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On surgery along Brunnian links in 3–manifolds

JEAN-BAPTISTE MEILHAN

We consider surgery moves along .nC 1/–component Brunnian links in compact
connected oriented 3–manifolds, where the framing of the components is in f 1

k
; k 2

Zg . We show that no finite type invariant of degree < 2n�2 can detect such a surgery
move. The case of two link-homotopic Brunnian links is also considered. We relate
finite type invariants of integral homology spheres obtained by such operations to
Goussarov–Vassiliev invariants of Brunnian links.

57N10; 57M27

1 Introduction

In [19], Ohtsuki introduced the notion of finite type invariants of integral homology
spheres as an attempt to unify the topological invariants of these objects, in the same
way as Goussarov–Vassiliev invariants provide a unified point of view on invariants
of knots and links. This theory was later generalized to all oriented 3–manifolds by
Cochran and Melvin [2].

Goussarov and Habiro developed independently another finite type invariants theory for
compact connected oriented 3–manifolds, which essentially coincides with the Ohtsuki
theory in the case of integral homology spheres [4; 7; 12]. This theory comes equipped
with a new and powerful tool called calculus of clasper, which uses embedded graphs
carrying some surgery instruction. Surgery moves along claspers define a family of
(finer and finer) equivalence relations among 3–manifolds, called Yk –equivalence,
which gives a good idea of the information contained by finite type invariants: two
compact connected oriented 3–manifolds are not distinguished by invariants of degree
< k if they are Yk –equivalent [8; 12]. These two conditions become equivalent when
dealing with integral homology spheres.

Recall that a link L is Brunnian if any proper sublink of L is trivial. In some sense,
an n–component Brunnian link is a ‘pure n–component linking’. In this paper we
consider those compact connected oriented 3–manifolds which are obtained by surgery
along a Brunnian link. For a fixed number of components, we study which finite type
invariants (ie of which degree) can vary under such an operation.
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Let mD .m1; :::;mn/ 2 Zn be a collection of n integers. Given a null-homologous,
ordered n–component link L in a compact connected oriented 3–manifold M , denote
by .L;m/ the link L with framing 1

mi
on the i th component ; 1� i � n. We denote

by M.L;m/ the 3–manifold obtained from M by surgery along the framed link .L;m/.
We say that M.L;m/ is obtained from M by 1

m
–surgery along the link L.

Theorem 1.1 Let n� 2 and m 2 ZnC1 . Let L be an .nC 1/–component Brunnian
link in a compact, connected, oriented 3–manifold M .

For nD 2, M.L;m/ and M are Y1 –equivalent.

For n � 3, M.L;m/ and M are Y2n�2 –equivalent. Consequently, they cannot be
distinguished by any finite type invariant of degree < 2n� 2.

Note that, for any Brunnian link L in M , we have M.L;m/ ŠM if mi D 0 for some
1� i � nC 1. In this case, the statement is thus vacuous.

Two links are link-homotopic if they are related by a sequence of isotopies and self-
crossing changes, ie, crossing changes involving two strands of the same component.
We obtain the following.

Theorem 1.2 Let n � 2 and m 2 ZnC1 . Let L and L0 be two link-homotopic
.nC 1/–component Brunnian links in a compact, connected, oriented 3–manifold
M . Then M.L;m/ and M.L0;m/ are Y2n�1 –equivalent. Consequently, they cannot be
distinguished by any finite type invariant of degree < 2n� 1.

Actually, for integral homology spheres, the theorem is still true when “2n� 1” is
replaced by “2n”. (It follows from the last observation of Section 3.7.)

In the latter part of the paper, we study the relation between the above results and
Goussarov–Vassiliev invariants of Brunnian links.

Let ZL.n/ be the free Z–module generated by the set of isotopy classes of n–
component links in S3 . The theory of Goussarov–Vassiliev invariants of links involves
a descending filtration

ZL.n/D J0.n/� J1.n/� J2.n/� :::

called Goussarov–Vassiliev filtration (see Section 5.2). In a previous paper, Habiro
and the author introduced the so-called Brunnian part Br.J 2n.nC 1// of J2n.nC

1/=J2nC1.nC 1/, which is defined as the Z–submodule generated by elements ŒL�
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U �J2nC1
where L is an .nC 1/–component Brunnian link and U is the .nC 1/–

component unlink [14]. Further, we constructed a linear map

hnW Ac
n�1.∅/ �! Br.J 2n.nC 1//;

where Ac
n�1

.∅/ is a Z–module of connected trivalent diagrams with 2n� 2 vertices.
hn is an isomorphism over Q for n� 2. See Section 5 for precise definitions.

Let Sk be the abelian group of YkC1 –equivalence classes of integral homology spheres
which are Yk –equivalent to S3 . S2kC1 D 0 for all k � 1, and it is well known that
S2k is isomorphic to Ac

k
.∅/ when tensoring by Q. See Section 6.3. There is therefore

an isomorphism over Q from Br.J 2n.nC 1// to S2n�2 , for n� 2. The next theorem
states that this isomorphism is induced by .C1/–framed surgery.

For a null-homologous ordered link L in a compact connected oriented 3–manifold
M , denote by .L;C1/ the link L with all components having framing C1.

Theorem 1.3 For n� 2, the assignment

ŒL�U �J2nC1
7! ŒS3

.L;C1/�Y2n�1

defines an isomorphism

�nW Br.J 2n.nC 1//˝Q �! S2n�2˝Q:

We actually show that these two Q–modules are isomorphic to the so-called ‘connected
part’ of the Ohtsuki filtration, by using the abelian group Ac

n�1
.∅/. See Section 6 for

definitions and statements.

The rest of this paper is organized as follows.

In Section 2, we give a brief review of the theory of claspers, both for compact connected
oriented 3–manifolds and for links in a fixed manifold. In Section 3, we study the
Yk –equivalence class of integral homology spheres obtained by surgery along claspers
with several special leaves. This section can be read separately from the rest of the
paper and might be of independent interest. In Section 4, we use the main result of
section 3 to prove Theorems 1.1 and 1.2. In Section 5, we recall several results obtained
by Habiro and the author in [14]. In Section 6, we define the material announced above
and prove Theorem 1.3. In Section 7, we give the (technical) proof of Proposition 3.8.

Acknowledgments The author is grateful to Kazuo Habiro for many helpful con-
versations and comments on an early version of this paper. He was supported by a
Postdoctoral Fellowship and a Grant-in-Aid for Scientific Research of the Japan Society
for the Promotion of Science.
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2 Claspers

Throughout this paper, all 3–manifolds will be supposed to be compact, connected and
oriented.

2.1 Clasper theory for 3–manifolds

Let us briefly recall from [4; 7; 12] the fundamental notions of clasper theory for
3–manifolds.

Definition 2.1 A clasper in a 3–manifold M is an embedding

GW F �! int M

of a compact (possibly unorientable) surface F . F is decomposed into constituents con-
nected by disjoint bands called edges. Constituents are disjoint connected subsurfaces,
either annuli or disks:
� A leaf is an annulus with one edge attached.
� A node is a disk with three edges attached.
� A box is a disk with at least three edges attached, one being distinguished with

the others. This distinction is done by drawing a box as a rectangle.

Observe that this definition slightly extends the one in [12], where a box has always
three edges attached.

We will make use of the drawing convention for claspers of [12, Figure 7], except for
the following: a ˚ (resp. 	) on an edge represents a positive (resp. negative) half-twist.
This replaces the convention of a circled S (resp. S�1 ) used in [12].

2.1.1 Surgery along claspers Given a clasper G in M , we can construct, in a
regular neighborhood of the clasper, an associated framed link LG as follows. First,
replace each node and box of G by leaves as shown in Figure 2.1 (a) and (b). We obtain
a union of I–shaped claspers, one for each edge of G . LG is obtained by replacing
each of these I–shaped claspers by a 2–component framed link as shown in Figure 2.1
(c).1

Surgery along the clasper G is defined to be surgery along LG .

