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Genus generators and the positivity of the signature

A STOIMENOW

It is a conjecture that the signature of a positive link is bounded below by an increasing
function of its negated Euler characteristic. In relation to this conjecture, we apply
the generator description for canonical genus to show that the boundedness of the
genera of positive knots with given signature can be algorithmically partially decided.
We relate this to the result that the set of knots of canonical genus � n is dominated
by a finite subset of itself in the sense of Taniyama’s partial order.

57M25; 57N70

1 Introduction and motivation

1.1 The signature growth conjecture

Most of the introductory exposition is similar, or identical to [33]. A positive link (see,
eg, Cromwell [8], Ozawa [26], Yokota [51]) is a link which can be represented by a
positive diagram. Such links occur in several contexts, eg, the theory of dynamical
systems (Franks and Williams [12; 49]), singularity theory (A’Campo [1], Boileau
and Weber [3], Rudolph [32]), and (in some vague and yet-to-be understood way) in
4–dimensional QFTs (Kreimer [18]). They contain the class of positive braid links
(see van Buskirk [47], Cromwell [9]), the closure links of positive braids1. Another
important subclass of the class of positive links are the alternating ones among them,
the special alternating links (see Cromwell [8], Nakamura [25]). Such links have been
studied largely by Murasugi [23; 24].

Knot-theoretically, one is interested how positivity can be detected by the examination
of link invariants. One of the most classical such invariants is the signature � . It
was studied initially by Murasugi [24], and is defined in terms of Seifert matrices. It
thus has a natural upper bound. For a general link L, let �.L/ be the maximal Euler
characteristic of a spanning Seifert surface, and n.L/ the number of components. Then
�.L/� n.L/��.L/, and if L has no split components bounding disconnected Seifert

1Beware that some authors, for example van Buskirk [47], confusingly call ‘positive links’ what we
call ‘braid positive links’ here. Other authors call our braid positive links ‘positive braids’, abusing the
distinction between braids and their closures.
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surfaces (as for example for positive or alternating links), this estimate modifies to
�.L/� n0.L/��.L/, with n0.L/ being the number of split components of L.

The positivity of the signature on positive links (or subclasses thereof) has been a theme
occurring throughout the literature over a long period. The first result falling into this
category was established already by Murasugi in his initial study [24]. He showed that
the upper bound in terms of � is exact for a special alternating link [24]. This is found
not to be true for general positive, or positive braid links by means of simple examples.

Motivated by their study in dynamical systems, in [30], Lee Rudolph showed that
(non-trivial) braid positive links have (at least) strictly positive2 signature � . This
result was subsequently extended to positive links by Cochran and Gompf [6, corollary
3.4]. A different proof, proposed by Traczyk [46], has unfortunately a gap and breaks
down at least partly. (It still applies for positive braid knots, the special case settled
previously by Rudolph.) Przytycki observed the result (also for almost positive knots)
to be a consequence of Taniyama’s work [45], but a draft with an account on the subject
was not finished. A related proof was written down in [42].

It is suggestive to ask how much more the signature of positive links can grow. One
should believe in an increase of � , in the range between the maximal value in Murasugi’s
result and the mere positivity property. Some evidence suggests the following conjecture,
mentioned first explicitly in [37]. (See Section 1.3 for some discussion of this evidence.)

Conjecture 1.1 (Signature Growth conjecture)

lim inf
n!1 min f �.L/ W L positive link; �0.L/D n g D 1 ;

where for a link L we set �0.L/ WD n0.L/��.L/.

Alternatively speaking, one asks whether

(1) †� D f�0.L/ W L positive link; �.L/D � g
is finite for every � .

This conjecture, although suggestive, is by no means obvious, or easily approachable.
Although � is easily calculated for any specific link, it has turned out difficult to make
general statements about it on large link classes. This situation is a bit opposite to �,
for which much more general formulas are available, but whose calculation for specific
links (falling outside the “nice” classes) may be very complicated.

2There is often confusion about the choice of sign in the definition of � . Here (following [30], rather
than [46] or [6]), we use the more natural seeming convention that positive links have positive, and not
negative � .
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1.2 Concordance and Bennequin’s inequality

A famous conjecture of Milnor states that for torus knots (or more generally knots of
singularities) the smooth 4–ball genus is equal to the genus (or unknotting number,
see Boileau and Weber [3]). This conjecture was settled later by gauge-theoretic work
of Rudolph [31; 32] and Kronheimer–Mrowka (see [19]), which implied the (smooth)
4–genus version of the Bennequin inequality [2, theorem 3]. This inequality gives a
lower bound for the genus in terms of a braid representation of a knot or link, and was
used in his discovery of non-standard contact structures on R3 . For a positive knot/link,
the inequality estimates sharply the genus, and hence its newer version the 4–genus.
So one obtains explicit formulas for these invariants, and for braid positive knots/links
from [3] also for the unknotting/unlinking number. The (rather obvious) discussion
can be found for example in [17; 41].

One of Murasugi’s original results about � is that it is a knot concordance invariant and
estimates (from below) the 4–genus of a knot. The signature of torus knots (and links)
was found by Gordon, Litherland and Murasugi [14] and Hirzebruch [16], and fails
to provide the sharp estimate desired for Milnor’s conjecture. Many more examples
illustrate that the signature does not conform to the lower bound in Bennequin’s
inequality. Such examples led to the question, encountered already in Bennequin’s
original work, how to modify his inequality to be applicable also to � . A solution was
proposed in [33].

Recently, new signature-type concordance invariants, giving lower bounds for the
4–genus, were developed from Floer homology [27] and Khovanov’s homology [28]
theory. Positive knots are again intrinsically linked to these invariants, in that this time
the 4–genus estimate is exact for such knots. (In particular, Rasmussen’s approach
gives a new, combinatorial, proof of Milnor’s conjecture.)

One important difference between � and its successors is that only former is an
invariant in the topological category, while latter apply only in the smooth category.
This difference must be emphasized in view of the growing division in methods to
study both types of concordance, where the Floer–Khovanov homological invariants
on the smooth side contrast Levine’s approach using the algebraic knot concordance
group [20] and its recent non-abelian modifications due to Cochran–Orr–Teichner (see
[5]) on the topological side.

Still serious problems to understand topological concordance, and its difference to
smooth concordance, remain. Our knowledge about this question seems to center around
Freedman’s result that all knots with trivial Alexander polynomial are topologically
slice. Some are known to be not smoothly slice. The first examples were given by
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Andrew Casson in the 1980s, using work of Donaldson. It was not before these deep
results that one understood topological and smooth concordance are not the same. More
such examples followed from later work of Fintushel–Stern [11] and Rudolph (see [30;
31]), but still they remain scarce even by now; all have trivial Alexander polynomial
and rely on Freedman’s criterion. (Recently Friedl and Teichner proposed some new
candidates, with the Alexander polynomial of 61 , but their smooth non-sliceness status
remains unclear so far. Their simplest good candidate for a possibly not smoothly slice
knot has a diagram with 93 crossings.) With this state-of-the-art, one realizes to have
obtained only limited understanding of topological concordance, and so the study of � ,
a basic topological concordance invariant, gains new motivation.

1.3 Statement of main result

In a previous paper [33], we settled the case of positive braid links in Conjecture 1.1.

Theorem 1.2 [33]

lim inf
n!1 min f �.L/ W L braid positive link; �0.L/D n g D 1 :

This paper is a sequel to [33]; its motivation and problem setting is almost equivalent;
the separation was made on the one hand for length reasons, on the other hand because
the methods applied differ somewhat. In [33], we used an extension of Bennequin’s
inequality to � . Here we will use another important ingredient, the generator description
for canonical genus.

To state our main result it is helpful to understand the Growth conjecture in terms of
the finiteness of the sets (1). For simplicity, consider below only knots and replace
�0 D 1�� by the genus g in (1). We start with a few remarks on known results about
†� , providing hints to the Growth conjecture. First, the positivity result for � means
†0 D f0g. Then, slightly implicitly in [45], and later independently and explicitly in
[35], the result � > 0 was extended by showing that the only positive knots of � D 2

are those of genus one. Thus †2 D f1g. For � D 4 the situation is not that simple.
Beside genus 2, there are some positive knots of genus 3 with � D 4, and one knot
of genus 4, 1445657 of [37]. Calculations of [37] suggest that 1445657 is in fact the
only positive knot of genus 4 with � D 4, and for genus g � 5 indeed there seems no
further such knot, that is, apparently †4 D f2; 3; 4g. Although this is still difficult to
check, we will resolve the problem at least theoretically.

