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Slicing Bing doubles

DAVID CIMASONI

Bing doubling is an operation which produces a 2–component boundary link B.K/

from a knot K . If K is slice, then B.K/ is easily seen to be boundary slice. In this
paper, we investigate whether the converse holds. Our main result is that if B.K/

is boundary slice, then K is algebraically slice. We also show that the Rasmussen
invariant can tell that certain Bing doubles are not smoothly slice.

57M25; 57M27

Introduction

Bing doubling [2] is a standard construction which, given a knot K in S3 , produces
a 2–component oriented link B.K/ as illustrated below. (See Section 1 for a precise
definition.)

K B.K/

Figure 1: The figure eight knot and its Bing double

It is easy to check that if the knot K is slice, then the link B.K/ is slice. Does the
converse hold ? An affirmative answer to this question seems out of reach. However, a
result obtained independently by S Harvey [9] and P Teichner [22] provides a first step
in this direction.

Recall that the Levine–Tristram signature of a knot K is the function �K W S
1! Z

defined as follows: for ! 2 S1 , �K .!/ is given by the signature of the Hermitian
matrix .1�!/AC .1�!/A� , where A is a Seifert matrix for K and A� denotes the
transposed matrix.
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Theorem (Harvey [9], Teichner [22]) If B.K/ is slice, then the integral over S1 of
the Levine–Tristram signature of K is zero.

For example, this shows that the Bing double of the trefoil knot is not slice. However,
it says nothing about the Bing double of the figure eight knot (Figure 1), as �K is
identically zero. Let us also mention a conjecture of R Schneiderman and P Teichner:
if B.K/ is slice, then the Arf invariant of K is zero. They hope to prove this statement
using tree-valued intersections of Whitney towers.

In this paper, we obtain a couple of results in the same direction. It is known that Bing
doubles are boundary links: their components bound disjoint Seifert surfaces (see also
Proposition 1.1). Furthermore, if a knot is slice, then its Bing double is not only slice,
but boundary slice: the two slicing discs bound disjoint oriented 3–manifolds in the
4–ball (see also Proposition 1.2). Therefore, it makes sense to consider the following
variation of the original question: is B.K/ boundary slice only when K is slice ? Note
that there is no known example of a boundary link which is slice and not boundary
slice. Hence, it may turn out that both questions are in fact equivalent.

Using D Sheiham’s work on boundary link concordance [20], we obtain the following
result.

Theorem If B.K/ is boundary slice, then K is algebraically slice.

This shows in particular that the Bing double of the figure eight knot is not boundary
slice, a fact known to experts like K Ko [12].

In a final section, we show that the Rasmussen concordance invariant [17] (more
specifically, its generalization to links due to A Beliakova and S Wehrli [1]) can be
used to study the sliceness of Bing doubles. Indeed, we prove that if the Thurston–
Bennequin invariant of a knot K is non-negative, then s.B.K// D 1. Since the
Rasmussen invariant of the 2–component unlink is �1, it follows that such a Bing
double is not smoothly slice. This latter statement can also be obtained from results of
L Rudolph [19]. Nevertheless, our computations show that this fact follows very easily
from elementary properties of the Rasmussen invariant. Note that there are examples of
topologically slice knots with non-negative Thurston–Bennequin invariant (see Section
3). Bing doubling these knots gives the following result.

Theorem There exist links that are topologically slice but not smoothly slice, and
whose components are trivial.

Algebraic & Geometric Topology, Volume 6 (2006)



Slicing Bing doubles 2397

The paper is organized as follows. In Section 1, we give a precise definition of Bing
doubling and recall some of its well-known properties. We also check that many
‘classical’ concordance invariants are useless for studying Bing doubles. (This is an
attempt to convince the reader that the question under study is non-trivial). Section 2
starts with a brief survey of boundary link concordance theory, including Sheiham’s
[20]. We then prove our main result. In Section 3, we recall several properties of the
Rasmussen invariant, and show that it can be used to detect some Bing doubles that are
not smoothly slice.

1 The Bing double of a knot, first properties

Let K be an oriented knot in S3 , and let N .K/ denote a closed tubular neighborhood
of K in S3 . Recall that a pair m; ` of oriented simple closed curves in @N .K/ is
a standard meridian and longitude for K if Œm� D 0, Œ`� D ŒK� in H1.N .K//, and
lk.m;K/ D 1, lk.`;K/ D 0, where lk.�; �/ denotes the linking number. Note that
such a pair is unique up to isotopy.

Let L denote the Borromean rings, arbitrarily oriented, and let m0; `0 � @N .L0/ be
a standard meridian and longitude for some component L0 of L. The Bing double
of K is the 2–component oriented link B.K/ given by the image of L n L0 in
.S3 n int N .L0//[ .S

3 n int N .K//D S3 , where the pasting homomorphism maps
m onto `0 and ` onto m0 . Figure 2 should convince the reader that this definition
corresponds to the illustration given in Figure 1. Note that the isotopy type of the
oriented link B.K/ depends neither on the choice of the component L0 of L, nor on
the orientation of L and K . This follows from obvious symmetry properties of the
Borromean rings.

L

L0

L0�

L nL0 � S3 n int N .L0/

Figure 2: The Borromean rings L , and the solid torus S3 n int N .L0/

Recall that an oriented link is a boundary link if its components bound disjoint Seifert
surfaces. The following seems well known.