In [12, Proposition 2.7], Habiro gives a list of 12 moves on claspers which gives
equivalent claspers, that is claspers with diffeomorphic surgery effect. We will freely
use Habiro’s moves (which are essentially derived from Kirby calculus) by referring to
their numbering in Habiro’s paper.

1Here and throughout the paper, blackboard framing convention is used.
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Figure 2.1: Constructing the framed link associated to a clasper

2.1.2 The Yk –equivalence For n� 1, a Yn –graph is a connected clasper G without
boxes and with n nodes, where a connected clasper is a clasper whose underlying
surface is connected. The integer n is called the degree of G .

A Yk –tree is a Yk –graph T such that the union of edges and nodes of T is simply
connected. For k � 3, we say that a Yk –tree T in a 3–manifold M is linear if there
is a 3–ball in M which intersects the edges and nodes of T as shown in Figure 2.2.
The leaves denoted by f and f 0 in the figure are called the ends of T .

...
f f 0

T

Figure 2.2: A linear tree T and its two ends f and f 0

A Yk –forest is a clasper T DT1[ :::[Tp (p� 0), where Ti is a Yki
–tree (p� i � 1),

such that min1�i�pki D k .

A Yk –subtree T of a clasper G is a connected union of leaves, nodes and edges of
G such that the union of edges and nodes of T is simply connected and such that T

intersects G nT along the attaching region of some edges of T , called branches.

A surgery move on M along a Yk –graph G is called a Yk –move. For example, a
Y1 –move is equivalent to Matveev’s Borromean surgery [16].

The Yk –equivalence is the equivalence relation on 3–manifolds generated by Yk –
moves and orientation-preserving diffeomorphisms. This equivalence relation becomes
finer as k increases: if k � l and if M �Yl

N , then we also have M �Yk
N .

Recall that ‘trees do suffice to define the Yk –equivalence’. That is, M �Yk
N implies

that there exists a Yk –forest F in M such that MF ŠN .
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2.2 Clasper theory for links

Another aspect of the theory of claspers is that it allows to study links in a fixed manifold.
For this we use a slightly different type of claspers.

Definition 2.2 Let L be a link in a 3–manifold M , and let G be a clasper in M

which is disjoint from L. A disk-leaf of G is a leaf l of G which is an unknot bounding
a disk D in M with respect to which it is 0–framed.2 We call D the bounding disk
of f . The interior of D is disjoint from G and from any other bounding disk, but it
may intersect L transversely. For convenience, we say that a disk-leaf f intersects
the link L when its bounding disk does.

A Cn –tree (resp. linear Cn –tree) for a link L in a 3–manifold M is a Yn�1 –tree
(resp. linear Yn�1 –tree) in M such that each of its leaves is a disk-leaf.

Given a Cn –tree C in M , there exists a canonical diffeomorphism between M and
the manifold MC . So surgery along a Cn –tree can be regarded as a local move on
links in the manifold M .

A Cn –tree G for a link L is simple (with respect to L) if each disk-leaf of G intersects
L exactly once.

A surgery move on a link L along a Ck –tree is called a Ck –move. The Ck –equivalence
is the equivalence relation on links generated by the Ck –moves and isotopies. As
in the case of manifolds, the Cn –equivalence relation implies the Ck –equivalence if
1� k � n. For more details, see [8; 12].

2.3 Some technical lemmas

In this subsection, we state several technical lemmas about claspers.

First, we introduce several moves on claspers which produce equivalent claspers, like
the 12 Habiro’s moves. In each of the next three statements, the figure represents two
claspers in a given 3–manifold which are identical outside a 3–ball, where they are as
depicted.

Lemma 2.3 The move of Figure 2.3 produces equivalent claspers.

This is an immediate consequence of [4, Theorem 3.1] (taking into account that the
convention used in [4] for the definition of the surgery link associated to a clasper is
the opposite of the one used in the present paper).
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Figure 2.3

Figure 2.4

Lemma 2.4 The move of Figure 2.4 produces equivalent claspers.

This move is, in some sense, the inverse of Habiro’s move 12. See also Figure 25 of
[3], where a similar move appears.

Proof Consider the clasper on the right-hand side of Figure 2.4. By replacing the two
boxes by leaves as shown in Figure 2.1 (b) and applying Habiro’s move 1, we obtain
the clasper depicted on the left-hand side of Figure 2.5. Now, the three leaves depicted

isotopy

Figure 2.5

in this figure form a 3–component link which is isotopic to the Borromean link. As
shown in Figure 2.1 (a), this is equivalent to a node.

Lemma 2.5 The moves of Figure 2.6 produce equivalent claspers.

This ‘associativity’ property of boxes is easily checked using Figure 2.1 (b) – see Figure
37 of [12].

2 Here we regard a leaf, which is an embedded annulus, as a knot with a framing.
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... ... ............

Figure 2.6: The associativity of boxes

The next lemma deals with crossing change operations on claspers. A crossing change
is a local move as illustrated in Figure 2.7. The proof is omitted, as it uses the same
techniques as in [12, Section 4] (where similar statements appear). See also [17, Section
1.4].

Lemma 2.6 Let T1 [ T2 be a disjoint union of a Yk1
–tree and a Yk2

–tree in a 3–
manifold M . Let T 0

1
[ T 0

2
be obtained by a crossing change c of an edge or a leaf

T 0
1

T 0
2

T2T1

Figure 2.7: A crossing change

of T1 with an edge or a leaf of T2 (see Figure 2.7), and let C 2 f0; 1; 2g denotes the
number of edges involved in the crossing change c . Then

(1) MT1[T2
�Yk1Ck2CC

MT 0
1
[T 0

2
.

(2) MT1[T2
�Yk1Ck2CCC1

MT 0
1
[T 0

2
[T , where T is a parallel copy, disjoint from

T 0
1
[T 0

2
, of some Yk1Ck2CC –tree zT obtained as follows:

(a) If c involves an edge e1 of T1 and an edge e2 of T2 , then C D 2 and zT is
obtained by inserting a node n1 in e1 and a node n2 in e2 , and connecting
n1 and n2 by an edge.

(b) If c involves an edge e of T1 and a leaf f of T2 , then C D 1 and zT is
obtained by inserting a node n in e , and connecting n1 to the edge incident
to f .

(c) If c involves a leaf f1 of T1 and a leaf f2 of T2 , then C D 0 and zT is
obtained by connecting the edges incident to f1 and f2 .

Remark 2.7 This lemma is only valid for trees. However, if we are given graphs or
subtrees instead, observe that it suffices to use Habiro’s move 2 to obtain equivalent
trees. So in this paper, whenever we apply Lemma 2.6 to graphs or subtrees, it implicitly
means that we apply the lemma to some equivalent trees obtained by Habiro’s move 2.
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The next result follows from Lemma 2.6 and [12, Proposition 2.7]. See also [4; 20].

Lemma 2.8 Let G be a Yk –tree in a 3–manifold M , and let GC be a Yk –tree
obtained from G by inserting a positive half twist in an edge. Then

M
G[ zGC

�YkC1
M;

where zGC is obtained from GC by an isotopy so that it is disjoint from G .

2.4 The IHX relation for Yk –graphs

We have the following version of the IHX relation for Yk –graphs.

Lemma 2.9 Let I , H and X be three Yk –graphs in a 3–manifold M , which are
identical except in a 3–ball where they look as depicted in Figure 2.8. Then

MI �YkC1
M

H[ zX
;

where zX is obtained from X by an isotopy so that it is disjoint from H .

H XI

Figure 2.8: The three Yk –graphs I , H and X

Various similar statements appear in the literature. For example, an IHX relation is
proved in [4] at the level of finite type invariants, in [3] for Cn –trees (see also [8]), and
in [20, pages 397–398] for Yn –graphs without leaves.

Proof For simplicity, we give the proof for the case of Y2 –trees. In the general case,
the proof uses the same arguments as below, together with the zip construction ([12,
Section 3], see also [3, Section 4.2]).