Our aim will be to show how one can prove, at least in theory, that any initial number
of the sets †� is finite, provided this is true. (Note that if †� is infinite, then so is †� 0

for any � 0 > � .) Namely, we show that there exists an algorithmically determinable
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collection of knots, such that if †� is finite, only finitely many of the determined knots
need to be checked to establish this finiteness.

Theorem 1.3 (Main result) For all n> 1 there is a set Cn of positive knots with two
properties:

(1) Cn is finite and algorithmically constructible.

(2) For all � 2 2N we have:

9 positive knot K of genus g � n with �.K/� � () 9K 2 Cn with �.K/� � :

To verify, using this theorem, that †� is finite, one uses induction on � . We know
†� 0 for � 0 < � by induction. Then one examines

(2) C D C max
S
� 0��

†� 0 C 1 :

If some K 2 C is found with g.K/ 62 †� and �.K/ D � , include g.K/ into †� ,
and repeat the search for such K (with the new set C updated according to (2)). If
†� is finite, after some iterations no K will be found.

We remark that the same type of statement is true for links of any arbitrary fixed
number of components. We do not prove it, however, in this more general form, since
this generalization does not involve significantly new arguments, and would add only
considerable technicality to the proof. We do elaborate on the knot case, though, giving
different arguments that contribute to making Cn as small as we can. We note that
in the above theorem, one can replace � by any of the generalized (Tristram–Levine)
signatures.

In the proof of Theorem 1.3, Hirasawa’s algorithm [15], that lay in the center of
the signature Bennequin inequality in [33], finds its application again, this time in
combination with the generator theory for diagrams of given canonical genus, initiated
in [38], and then developed further in [43; 44]. Namely, we use our result of [36]
concerning the maximal crossing number of a generating diagram of a given genus.
It improves a previous result of [44] in this regard, and relies heavily on Hirasawa’s
algorithm. The (original) Bennequin inequality also enters into the proof.

We mentioned the relation (noted by Przytycki) between the positivity of � and
Taniyama’s work [45]. We use this relation to bring his partial order into the context of
our arguments. It follows from our proof of Theorem 1.3 that Taniyama’s statements
about the dominance of the trefoil and 51 are the first two instances of a infinite series
of such results, namely, that the set of knots of canonical genus � n is dominated by a
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finite subset of itself (Theorem 5.6). A similar outcome, for positive knots, addresses
the partial order of Cochran and Gompf [6] (Theorem 5.9).

Further evidence for the Growth conjecture is given by the following result on the
average value of � for given genus.

Theorem 1.4 [36] Let

Pg;n WD fK positive knot, g.K/D g , c.K/� n g ;
where c.K/ denotes the crossing number of K . Then

lim
n!1

1ˇ̌
Pg;n

ˇ̌
0@ X

K2Pg;n

�.K/

1A D 2g :

(Note that Pg;n is always finite, and becomes non-empty for fixed g when n is large
enough. Note also that in general the crossing number c.K/ of a positive knot K may
not be admitted by a positive diagram, as shown in [39].)

This theorem means that generically the value of � for fixed genus is the maximal
possible. From this point of view, the philosophy behind the Growth conjecture is that
‘when the generic value is the maximal possible, the minimal value should not be too
small.’ Theorem 1.4 is a consequence of a (largely unrelated to the subject of this
paper) extension of the asymptotical denseness result for special alternating knots in
[44], which is proved in a separate paper [36].

1.4 Overview of the proof

Consider the Growth conjecture in what follows for knots. In this subsection, before
we get into considerable technicalities, we will give a summary of the difficulty in,
and strategy for the proof of Theorem 1.3. (A few technical terms occurring will be
explained in Section 2.)

For the proof we need a method to evaluate

(3) min f �.K/ W K positive; g.K/� n g :
To do so, first we apply generator theory for canonical genus [38; 43; 44]. This allows

to calculate
min f �.K/ W K positive; g.K/D g g

for any given g by verifying � on finitely many knots. These knots, the “generators”
of [38], can be algorithmically constructed. We will not get into details about this
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procedure here, since we discussed it extensively elsewhere. Briefly, there are three
methods (in increasing order of efficiency): selecting knots from the alternating knot
tables (more efficient for small crossing number), using maximal Wicks forms (as
explained in [43], more efficient for high crossing number), and using thickenings of
trivalent graphs and Hirasawa’s algorithm [34].

Then we need to obtain an upper bound on the genus necessary to check for (3), which
will be our main effort. It is possible that always

min f �.K/ W K positive; g.K/D gC 1 g �(4)

min f �.K/ WK positive; g.K/D g g ;
and then we would need to check just genus n. Unfortunately, we do not know how
to prove (4) (or whether it is always true). If we add a ‘�2’ on the r.h.s., then the
inequality follows easily from the fact that any genus gC 1 diagram can be turned
into a genus g diagram by smoothing out a (proper) pair of crossings. However, the
negative correction term continuously ruins the estimate with increasing genus, and
thus makes it useless with regard to the Growth conjecture. We will thus be forced to
avoid smoothings and work only with crossing changes.

Thus we need a lower bound on the genus of a positive diagram one can obtain by
crossing switches from a given one. To find such a bound is considerably more difficult.
We will show that the genus decreases at most by a linear factor, which we will be able
to drop to 221

41
� 5:39 (Theorem 4.1). While for the mere existence of such a constant

a part of the proofs can be simplified, even the value we attained with the extra effort
is still too large to make our result practical. Still one can take practical advantage of
the arguments we apply, and we will attempt to settle the problem †4 D f2; 3; 4g at a
later stage along these lines.

In the proof of the genus decreasing bound generator theory finds again its application.
The first step of this proof uses an improvement of the estimate of the maximal crossing
number of a generating diagram of given genus [44], given in [36]. In the next section
we review the necessary tools.

Then we need an estimate of the minimal length of simplifying bridges/tunnels. What
we like is to choose a certain piece of the strand in a positive diagram, to switch properly
crossings on it so that it becomes a bridge or tunnel, and then shrink the bridge or
tunnel by a wave move. In case the diagram has a clasp this is trivial, so all difficulty
comes from the diagrams that have no such clasps.

Since we want after the shrinking the diagram to be positive, we must ensure the shrunk
bridge/tunnel to have length 1, ie, only one intersection with the rest of the diagram. In
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that case with the option between bridge and tunnel we can always achieve the new
diagram to be positive.

So we must investigate how long a piece of the strand needs to be, so that we can
shrink it to a one-crossing bridge/tunnel. This is very similar to what was done by
myself and M Kidwell in [40]. There he proved, improving my original result, that if a
knot diagram contains a bridge of length more than 1=3 of its crossing number, this
bridge can be rerouted (wave moved) to a smaller one. Here, however, we must work
harder, because we want to know when such a bridge can be rerouted to one of a single
crossing. What we basically show is that to have this much stronger condition, we
can replace Kidwell’s constant 1=3 by 36=41 . This is the content of the Curve length
lemma in Section 3.

Note that we could also seek a bridge that can be rerouted to length 0, but we will see
that even finding (a moderately short) one shrinkable to length 1 is difficult enough. If
a bridge/tunnel shrinks to more than one crossing, to ensure one can keep all crossings
positive, it is necessary to take account on the orientations of the strands intersecting
the shortened bridge/tunnel; this seems virtually unfeasible, though. A bonus of using
a bridge/tunnel of length 1 is also that we can apply our work to Taniyama’s partial
order, see Theorem 5.6.

2 General preliminaries

Here we recall several basic facts and notations.

2.1 Miscellanea

By bnc we will mean the greatest integer not greater than n. By dne we will mean the
smallest integer not smaller than n.

For a set S , the expressions jS j and #S are equivalent and both denote the cardinality
of S . In the sequel the symbol ’�’ denotes a not necessarily proper inclusion.

‘W.l.o.g.’ abbreviates ‘without loss of generality’ and ‘r.h.s.’ (resp. ‘l.h.s.’) ‘right hand-
side’ (resp. ‘left hand-side’).

2.2 Link diagrams

Definition 2.1 A crossing p in a knot diagram D is called reducible (or nugatory) if
D can be represented in the form

p
P Q
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For a nugatory crossing p in D there is a curve in the plane intersecting D only in p

(and doing so transversely). We call this curve the nugatory curve of p . A diagram D

is called reducible if it has a reducible crossing, else it is called reduced.

Definition 2.2 The diagram on the right of Figure 1 is called connected sum A#B

of the diagrams A and B . If a diagram D can be represented as the connected sum
of diagrams A and B , such that both A and B have at least one crossing, then D is
called disconnected (or composite), else it is called connected (or prime).