Proposition 1.1 Bing doubles are boundary links.
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Proof Consider the pair L1[L2 WDLnL0 � S3 n int N .L0/D S1�D2 illustrated
in Figure 2, where the solid torus is parametrized using the standard meridian and
longitude for L0 . Note that there are two disjoint genus 0 surfaces P1 and P2 in
S1 �D2 such that the boundary of Pi consists of Li together with two longitudes of
the solid torus, for i D 1; 2. This is illustrated below.

Figure 3: On the left, one of the Pi ’s in the solid torus. On the right, an
illustration of how P1 and P2 are embedded with respect to each other.

The pasting homeomorphism hW @.S1�D2/!@N .K/ maps the longitudes of S1�D2

onto standard longitudes of N .K/, that is, parallel unlinked copies of K . These parallel
copies bound disjoint Seifert surfaces (parallel copies of a fixed Seifert surface for
K ). Pasting h.P1 tP2/ with 4 parallel Seifert surfaces for K , we obtain two disjoint
Seifert surfaces for the components of B.K/.

Of course, if K and K0 are isotopic knots, then B.K/ and B.K0/ are isotopic oriented
links. Is the converse also true ? The answer is yes. Indeed, the Jaco–Shalen–Johannson
decomposition theorem implies that two knots K and K0 are isotopic if and only if
B.K/ and B.K0/ are. We refer to Hatcher [10] for a beautiful exposition of the
JSJ–decomposition theorem, and to Budney [3] for a survey of its consequences for
knots and links in S3 . The fact mentioned above can be understood as a special case
of [3, Proposition 4.31].

The aim of this paper is to address a 4–dimensional analogue of the question above.
Recall that two m–component links L0 and L1 in S3 are concordant if there is a
proper oriented locally flat submanifold C � S3 � Œ0; 1�, homeomorphic to m copies
of S1 � Œ0; 1�, such that C \ S3 � t D Lt for t D 0; 1. If these are boundary links
and the concordance together with some disjoint Seifert surfaces on top and bottom
bound m disjoint oriented 3–manifolds in S3 � Œ0; 1�, then the links are boundary
concordant. A (boundary) link is (boundary) slice if it is (boundary) concordant to the
trivial link. Note that a knot is slice if and only if it is boundary slice. (Indeed, if V is
a Seifert surface for a knot that has a slicing disk D in the 4–ball B4 , then elementary
obstruction theory shows that V [D bounds an oriented 3–manifold in B4 .) Note
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also that there is no known example of a boundary link which is slice and not boundary
slice.

Proposition 1.2 If two knots K and K0 are concordant, then the links B.K/ and
B.K0/ are boundary concordant.

Proof Let K and K0 be concordant knots with Seifert surfaces V and V 0 . Fix
a concordance C W S1 � Œ0; 1� ,! S3 � Œ0; 1� between K and K0 , and let W be an
oriented 3–manifold in S3 � Œ0; 1� such that @W D V [C [�V 0 . Let zC W S1 �D2 �

Œ0; 1� ,! S3 � Œ0; 1� be a parametrization of a tubular neighborhood of C , such that
.�� @D2;S1 ��/� t maps to a standard meridian and longitude for K if t D 0 and
for K0 if t D 1. Finally, let P be a pair of pants, and let 'W P t P ,! S1 �D2

be a parametrization of the embedding illustrated in Figure 3. Consider the oriented
3–manifold fW 1 t

fW 2 given by the image of the embedding

.P tP /� Œ0; 1�
'�id
�! S1

�D2
� Œ0; 1�

zC
�! S3

� Œ0; 1�:

Note that for i D 1; 2, @fW i consists of a concordance between the i th component
of B.K/ and B.K0/, together with two parallel copies of C . Let Wi denote the
3–manifold obtained by pasting fW i with two parallel copies of W . The disjoint
3–manifolds W1 , W2 provide a boundary concordance between B.K/ and B.K0/.

Corollary 1.3 If a knot K is slice, then the link B.K/ is boundary slice.

This latter result is well-known to experts. It motivates the following:

Question If B.K/ is a slice link, is K necessarily a slice knot ?

To illustrate the difficulty of this problem, let us go through a list of obstructions to the
sliceness of links. We shall see that all these obstructions vanish for all Bing doubles.

The (multivariable) Alexander polynomial It is well-known that the Alexander
polynomial of a slice knot K is of the form �K .t/Df .t/f .t

�1/ for some f .t/2ZŒt �.
A Kawauchi [11] generalized this result in the following way. Given an m–component
ordered link L, let A.L/ denote its Alexander module over ZŒt˙1

1
; : : : ; t˙1

m �, and lete�L be the greatest common divisor of the order ideal of the torsion of A.L/. If L is
slice, then e�L.t1; : : : ; tm/D f .t1; : : : ; tm/f .t

�1
1
; : : : ; t�1

m / for some f .t1; : : : ; tm/ 2
ZŒt1; : : : ; tm�.

Let us now describe briefly how to compute the Alexander module of a Bing double,
referring to Cooper [6] and Cimasoni–Florens [5] for details. Recall that a C–complex
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for a 2–component link LDL1[L2 is given by two Seifert surfaces V1 for L1 and
V2 for L2 that intersect only along clasps. Given such a C–complex V D V1 [V2 ,
one can define two ‘generalized Seifert forms’ on H1.V /, giving two Seifert matrices,
say A and A0 . A presentation matrix for A.L/ can be obtained by some ZŒt˙1

1
; t˙1

2
�–

linear combination of these matrices and their transpose. This computational method
is very efficient in the case of a Bing double LD B.K/. Indeed, there is an obvious
C–complex V for B.K/ given by two discs intersecting along two clasps. Then,
H1.V /D Z, and since the Bing double is untwisted, we get ADA0 D

�
0
�
. Therefore,

A.B.K// D ZŒt˙1
1
; t˙1

2
� for any knot K , so B.K/ has the Alexander module of a

trivial link. In particular, e�B.K /.t1; t2/D 1 for all knots K .