Consider the Y2 –tree I , and apply Lemma 2.4 at one of its nodes. Then, apply Habiro’s
move 11 so that we obtain the clasper G1 � I depicted in Figure 2.9. By an isotopy
and Habiro’s move 7, G1 is seen to be equivalent to the clasper G2 of Figure 2.9.
Consider the leaf of G2 denoted by f in the figure. By an application of Habiro’s
move 12 at f , followed by moves 7 and 11, we obtain the clasper G3 of Figure 2.9.
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� �
f

G2G1 G3

TH

Figure 2.9

Observe that G3 contains a Y2 –subtree TH . By Habiro’s move 6, Lemma 2.8 and
Lemma 2.6 (1), we have

MG3
�Y3

MH[G4
;

where G4 is the clasper depicted in Figure 2.10. Now, consider the leaf f 0 of G4

f 0
� ;

G0

zX

H H H

TX

G5G4

Figure 2.10

(see the figure). Apply Habiro’s move 12 at f 0 and moves 7 and 11, just as we did
previously for the clasper G2 . The resulting clasper G5 �G4 contains a Y2 –subtree
TX (see Figure 2.10). As above, we obtain by Lemmas 2.8 and 2.6 (1):

MH[G5
�Y3

M
H[ zX[G0

;

where G0 is represented in the right-hand side of Figure 2.10. By Habiro’s moves 11
and 4, we obtain that M

H[ zX[G0
ŠM

H[ zX
.

One can check the following slightly stronger version of Lemma 2.9 when I , H and X

are three Yk –trees (Note that Habiro’s move 2 always allows us to have this condition
satisfied).
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Lemma 2.10 Let I , H , X and zX be four Yk –trees in a 3–manifold M as in Lemma
2.9. Then

MI �YkC2
M

H[ zX[F
;

where F is a union of disjoint YkC1 –trees. Each YkC1 –tree T in F is obtained from
either H or X by taking a parallel copy f of one of its leaves, inserting a node n in
one of its edges, connecting n and f by an edge, and performing an isotopy so that T

is disjoint from H , zX and F nT .

Consider for example the case of Y2 –trees, as in the proof of Lemma 2.9. We saw
there that MI ŠMG3

�Y3
MH[G4

, where G3 and G4 are depicted in Figure 2.9 and
2.10. Observe that H [G4 is obtained from G3 by several Habiro’s moves and three
crossing changes between an edge of the Y2 –subtree TH and some leaf of G3 . So by
(2) of Lemma 2.6 (and Habiro’s move 5) one can check that

MG3
�Y4

MH[G4[F 0 ;

where F 0 consists of three Y3 –trees obtained as described in the statement of the
Lemma. For similar reasons, (2) of Lemma 2.6 implies that the clasper G5 � G4

depicted in Figure 2.10 satisfies MH[G5
�Y4

M
H[ zX[G0[F 00

; where F 00 is a union
of Y3 –trees of the desired form. This implies Lemma 2.10 for k D 2.

3 Surgery along Yn–trees with special leaves

In this section, we study 3–manifolds obtained by surgery along Yn –trees containing a
particular type of leaves.

3.1 m–special leaves

Suppose we are given a clasper G in a 3–manifold M .

Definition 3.1 Let m 2 Z. An m–special leaf with respect to G is a leaf f of G

which is an unknot bounding a disk D in M with respect to which it is m–framed,3

such that the interior of D is disjoint from G nf . D is called the bounding disk of f .
Two bounding disks are required to be disjoint. A regular neighborhood of the union
of G and the bounding disks is called an s–regular neighborhood of G .

3 Here, as in Definition 2.2, we regard a leaf as a knot with a framing.
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In particular, a 0–special leaf with respect to G is called a trivial leaf. If a Yk –graph
G in M contains a 0–special leaf f with respect to G , then MG is diffeomorphic to
M [12; 4].

In the rest of the paper, a special leaf is an m–special leaf for some unspecified integer
m.4 The mention ‘with respect to’ will be omitted when G is clear from the context.

3.2 Statement of the result

Let G be a Yn –tree in a 3–manifold M , n� 2. It is well-known that, if G contains a
.�1/–special leaf, then

(3–1) MG �YnC1
M:

See [20, Lemma E.21] for a proof for M D S3 , which can be generalized to our
context. See also [4, Lemma 4.9].

We obtain the following generalization.

Theorem 3.2 Let G be a Yn –tree in a 3–manifold M , with n� 2. Let l denote the
number of special leaves with respect to G . Then

(1) If l < n, then MG �YnCl
M:

(2) If l D n, then MG �Y2n�1
M:

(3) If l > n, then MG �Y2n
M:

The proof is given in Section 3.6. In the next three subsections, we prove Theorem 3.2
in several important cases and provide a lemma which is used in Section 3.6.

3.3 The case of a tree with one special leaf

In this subsection, we prove Theorem 3.2 for l D 1.

Lemma 3.3 Let G be a Yn –tree in a 3–manifold M , with n � 2. Suppose that G

contains an m–special leaf ; m 2 Z. Then MG �YnC1
M .

Proof We first prove the lemma for all m< 0, by induction. As recalled in Section
3.2, we already have the result for mD�1. Now consider a Yn –tree G in M with an
m–special leaf f , m< 0. Denote by G0 the clasper obtained by replacing f by the
union of a box b and two edges e1 and e2 connecting b respectively to a .�1/–special

4Note that in some literature [4] the terminology ‘special leaf’ is used to denote a .�1/–special leaf.
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leaf f1 and a .mC 1/–special leaf f2 (both leaves being special with respect to G0 ).
By Habiro’s move 7, G0 �G . Denote by Gi the Yn –tree in M obtained from G by
replacing f by fi (i D 1; 2). By a zip construction, we have

G0 � .G1[P /;

where P satisfies P �G2 . By (3–1) it follows that MG �YnC1
MG2

. The result then
follows from the induction hypothesis.

Similarly, it would suffice to show the result for mD 1 to obtain, by a similar induction,
the result for all m> 0. For this, consider the case mD 0. In this case, f is a trivial
leaf and therefore MG ŠM . The same construction as above, with a .�1/–special
leaf f1 and a 1–special leaf f2 , shows that M �YnC1

MG0 , where G0 is a Yn –tree in
M with a 1–special leaf. This concludes the proof.

3.4 The case of a Y2–tree

In this section, we prove Theorem 3.2 for n D 2. The proof mainly relies on the
following lemma.

Lemma 3.4 Let G be a Y2 –tree in a 3–manifold M which contains two .�1/–special
leaves which are connected to the same node. Then MG �Y4

M .

Proof Denote by w the node of G which is connected to the two special leaves. w is
connected by an edge to another node v . By applying Lemma 2.4 at v , G is equivalent,
in an s–regular neighborhood, to a clasper G0 which is identical to G , except in a
3–ball where it is as depicted in Figure 3.1 (a). There, the node w0 corresponds to the
node w of G . By Lemma 2.3 and Habiro’s move 6, we obtain the clasper depicted
in Figure 3.1 (b), which is equivalent to the one depicted in Figure 3.1 (c) by three
applications of Habiro’s move 12, Lemma 2.5 and an isotopy. Denote by G00 this latter
clasper. As the figure shows, G00 contains a Y4 –subtree T . Actually, T is a ‘good
input subtree’ of G00 , in the sense of [12, Definition 3.13]. Denote by zG00 the clasper

��

��

���� ��

T

(a) (b) (c)

G0 G00

w0

Figure 3.1
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obtained from G00 by inserting in each branch of T a pair of small Hopf-linked leaves.
By Habiro’s move 2, zG00 �G0 . Denote by zT the Y4 –tree of zG00 which corresponds to
T . By an application of the zip construction, we obtain MG00 �Y4

M zG00n zT
. Further, it

follows from Habiro’s moves 3 and 4 that zG00 n zT �∅.