Alternatively, if D D A#B then there is a closed curve ˇ in the plane intersecting
D in two points (and doing so transversely), such that A and B are contained in the
in/exterior of ˇ . We call ˇ a separating curve for D .

A # B D A B

Figure 1

Note in particular that prime diagrams are reduced.

Definition 2.3 If there is a closed curve ˇ in the plane intersecting D nowhere and
containing at least one component of D in both its interior and exterior, we say that D

is split and ˇ the splitting curve for D . A split component of a link L is a maximal
set S of components of L with the property that if a; b 2 S , then in no split diagram
D of L with ˇ as splitting curve, a and b land on different sides in R2 nˇ . A link is
split if it has a split diagram, or equivalently, if it has more than one split component.

Consider 3 links differing just at one crossing.

(5)
LC L� L0

We call such a triple of links a skein triple.

A positive resp. negative crossing is the fragment of LC resp. L� shown in (5).
Replacing any of these fragments by the fragment of L0 in (5) is called smoothing out
the crossing. The number of crossings of a diagram D is written c.D/. The sum of
signs of all crossings in D is called writhe of D and denoted by w.D/.

Smoothing out all crossings in D one obtains a collection of loops in the plane called
Seifert circles. We write s.D/ for the number of Seifert circles of a diagram D .
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A knot is called positive if it has a diagram with all crossings positive. Such a diagram is
called also positive. A diagram is called n–almost positive, if it has exactly n negative
crossings. A positive diagram D obtained from a diagram D0 by crossing changes is
called positification of D0 .

A diagram is called special if all its Seifert circles have empty interior or exterior. Such
Seifert circles in an arbitrary diagram are called non-separating, the others are called
separating. Any link diagram decomposes as the Murasugi sum (�–product) of special
diagrams (see [8, Section 1]).

We call a Seifert circle A opposite to another Seifert circle B at a crossing p , if p

joins A and B .

The (canonical) Euler characteristic �.D/ of a link diagram D is defined as �.D/D
s.D/� c.D/, where s.D/ is, as before, the number of Seifert circles and c.D/ the
number of crossings of D . If D is a diagram of a link with n components, the
(canonical) genus g.D/ of D is given by

g.D/ D 2� n��.D/
2

D 2� nC c.D/� s.D/

2
:

These are the genus and Euler characteristic of the canonical Seifert surface of D ,
the one obtained by applying Seifert’s algorithm on D . The genus g.L/ and Euler
characteristic �.L/ of a link L are the minimal genus and maximal Euler characteristic
of all Seifert surfaces of L, and the canonical genus gc.L/ and canonical Euler
characteristic �c.L/ of L are the minimal genus and maximal Euler characteristic
of all canonical Seifert surfaces of L, ie, all Seifert surfaces obtained by applying
Seifert’s algorithm on some diagram D of L.

The importance of the canonical genus relies on the following classical fact:

Theorem 2.4 For an alternating/positive knot or link L with an alternating/positive
diagram D we have g.D/ D g.L/. (In particular, for such knots or links canonical
genus and ordinary genus coincide.)

In the alternating case this was proved by [10; 22]. It can also be proved, in both cases,
using [13]. For positive diagrams (and in particular positive braid representations) it
follows from [9], or from Bennequin’s inequality. The original form of this inequality
is stated as follows.

Theorem 2.5 [2, theorem 3] If ˇ is a braid representation of a link L, then

�.L/� n.ˇ/� jŒˇ�j ;
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where n.ˇ/ is the number of strands of ˇ and Œˇ� its algebraic crossing number
(exponent sum).

This inequality admits several improvements. A first, and easy, observation is that by
the braid algorithms of Yamada [50] and Vogel [48] we obtain a version for a general
link diagram D of L:

(6) �.L/� s.D/� jw.D/j :
We will use only this version of the inequality.

Later Rudolph [31; 32] showed that the r.h.s. in Bennequin’s inequality is actually an
estimate for the (smooth) slice Euler characteristic.

�s.L/� s.D/� jw.D/j :
This inequality was further extended by showing that one can replace the l.h.s. with the
invariants of Ozsváth–Szabó and Rasmussen on the one hand, and by slightly improving
the r.h.s. on the other hand (adding a strongly negative Seifert circle term; see [32; 17]).

A clasp is a tangle made up of two crossings. According to the orientation of the
strands we distinguish between reverse and parallel clasp.

reverse clasp parallel clasp

By switching one of the crossings in a clasp, one can eliminate the pair by a Reidemeister
II move, and this procedure is called resolving the clasp.

Definition 2.6 A shadow of a link diagram is the plane curve of the diagram (ie, the
object obtained by ignoring crossing information). A region of a link diagram D is a
connected component of the complement of the shadow of D . An edge of D is the
part of the plane curve of D between two crossings (clearly each edge bounds two
regions). A region is a bigon if it has only two corners. (A bigon in the shadow of D

corresponds to a clasp in D .)

At each crossing p , exactly two of the four adjacent regions contain a part of the Seifert
circles near p . We call these the Seifert circle regions of p . The other two regions are
called the non-Seifert circle regions of p . We call two regions opposite at a crossing p ,
if p lies in the boundary of both regions, but they do not share any of the four edges
bounded by p . If two regions share an edge, they are called neighbored.

A diagram has a (canonical up to interchanging colors) black-white region coloring,
given by the condition that neighbored regions have different colors. This is called the
checkerboard coloring.
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A bridge/tunnel3 of a link diagram is a piece of a strand passing exclusively through
over/undercrossings. The number of such over/undercrossings is the length of the
bridge/tunnel.

In certain situations, there is a move, called wave move, that allows to shrink a bridge/tun-
nel to one of a smaller length (see Figure 2, or also [40] for example).

� �

Figure 2: Wave-moves. The number of strands on left and right of the shaded
circle may vary. It is only important that the parities are equal resp. different,
and that the left-outgoing strands are fewer that the right-outgoing ones.

2.3 The signature

The signature � is a Z–valued invariant of knots and links. It has several definitions.
The most common one is using Seifert surfaces and linking pairings. See, eg, [29].
In the sequel, it will be more convenient to follow a rather different approach, using
properties of the behaviour of � under local (diagram) transformations.

The Alexander polynomial �L.t/ can be specified by the relation

�.LC/ � �.L�/ D .t1=2� t�1=2/�.L0/ ;

with L˙;0 as in (5), and the value 1 on the unknot. The signature �.L/ is related
a value of �, called determinant, det.L/ D j�L.�1/j. We have that �.L/ has the
opposite parity to the number of components of a link L, whenever �L.�1/¤ 0. This
in particular always happens for L being a knot (�L.�1/ is always odd in this case),
so that � takes only even values on knots.

Most of the early work on the signature was done by Murasugi [24], who showed
several properties of this invariant. If LC , L� and L0 form a skein triple, as in (5),
then4

�.LC/� �.L�/ 2 f0; 1; 2g(7)

�.L˙/� �.L0/ 2 f�1; 0; 1g :(8)

3The term ‘tunnel’ has usually a different meaning in knot theory. We nevertheless use it here in this
meaning, since it is suggestive, and the other (classical) sort of tunnels never occur in this paper.

4Keep in mind that our sign choice of � follows [30] and is different from [24].
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Further, Murasugi found the following important relation between �.K/ and det.K/
for a knot K .

(9)
�.K/� 0 .4/ () det.K/� 1 .4/

�.K/� 2 .4/ () det.K/� 3 .4/

These conditions, together with the initial value �./D 0 for the unknot, and the
additivity of � under split union (denoted by ‘t’) and connected sum (denoted by ‘#’)

�.L1#L2/ D �.L1 tL2/ D �.L1/C �.L2/ ;

allow one to calculate � for very many links. In particular, if we have a sequence of
knots Ki

K0!K1!K2 � � � !Kn

such that Kn is the unknot and Ki differs from Ki�1 only by one crossing change,
then (7) and (9) allow to calculate inductively �.Ki/ from �.KiC1/, if det.Ki/ is
known.

From this the following property is evident for knots, which also holds for links:
�.!L/D��.L/, where !L is the mirror image of L.

2.4 Genus generators

Consider the set of alternating knots K of genus g.K/ D g and crossing number
c.K/Dn. This set was shown to have special structure by a theorem of [38], discovered
independently and simultaneously by M Brittenham [4]. In order to state this theorem,
we start with some classical definitions.

By the work of Menasco and Thistlethwaite [21], alternating knots are intimately related
to a diagrammatic move called flype.

Definition 2.7 A flype is a move on a diagram shown in Figure 3.

p

PQ “
p

P
Q

Figure 3: A flype near the crossing p
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When we want to specify the distinguished crossing p , we say that it is a flype near
the crossing p .

