope is on top.

Figure 4: The branch with smaller slope at a crossing is on top

Comparing Figures 1 and 4, it’s easy to see that a crossing is positive if and only if it is
horizontal in the sense that each of the two black regions incident on the crossing is

Algebraic & Geometric Topology, Volume 6 (2006)



1752 Hao Wu

above one branch and below the other, and a crossing is negative if and only if it is
vertical in the sense that one of the two black regions incident on the crossing is above
both of the branches and the other is below both of the branches.

���� ����
C

�

Figure 5: Horizontal and vertical edges

We define the Legendrian A– and B–splicings of a crossing in a front diagram by
Figure 6.

A B

Figure 6: Legendrian A– and B –splicings

Let F be the front diagram of an oriented Legendrian link. Let D be the desingular-
ization of F , ie, the oriented link diagram obtained from F by smoothing all the cusps.
Then F and D represent the same topological link. They also have the same signed Tait
graph G . Denote by C.F / half of the number of cusps in F . The Thurston–Bennequin
number of F is tb.F /D w.D/�C.F /.

In the rest of this section, we assume that the diagram F is connected as a subset of
R2 . (This can be easily arranged using Legendrian Reidemeister moves.)

For a spanning tree T of G , let UT be the unknot obtained from D and T using Table
1, and FT the front diagram obtained from F and T using Table 1 while interpreting
”A” and ”B” as Legendrian A– and B–splicings. Note that FT is a Legendrian
unknot whose desingularization is UT .

Proposition 3.1 If the front F is connected, then, for any spanning tree T of G ,

(3–1) tb.FT /� �1� .#d.T /C #D.T //;

which is equivalent to

(3–2) u.T /� 1�C.F /:

Algebraic & Geometric Topology, Volume 6 (2006)
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Proof We prove Inequality (3–1) by induction on the number of crossings in F . When
F has no crossings, G consists of a single vertex. So the only spanning tree of G is
T DG , which satisfies #d D #D D 0. Note that FT D F is a Legendrian unknot. By
Bennequin’s inequality in [1], we have tb.FT /� �1D�1� .#d C #D/. This shows
that the proposition is true for any front diagram with no crossings.

Now assume that (3–1) is true for any connected front diagram with less than m

crossings. Let F be a connected front diagram with m crossings. Let e be the edge of
G corresponding to the right most crossing of F . (In the rest of this proof, we do not
distinguish between the edge e and the crossing it represents.) e has the highest order
of all edges of G . There are three possibilities: (1) e is an isthmus, ie, G becomes
disconnected after removing e from it; (2) e is a loop, ie, e connects a vertex to itself;
(3) e is neither an isthmus nor a loop.

Case (1) e is an isthmus Then any spanning tree T contains e , and cut.T; e/Dfeg.
So e is always internally active. Let G1 and G2 be the two connected components of
G n e . There are two possibilities:

Case (11 ) e is negative and, hence, vertical The contribution of such an e to the
Thurston–Bennequin number is C1. We A–splice F at e , which gives us two disjoint
connected front diagrams F1 and F2 , with Tait graphs G1 and G2 . Any spanning
tree T of G is the union of e and a spanning tree T1 of G1 and a spanning tree T2

of G2 . Let FTi
be the Legendrian unknot obtained from Fi by the spanning tree

Ti , i D 1; 2. Then, tb.FT / D tb.FT1
/C tb.FT2

/C 1, #d.T / D #d.T1/C #d.T2/

and #D.T / D #D.T1/ C #D.T2/. By induction hypothesis, we have tb.FTi
/ �

�1�.#d.Ti/C#D.Ti//, iD1; 2, which implies that tb.FT /��1�.#d.T /C#D.T //.

Case (12 ) e is positive and, hence, horizontal The contribution of such an e to
the Thurston–Bennequin number is �1. We B–splice F at e , which gives us two
disjoint connected front diagrams F1 and F2 . Note that the sum of the contributions
of the two new cusps to the Thurston–Bennequin number is also �1. Let T , Ti ,
FTi

be similarly defined as in (11 ). Then tb.FT / D tb.FT1
/C tb.FT2

/, #d.T / D

#d.T1/C #d.T2/ and #D.T / D #D.T1/C #D.T2/. By induction hypothesis, we
have tb.FTi

/ � �1 � .#d.Ti/C #D.Ti//, i D 1; 2, which implies that tb.FT / �

�2� .#d.T /C #D.T // < �1� .#d.T /C #D.T //.

Case (2) e is a loop Let G0 be the Tait graph from the other coloring of D , which
is the dual of G . Then the edge e0 of G0 dual to e is an isthmus. By Lemma 2.4, one
can easily reduce this case to Case (1).
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Case (3) e is neither an isthmus nor a loop In this case, e is inactive (internally
or externally) for any spanning tree T of G since it has the highest order among all
crossings. We need to consider the type of e with respect to the spanning tree T .