The following technical lemma will allow us to generalize Lemma 3.4 to arbitrary
special leaves.

Lemma 3.5 Let G be a Y2 –tree in a 3–manifold M which contains two special
leaves which are connected to the same node. Then

MG �Y4
M

G1[ zG2
;

where, for i D 1; 2, Gi is obtained by replacing a k –special leaf of G by a ki –special
leaf, such that k1Ck2 D k , and where zG2 is obtained from G2 by an isotopy so that
it is disjoint from G1 .

Proof Denote respectively by f and f 0 the k –special (resp. k 0–special) leaf of G ,
k; k 0 2 Z. Just as in the proof of Lemma 3.3, we can use Habiro’s moves 7 and the zip
construction to see that G is equivalent, in an s–regular neighborhood, to the clasper
C1 of Figure 3.2, where f1 is a k1 –special leaf and f2 is a k2 –special leaf such that
k1C k2 D k . Consider the leaf of C1 denoted by F in the figure. By Habiro’s move
12 at F , followed by two applications of Habiro’s move 11, we have C1 � C2 , where
C2 is represented in Figure 3.2.

f2b
f2

b0

C1 C2 C4

f1

f 0 f 0

F

f2

f1f1

f 0

Figure 3.2

Consider the box b of C2 (see Figure 3.2). By applying Habiro’s move 5 at b , C2

is equivalent to a clasper containing a Y3 –subtree T and a Y1 –subtree T 0 such that
both T and T 0 contain a copy of f2 . Denote by C3 the clasper obtained by replacing
these two (linked) copies of f2 by two k2 –special leaves. By Lemma 2.6, we have
MC2

�Y4
MC3

. It follows from Lemma 3.3 and Habiro’s move 5 that MC3
�Y4

MC4
,
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where C4 is as represented in Figure 3.2. By applying Habiro’s move 5 at the box b0 ,
C4 is equivalent to a clasper containing a Y2 –tree and a Y2 –subtree, each containing a
copy of f 0 . By Lemma 2.6, MC4

�Y4
MC5

, where C5 is obtained by replacing these
two (linked) copies of f 0 in C4 by two k 0–special leaves. The result then follows
from an isotopy and Habiro’s move 3.

We can now prove the case nD 2 of Theorem 3.2.

Let G be a Y2 –tree in a 3–manifold M with l special leaves. If l D 0, then the result
is obvious. If l D 1, Lemma 3.3 implies that MG �Y3

M . If l D 2, then MG �Y3
M

also follows from Lemma 3.3. It remains to prove the result when l D 3 or 4.

Let k; k 0 2Z. Denote by Gk;k0 a Y2 –tree in M containing a k –special leaf f and an
k 0–special leaf f 0 , both connected to the same node. Observe that it suffices to show
that

(3–2) MGk;k0
�Y4

M

If k D k 0 D�1, then (3–2) follows from Lemma 3.4. Now, let us fix k 0 D�1. Then
we can show by induction that (3–2) holds for all k < �1. Indeed, consider some
integer m< �1, and consider Gm;�1 in M . By Lemma 3.5, we have

MGm;�1
�Y4

MC1[C2
;

where C1 contains two .�1/–special leaves connected to the same node, and where
C2 contains a .�1/–special leaf and an mC1–special leaf, both connected to the same
node. By Lemma 3.4 and the induction hypothesis, we thus obtain MGm;�1

�Y4
M .

So we can now set k 0 to be any negative integer, and prove (3–2) for all k < �1, by
strictly the same induction.

Similarly, it would suffice to show the result for G1;1 to be able to prove (3–2) for all
k; k 0 > 0. Consider G0;�1 in M . In this case, f is a trivial leaf and MG0;1

ŠM . By
applying Lemma 3.5 at f ,

MG0;1
ŠM �Y4

MG1[G2
;

where G1 (resp. G2 ) contains a .�1/–special leaf and a 1–special (resp. .�1/–special)
leaf, both connected to the same node. It follows from Lemma 3.3 that M �Y4

MG1
.

This proves (3–2) for k D 1 and k D�1. We obtain (3–2) for k D k D 1 similarly,
by applying Lemma 3.5 to G0;1 in M .
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3.5 The cutting lemma.

Let G be a Yn –tree in M , with n� 3. By inserting a pair of small Hopf-linked leaves
in an edge of G , we obtain a Yn1

–tree G1 and a Yn2
–tree G2 such that n1C n2 D n

and G1[G2 �G (by Habiro’s move 2). See Figure 3.3.

Lemma 3.6 Let i D 1; 2. Suppose that, in a regular neighborhood Ni of Gi , we have
.Ni/Gi

�Yki
Ni , with k1 � 2 and k2 � 1. Then

(1) MG �Yk1C2
M , if G2 is a Y1 –tree containing at least one special leaf with

respect to G1[G2 ,

(2) MG �Yk1Ck2
M , otherwise.

Proof Denote by N an s–regular neighborhood of G �G1[G2 . Consider a 3–ball
B in M which intersects N and G1 [G2 as depicted in Figure 3.3 (a). Denote by

��
��
��
��
������

��
��
��
������ �

�
�
�

���� �
�
�
�
����

(a) (b)

G1 G2

N N 0 N 00

G0
1 G0

2

B B

Figure 3.3

N 0 and N 00 the two connected components of the closure of N n .B \N /. By one
crossing change and isotopy, we can homotop the two Hopf-linked leaves of G1[G2

into N n .B \N / so that, if G0
1
[G0

2
denotes the resulting clasper, we have G0

1
�N 0

and G0
2
� N 00 . See Figure 3.3 (b). Each of G0

1
and G0

2
contains a trivial leaf with

respect to G0
1
[G0

2
, so we have G0

1
[G0

2
�∅ in N .

We now prove (1): suppose that G2 contains one node and at least one special leaf
with respect to G1[G2 . Denote by f the leaf of G2 which forms a Hopf link with a
leaf of G1 . By assumption, G1 can be replaced by a Yk1

–forest F1 in an s–regular
neighborhood N1 so that F1[G2 � G in N . Consider a disk d bounded by f such
that d intersects transversally edges and leaves of components of F1 . By a sequence
of crossing changes, we can homotop these edges and leaves into N 0 �N : the clasper
G0 obtained from F1[G2 by this homotopy satisfies G0 �G0

1
[G0

2
�∅ in N . So it

would suffice to show that MF1[G2
�Yk1C2

MG0 .
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By Lemma 2.6, we have MF1[G2
�Yk1C2

M zF1[ zG2
, where zF1 [

zG2 is obtained by
‘homotoping’ into N 0 all edges of F1 and all Yk –trees of F1 with k > k1 . Denote by
zf the leaf of zG2 corresponding to f . There is a sequence of crossing changes

zF1[
zG2 D C0 7! C1 7! C2 7! ::: 7! Cp�1 7! Cp DG0;

where, for each 1� k �p , Ck is obtained from Ck�1 by one crossing change between
zf and a leaf l of a Yk1

–tree Tk of zF1 .5 By Lemma 2.6, we have MCk
�Yk1C2

MCk�1[Hk
, where Hk is a Yk1C1 –tree obtained by connecting the edges of zG2 and

Tk attached to zf and l respectively. In particular, Hk contains a special leaf with
respect to Ck�1[Hk . So by Lemma 3.3, we have MCk

�Yk1C2
MCk�1

. It follows
that M zF1[ zG2

�Yk1C2
MG0 , which concludes the proof of (1).

The proof of (2) is simpler, and left to the reader. It uses exactly the same arguments
as above, by considering the Yki

–forest Fi (i D 1; 2) in an s–regular neighborhood
Ni of Gi such that F1[F2 �G in N .

3.6 Proof of Theorem 3.2

Suppose that G is a Yn –tree in M with l special leaves ; n� 2, l � 0.