The tangle P on Figure 3 we call flypable, and we say that the crossing p admits a
flype or that the diagram admits a flype at (or near) p . The crossing p is called flype
crossing.

Definition 2.8 A primitive Conway tangle [7] is a tangle of the form

. . .

Two crossings of a diagram are twist equivalent if they are contained in a primitive
Conway tangle.

We call the flype in Figure 3 non-trivial, if both tangles P and Q have crossings
not twist equivalent to the flype crossing (in particular they have both at least two
crossings).

Since trivial flypes are of no interest we will consider all subsequent flypes to be
non-trivial, without mentioning this explicitly each time, unless otherwise noted.

Theorem 2.9 [38] Reduced (that is, with no nugatory crossings) alternating knot
diagrams of given genus decompose into finitely many equivalence classes under flypes
and (reversed) applications of antiparallel twists at a crossing:

(10) �

Henceforth we call the move in (10) a xt 0
2

move.

It was observed in [38] that in a sequence of flypes and xt 0
2

moves, all the flypes can be
performed in the beginning. It follows then from [21] that there are only finitely many
alternating knots with xt 0

2
–irreducible diagrams of given genus g , and we call all such

knots, and their alternating diagrams generators or generating knots/diagrams of genus
g . The positifications of generating diagrams of genus g are called positive generating
diagrams.

There is an obvious bijective correspondence between the crossings of the 2 diagrams
in Figure 3 before and after the flype, and under this correspondence we can speak
of what is a specific crossing after the flype. In this sense, we make the following
definition:
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Definition 2.10 We call two crossings in a diagram �–equivalent, if they can be made
to form a reverse clasp after some (sequence of) flypes.

It is an easy exercise to check that � is an equivalence relation, and that two crossings
are �–equivalent iff they share the same pair of non-Seifert circle regions.

Definition 2.11 We call an alternating diagram generating, or a generator, if each
� equivalence class of its crossings has 1 or 2 elements. The set of diagrams which
can be obtained by applying flypes and xt 0

2
moves on a generating diagram D we call

(generating) series of D .

Thus Theorem 2.9 says that alternating diagrams of given genus decompose into finitely
many generating series.

Definition 2.12 Let cg be the maximal crossing number of a generating diagram of
genus g , and dg the maximal number of �–equivalence classes of such a diagram.

3 The curve length lemma

In the following we will sometimes for convenience identify a diagram and its shadow
(its plane curve with transverse self-intersections).

Let  be a curve, a piece of the solid line of a prime diagram shadow D . Curves are
considered up to homotopy preserving the order of edges they pass, and transversality
of their intersections. The complement D n of a curve is a planar graph with 4–valent
vertices, with two exceptional vertices being of valence 1. Let v1;2 be those vertices,
the start and end of  (we think of  as going from v1 to v2 ). For D n  regions and
edges can be defined analogously as for D .

Let the length len  of a curve  be the number of its intersections with the rest of the
diagram, or the number of regions it passes (start and end region included, and possibly
reentered regions counted multiply) minus one.

Definition 3.1 Let start and end v1;2 of  lie in neighbored regions in D n  (that is,
 can be rerouted, or wave-moved, to a curve of one crossing), and len  > 1. Then
we call  admissible. If  has minimal length among all admissible curves we call 
minimal admissible.

We assume for the rest of this section, unless noted otherwise, that

 is a minimal admissible curve and D has no bigon regions (clasps) and is prime.

Under these conditions we have several lemmas.
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Lemma 3.2 A minimal admissible curve  passes any region X of D n  at most
once (ie, X \  is empty or a single arc).

Proof Assume  passes a region X of D n  twice, and let x1;2 be points in the
interior of X on  in order of passing. Let z be the part of  between x1;2 . By the
checkerboard coloring, z has even length, and by assumption, this length is non-zero.
If z has length 2, then either D is composite, or has a bigon region (clasp), which we
excluded. So z has length at least 4. Then taking the part of  starting in the region
after x1 till x2 gives a shorter admissible curve  .

Apply the transformation (11) or (12) to get a diagram shadow D0 with a curve  0
starting and ending on edges of D0 .

(11)



1

D

D1

D2

 0

1
D0

D0
2

D0
1zD1

zD2

(12)



1

D2

D1

 0
1

zD2

zD1

D0
2

D0
1

Let 1 be a one crossing curve connecting the start and end of  in D . This curve 1

is determined uniquely by the edge is passes, but this edge may not be unique. Thus 1

is not uniquely determined in general. It will be useful to remark that 1 is unique if
D0 is prime, and otherwise there are at most two possible 1 . If ambiguous, fix some
particular choice of 1 . Then let D0 D .D n  /[ 1 . (We denote by 1 the same arc
in D and D0 , while we distinguish between  0 and  ; so  0 in D0 is the “trace” of
 in D .) We can assume w.l.o.g. that  and 1 do not intersect (in interior points),
otherwise a shorter pair of curves will also do.

D0 has two specific regions D0
1;2

which can be described by the property that they are

bounded by a piece of 1 , but do not contain a piece of  0 at its start or end. Let zD1;2

be the regions of D0 containing the start and end of  0 and Di DD0i [ zDi . The Di

can (and will) be regarded also as regions of D n  .
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The following lemmas are suggestive from the diagrams in (11) and (12), but they are
heavily applied in the following arguments and still require a bit of proof.

Lemma 3.3 The crossing on 1 in D0 is not nugatory. In other words, the four regions
D0i ; zDi for i D 1; 2 in D0 are all pairwise distinct.

Proof We prove indirectly. Let this crossing, call it x , be nugatory, and ı0 be a
nugatory curve for x in D0 , and ı its preimage in D . (We write x also for the
preimage of x in D .) Since ı0 intersects D0 only in x , the start and end of 1 must
lie in different regions of R2 n ı . Therefore, jı0\  0j D jı\  j is odd. Now, as ı0 is a
nugatory curve, ı passes only one region of D n  . Using Lemma 3.2, and a proper
homotopy of ı0 , we see that we can reduce the intersections between ı and  to one.
We assumed that  \ 1 D¿, so that x 62  0 , and so we can choose the homotopy so
that ı0 is still a nugatory curve for x . Now, since ı\ .D n  /D fxg and jı\  j D 1,
we have jı\Dj D 2. By primality of D , (after pushing ı off x slightly) one of the
regions of R2 n ı contains just a trivial arc of D . But this arc must then contain one
of the endpoints of  and 1 . Also, the strand of D n  that intersects ı in x must
continue into this arc. So x must be an intersection of 1 with  , which we excluded.
This is a contradiction.

Lemma 3.4  0 does not enter into D0
1

or D0
2

, ie,  0\ .int D0
1
[ int D0

2
/D¿. (Here

‘int’ stands for the topological interior.)

Proof By construction the initial and terminal parts of  0 do not enter into D0
1

. Also
 0 \ 1 D ¿ by assumption. Now let e1 be the edge of the shadow of D0 n 1 that
contains the start point v1 of  0 (and 1 ). If  0 intersects e1 in D0 before leaving
D1 D zD1 [D0

1
, then D is not prime, which we excluded. Since  0 \ 1 D ¿, this

means that  0 must enter D0
1

through an edge which lies in the boundary of D1 in D .
Then  passes D1 in D n  twice, in contradiction to Lemma 3.2. The case of D0

2
is

similar.

Lemma 3.5 The only neighbored regions to D0
1;2

passed by  0 are zD1;2 .

Proof Let, contrarily, w.l.o.g. X be a neighbored region to D0
1

in D0 , different from
zD1;2 , that contains a part of  0 . Then X does not contain an initial or terminal arc

of  0 . So taking the part y 0 of  0 from v1 to (an interior point of) X would give a
shorter admissible curve y in D , unless len D y D 1.

Assume len D y D 1. Since y \ 1 �  \ 1 D ¿, then also len D0 y 0 D 1. Now the
curve y 0 starts at v1 in D0 , and then enters either D0

1
or zD1 . Since zD1 has the same
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checkerboard color as X in D0 , the curve y 0 needs at least two edges to intersect to
reach X from zD1 . Therefore, if len D0 y 0 D 1, then y 0 enters D0

1
. Then the same is

true, however, for  0 � y 0 , but this contradicts Lemma 3.4.

This contradiction shows that len D y D len D0 y 0 > 1. So y is admissible in D , and
again we have a contradiction to the minimality of the admissible curve  .

Lemma 3.6 There exists a unique edge of D0 , the one containing vj , that bounds
(simultaneously) zDj and D0j (for j D 1; 2). If zDj and D0

3�j
are neighbored in D0 ,

then, again, their commonly bounding edge is unique.