The (multivariable) Levine–Tristram signature The Levine–Tristram signature of
a knot K is the function �K W S

1 ! Z defined as follows: for ! 2 S1 , �K .!/ is
given by the signature of the Hermitian matrix .1�!/AC .1�!/A� , where A is a
Seifert matrix for K . If K is a slice knot, then �K .!/D 0 for all ! 2 S1 such that
�K .!/¤ 0. This invariant admits a multivariable generalization: for a 2–component
ordered link L, it consists of a function �LW S

1�S1! Z. The integer �L.!1; !2/ is
the signature of a Hermitian matrix given by some C–linear combination (depending
on !1 and !2 ) of the Seifert matrices A and A0 for L. If L is a slice link, then
�L.!1; !2/D 0 for all !1; !2 2 S1 such that e�L.!1; !2/¤ 0. (Here again, we refer
to [6] for the case of 2–component links, and to [5] for the general case.)

As mentioned in the previous paragraph, there is a choice of C–complex for LDB.K/

such that ADA0 D
�
0
�
. Therefore, �B.K / D 0 for all knots K , so this invariant does

not tell us anything about Bing doubles.

Remark In the construction of the Bing double of K , if one replaces the standard
longitude for K by some longitude that links K (say, t times), then the result is the
t –twisted Bing double B.K; t/. One easily checks that �B.K ;t/.!1; !2/ is equal to
the sign of t for all !1; !2 ¤ 1. Hence, the t –twisted Bing double of a knot is never
slice if t ¤ 0 (unlike some t –twisted Whitehead doubles). This is the reason why we
restrict ourselves to the study of untwisted Bing doubles.

The Arf invariant Let ˛2W H1.V IZ2/�H1.V IZ2/! Z2 denote the Seifert form of
a knot K reduced modulo 2. The Arf invariant Arf .K/ of K is defined as the Arf invari-
ant of the non-singular quadratic form qW H1.V IZ2/! Z2 given by q.x/D ˛2.x;x/.
If K is a slice knot, then Arf .K/ D 0. If L is an oriented link with components
fLig that satisfy lk.Li ;L nLi/� 0 .mod 2/ for all i , then its reduced Seifert form
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˛2 induces a well-defined non-singular quadratic form on H1.V IZ2/= i�H1.@V IZ2/.
The Arf invariant of L is then defined as the Arf invariant of this quadratic form.

The Bing double of a knot obviously satisfies the condition above and not surprisingly,
Arf .B.K// D 0 for all knots K . There are numerous ways to check this fact. For
example, K Murasugi [16] showed that if L D L1 [L2 satisfies lk.L1;L2/ � 0

.mod 2/, then

Arf .L/� Arf .L1/CArf .L2/C
1

2

d2

dt2
�L.t; t/

ˇ̌̌
tD1

.mod 2/:

In the case of LD B.K/, both components are trivial and �L.t1; t2/D 0, leading to
the result.

The Milnor �–invariants As we saw in Proposition 1.1, B.K/ is a boundary link.
This implies the vanishing of another obstruction to the sliceless of B.K/: Milnor’s
�–invariants.

The slice Bennequin inequality Up to now, we have been concerned with the topo-
logical concordance of links. If one requires the concordance to be smooth, one gets
a stronger equivalence relation: there are links which are topologically slice (bound
disjoint locally flat discs in B4 ) but not smoothly slice (do not bound disjoint smooth
discs in B4 ). We shall now investigate an obstruction to the smooth sliceness of links.
Given an oriented link L, let �s.L/ denote the greatest Euler characteristic �.F / of
an oriented surface F (with no closed component) smoothly embedded in B4 with
boundary L. The slice Bennequin inequality (Rudolph [18]) asserts that for every braid
ˇ 2 Bn ,

�s. y̌/� n�!.ˇ/;

where y̌ denotes the closure of ˇ and !.ˇ/ its writhe (ie, the number of positive
crossings minus the number of negative ones).

This inequality does not tell us anything about Bing doubles. Indeed, let LDB.K/D

L1 [L2 and fix ˇ 2 Bn such that y̌ D L. Write the geometric braid ˇ as a union
ˇ D ˇ1 [ ˇ2 with y̌i D Li and ˇi 2 Bni

for i D 1; 2. Clearly, n1 C n2 D n and
!.ˇ/D!.ˇ1/C!.ˇ2/C2 lk.L1;L2/D!.ˇ1/C!.ˇ2/. Since each Li is the unknot,
the slice Bennequin inequality applied to ˇi gives 1 � ni � !.ˇi/. Summing over
i D 1; 2 gives 2 � n�!.ˇ/. This means that, in the best case, the slice Bennequin
inequality for ˇ will read �s.L/ � 2. This does not say anything about L, as this
inequality holds for any 2–component link.

To conclude this panorama, it should be mentioned that invariants of Cha–Ko [4] and
Friedl [8] do detect the Bing double of some knots with non-trivial Levine–Tristram

Algebraic & Geometric Topology, Volume 6 (2006)



2402 David Cimasoni

signature. This is also true for the L2 –signatures of Harvey [9], as mentioned in the
introduction. However, none of these invariants can detect the Bing double of a torsion
element in the knot concordance group.