3.6.1 The case l < n In this case, it is necessary to reduce the problem to linear
trees. We have the following.

Claim 3.7 Let 1� p � l be an integer. Pick two non-special leaves f1 and f2 of G .
Then we have, by successive applications of the IHX relation,

MG �YnCp
MLp

;

where Lp is a union of disjoint linear Yk –trees with n� k � nCp� 1 such that

� the ends of each linear tree are parallel copies of f1 and f2 ,

� each Yk –tree contains .nC l � k/ special leaves with respect to Lp .

Proof of the claim The claim is proved by induction on p . Observe that we can use
the IHX relation to replace T by a union L1 of linear Yk –trees whose ends are parallel
copies of f1 and f2 . Lemma 2.6 (1) ensures that each tree has l special leaves with
respect to L1 . This proves the case p D 1. Now assume the claim for some p � 1:
MT �YnCp

MLp
, where Lp is as described above. By assumption, this equivalence

comes from Lemma 2.9, so we can apply Lemma 2.10. There exists a union F of

5 Here, abusing notations, we still denote by zf , zG2 and zF1 the corresponding elements in Ck , for all
k � 1 .
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disjoint (possibly non linear) YnCp –trees such that MT �YnCpC1
MLp[F . For each

tree T in F , its (nCpC2) leaves are obtained by taking the leaves of a YnCp�1 –tree
in Lp and adding a parallel copy of one of them. If this additional leaf is a copy of a
special leaf f (with respect to Lp ), the two (linked) copies of f in T are not special
leaves with respect to Lp [F . This shows that each tree in F contains at least (l �p )
special leaves with respect to Lp [F . Note that each such tree also contains (at least)
a copy of f1 and f2 . So by Lemma 2.9 we have MLp[F �YnCpC1

MLpC1
, where

LpC1 is of the desired form.

It follows from Claim 3.7 that

MT �YnCl
ML;

where L is a union of linear Yk –trees with n� k � nC l�1, each such linear Yk –tree
containing (at least) .nC l � k/ special leaves with respect to L, and whose ends are
non-special leaves.

So it suffices to prove the case l < n of Theorem 3.2 for linear Yn –trees whose ends
are non-special leaves. We proceed by induction on n.

For nD 2, the statement follows from Section 3.4.

Now, assume that the statement holds true for all k < n, and consider a linear Yn –tree
G whose ends are two non-special leaves. Insert a pair of small Hopf-linked leaves
in an edge of G such that it produces a union of two linear trees G1[G2 �G with
degG1Dn1 and degG2Dn2 . Denote respectively by l1 and l2 the number of special
leaves with respect to G1[G2 in G1 and G2 . We have n1Cn2 D n and l1C l2 D l .
Denote also by N1 an s–regular neighborhood of G1 .

� If we can choose n2D 1 and l2D 1, then n1D n�1 and l1D l�1. So l1 < n1

and by the induction hypothesis we have .N1/G1
�YnCl�2

N1 (G1 is indeed
linear). As G2 contains one special leaf with respect to G1[G2 , we obtain the
result by Lemma 3.6 (1).

� Otherwise, then l < n � 1, and we can choose G2 such that n2 D 1 and
l2 D 0 (that is, G2 contains one node connected to 2 non-special leaves). As
l1D l < n1D n�1, we have .N1/G1

�YnCl�1
N1 (by the induction hypothesis),

and the result follows from Lemma 3.6 (2).

This completes the proof of the case l < n.
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3.6.2 The case l � n The case l D n follows immediately from the case l D n� 1,
by regarding one of the special leaves as a leaf.

We prove the case l D nC1 by induction on the degree n. The case nD 2 was proved
in Section 3.4. Consider a Yn –tree G with l � n special leaves. As in Section 3.6.1,
insert a pair of Hopf-linked leaves in an edge of G so that we obtain a union of two
trees G1[G2 �G with degG1 D n� 1 and degG2 D 1. Denote respectively by l1
and l2 the number of special leaves with respect to G1[G2 in G1 and G2 . There are
two cases, depending on whether l2 D 1 or 2.

� If l2 D 1, then l1 D nD n1C 1, and thus, by the induction hypothesis we have
.N1/G1

�Y2n�3
N1 in an s–regular neighborhood N1 of G1 . The result follows

from Lemma 3.6 (1).

� If l2D 2, then l1D n�1D n1 . It thus follows from the case l D n of Theorem
3.2 that .N1/G1

�Y2n�3
N1 in an s–regular neighborhood N1 of G1 . The result

then follows as above from Lemma 3.6 (1).

The case l D nC 2 follows from the case l D nC 1 by regarding one of the special
leaves as a leaf.

3.7 Some special cases for Theorem 3.2

We have the following improvement of Theorem 3.2 for linear trees having only
.�1/–special leaves.

Proposition 3.8 Let G be a linear Yn –tree in a 3–manifold M , n� 2, such that all
its leaves are .�1/–special leaves. Then in an s–regular neighborhood N of G (which
is a 3–ball in M ) we have

NG �Y2nC1
N‚n

;

where ‚n is the connected Y2n –graph without leaves depicted in Figure 3.4

. . .

2(n    ) times

Figure 3.4: The Y2n –graph ‚n
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Remark 3.9 Note that “�Y2nC1
” in Proposition 3.8 can be replaced by “�Y2nC2

”.
This follows from the fact that if two integral homology balls are Y2nC1 –equivalent
then they are Y2nC2 –equivalent (n> 1).

The proof of Proposition 3.8 uses rather involved calculus of claspers, and is therefore
postponed to Section 7. Note that this result is not needed for the rest the paper. A
reader who is not too comfortable with claspers (but who nevertheless reached this
point) may thus safely skip this proof.

Also, one can check that if G is a Yn –tree in a 3–manifold M with n special leaves,
we have

(3–3) MG �Y2n
M

in the two following situations:

� G contains a 2k –special leaf, for some integer k .

� The homology class in H1.M IZ=2Z/ of a non-special leaf of G is zero.6 In
particular, (3–3) always holds if M D S3 .

4 Yk–equivalence for 3–manifolds obtained by surgery along
Brunnian links

In this section, we prove Theorems 1.1 and 1.2. The proofs use a characterization of
Brunnian links in terms of claspers due to Habiro, and independently to Miyazawa and
Yasuhara, which involves the notion of C a

k
–equivalence. Let us first recall from [11]

the definition and some properties of this equivalence relation.

4.1 C a
k

–equivalence

Definition 4.1 Let L be an m–component link in a 3–manifold M . For k �m� 1,
a C a

k
–tree for L in M is a Ck –tree T for L in M , such that

(1) all the strands intersecting a given disk-leaf of T are from the same component
of L,

(2) T intersects all the components of L.

6 This fact was pointed out to the author by Kazuo Habiro.
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A (simple) C a
k

–forest L is a clasper consisting only of (simple) C a
k

–tree for L.

A C a
k

–move on a link is surgery along a C a
k

–tree. The C a
k

–equivalence is the equiva-
lence relation on links generated by C a

k
–moves.

The main tool in the proofs of Theorems 1.1 and 1.2 is the following.

Theorem 4.2 [11; 18] Let L be an .nC 1/–component link in S3 . L is Brunnian
if and only if it is C a

n –equivalent to the .nC 1/–component unlink U .

In the proof of Theorem 1.2, we will also need the next result.

Theorem 4.3 ([18], see also [13]) Two .nC 1/–component Brunnian links in S3

are link-homotopic if and only if they are C a
nC1

–equivalent.

Note that this statement does not appear explicitly in [18]. However, it is implied by
the proof of [18, Theorem 3]. An alternative proof was given subsequently by Habiro
and the author [13].