Proof Consider w.l.o.g. only j D 1. Let gi be the parts of 1 in D0 that bound
D0i and zDi for i D 1; 2. Let ei be the edge of D0 n 1 that contains vi (or bounds
Di on either side). Clearly x1 D g1 [ e1 is an edge in D0 that bounds D0

1
and zD1 .

Assume there is another such edge x0
1

. Then (D0 is composite and) there is a separating
curve ı in D0 that intersects D0 only in x1 and x0

1
. By homotopy we can assume

w.l.o.g. that ı intersects x1 D g1 [ e1 in some point on e1 , so ı \ g1 D ¿. Now,
since ı passes only the regions D0

1
and zD1 , by Lemma 3.3, ı cannot intersect g2 . So

ı\ .g1[g2/D ı\ 1 D¿. Then v1;2 lie in the same region of R2 n ı .

Now consider ı\  0 . Since ı passes only D0
1

and zD1 , but  0 does not enter D0
1

, we
have ı\  0 � zD1 . Now both  0 and ı have only one arc in zD1 (for  0 use Lemma
3.2), so by homotopy we may assume that jı \  0j � 1. But since ı \ 1 D ¿ and
jı\ . 0[ 1/j is even (by Jordan curve), we see ı\ . 0[ 1/D¿. Then, however, ı
remains a separating curve in D , and D is composite, a contradiction.

This shows the lemma for an edge bounding D0
1

and zD1 . The argument for (an edge
between) D0

2
and zD1 is similar.

The following is useful to record here, though it will be needed only in a later stage.

Lemma 3.7  0 does not pass a region twice in D0 , and len  0 D len  .

Proof The only difference between the regions of D n  and D0 is that Di are
subdivided into D0i and zDi . However, by Lemma 3.4,  0 does not pass D0i , so the
claim follows from Lemma 3.2.

Let r.D0/ be the number of regions of D0 . The main content of this section, whose
proof will occupy its rest, is the following estimate.
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Lemma 3.8 (Curve length lemma) Assume again that D is prime and that it has no
clasp. Then  0 passes

(13) len  0C 1 � max
�

36r.D0/� 96

41
; 4

�
regions of D0 , including first and last.

Proof We will again for convenience abuse the distinction between the shadow D

and the positive diagram realizing it. Take a prime diagram D , and choose  with start
and end in neighbored regions of D n  , which has length > 1. Such a curve always
exists. For example, take a loop and consider the curve going from the loop crossing
until before the last crossing the loop passes.



Clearly start and end region of such a curve are neighbored. If the curve has length 1,
then D is composite or has a clasp, in contradiction to our assumption.

We fix now among all admissible  (not necessarily such that come from a loop) one
of minimal length (> 1), and the (chosen, if ambiguous) curve 1 of one crossing
connecting start and end of  .

When D is prime, often D0 will also be prime. We want to show that D0 becomes
composite only in a very restricted situation.

Assume that D0 is not prime. Let ˇ0 be a separating curve of D0 . (Recall that ˇ0 is
characterized by intersecting D0 in two points, and its interior and exterior being not
simple arcs.) Thus ˇ0 passes exactly two regions of D0 . If a region X in D0 is passed
by some separating curve ˇ0 , then we call X a separating region.

(14)
ˇ0

Sublemma 3.9 D0 has at most one pair of separating regions, and if so, they are the
start and end region of  0 .
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Proof Fix a separating curve ˇ0 in D0 . It has a preimage in D we call ˇ . This curve
ˇ cannot be a separating curve of D by primeness assumption. So the separating
property must have been spoiled when recovering D from D0 . If ˇ does not intersect
 [ 1 in D , then the move from D to D0 must eliminate all crossings inside or
outside of ˇ , which clearly does not happen.

Thus ˇ must intersect  [1 in D . It intersects  [1 in some non-zero even number
of points, and D[ 1 in exactly two other points not on  .

Assume now ˇ intersects 1 in D . Then ˇ0 does so also in D0 , that is, (at least) one
of the two points on ˇ0\D0 lies on 1 .

 0
1

ˇ0

If ˇ0 intersects 1 twice, then by Lemma 3.3 it must do so on the same side of the
crossing of 1 in D0 . (Keep in mind that ˇ0 passes only two regions in D0 .) Then,
however, since ˇ0 intersects D0 in no further points, it cannot be a separating curve.
Thus ˇ0 intersects 1 only once, and  0 at least once (so that also ˇ\  ¤¿).

Then ˇ0 passes through one of the regions D0
1;2

, which do not contain a part of  0 .
By Lemma 3.5, the only neighbored regions to D0

1;2
containing a part of  0 in D0 are

zD1;2 . But if ˇ0 passes only through D0i and zDi in D0 , then ˇ remains in D entirely
within Di . Consequently, one of the interior or exterior of ˇ0 in D0 contains only a
trivial arc, a contradiction.

1

ˇ0

If ˇ0 passes through D0i and zD3�i , then we could have something like:

 0
1

D2

D1

ˇ0
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However, we assumed that ˇ (and so ˇ0 ) intersects 1 . Then ˇ0 would also pass
through zDi or D0

3�i
. By Lemma 3.3, this will be a third region ˇ0 passes, again a

contradiction.

Therefore, ˇ does not intersect 1 in D . Thus ˇ intersects non-trivially  in D (and
ˇ0 intersects  0 in D0 ) in an even number of points, and two other points of D not in
 . Additionally, we see that ˇ0 does not pass D0

1;2
. Otherwise, it would have to pass

through a neighbored region of D0
1;2

containing a part of  0 . The only such regions are
zD1;2 , and then we have a contradiction using Lemma 3.6 and the preceding argument.

Since ˇ0 passes through exactly two regions in D0 D .D n  /[ 1 , its preimage ˇ
can pass through at most two regions in D n  . If it passes through only one region in
D n  , then it must be some of the Di , which are subdivided in D0 . However, then ˇ0
passes in D0 through D0i , which we argued out. Thus ˇ passes through exactly two
different regions X and Y in D n  , which are therefore neighbored in D n  .

We claim that ˇ cannot intersect the two points in D n  consecutively, without inter-
secting  in between. Otherwise, all intersections of ˇ with  would be consecutive,
say in region X of D n  .

ˇ



X
ˇ



X

Since by Lemma 3.2,  does not reenter the same region X (ie, the second of the
above two pictures does not occur), we see (as in the first of the above pictures) that we
can homotope ˇ within X off  , that is, we can find a curve ž in D not intersecting
 , such that in D0 we still have the form (14). This is a contradiction to the preceding
arguments that  intersects ˇ .

Since ˇ intersects  between the two intersections with D n  , this means also that
both X and Y are passed by  . Assume some of X and Y is not the start or end
region of  in D n  . Then by the minimality of  and Lemma 3.2,  must pass
directly from X to Y . By primeness of D , there is a unique edge of D n  to pass
to move (directly) from X to Y . (See the remark below (12).) So we see that ˇ and
 pass from X to Y through the same edge of D n  . Since this edge is clearly not
intersected by 1 , then we can homotope ˇ0 in D0 so that ˇ and  do not intersect
in X . Thus ˇ intersects  only in Y , and then the intersections of ˇ with D n  are
consecutive, which we argued out.
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So the two regions X and Y are the start and end regions of  in D n  , which we
called D1;2 . When turning D into D0 , each of D1;2 are subdivided into two parts by
a piece of 1 . These parts are D0

1;2
and zD1;2 . We argued that ˇ0 does not pass D0

1;2
.

Thus it intersects the other two parts zD1;2 . By a checkerboard coloring argument, we
see that we must have the case (11) (rather than (12)), and D looks like:

ˇ



1

So the start and end region zD1;2 of  0 are the only regions passed by ˇ0 . The proof of
Sublemma 3.9 is therefore complete.

We wish to bound from below now the number of regions of D0 in terms of len  0 .
For this sake, we will count the regions of D0 “close” to  0 .
Number the regions of D0 and make a table (Figure 4). This table contains two columns,
left and right, and a row for each intermediate region R (ie, R¤ zD1;2 ) passed by  0 .
Note that the number of regions R is non-zero by assumption of admissibility on  .
We call a part of the table given by the row and choice of left/right side a slot.

For each region R passed by  0 , except first and last, order into the left and right side
of the table the neighbored regions R0 to R from left/right of  0 in negative/positive
rotation sense, as shown in the below figure. These are the regions neighbored to R by
edges not intersected by  0 . The edges separating R and R0 are unique for any pair of
neighbored regions R, R0 because we proved in Sublemma 3.9 that any separating
curve of D0 does not pass through a region R passed intermediately by  0 .
In the row of the table corresponding to R, put the regions on the left/right of  0 thus
ordered from bottom to top.