2 Boundary sliceness of Bing doubles

Since Bing doubles are boundary links, and since B.K/ is boundary slice whenever
K is slice, it makes sense to consider the following variation of our original problem:

Question If B.K/ is boundary slice, is K necessarily slice ?

Let us recall once again that there is no known example of a boundary link which is
slice and not boundary slice. Therefore, both questions might turn out to be equivalent.
Nevertheless, we shall be more successful with this version.

In order to state our results, let us recall several standard facts about boundary link
concordance. We refer to Ko [13] for proofs and further details.

Let B.m/ denote the set of boundary concordance classes of m–component boundary
links in S3 . A pair .L;V / consisting of a boundary link LDL1[ � � � [Lm together
with disjoint Seifert surfaces V D V1 [ � � � [ Vm is called a boundary pair. Two
boundary pairs .L;V / and .L0;V 0/ are said to be concordant if there are disjoint
oriented 3–manifolds W1; : : : ;Wm in B4 such that @Wi D Vi [Ci [�V 0i , where Ci

is a concordance between Li and L0i . The set of concordance classes of boundary
pairs is denoted by C.Bm/. Then, the obvious surjective map C.Bm/� B.m/ turns
out to be a bijection for m� 2. (This is false for m> 2.)

Fix an m–component boundary pair .L;V /. For i; j D 1; : : : ;m, consider the bilinear
pairing H1.Vi/�H1.Vj /! Z defined by .x;y/ 7! lk.xC;y/, where xC denotes
the 1–cycle x pushed in the positive normal direction of Vi . Let Aij denote the
matrix of this pairing with respect to some fixed bases of H1.Vi/ and H1.Vj /. Note
that Aij D A�ji if i ¤ j and Aii � A�ii is nothing but the intersection matrix of
Vi . Furthermore, if the boundary pair .L;V / is slice, then for suitable bases of the
H1.Vi/’s, each Aij is metabolic: the upper left quadrant is zero. In this case, the
collection AD fAij g (and the boundary pair .L;V /) are said to be algebraically slice.
This motivates the following definition: consider the set of collections AD fAij g

m
i;jD1

of integral matrices such that Aij D A�ji if i ¤ j and Aii �A�ii is unimodular. Let
us say that two such collections A and B are equivalent if the block sum A˚ .�B/

defined by .A˚ .�B//ij D Aij ˚ .�Bij / is algebraically slice. Then, the set of
equivalence classes forms an abelian group Gm.Z/ under the block sum.
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The Seifert matrix construction described above defines a map  mW C.Bm/!Gm.Z/

which is onto but not injective. Recall that there are canonical bijections C.B1/ Š

B.1/ Š C and C.B2/ Š B.2/, where C is the classical knot concordance group.
Therefore, we have an epimorphism  1W C�G1.Z/ and a surjective map  2W B.2/�
G2.Z/.

We are finally ready to state our main result.

Theorem 2.1 (i) The Bing doubling operation induces a map C ! B.2/ and a
homomorphism 'W G1.Z/!G2.Z/ such that the following diagram commutes:

C

 1 ����

// B.2/

 2����
G1.Z/

' // G2.Z/

(ii) The homomorphism ' is injective.

Corollary 2.2 If B.K/ is boundary slice, then K is algebraically slice.

Proof of .i/ The fact that Bing doubling induces a map C ! B.2/ follows from
Proposition 1.2. Let us define the homomorphism 'W G1.Z/!G2.Z/. Given a matrix
A such that A�A� is unimodular, set

B.A/D

�
A11 A12

A21 A22

�
where:

(1) A11 DA22 D

�
A A

A� A�

�
and A12 DA�21 D

�
A A

A� A

�

Note that A12 D A�
21

and that A11 � A�
11
D A22 � A�

22
D

�
A�A� 0

0 A�A�

�
is

unimodular since A�A� is. Hence, B.A/ defines an element of the group G2.Z/.
Let us now assume that A is algebraically slice, say of size 2g . This means that there
exists some unimodular matrix Q of size 2g such that QAQ� is metabolic. Consider
the unimodular matrix

�QD
0BB@

Ig 0 0 0

0 0 Ig 0

0 Ig 0 0

0 0 0 Ig

1CCA�Q 0

0 Q

�
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where Ig denotes the identity matrix of size g . A straightforward computation shows
that �QAij

�Q� is metabolic for all i; j . Hence, B.A/ is algebraically slice. Now, let A

and A0 be two Seifert matrices of respective size 2g and 2g0 . Consider the unimodular
matrix:

RD

0BB@
I2g 0 0 0

0 0 I2g 0

0 I2g0 0 0

0 0 0 I2g0

1CCA
One checks that �

R 0

0 R

�
B.A˚A0/

�
R� 0

0 R�

�
D B.A/˚B.A0/:

These facts imply that A 7! B.A/ defines a homomorphism 'W G1.Z/! G2.Z/. It
remains to check that the diagram commutes. Let .K;V / be a 1–component boundary
pair (that is, a knot with a Seifert surface), and let A denote the associated Seifert
matrix with respect to some basis b of H1.V /. Let B.V /D B.V /1 tB.V /2 denote
the boundary Seifert surface for B.K/ constructed in the proof of Proposition 1.1.
Clearly, H1.B.V /1/DH1.B.V /2/DH1.V /˚H1.V /. Consider the right hand side
of Figure 3: the four glued in Seifert surfaces are parallel, but their orientations alternate.
It follows that the Seifert matrix with respect to the basis b [ b of H1.B.V /1/ and
H1.B.V /2/ is given by B.A/.