Case (31 ) e is of type d Then e is negative and, hence, vertical. We A–splice F

at e , which gives a connected front yF . Let yG be the corresponding Tait graph of
yF . Then yG D G n e , and T is a spanning tree of yG . Let yFT be the front obtained

from yF using T . Note that any edge ye of yG has the same type in yG under T as
in G under T . So FT D

yFT , #dG.T / D #d yG.T / and #DG.T / D #D yG.T /. By
induction hypothesis, we have tb. yFT / � �1� #d yG.T /C #D yG.T /, and, therefore,
tb.FT /� �1� .#dG.T /C #DG.T //.

Case (30
1

) e is of type D Consider other Tait graph of F , which is dual to G . By
Lemma 2.4, one can easily reduce this case to Case (31 ).

Case (32 ) e is of type d Then e is positive and, hence, horizontal. We B -splice F

at e , which creates a pair of cusps, one of which opens to the right, the other opens to
the left. Let yF be the resulting front diagram, which is connected. Denote by c the
new right opening cusp. Since e is the right most crossing, which is neither an isthmus
nor a loop, the two branches intersecting at c do not intersect elsewhere. Next, we
use an observation made by Ng in [6]: Extend the two branches at c along yF in both
directions until it passes to the left of c . The result is a zigzag that does not intersect
other parts of yF . Let c1 and c2 be the two consecutive cusps on this zigzag such
that the difference of the x–coordinates of these two cusps is the smallest among all
pairs of consecutive cusps on this zigzag. This minimality forces the part of the zigzag
near these two cusps to look like one of the two zigzags in Figure 7. Thus, we can
destabilize yF by smoothing out these two cusps (cf Figure 1 of [6]). Let zF be the
result. Note that the Tait graph zG of zF is the same as that of yF , which is G n e .

Figure 7: The zigzag near c1 and c2

The spanning tree T of G is also a spanning tree of zG . Let zFT be the front obtained
from zF using zG and T . It’s easy to see that tb.FT / D tb. zFT / � 1, #dG.T / D
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#d zG.T /C1 and #DG.T /D#D zG.T /. By the induction hypothesis, we have tb. zFT /�

�1� .#d zG.T /C #D zG.T //, and, therefore, tb.FT /� �1� .#dG.T /C #DG.T //.

(30
2

) e is of type D . Consider other Tait graph of F , which is dual to G . By Lemma
2.4, one can easily reduce this case to Case (32 ).

This completes the induction.

Note that

#d.T /C #D.T /D number of Legendrian B–splicings used to obtain FT

D C.FT /�C.F /;

and
u.T /D�w.UT /D�tb.FT /�C.FT /:

So Inequalities (3–1) and (3–2) are equivalent.

Definition 3.2 Given a connected front diagram F and an Tait graph G of F , let T

be a spanning tree of G . T is said to be good if

u.T /D 1�C.F /;

and is said to be bad if
u.T /D 2�C.F /:

For an integer v , T is called a v–spanning tree if v.T /D v .

Proof of Theorems 1.1 and 1.2 Let F be a connected front projection of L, and D

the desingularization of F . Checkerboard color the front diagram, and let G be the
Tait graph from the coloring.

If Hi;j .L/¤ 0, then, by Theorem 2.1, there exists a spanning tree T of G such that
j � i D u.T /Cw.D/˙ 1. By Proposition 3.1, we have u.T /� 1�C.F /. So

j � i � w.D/�C.F /D tb.L/:

This proves Theorem 1.1.

If Ng’s Khovanov bound is sharp for the Legendrian knot L, then there exists a pair
.i; j / such that j � i D tb.L/, Hi;j .L/ ¤ 0, and the corresponding spanning tree
T satisfies j � i D u.T /Cw.D/˙ 1D tb.L/, ie, u.T /D�1�w.D/C tb.L/D

�1�C.F /. But, u.T /� 1�C.F /. So u.T /D 1�C.F /, which means T is a good
spanning tree.

Now assume F has more good v–spanning trees than bad .vC 2/–spanning trees
for some integer v . Since the boundary map @ on C.D/ has bidegree .�1;�2/, this
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implies that H
1�C.F /
v .C.D/; @/ has positive rank. So the corresponding pair .i; j /

satisfies j � i D tb.L/ and Hi;j .L/¤ 0. Hence, Ng’s Khovanov bound is sharp for
L.

Proof of Corollary 1.3 Without loss of generality, we assume the alternating link L
is non-split. In [6], Ng constructed a Legendrian link L with the link type L satisfying
that, after choosing an appropriate checkerboard coloring for the front projection F of
L, all the crossings of F are vertical (ie negative), and every black region is a bounded
disk that has exactly two cusps on its boundary. Let T be a minimal spanning tree
of the Tait graph G in the sense that the sum of the x–coordinates of the crossings
corresponding to edges of T is minimal among all the spanning trees of G . Then it is
easy to check that all the edges of T are internally active, and all the edges outside T

are externally inactive. Let V .G/ be the number of vertices of G . Then V .G/DC.F /,
and

u.T /D #L.T /� #l.T /� #L.T /C #l.T /

D�#L.T /D�.V .G/� 1/D 1�C.F /:

So T is a good spanning tree. Note that F is an alternating diagram. From the proof
of Theorem 12 of [2], one can see that the v–grading of the spanning trees of G is
a constant v0 . Therefore, there are no .v0C 2/–spanning trees. Then Theorem 1.2
implies that Ng’s Khovanov bound is sharp for L.
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