Then each neighbored region R0 entered into the table is not passed by  0 , otherwise
there is a contradiction to the minimality of its length. For the same reason, using
our preparatory lemmas, we showed that D0

1;2
are not passed by  0 , and also any

neighbored region of theirs is not passed by  0 as an intermediate region (ie, not first
or last). Thus D0

1;2
do not occur in the table.

We would like to count the regions R0 in the table, but must avoid duplications. We
will thus make some effort to bound the number of such duplications.

For this we remark that there are several rules the entries in the table satisfy:
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 0

2

2

1

3

4

5

6

7

8

2

6

7

4

2

8

5

3

1

 0

Figure 4

� All entries on the left and right on the same line are distinct (because the
restriction to the separating region pairs in D0 ).

� All entries on the left are distinct from all entries on the right (in whatever row).
This follows from the Jordan curve theorem applied on  [ 1 .

� Each row contains at least one entry (on the left or right), ie, there are no empty
rows:

Otherwise we have a move

 0
�  0
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which shrinks an admissible curve  of length 3 in D , and since by Lemma 3.7,
len  0 D len  D 3, we are done, using the second alternative in the maximum
in (13).

� There are no two consecutive rows which are empty on the same side, ie:

or

Otherwise we can find a shorter curve  of length 3, which would shrink to 1

like

�

and again are done using the second alternative in the maximum in (13). Finally,

� there are no 3 consecutive rows with only one entry (left or right):

or

(The previous point rules out the other patterns.) Otherwise we have a picture
like this:

�
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The right strand then contains a curve  0 (or  in D ) of length 3, and so we
are done as in the previous point.

Replace now in table numbers by beads, and introduce an equivalence relation between
beads coming from the same number (Dregion). If now two beads are equivalent, then
they have the same parity of row (because of the checkerboard coloring), and the same
side (because of the Jordan curve theorem applied on  [ 1 ).

Join by an arc two consecutive equivalent beads on left or right (ie, all beads between
them are not equivalent to them).

1
2

3

1

4

1

5

5
6

7

�

We will consider henceforth (numerical) entries and beads (thus connected by arcs) as
equivalent, since both representations carry the same information.

Then there are no overcrossing arcs (again by the Jordan curve theorem, since every
arc can be thought of as lying within the same region):
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Finally, no two beads in the same row and side are equivalent (because R is not in a
pair of separating regions in D0 ):

On one of the sides the equivalence arcs may look (after rotating by 90ı ) like

Assume now two consecutive entries on one side are equivalent. The above restrictions
imply that

the first one is the last of some row (on some side), and the next one is the first of the
second next row (on the same side), with the row in between being empty (on the same
side).

If in particular three consecutive entries are equivalent, then the middle one is single
on its side and row.

Consider the following transformation on the equivalence arcs (for a moment disre-
garding the row structure) on both sides.

(15)
X Y Z

a b

�
X Z

This transformation eliminates a middle one in a series of 4 consecutive equivalent
entries (that is, below the arcs the space is assumed to be empty). We will call an arc
like the middle arc Y on the left side and the beads a; b it connects shrinkable. Arcs
and beads not representable in this form are called non-shrinkable. We will apply (15),
but before this let us count how many times we can do so.

Sublemma 3.10 At most 3=8 of the beads in the table (counted altogether on both
sides of the table) are removable by the transformation (15).
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(Note that there are more shrinkable beads than removable ones, as on the right of (15)
a shrinkable bead remains.)

Proof Consider a shrinkable arc Y in (15). Such an arc identifies entries a and b two
rows apart, so that a and b are single on their row and side, and the row between them
is empty (on that side).

Let A;B be the slots of the table in the rows of a and b , respectively, but on the
opposite side to a and b . Let C be the slot in between A and B .

(16)

b

a
A

B

C

Then by the restrictions there are two alternatives:

(a) C contains at least two entries or

(b) C contains one entry, and at least one of A and B contains at least one entry.

We would like to count how many entries/beads in A;B;C for all shrinkable arcs in
(15) we find this way, such that the beads themselves are non-shrinkable. To ensure the
correct counting, we must take for each occurrence of (15) each such bead in A, B or
C with weight 1=k , where k is the number of different fragments (15) for which the
bead occurs in (16). Our aim is to group non-shrinkable beads and shrinkable arcs so
that the weighted bead count is at least 5=3 per shrinkable arc.

It is easy to see that in both of the above cases any of the entries in A, B or C are
non-shrinkable, and that the entries on C are counted once, while those on A or B

are counted (once or) at most twice for different fragments (16). This means that the
contribution of (15) to the above weighted count of A;B;C beads is at least two,
unless only one bead is on A or B , and this bead is counted twice (ie k D 2).
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Assume thus the only entry on A or B is counted twice. We have then the following
table fragment:

(17)

D

E

A

Since a and b are shrinkable, there must be one further row on top (and bottom),
whose slot on the opposite side to a and b we call D (and E ), and D (resp. E ) must
contain � 2 beads. (The slot in the row of D;E on the side of a and b is empty
because there is at least a terminal arc as X;Z in (15).) These elements may be counted
for another shrinkable arc, or not. If there is such an arc, it is on the same side as a

and b , and part of a longer sequence of consecutive shrinkable arcs (ie X or Z in (15)
is also shrinkable).

D

We have thus two or three shrinkable arcs, and have found to them at least 5 entries.
It is easy to see that all of these entries are non-shrinkable (because shrinkable arcs
connect only single entries on their row, two rows apart, with either neighboring rows
being empty on their side of the table). Also any of these entries is not counted again
for another shrinkable arc in the above grouping, unless we have:

D
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(The slot of D may have more than 2 beads.) Then we are in the situation of (17), just
with 3 more shrinkable arcs and � 5 more non-shrinkable beads. We could then argue
inductively by the number of consecutive shrinkable arcs.

In summary we found either for a shrinkable arc two non-shrinkable entries (counted
with correct weight), or to 2 or 3 shrinkable arcs, 5 non-shrinkable entries (all with
weight 1). Thus if there are l arcs/entries in the table removable by (15), at least 5=3 l

other entries are not removable.

Now discard distinction between the left and right side, and the subdivision into rows,
and consider the pictures for each side of the table separately. In the remaining picture
after the transformation (15) we have no 4 consecutive equivalent beads on the same
side.

Consider the equivalence class of the first element. Let it have t elements.

(18)
1 2 3 4 5

tD
6

Removing this class, and cutting along the t points, we have t pieces satisfying the
following conditions:

� no portion contains 4 consecutive equivalent elements,

� from the first t � 1 portions, at least every third is non-empty.

Let nr.n/ be the minimal number of equivalence classes of n elements under this
equivalence relation. We claim

Sublemma 3.11

nr.k/�
�

k
6
C 1

2
k > 0

0 k D 0

�
:

Proof We proceed by induction on k . We have nr.0/ D 0 and nr.1/ D nr.2/ D
nr.3/D 1. If k > 3, we find from the above picture (18) the recursion

nr.k/� 1Cmin

(
tX

iD1

nr.li/ W
t > 0; l1C � � �C lt D k � t; li � 0;

at least
j

t�1
3

k
of the li > 0

)

� 1C k � t

6
C
�

t � 1

3

�
� 1
2
� 1C k � t

6
C
�

t

3
� 1

�
� 1
2
D k

6
C 1

2
:
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We have r WD len  0� 1 rows in the table. As remarked, any third row in the table has
at least two entries. Thus the total number of entries is at least

4r � 2

3
D 4.len  0� 1/� 2

3
D 4

3
len  0� 2 :

At most 3=8 of these entries were discarded under the identification (15). By applying
the last sublemma, we see that from the remaining at least 5=8

�
4
3

len  0� 2
�

entries,

at least 1=6 plus one more remained after identifying regions (note that none of the
sides of the table was empty, even after (15)).

Thus there are at least

1

6
� 5
8

�
4

3
len  0� 2

�
C 1 D 5

48

�
4

3
len  0� 2

�
C 1

other regions not passed by  0 , which have neighbors passed intermediately by  0 . We
had in D0 two more regions, D0

1;2
, not passed by  0 with no neighbored region passed

intermediately by  0 . Thus there are at least�
5

48

�
4

3
len  0� 2

�
C 3

�
D
�

5

36
len  0C 67

24

�
� 5 len  0C 101

36

regions not passed by  0 . Then  0 passes len  0C 1 other regions, so

r.D0/ � 41

36
.len  0C 1/ C 8

3
;

which leads to the first maximum alternative of the inequality we claimed in (13). The
Curve length lemma is now proved.