Our proof the injectivity of ' makes extensive use of D Sheiham’s interpretation of
Gm.Z/ as the Witt group of the representation category of some ring Pm . We shall
now quickly review the notions and results involved, referring to [20] for further details
and proofs.

Fix a commutative ring ƒ and a ring R with an involution r 7! r . Let .R�ƒ/�Proj
denote the category of representations �W R ! Endƒ.M /, where M is a finitely
generated projective ƒ–module. This is a Hermitian category via .M; �/ 7! .M �; ��/,
where M � D Homƒ.M; ƒ/ and ��W R! Endƒ.M �/ is given by ��.r/.�/W x 7!
�.�.r/.x// for r 2R, � 2M � and x 2M .

Fix a sign � D ˙1. An �–hermitian form .M; �/ is a morphism �W M !M � in
.R�ƒ/� Proj such that �� D �� . (Here, .M �/� is identified with M .) An object
M is �–self dual if there exists an �–hermitian form .M; �/ which is non-singular, ie
an isomorphism. Finally, recall that an �–hermitian form .M; �/ is called metabolic if
there is a direct summand j W L ,!M such that LD ker.j ��W M !L�/. The Witt
group of the Hermitian category .R�ƒ/�Proj is the abelian group W �.R�ƒ/ with
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one generator ŒM; �� for each isomorphism class of non-singular �–hermitian form
.M; �/ subject to the relations(

ŒM 0; �0�D ŒM; ��C ŒM 00; �00� if .M 0; �0/Š .M; �/˚ .M 00; �00/;

ŒM; ��D 0 if .M; �/ is metabolic.

Note that W �.Z�ƒ/ is simply the Witt group W �.ƒ/ of the ring ƒ.

Let us now focus on some particular choice of the ring R. Let m � 1 be an integer,
and let Pm be the ring

Pm D Z

D
s; �1; : : : ; �m

ˇ̌
�2

i D �i , �i�j D 0 for i ¤ j ,
Pm

iD1 �i D 1
E

endowed with the involution induced by s 7! s D 1 � s and �i 7! �i D �i for
i D 1; : : : ;m. Given any commutative ring ƒ, Sheiham’s idea is to interpret the group
Gm.ƒ/ as the Witt group W �1.Pm �ƒ/. Indeed, an element in Gm.ƒ/ given by
a collection of matrices AD fAij g

m
i;jD1

can be understood as the equivalence class
of an .mC 2/–tuple .M; �1; : : : ; �m; �/, where M is a finitely generated projective
ƒ–module, �1; : : : ; �m is a set of orthogonal idempotents in Endƒ.M / and �W M !
M � is an ƒ–module homomorphism such that � � �� is an isomorphism which
commutes with each �i . (Aij should be thought of as the matrix of a homomorphism
�iM ! .�j M /� , where the �iM ’s are free ƒ–modules; the collection of matrices A

then defines a homomorphism �W M !M � , where M D
Lm

iD1 �iM .) Given such
an .mC 2/–tuple, set � D �� �� and define �W Pm! Endƒ.M / by �.s/D ��1�,
�.�i/ D �i . One easily checks that .M; �/ is a non-singular .�1/–hermitian form.
The only non-trivial point is the equality �.sx/.y/D �.x/.sy/ for x;y 2M , where
sx stands for �.s/.x/. It follows from the following equations:

�.sx/.y/C�.x/.sy/D ���1�.x/.y/C�.x/.��1�.y//

D �.x/.y/C��.��1/��.x/.y/D .����/.x/.y/D �.x/.y/:

It turns out that this construction induces an isomorphism

Gm.ƒ/
�
�!W �1.Pm�ƒ/; ŒM; �1; : : : ; �m; �� 7�! ŒM; ��

which is natural with respect to ƒ (see [20, Lemma 3.31]).

The next step makes use of so-called Hermitian devissage. For the Hermitian category
.R�k/�Proj, where k is a field, it can be stated as follows. Let Ms

.R�k; �/ denote
the set of isomorphism classes of simple �–self-dual objects in .R� k/� Proj. Then,
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there is a canonical isomorphism of Witt groups

W �.R� k/Š
M

M2Ms
.R�k;�/

W �..R� k/jM /;

where .R� k/jM denotes the (Hermitian) full subcategory of .R� k/� Proj whose
objects are isomorphic to a direct summand of M˚d for some d .

We conclude this brief exposition of Sheiham’s work with the following special case
of Hermitian Morita equivalence. Fix a non-singular �–hermitian form .M; b/ in
.R� k/�Proj. Then, we have an isomorphism

W �..R� k/jM /
‚M;b

�! W 1.End.R�k/M /

ŒN; �� 7�! ŒHom.M;N /; ˆN���;

where Hom.M;N / D Hom.R�k/.M;N / is endowed with the obvious structure of
right End.R�k/M –module, and ˆN��W Hom.M;N /! Hom.M;N /� is given by
.ˆN��/.˛/.ˇ/D �b

�1˛��ˇ for ˛; ˇ 2 Hom.M;N /.

Finally, note that the natural homomorphism Gm.Z/!Gm.Q/ is injective [20, Lemma
1.11]. Summing up, we have the following sequence of homomorphisms:

Gm.Z/ ,!Gm.Q/
�
�!W �1.Pm�Q/Š

M
M

W �1..Pm�Q/jM /

pM� W �1..Pm�Q/jM /
‚M;b

�! W 1.End.Pm�Q/M /;

where the direct sum is over all M 2Ms
.Pm�Q;�1/, and pM denotes the canonical

projection corresponding to M .