4.2 Proof of Theorem 1.1

Let mD .m1; :::;mnC1/ 2ZnC1 , n� 2 and let L be an .nC1/–component Brunnian
link in a 3–manifold M . By Theorem 4.2, L is C a

n –equivalent to an .n C 1/–
component unlink U in M . So by [11, Lemma 7] there exists a simple C a

n –forest
F D T1[ :::[Tp for U such that LŠ UF . We thus have

M.L;m/ ŠMGm.F /;

where Gm.F / is the clasper obtained from F by performing 1
mi

–framed surgery along

the i th component Ui of U for all 1 � i � nC 1. Indeed, 1
mi

–surgery along an
unknot does not change the diffeomorphism type of M , and can be regarded as a
move on claspers in M . Observe that 1

mi
–surgery along Ui turns each disk-leaf of F

intersecting Ui into a .�mi/–framed unknot (here, we forget the bounding disk). Thus
1
m

–surgery along U turns each C a
n –tree Tj of F into a Yn�1 –tree Gj in M . However,

the .nC 1/ corresponding leaves of Gj might not be special leaves with respect to
Gm.F /, as they can be linked with the leaves of other components of Gm.F /. Lemma
2.6 (1) can be used to unlink these leaves ‘up to Y2n�2 –equivalence’. Namely, Lemma
2.6 implies that MGm.F / �Y2n�2

M zGm.F /
, where zGm.F / is a union of Yn�1 –trees,

each containing .nC1/ special leaves with respect to zGm.F /. The result then follows
from Theorem 3.2.
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4.3 Proof of Theorem 1.2

Let L and L0 be two link-homotopic .nC 1/–component Brunnian links in M , and
let U denote an .nC 1/–component unlink U in M . By Theorems 4.2 and 4.3, and
[11, Lemma 7], there exists a simple C a

nC1
–forest F D T1 [ :::[ Tp and a simple

C a
n –forest F 0 D T 0

1
[ :::[T 0q for U such that L0 Š UF 0 and LŠ UF[F 0 .

For all j , denote by G0j (resp. Gj ) the Yn�1 –tree (resp. Yn –tree) obtained from T 0j

(resp. Tj ) by 1
m

–surgery along U . By Lemma 2.6,

M.L;C1/ �Y2n�1
MG0

1
[:::[G0q

]S3
G1
]:::]S3

Gp
ŠM.L0;C1/]S

3
G1
]:::]S3

Gp
:

So proving that S3
Gi
�Y2n�1

S3 for all 1� i � p would imply the theorem.

By strictly the same arguments as in Section 4.2, the Yn –tree Gi contains at least n

special leaves, for all 1� i � p . So Theorem 3.2 implies that S3
Gi
�Y2n�1

S3 .

5 Trivalent diagrams and Goussarov–Vassiliev invariants for
Brunnian links

In this section, we recall some results proved by Habiro and the author in a previous
paper [14]. These, together with the two theorems shown in Section 4, will allow us to
prove Theorem 1.3 in the next section.

5.1 Trivalent diagrams

A trivalent diagram is a finite graph with trivalent vertices, each vertex being equipped
with a cyclic order on the three incident edges. The degree of a trivalent diagram is
half the number of vertices.

For k � 0, let Ak.∅/ denote the Z–module generated by trivalent diagrams of degree
k , subject to the AS and IHX relations, see Figure 5.1.

C D 0�C D 0

IHXAS

Figure 5.1: The AS and IHX relations

Denote by Ac
k
.∅/ the Z–submodule of Ak.∅/ generated by connected trivalent

diagrams.
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5.2 The Brunnian part of the Goussarov–Vassiliev filtration

Denote by ZL.n/ the free Z–module generated by the set of isotopy classes of n–
component links in S3 , and denote by Jk.n/ the Z–submodule of ZL.n/ generated
by elements of the form

ŒLIC1; :::;Cp � WD
X

S�fC1;:::;Cpg

.�1/jS jLS ;

where L is an n–component link in S3 , and where the Ci (1 � i � p ) are disjoint
Cki

–trees for L such that k1C :::C kp D k . The sum runs over all the subsets S of
fC1; :::;Cpg and jS j denotes the cardinality of S . The descending filtration

ZL.n/D J0.n/� J1.n/� J2.n/� :::

coincides with the Goussarov–Vassiliev filtration [12].

Denote by J k.n/ the graded quotient Jk.n/=JkC1.n/.

Definition 5.1 The Brunnian part Br.J 2n.n C 1// of the 2nth graded quotient
J 2n.nC 1/ is the Z–submodule generated by elements ŒL � U �J2nC1

where L is
an .nC 1/–component Brunnian link.

As outlined in [13, Section 7], Br.J 2n.nC 1// is spanned over Z by elements

1

2
ŒU IT� [ zT� � and ŒU IT� [ zT� 0 �; for � ¤ � 0 2 Sn�1 ,

where, for all �; � 0 in the symmetric group Sn�1 , T� is the simple linear C a
n –tree for

the .nC 1/–component unlink U depicted in Figure 5.2, and zT� 0 is obtained from
T� 0 by a small isotopy so that it is disjoint from T� . (Here 1

2
ŒU IT� [ zT� � means

an element x 2 Br.J 2n.nC 1//such that 2x D ŒU IT� [ zT� �. Existence of such an
element is shown in [13].)

...

T�

U�.1/ U�.n�1/U�.2/

UnC1 Un

Figure 5.2: The simple linear C a
n –tree T�
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5.3 The map hnW Ac
n�1
.∅/! Br.J 2n.nC 1//

Connected trivalent diagrams allow us to describe the structure of Br.J 2n.nC1//. For
n� 2, we have a map

hnW Ac
n�1.∅/ �! J 2n.nC 1/

defined as follows. Given a connected trivalent diagram � 2Ac
n�1

.∅/, insert nC 1

ordered copies of S1 in the edges of � , in an arbitrary way. The result is a strict
unitrivalent graphs D� of degree 2n on the disjoint union of .nC1/ copies of S1 (see
[1]). Next, ‘realize’ this unitrivalent graph by a graph clasper. Namely, replace each
univalent vertex (resp. trivalent vertex, edge) of D� with a disk-leaf (resp. node, edge),
these various subsurfaces being connected as prescribed by the graph D� . Denote by
C.D�/ the resulting graph clasper for the .nC 1/–component unlink U . Then

hn.�/ WD ŒU �UC.D�/�J2nC1
2 J 2n.nC 1/:

For n� 3, the image of hn is the Brunnian part Br.J 2n.nC 1// of J 2n.nC 1/, and

hn˝QW Ac
n�1.∅/˝Q �! Br.J 2n.nC 1//˝Q

is an isomorphism.

6 Finite type invariants of integral homology spheres

6.1 The Ohtsuki filtration for integral homology spheres

Let M denote the free Z–module generated by the set of orientation-preserving
homeomorphism classes of integral homology spheres. The definition of the Ohtsuki
filtration uses algebraically split, unit-framed links. For the purpose of the present paper,
it is however more convenient to use a definition using claspers, due to Goussarov and
Habiro [4; 7; 12]. For k � 0, let Mk denote the Z–submodule of M generated by
elements of the form

ŒM IG1; :::;Gp � WD
X

S�fG1;:::;Gpg

.�1/jS jMS ;

where M is an integral homology sphere, and where the Gi (1� i � p ) are disjoint
Yki

–graphs in M such that k1C :::Ckp D k . The sum runs over all the subsets S of
fG1; :::;Gpg and jS j denotes the cardinality of S .

The descending filtration of Z–submodules

MDM0 �M1 �M2 � :::

Algebraic & Geometric Topology, Volume 6 (2006)



Surgery along Brunnian links 2441

is equal to the Ohtsuki filtration after re-indexing and tensoring by ZŒ1=2� [4; 7; 12].
Another alternative definition was previously given by Garoufalidis and Levine using
‘blinks’ [5].

6.2 The connected part of the Ohtsuki filtration

Let M2k denote the graded quotient M2k=M2kC1 .

Definition 6.1 The connected part Co.M2k/ of M2k is the Z–submodule of M2k

generated by elements ŒS3IG�M2kC1
where G is a Y2k –graph (in particular, G is

connected).