4 Genus decreasing bound

Once we have a bound on the number of regions a curve  of the above specified type
passes, we use this bound to obtain a bound on the decrease of genus of a positive knot
diagram we can achieve by replacing  by 1 . In addition to the wave moves, we need
the move:

(19) P “ P

Since for the empty tangle P this is a clasp resolution, we call (19) a generalized clasp
reduction move. We can consider a clasp resolution as a special case, included in (19).
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We assume that if P is empty, and the r.h.s. of (19) has nugatory crossings, that we
remove all these crossings (ie reduce the diagram).

Theorem 4.1 Let D be a positive diagram of a knot K with g D g.D/D g.K/ > 1.

Then by applying switches of crossings in D , and subsequently a wave move (shrinking
a bridge/tunnel to length 1), or a move (19), we can obtain a positive diagram D0 of a
positive knot K0 such that either g.K0/D g.K/ and c.D0/ < c.D/, or g.K0/ < g.K/

and

(20) g.K0/ � 6

13
C 41

221
g.K/ :

For the proof we need to quote one more previous result, about the maximal crossing
number cg of generators (see Definition 2.12). In [38], a rather rough estimate on the
number dg was given, which was later improved in [43] to dg � 6g� 3. Then in [44]
we showed that this inequality is sharp. Since cg � 2dg , we have cg � 12g� 6. Later,
in [44], we showed by explicit examples that cg � 10g� 7, and remarked that at least
c.D/ � 10g� 6 if D is a special alternating generator. The work was completed in
[36], where, using Hirasawa’s algorithm, the maximal generator crossing number was
determined (also for links). There the value 10g�7 was found exact, also for arbitrary
generators.

Theorem 4.2 [36] Assume g � 2. Then cg D 10g � 7. Moreover, generators of
genus g with the maximal number of crossings are always special alternating.

Proof of Theorem 4.1 If D has a bigon region (clasp), we are easily done, since
g.K0/� g.K/� 1. So assume D has no such region.

It is easy to see that it suffices also to prove the theorem in case D is prime; the
composite case follows easily. For connected sum factors of genus 1 one can use the
description in [38]; since all diagrams have a clasp, the genus of D would decrease at
most by one.

Choose a minimal admissible curve  in D of length (number of edges in D n  it
intersects) len  > 1, such that start and end region are neighbored (in D n  ). In the
proof of the Curve length lemma we argued that an admissible curve always exists.
Among these curves  take one of minimal length. Then this curve is one of the type
considered in that lemma.

So now we can apply the Curve length lemma. Assume first the first alternative in the
maximum of (13) holds. Since  passes len  C 1 regions (including first and last),
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we can write the estimate as

len  � 36r.D0/� 137

41
;

where r.D0/ is the number of regions of D0 , and D0 is the diagram obtained by
repacing  in D by a one-crossing curve 1 .

We have

r.D0/ D 2C c.D0/ D 2C c.D/� len  C 1 D 3C c.D/� len  :

Thus

len  � 36.3C c.D/� len  /� 137

41
D 36.c.D/� len  /� 29

41
;

and

(21) len  � 36c.D/� 29

77
:

We can achieve D0 to be positive by properly switching crossings of  to become
under- or over-crossings, dependingly on how the one crossing of 1 is to be switched to
be positive. Since  [1 gives a closed curve, which can be perturbed to be transversal
to D without altering the edges  and 1 intersect, a linking number argument shows
that the number of crossings on  to be switched is

len 
2

or
len  ˙ 1

2
:

Assume the largest possible value, since we want to have only an upper bound on the

number of such crossings. Thus, by switching at most
len  C 1

2
crossings in D , we

can simplify it to a positive diagram D0 .

We would like to show now that D0 is the diagram whose existence was asserted in the
theorem.

First, clearly c.D0/ < c.D/. To see g.D0/ � g.D/, use that g.D/ D g.K/ and
g.D0/D g.K0/. Then consider the diagram D00 obtained from D after the crossing
switches on  0 , but before the wave move taking it into D0 (replacing  by 1 ). This
is certainly a diagram of K0 , so that g.K0/� g.D00/D g.D/.

On the other hand, by applying Bennequin’s inequality (6) on the diagram D00 of K0 ,
we have

g.K0/ D g.D0/ � g.D/� len  C 1

2
:
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Then, applying (21), we obtain

(22) g.D0/ � g.D/� 18c.D/

77
� 24

77
:

There is now the possibility to consider the other alternative of the maximum in
(13) holds. In this case len  � 3, so we can switch (1 or) 2 crossings, and have a
transformation into a diagram D0 with c.D0/ < c.D/. By the same argument using
(6) as above, g.D/� g.D0/� g.D/� 2. The second inequality fits into (22), except
if c.D/ � 7. But such D always has a clasp (since it is a knot diagram; by direct
verification), which we excluded. So we can ignore the second maximum alternative in
(13), and use (22).

The next step is to apply generator estimates. As a preparation, we need to establish
two properties of D0 .

Sublemma 4.3 D0 has no nugatory crossing.

Proof Assume that c were such a crossing.

ı

c

Then there is a nugatory curve ı . Lemma 3.7 implies that  0 cannot pass twice the
region X of D0 that contains ı (as in the right picture below). So  0 remains (as in
the left picture) within X , and can be isotoped off ı (within X ). Then c becomes
nugatory in D , too, a contradiction to its assumed primeness.

 0

ı

c or
 0

ı

c

Sublemma 4.4 D0 admits at most one reducing xt 0
2

move.

Proof Assume there are 3 �–equivalent crossings in D0 . Consider first the case that
the crossing of 1 is not among them. Let A and B be the (common) non-Seifert
circle regions at these crossings. Let ˛ , ˇ , ı be the curves connecting some fixed
point in A with some fixed point in B via one of these crossings. Then the join of any
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two of these curves gives a closed curve intersecting D0 transversely in 2 crossings:

ˇ

ı˛

A

B

in D0 .

Now we delete 1 , which does not affect the three crossings and curves, and try to
reinstall  so as to obtain D .

Since  0 passes every region of D0 at most once, if  0 passes through ˛[ˇ without
being homotopable off it,

ˇ

ı˛

 0

not

ˇ

ı˛

 0

then it cannot pass through ˇ [ ı . Thus up to flype, we have in D a clasp, and can
proceed by one crossing change and (19). What appears as a clasp in the above picture
may in fact be a non-trivial tangle. Thus there is also the option that  0 starts and ends
within one of these parts:

 0

In this case it is ˛[ ı which is not affected (up to homotopy), and then as above (19)
applies.
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However, in the second case when one of the three crossings is the one on 1 , one can
have a curve  0 so that  makes in D all the �–equivalent crossings inequivalent:
(23)

 0

Since there is only one crossing on 1 , the situation in (23) can happen in at most one
�–equivalence class of D0 , and if there are 4 or more crossings in that class, again
(19) can be used.

Now use our previous work on cg , the maximal number of crossings of a genus g

reduced xt 0
2

irreducible knot diagram (generator) of genus g . We have from Theorem
4.2 that cg � 10g� 7. Therefore, with the previous two sublemmas, we have c.D0/�
10g.D0/� 5, and

g.D0/ � c.D0/C 5

10
D c.D/� len  C 6

10

.21/�
c.D/� 36c.D/� 29

77
C 6

10
D 41

770
c.D/C 491

770
:

This, together with (22), gives

(24) g.D0/ � max
�

g.D/� 18c.D/C 24

77
;

41

770
c.D/C 491

770

�
:

To determine the worst possible value of this estimate for fixed g.D/, one has to
equate both alternatives:

g.D/D 18c.D/C 24

77
C 41

770
c.D/C 491

770
D 221

770
c.D/C 731

770
; and so

c.D/D 770

221
g.D/� 731

221
:

Then the r.h.s. of (24) evaluates to

g.D0/ � 41

770
c.D/C 491

770
D 41

770

�
770

221
g.D/� 731

221

�
C 491

770
D 6

13
C 41

221
g.D/ ;

which gives the asserted estimate (20).
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5 Applications

5.1 Proof and extension of Theorem 1.3

We are now done with most of the work concerning Theorem 1.3. Define for n> 1 the
numbers gn by

(25) gn D
�

221n� 323

41

�
;

which we will use throughout this section. Note that n � gn when n � 2. As a
consequence of Theorem 4.1, we obtain:

Proposition 5.1 For n> 1, let Xn be the set of positive generating diagrams of genus
n; : : : ;gn . Let D be a positive knot diagram of genus at least n. Then there is a
sequence of diagrams D0;D

0
0
;D1;D

0
1
; : : : ;D0

k�1
;Dk with D0 D D and Dk 2 Xn ,

satisfying the following properties:

(a) Di is positive and D0i differs from Di by crossing changes (ie, Di and D0i have
the same shadow),

(b) DiC1 is obtained from D0i either by a move (19), or by rerouting a bridge/tunnel
to length 1 .