Proof of .ii/ We shall now use these results to prove the second part of Theorem 2.1.
Recall that the Bing doubling map 'W G1.Z/! G2.Z/ (and similarly, the induced

map G1.Q/!G2.Q/) is given by ŒA� 7! ŒB.A/�D

�
A11 A12

A21 A22

�
, where the Aij ’s are

given by (1). This matrix B.A/ is block-congruent to (and therefore, represents the
same class as) the matrix

�A WD
0BB@

0 T T 0

0 A� T � A

T � T 0 T

0 A� 0 A�

1CCA ;
where the letter T stands for the unimodular matrix A � A� . The isomorphism
�W G1.Q/!W �1.P1�Q/ maps ŒA� to ŒM; ��, where M is the Q–vector space acted
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on by A, �W M !M � is given by the matrix T DA�A� , and the action of P1DZŒs�

on M is defined by the matrix S D T �1A. Similarly, �W G2.Q/!W �1.P2 �Q/

maps Œ�A� to Œ �M ; y��, where �M DM˚4 as a Q–vector space, y�W �M ! . �M /� is given
by the matrix

(2) �T WD �A� .�A/� D
0BB@

0 T 0 0

T T � 0 0

0 0 0 T

0 0 T T �

1CCA
and the P2 –action on �M is defined as follows: for xD .x1;x2;x3;x4/ 2M˚4D �M ,
�1x D .x1;x2; 0; 0/, �2x D .0; 0;x3;x4/, and sx D �Sx , where:

(3) �S D .�T /�1 �AD
0BB@

0 S 0 S

0 I I 0

�I S 0 S

�I I 0 I

1CCA
With these notations, we have the commutative diagram

G1.Z/� _

��

' // G2.Z/� _

��
G1.Q/ //

Š�

��

G2.Q/

� Š

��
W �1.P1�Q/ // W �1.P2�Q/

where the bottom homomorphism is given by ŒM; �� 7! Œ �M ; y�� as described above.

From now on, let us denote by C and D the Hermitian categories .P1�Q/�Proj and
.P2�Q/�Proj, respectively.

Lemma 2.3 If M is a simple object in C , then �M is a simple object in D .

Proof First note that if M is a simple representation over Q of P1 D ZŒs�, then
M D QŒs�=.p/ with p 2 QŒs� some irreducible polynomial in QŒs�. If S denotes a
matrix of the action of s2ZŒs� on M viewed as a Q–vector space, then its characteristic
polynomial det.S � sI/ is equal to p.s/ up to multiplication by a non-zero scalar.
Therefore, det.S � sI/ must be irreducible in QŒs�.

Let n denote the dimension of M over Q, and let us assume that there is a P2 –
submodule N of �M with N ¤ 0 and N ¤ �M . In particular, the Q–vector space
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�M D �1
�M ˚�2

�M can be further decomposed into �1
�M D �1N ˚N 0

1
and �2

�M D
�2N ˚N 0

2
. Set di D dimQ �iN for i D 1; 2. Since N is invariant under the action

of s 2 P2 , there exists P;Q 2GL2n.Q/ such that

(4)
�

P 0

0 Q

� �S �P�1 0

0 Q�1

�
D

0BB@
A 0 C 0

� � � �

D 0 B 0

� � � �

1CCA
for some matrices A;B;C;D of respective size d1�d1 , d2�d2 , d1�d2 , and d2�d1 .
Here, �S denotes the matrix obtained from S via (3).

Claim d1 D d2

Since M is simple, p.s/D det.S � sI/ is irreducible in QŒs�. In particular, p.0/D

det.S/¤ 0, so S is invertible. Therefore,
�

0 S

I 0

�
is invertible, as well as the matrix

P

�
0 S

I 0

�
Q�1 D

�
C 0

� �

�
. Hence, the first d1 lines of this matrix are linearly inde-

pendant. Since C is of size d1�d2 , this implies that d1 � d2 . Similarly, 0¤ p.1/D

det.S�I/ implies that
�
�I S

�I I

�
is invertible, as well as Q

�
�I S

�I I

�
P�1D

�
D 0

� �

�
.

Therefore, d2 � d1 , proving the claim. This also shows that the matrices C and D

are invertible. Note that d WD d1 D d2 satisfies 0< d < 2n, as N ¤ 0 and N ¤ �M .

Using this claim and the fact that C is invertible, equation (4) can be transformed into
the following equalities:

Q

�
0 S

0 I

�
D

�
B 0

� �

�
Q; Q

�
I 0

I 0

�
D

�
E 0

� �

�
Q

where E D C�1AC . This implies that QD

�
X .E � I/X

� �

�
for some matrix X of

size d � n which satisfies the following equations:

(5) .B � I/.E � I/X DXS; E.E � I/X D 0; BX D 0:

Claim 0< rank X < n

If r WD rank X D 0, then X D 0 so the first d lines of Q are zero. This is impossible
since Q is invertible and d > 0. On the other hand, let us assume that r D n. This
means that X is the matrix of an injective linear map M ,!Qd , which we also denote
by X . Since S is invertible, the first equality in (5) implies that the rank of .E� I/X
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is n. Consider the subspace V of Qd consisting of the intersection of the images of
X and .E � I/X . Since both matrices have rank n and since d < 2n, the space V

has positive dimension. Now, set

W D fw 2M jXw D .E � I/Xm for some m 2M g:

Since W Dfw 2M jXw 2V g and X is injective, dimQ W D dimQ V > 0. Given any
w 2W , we have EXwDE.E�I/XmD 0 by the second equation of (5). Therefore,

XSw D .B � I/.E � I/Xw D�BXwCXw DXw:

Since X has maximal rank, this implies that SwDw for all w 2W �M . As W ¤ 0,
this would imply that M is not a simple QŒs�–module. Therefore, r < n, proving the
claim.