For k � 1, there is a well-defined surgery map

'k W Ak.∅/ �!M2k ;

which maps each trivalent diagram � D �1 [ :::[ �p to ŒS3IG�1
; :::;G�p

�, where
G�i

is a connected clasper obtained by ‘realizing’ the diagram �i in S3 as depicted in
Figure 6.1. The image 'k.�/ of a degree k trivalent diagram � in M2k by 'k does
not depend on the embeddings G�i

in S3 ([12], see also [20, page 320]). Note that
'k is a reconstruction, using claspers, of a map defined previously by Garoufalidis and
Ohtsuki [6]. The homomorphism 'k ˝ZŒ1=2� is surjective, and it is an isomorphism

ΓGΓ

Figure 6.1: Realizing a trivalent diagram in S3

when tensoring by Q, with inverse given by the LMO invariant [15].

It can be easily checked using the arguments of [4] that 'k.Ac
k
.∅//D Co.M2k/. We

thus have an isomorphism

'k ˝QW Ac
k.∅/˝Q

'
�! Co.M2k/˝Q

induced by the surgery map 'k .
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6.3 The map ˛kW Co.M2k/ �! S2k

Let Sk denote the set of integral homology spheres which are Yk –equivalent to S3 ,
and denote by Sk the quotient Sk= �YkC1

. The connected sum induces an abelian
group structure on Sk .

As recalled in the introduction, S2kC1 D 0 for all k � 1. S2k is generated by the
elements S3

G
, where G is a Y2k –graph in S3 (for kD 0, we have S1DZ=2Z). There

is a surjective homomorphism of abelian groups

�k W Ac
k.∅/ �! S2k

defined by �k.�/ WD ŒS
3
G�
�Y2kC1

, where G� is a topological realization of the diagram
� as in the definition of 'k (see Figure 6.1). It is well known that �k is well-defined
(see the proof of [20, Theorem E.20]).

The map �k is an isomorphism over the rationals. This is shown by using the primitive
part of the LMO invariant zLMO [20, pages 329–330].

Let

˛k W Co.M2k/ �! S2k

be the map defined by

˛k.ŒS
3
IG�M2kC1

/D ŒS3
G �Y2kC1

:

The fact that ˛k is well-defined follows from standard arguments of clasper theory,
and is well known to experts.

The following is clear from the above definitions.

Lemma 6.2 The following diagram commutes for all k � 1:

Ac
k
.∅/

'k

��

�k

$$IIIIIIIII

Co.M2k/ ˛k

// S2k

As a consequence, ˛k is an isomorphism over the rationals.
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6.4 The map �n

For simplicity, we work over the rationals in the rest of this section.

Let n� 2. Denote by BnC1 the set of isotopy classes of .nC1/–component Brunnian
links in S3 . Define a linear map

z�nW QBnC1!M

by assigning each element L 2 BnC1 to S3
.L;1/

. Note that z�n is well-defined, as

S3
.L;C1/

is an integral homology sphere for all L 2 BnC1 .

Denote by I the submodule of QBnC1 generated by element .L � L0/ such that
z�n.L�L0/ is in M2n�1 . The following follows immediately from [11] and Theorem
1.2.

Lemma 6.3 Let L and L0 be two link-homotopic (or C a
nC1

–equivalent) .nC 1/–
component Brunnian links. Then L�L0 2 I.

Note that two link-homotopic .nC 1/–component Brunnian links satisfy L�L0 2

J2nC1.nC 1/ [13, Proposition 7.1]. We generalize Lemma 6.3 as follows.

Proposition 6.4 Let L;L0 be two .nC1/–component Brunnian links in S3 such that
L�L0 2 J2nC1.nC 1/. Then L�L0 2 I.

Proof Let B be an .nC 1/–component Brunnian link in S3 . By [13, Section 5], we
have B �C a

nC1
UF , where F D T1[ :::[Tm is a simple C a

n –forest F for U in S3

such that, for all 1� i � p , we have Ti D T�i
for some �i 2 Sn�1 (see Figure 5.2 for

the definition of T�i
). By Lemma 6.3 we thus have

B � UF mod I.

Observe that we have the equality

UF D

X
F 0�F

.�1/jF
0jŒU IF 0�:

For all F 0 � F , denote by G.F 0/ the clasper obtained in S3 by performing .C1/–
framed surgery along U . As in Section 4.2, we have z�n.UF /D S3

.UF ;C1/
Š S3

G.F /
.

As each C a
n –tree in F 0 is turned into a Yn�1 –tree of S3 by this operation, we have

z�n.ŒU IF
0�/D ŒS3IG.F 0/� 2M.n�1/:jF 0j . In particular, z�n.ŒU IF

0�/ 2M2n�2 for all
F 0 with jF 0j � 3. It follows that

B �
X

F 0�F / jF 0j�2

.�1/jF
0jŒU IF 0� mod I:
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By strictly the same arguments as in the proof of [13, Theorem 7.4], one can check
that, for every � 2 Sn�1 , ŒU IT� �� 1

2
ŒU IT� ; zT� � mod I . It follows that

B � U C
1

2

X
1�i�m

ŒU IT�i
; zT�i

�C
X

1�i¤j�m

ŒU IT�i
; zT�j � mod I:

It follows that L�L0 is equal, modulo I, to a linear combination of the form (˛�;� 0 2Q)

(6–1)
X

�;� 02Sn�1

˛�;� 0 ŒU IT� ; zT� 0 �:

By assumption, L�L0 2 J2nC1.nC 1/. So (6–1) vanishes in Br.J 2n.nC 1//, and is
thus mapped by h�1

n onto a linear combination of connected trivalent diagrams which
vanishes in Ac

n�1
.∅/. (6–1) is thus a linear combination of terms of the following two

types.

(1) (AS) ŒU IT1;T2�C ŒU IT
0
1
;T 0

2
�, where T1[T2 and T 0

1
[T 0

2
differ by the cyclic

order of the three edges attached to a node.

(2) (IHX) ŒU IT1;T2�C ŒU IT
0
1
;T 0

2
�C ŒU IT 00

1
;T 00

2
�, where T1 [ T2 , T 0

1
[ T 0

2
and

T 00
1
[T 00

2
are as claspers I , H and X of Figure 2.8.

Consider a term of type .1/. By [4, Corollary 4.6], we have z�n.ŒU IT1;T2� C

ŒU IT 0
1
;T 0

2
�/ 2M2n�1 . The same holds for terms of type .2/ by [4, Theorem 4.11].

This completes the proof.

By Theorem 1.1 and Proposition 6.4, we have a well-defined homomorphism

�nW Br.J 2n.nC 1//!M2n�2

�n.ŒL�U �J2nC1
/ WD ŒS3

�S3
.L;C1/�M2n�1

by setting

6.5 Proof of Theorem 1.3

First, we show that �n actually takes its values in the connected part of the Ohtsuki
filtration.

Recall from Section 5.2 that Br.J 2n.nC 1// is generated by elements ŒU IT� [ zT� 0 �,
for �; � 0 2 Sn�1 . Each component Ui of U intersects one disk-leaf fi of T� and one
disk-leaf f 0i of T� 0 . Denote by G�;� 0 the Y2n�2 –graph obtained from T� [ zT� 0 by
connecting, for each 1� i � nC 1, the edges incident to fi and f 0i .
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Lemma 6.5 For all �; � 0 2 Sn�1 ,

�n.ŒU IT� [ zT� 0 �/� ŒS
3
IG�;� 0 � mod M2n�1:

Consequently, we have

�n.Br.J 2n.nC 1///� Co.M2n�2/:

Proof For any �; � 0 2 Sn�1 , we have

�n.ŒU IT� [ zT� 0 �/D�S3

G.T�[zT�0 /
CS3

G.T� /
CS3

G.T�0 /
�S3;

where, if F is a C a
n –forest for U , G.F / denotes the clasper obtained in S3 by

.C1/–framed surgery along U .