Proof Let D be a positive diagram of genus � n. If g.D/ � gn , then we need to
reduce D only to the generating diagram in whose series it lies, and for this the move
(19) (after the proper crossing changes) is enough. So assume g.D/ > gn . Since
g.D/ 2 Z, we have then

g.D/ >
221n� 323

41
D 221.n� 1/� 102

41
:

Then by Theorem 4.1 we can switch crossings in D DD0 to a diagram D0
0

, which we
can transform into a positive diagram D1 , such that c.D1/ < c.D/, g.D1/� g.D/,
and

g.D1/ � 6

13
C 41

221
g.D/ > n� 1 :

So g.D1/� n, and we can argue with D1 by induction on g.D/, and for fixed g.D/,
inductively over c.D/.

Corollary 5.2 For n> 1 and gn as in (25) we have

min f �.K/ W K positive; n� g.K/� gn g D(26)

min f �.K/ WK positive; n� g.K/ g :
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In particular, assume that there is no positive knot of signature � � and genus
n; : : : ; gn . Then there is no positive knot of signature � and genus � n at all.

Proof This follows straightforwardly from Proposition 5.1 and the property (7) of
� .

Proof of Theorem 1.3 Again this is an immediate consequence of Proposition 5.1, as
in Corollary 5.2: let Cn be the set of knots with positive generating diagrams of genus
n to gn .

Remark 5.3 The estimates may be improvable by using more consequently the
integrality of c.D/ and g.D/, which is not always guaranteed in the above calculations.
This improvement, however, will affect only the absolute term, and expectedly not in a
significant way, so that we preferred to largely waive on incorporating this additional
effort into our (anyway technical enough) proofs.

More generally, we have:

Theorem 5.4

(1) Let v be an invariant with the following property: if D is a positive diagram and
D0 is obtained by (some non-zero number of) crossing switches from it, then
v.D0/ < v.D/. Then v has an increasing lower bound on positive knots in terms
of the genus of the knot.

(2) If v.D0/ � v.D/, then one can algorithmically partially decide whether any
given value of v is attained on positive knots of only finitely many genera.

Examples of invariants satisfying v.D0/ < v.D/ are the properly scaled Vassiliev
invariants v2 and v3 of degree 2 and 3. In fact, we showed in [41] independently that
for either of v2 and v3 both the premise and conclusion of part (1) of the above theorem
hold. (For v2 we must exclude D0 being the mirror image of D , but the argument for
Theorem 5.4 clearly still works under this small restriction.) It is interesting to reveal
that there is in fact a certain causality between both results, which is quite non-evident
from the approach in [41].

Note also that the recent signature-type concordance invariants of Ozsváth and Szabó
[27] and Rasmussen [28] satisfy v.D0/ � v.D/, though the conclusion we obtain is
known. More interestingly, one can apply part (2) of the theorem to the Tristram–Levine
signatures, thereby extending our treatment of � .
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5.2 Partial orders of knots

To conclude with, we mention a relation to the partial orders of Taniyama and Cochran–
Gompf. In [45], Taniyama defined a partial order of knots by K1 �K2 if the set of
shadows of diagrams of K1 is a (not necessarily proper) superset of the set of shadows
of diagrams of K2 .

The standard fact that any diagram is unknottable by crossing changes means that the
unknot is the maximal element in this partial order. Taniyama showed that the trefoil
dominates any other knot, and that 51 dominates any knot except connected sums of
.p; q; r/–pretzel knots, p; q; r odd. The first result gives an easy proof that positive
knots have positive signature, and the second result amplifies this statement by showing
that � � 4 if g � 2. What our arguments show can be thought of as a generalization
of Taniyama’s two results.

Definition 5.5 Call a set K1 of knots dominating a set K2 , in notation K1 �K2 , if
the set of shadows of all diagrams of knots in K1 is a (not necessarily proper) superset
of the set of shadows of diagrams of all knots in K2 . A set K of knots is finitely
dominated, if there is a finite subset K0 �K dominating K .

Theorem 5.6 For all n � 1, the set Gn of knots of canonical genus � n is finitely
dominated. There is a finite subset Cn �Gn of positive knots, such that Cn �Gn .

Remark 5.7 It is clear that for two knots K1 �K2 implies c.K1/ � c.K2/. Thus
any chain of ‘�’ has a maximal element. This means also that the subset of maximal
elements is a dominating subset. It is not clear, though, that conversely a dominating
subset must contain (all, or even any) maximal elements. Definition 5.5 does not imply
that for each K 2 K2 there is a K0 2 K1 with K0 �K , because the K0 we find for
different diagram( shadow)s of K may not be the same. Therefore, we do not know if
the set Gn in Theorem 5.6 has only finitely many maximal elements. (See, however, in
contrast Theorem 5.9.)

Proof of Theorem 5.6 Consider n� 3, since C1 D f31g and C2 D f51; 31#31g are
Taniyama’s results.

With gn defined as in (25), let the set Cn consist of the positive knots with positive
generating diagrams of genus n; : : : ;gn , and write Xn for the set of these diagrams.
Then apply an induction argument (similar to the one in [42, remark 6.2]).

By Proposition 5.1, for any diagram D of genus � n, there is a sequence of diagrams
D0; : : : ;Dk DD (we reindexed the subscripts here) such that D0 2Xn , and Di and
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DiC1 differ by crossing changes, followed either by a generalized clasp resolution (19)
or a wave-move of a bridge/tunnel to one of length 1. The problem is how to switch
crossings in D DDk , so that one can perform all these moves without switching later
crossings in between the moves.

To see how to do this, we use induction on k . The case k D 0 is clear. If k > 0, we
know by induction that we can switch crossings in Dk�1 so that it reduces to D0 . The
case that Dk�1 is obtained from Dk DD by the move (19), it is clear how to choose
the crossing switch of Dk . (Note that the crossings in the tangle P in (19) are flipped
around.)

So consider the case that Dk�1 D D0 is obtained from Dk D D by shrinking a
bridge/tunnel. Then we have an arc C in D which can be shrunk by a wave-move
to an arc C 0 in D0 of a single crossing p . Since one can crossing-switch C prior to
the wave-move to pass above or below the rest of the diagram, one can adjust the sign
of the crossing p it collapses to. This crossing p in D0 DDk�1 will be switched at
most once in the simplification from Dk�1 to D0 . If it is switched (resp. not switched)
so that the strand of C 0 becomes (resp. remains) an over/undercrossing in D0 , then
switch C so that it becomes a bridge/tunnel in D .

Remark 5.8 It is clear that one can choose the set Cn to consist of alternating knots,
instead of positive ones.

A different, but related partial order of knots was introduced by Cochran and Gompf [6].
In their sense, K1 �K2 if K1 is concordant to K2 inside a 4–manifold with positive
intersection form. This occurs for example if K2 is obtained from K1 by changing
a positive crossing to a negative one. The referee pointed us to make a comment in
that context, which we finish with. Clearly, as for Taniyama’s partial order, our work
directly connects also to the one of Cochran–Gompf. From Proposition 5.1 we obtain
immediately:

Theorem 5.9 For each n� 1, the set of positive knots of genus at least n has a finite
number of minimal elements in Cochran–Gompf’s partial order.

The case n D 1 is not formally included in the proposition, but is known. Cochran
and Gompf showed that a non-trivial positive knot dominates the right-handed trefoil
!31 , which is also a simple implication of Taniyama’s related theorem. His second
theorem similarly shows that any positive knot of genus > 1 dominates in ‘�’ one
of !51 or !31#!31 . In general it is easy to see that if K1 is positive, then K2 � K1

implies K1 � K2 . The converse implication is false even if we assume that K2 is
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also positive; K1 D!51 and K2 D!52 give an example. (Slightly fancier pairs of a 12
crossing knot K1 and a 13 crossing knot K2 show that ‘�’, even for positive knots,
also fails to respect the crossing number – in contrast to ‘�’; see Remark 5.7.) Still a
more detailed study of the relationship between ‘�’ and ‘�’, which seems not to have
been undertaken so far, may be worthwhile.
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Paris (1983) 87–161 MR753131

[3] M Boileau, C Weber, Le problème de J. Milnor sur le nombre gordien des nœuds
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