Let us choose two matrices T 2 GLd .Q/ and U 2 GLn.Q/ such that TXU D�
Ir 0

0 0

�
DW eX , where Ir denotes the identity matrix of size r D rank X . Equations

(5) above give
.eB � I/. eE � I/ eX D eX eS ; eB eX D 0;

where eE D TET �1 , eB D TBT �1 and eS D U�1SU . Writing S D

�
S11 S12

S21 S22

�
with S11 and S22 of respective size r � r and .n� r/� .n� r/, these equations imply
that S12D 0. Since 0< r < n, p.s/D det.eS � sI/ is reducible in QŒs�, contradicting
the fact that M is simple. This concludes the proof of the lemma.

Lemma 2.4 Two objects M and M 0 are isomorphic in C if and only if �M and �M 0

are isomorphic in D .

Proof Let R2GLn.Q/ denote the matrix of an isomorphism between M and M 0 in
C . Then, one easily checks that the matrix R˚4 2GL4n.Q/ defines an isomorphism
between �M and �M 0 in D . Conversely, let us assume that we have an isomorphism
between �M and �M 0 in D . In particular, it is an isomorphism between the Q–vector
spaces M˚4 and .M 0/˚4 . Let H 2GL4n.Q/ be a matrix of this isomorphism with
respect to bases of M˚4 and .M 0/˚4 given by four copies of some fixed bases of M

and M 0 . Since h�i D �ih for i D 1; 2, H is necessarily of the form H D

�
P 0

0 Q

�
for some P;Q 2GL2n.Q/. Furthermore, H also satisfies the equation H�S D �S 0H .
Here, �S (resp.�S 0 ) is the matrix obtained via equation (3) from the matrix S (resp.
S 0 ) giving the action of s 2 P1 D ZŒs� on M (resp. M 0 ). This implies easily that
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P DQD

�
R 0

0 R

�
for some R 2GLn.Q/ that satisfies RS D S 0R. This matrix R

defines an isomorphism in C between M and M 0 .

If M is a .�1/–self-dual object in C via �W M !M � , then �M is a .�1/–self-dual
object in D via y�W �M ! . �M /� . Hence, Lemmas 2.3 and 2.4 imply that the Bing
doubling map .M; �/ 7! . �M ; y�/ induces an inclusion Ms

.C;�1/ ,!Ms
.D;�1/. By

Hermitian devissage, it induces homomorphisms 'M for all M 2Ms
.C;�1/ which

fit in the following commutative diagram:

W �1.C/ //

Š

��

W �1.D/

Š

��L
M W �1.CjM / //

pM
����

L
N W �1.DjN /

p �M����

W �1.CjM /
'M // W �1.Dj �M /

We are left with the proof that 'M is injective for all M 2Ms
.C;�1/. Consider the

additive functor F W C!D given by F.M /D �M and F.˛W M !M 0/D .˛˚4W �M !�M 0/.

Lemma 2.5 If M be a simple object in C , then the ring homomorphism EndCM !

EndD �M induced by F is an isomorphism.

Proof A simple representation over Q of P1 D ZŒs� is of the form K D QŒs�=.p/,
where p 2 QŒs� is an irreducible polynomial. Therefore, EndCM D EndQŒs�K DK

is a field. This implies that the homomorphism induced by F is injective. To check
that it is onto, fix an element ˇ 2 EndD �M . Since ˇ�i D �iˇ for i D 1; 2, a matrix

for ˇ is necessarily of the form
�

P 0

0 Q

�
for some P;Q 2M2n.Q/. As in the proof

of Lemma 2.4, the equation ˇs D sˇ easily implies that P DQD

�
R 0

0 R

�
for some

R 2Mn.Q/ such that RS D SR. This matrix R defines an element ˛ 2 EndCM such
that F.˛/D ˇ .

In particular, F induces an isomorphism F�W W
1.EndCM /! W 1.EndD �M /. Let

.M; b/ be a .�1/–hermitian form in C , and let . �M ; yb/ be the corresponding .�1/–
hermitian form in D , where a matrix for yb is obtained from a matrix for b via (2).
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Using Lemma 2.5, it is routine to check that for all M 2Ms
.C;�1/, the following

diagram commutes:

W �1.CjM /

Š‚M;b

��

'M // W �1.Dj �M /

Š‚ �M ;yb

��

W 1.EndCM /
F�

Š
// W 1.EndD �M /

This concludes the proof of Theorem 2.1.

3 The Rasmussen invariant

In a beautiful paper [17], J Rasmussen used Khovanov homology to define a combina-
torial invariant of smooth concordance of knots. Its extension to links was carried out
by A Beliakova and S Wehrli [1]. We shall now show that this invariant, unlike the
ones listed in Section 1, can tell that some Bing doubles are not smoothly slice.

Recall that the Rasmussen invariant assigns to each oriented link L in S3 an integer
s.L/ 2 Z. It satisfies the following properties (see [1]).

(i) If C is a smooth oriented cobordism in S3 � Œ0; 1� between two oriented links
L and L0 such that every component of C meets L, then

js.L/� s.L0/j � ��.C /:

(ii) If L is represented by a positive diagram with n crossings and k Seifert circles,
then s.L/D n� kC 1.

(iii) If L has m components, then s.L/�m� 1 .mod 2/.

Note that Property (i) implies that s is an invariant of smooth concordance, and Property
(ii) implies that the s–invariant of the m–component unlink is 1�m. In particular, if
L is a smoothly slice 2–component link, then s.L/D�1.

Lemma 3.1 The Rasmussen invariant of a Bing double is equal to ˙1.
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Figure 4: A diagram D for the positive trefoil knot, with the 2 northeastern
corners highlighted. On this example, tb.D/D 1 .

Proof The crossing change illustrated opposite turns any
Bing double B.K/ into a positive Hopf link whose s–
invariant is 1 by Property (ii). This corresponds to a cobor-
dism between B.K/ and the positive Hopf link with Euler
characteristic �2. By Property (i), js.B.K// � 1j � 2.
Similarly, the modification of one of the positive crossings
in the diagram given here turns B.K/ into a negative Hopf link, whose s–invariant
is equal to �1. Hence, js.B.K//C 1j � 2. The lemma now follows from Property
(iii).

Let us recall briefly the (combinatorial) definition of the Thurston–Bennequin invariant
of a knot. We refer to Rudolph [19] for the analytic definition and further details.
Every knot admits a diagram D consisting of vertical and horizontal segments, the
horizontal segment passing over the vertical one at each crossing. Let tb.D/ denote
the writhe of D minus the number of ‘northeastern corners’ of D . (See Figure 4 for
an example.) The Thurston–Bennequin invariant TB.K/ of a knot K is the maximum
value of tb.D/ over all such diagrams for K .

We shall be interested in knots K such that TB.K/ � 0. Let us mention that if a
non-trivial knot K is strongly quasi-positive (ie, if it is the closure of the product of
braids of the form �ij D .�i � � � �j�2/�j�1.�i � � � �j�2/

�1 with 1 � i < j < n), then
TB.K/� 0. In particular, all non-trivial positive knots (non-trivial knots that admit a
diagram with only positive crossings) have non-negative Thurston–Bennequin invariant.

Proposition 3.2 If a knot K has non-negative Thurston–Bennequin invariant, then
s.B.K//D 1.

Proof Consider the local transformation of the Bing double illustrated in Figure 5. It
describes a cobordism C between the Bing double B.K/ and the untwisted positive
Whitehead double Wh.K/ of K with �.C /D�1. Therefore, js.B.K//�s.Wh.K//j�
1. Now, there is an obvious cobordism of Euler characteristic �1 between Wh.K/
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B.K/ � � Wh.K/

Figure 5: A cobordism between the Bing double and the untwisted positive
Whitehead double of K

and the positive Hopf link. Hence, js.Wh.K//� 1j � 1. Since s.Wh.K// is even, it is
equal to 0 or 2. Gathering these results with Lemma 3.1, we conclude that the only
possible values of the pair .s.B.K//; s.Wh.K/// are .�1; 0/, .1; 0/ and .1; 2/. In
particular, if s.Wh.K//D 2, then s.B.K//D 1.

Building on ideas of L Rudolph, C Livingston showed that if a knot satisfies TB.K/�0,
then s.Wh.K//D2. This computation was originally performed for the Ozsváth–Szabó
knot concordance invariant, but using only properties shared by the Rasmussen invariant
(see Livingston [14, Theorem 12] and Livingston–Naik [15, Theorem 2]). Therefore, if
TB.K/� 0, then s.B.K//D 1.

As an immediate consequence, we see that if TB.K/� 0, then B.K/ is not smoothly
slice. This statement is by no means new. Indeed, L Rudolph [19] showed that if
TB.K/� 0, then Wh.K/ is not smoothly slice. By the cobordism illustrated in Figure
5, this implies that B.K/ is not smoothly slice. However, it is interesting to see that
this fact can be recovered using only basic properties of the Rasmussen invariant for
links.

Proposition 3.2 also provides a wide class of links for which the Rasmussen invariant is
a better obstruction to sliceness then the multivariable Levine–Tristram signature (recall
Section 1). These examples are the first non-split links with this property (compare
[1, Section 6.3]). Since their components are trivial, our examples also show that
the obstruction to the sliceness of a link L provided by s.L/ is more then just the
obstruction to the sliceness of each components Li provided by s.Li/.

One easily checks that the existence of an invariant of links that satisfies Properties (i)
and (ii) above implies the slice Bennequin inequality. (The argument for knots given
in Shumakovitch [21] extends to links.) By Proposition 3.2 and the end of Section
1, we see that the Rasmussen invariant is actually stronger than the slice Bennequin
inequality for detecting links that are not smoothly slice.

Let us conclude this article with one last remark. Freedman showed that the untwisted
Whitehead double of any knot K is topologically slice (see Freedman and Quinn
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[7]). By Corollary 1.3, the link B.Wh.K// is topologically slice. On the other hand,
if TB.K/ � 0, then TB.Wh.K// � 1 by [19, Proposition 3]. By Proposition 3.2,
B.Wh.K// is not smoothly slice. Therefore, each knot K with non-negative Thurston–
Bennequin invariant induces a link B.Wh.K// that is topologically but not smoothly
slice, and whose components are trivial.
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[14] C Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geom.
Topol. 8 (2004) 735–742 MR2057779
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