For all � 2 Sn�1 , G.T� / is a linear Yn�1 –tree whose leaves are all .�1/–special
leaves. So by Theorem 3.2, there exists a union G� of Yk –trees, k � 2n� 2 such that
S3

G.T� /
Š S3

G�
.

On the other hand, G.T� [ zT� 0/ is obtained from T� [ zT� 0 by replacing fi [f
0

i by a
pair of Hopf-linked .�1/–framed leaves (as illustrated in Figure 6.2), for 1� i � nC1.
By Habiro’s move 7 and 2, G.T� [ zT� 0/ is equivalent to the clasper C obtained by

.C1/–surgery

C

T� zT� 0

Ui G.T� [ zT� 0/

fi f 0i

Figure 6.2: Performing .C1/–framed surgery along the unlink U

replacing each such pair of Hopf-linked leaves by two boxes as shown in Figure 6.2.
By using the zip construction and Lemma 2.6, we obtain

S3
C Š S3

G.T�[zT�0 /
�Y2n�1

S3

G�;�0[G.T� /[G. zT�0 /
:

It follows that

�n.ŒU IT� [ zT� 0 �/��S3
G�;�0[G�[G�0

CS3
G�
CS3

G�0
�S3 mod M2n�1:

By using the equality S3
G�;�0[G�[G�0

D
P

G0�fG�;�0 ;G� ;G�0g
.�1/jG

0jŒS3IG0�, one can
easily check that

S3
G�;�0[G�[G�0

� S3
G�;�0

CS3
G�
CS3

G�0
� 2S3 mod M2n�1:

(here we use the fact that G�;� 0 and each connected component of G� and G� 0 have
degree � 2n� 2). The result follows.
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Clearly, the composite ˛n�1�n is the map

�nW Br.J 2n.nC 1// �! S2n�2

announced in the statement of Theorem 1.3. By Lemma 6.2, it suffices to show that �n

is an isomorphism to obtain the theorem. This is implied by the next lemma.

Lemma 6.6 For n� 3, the following diagram commutes:

Ac
n�1

.∅/

hn

��

'n

((PPPPPPPPPPPP

Br.J 2n.nC 1//
�n

// Co.M2n�2/

Proof As pointed out in [14, Section 3.5], one can easily check that Ac
n�1

.∅/ is
generated by the elements �� depicted in Figure 6.3, for all � 2 Sn�1 .

...
...

permutation �permutation �
T�

T1

Figure 6.3: The connected trivalent diagram �� , and the two simple linear
C a

n –trees T1 and T�

For such an element �� , a representative for hn.�� / is ŒU IT1[T� �, where T1 and T�
are two C a

n –trees for U as represented in Figure 6.3. As seen in the proof of Lemma
6.5, �n.ŒU IT1[T� �/D ŒS

3IG1;� �M2n�1
, where G1;� is obtained by replacing each

pair of disk-leaves intersecting the same component of U by an edge. Clearly, this
Y2n�2 –graph satisfies 'n.�� /D ŒS

3IG1;� �M2n�1
.

The various results proved of this section can be summed up in the following commu-
tative diagram (n� 2)

Ac
n�1

.∅/
hn

vvnnnnnnnnnnnn
'n�1

��

�n�1

&&LLLLLLLLLL

Br.J 2n.nC 1//
�n

// Co.M2n�2/ ˛n�1

// S2n�2

where all arrows are isomorphism over Q.
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6.6 Brunnian links with vanishing Milnor invariants

In this last subsection, we can work over the integers.

Habegger and Orr also studied finite type invariants of integral homology spheres
obtained by .C1/–framed surgery along links in S3 . In particular, [10, Theorem 2.1]
deals with .C1/–framed surgery along l –component Brunnian links with vanishing
Milnor invariants of length � 2l � 1, and appears to have some similarities with our
results.

Let Brl.J k.n// denote the Z–submodule of J k.n/ generated by elements ŒL�U �JkC1

where L is an n–component Brunnian link with vanishing Milnor invariants of length
� l . Let U.k/ denote the k –component unlink U1[ � � � [Uk in S3 . Let

SnC1W Br.J 2n.nC 1// �! ZL.n/

be the map defined by

SnC1.ŒL�U.nC1/�J2nC1
/D snC1.L/�U.n/;

where snC1.L/ denotes the n–component link in S3 obtained by .C1/–framed surgery
along the .nC 1/th component of L. In particular, snC1.U.nC1//D U.n/ .

We can show that, for n� 3,

(1) SnC1.Br.J 2n.nC 1///D Br2n�1.J 2n�1.n//

(2) SnC1˝QW Br.J 2n.nC 1//˝Q! Br2n�1.J 2n�1.n//˝Q is an isomorphism.

The proof involves the same technique as in the preceding section, and makes use of
Theorem 6.1 of [9].

7 The proof of Proposition 3.8

In this section, we give the proof of Proposition 3.8. For that purpose, it is convenient
to state a few more technical lemmas on claspers.

Lemma 7.1 The move of Figure 7.1 produces equivalent claspers.

This is an easy consequence of [12, Proposition 2.7].
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Figure 7.1

T
G’G

;
e

Figure 7.2

Lemma 7.2 Let G be a clasper in a 3–manifold M containing a Yk –subtree T ,
k � 1, such that a branch of T is incident to a box as shown in Figure 7.2. There, e is
an edge of G which is not contained in T . Then

MG �YkC1
MG0 ;

where G0 is the clasper depicted in the right-hand side of Figure 7.2.

The proof is omitted. It is straightforward, and uses Habiro’s move 12 and a zip
construction.

Lemma 7.3 Let G be a clasper in a 3–manifold M such that a 3–ball B in M

intersects G as depicted in Figure 7.3. There, the nodes n1 and n2 are both in a
Yk –subtree T , k � 2, and e is an edge of G which is not contained in T . Then

MG �YkC1
MG0 ;

where G0 is identical to G outside of B , where it is as shown in Figure 7.3.

G

e

;n2n1

G0

Figure 7.3
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Proof By an isotopy, G is seen to be equivalent to the clasper G1 represented in
Figure 7.4. By applying the move of [12, Figure 38] to G1 , and then applying Habiro’s
move 6 twice, we obtain the clasper G2�G1 of Figure 7.4. Consider the two I–shaped

G2G1

Figure 7.4

claspers I1[I2 of G2 which appear in the figure. By Habiro’s move 6 and 4, we have
that G2 �G2 n .I1[ I2/. The result then follows from Lemma 7.2.

We can now prove Proposition 3.8.

Let G be a linear Yn –tree in a 3–manifold M , n� 2, with nC2 .�1/–special leaves,
and let N denote an s–regular neighborhood N of G . As noted previously, N is a
3–ball in M .

By .n� 1/ applications of Lemma 2.3, G is equivalent to the clasper zG represented
in Figure 7.5. The first step of this proof is to show the following.

Claim 7.4 We have
zG � C;

in N , where C is the clasper containing a Y2n –subtree represented in Figure 7.5.

.n� 1/ times

B

zG

Cv

Figure 7.5
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Proof Consider the box of zG which is connected to one .�1/–special leaf. This box
is connected to a node v by two edges. By applying Lemma 2.4 at v , and Lemma 2.5,
we obtain the clasper represented in Figure 7.6 (a). Then apply recursively Lemma 2.4
and Habiro’s move 6, as shown in Figure 7.6 (b), until we obtain a clasper G0 � zG

with only one node connected to two .�1/–special leaves. See in Figure 7.6 (c). By

����

(a) (b) (c) (d)

G0

G00

f f 0

c

Figure 7.6: Here, for simplicity, we consider the case nD 5 .

applying the move of Figure 3.1 and Habiro’s move 6, we have G0 �G00 , where G00

contains a component c with 4 nodes and with two leaves f and f 0 lacing an edge e

– see Figure 7.6 (d).7 We can apply Habiro’s move 12 to these two leaves, and then
Habiro’s move 6 to create two new leaves lacing an edge. Apply recursively these two
moves until no new leaf lacing an edge is created: the result is the desired clasper C

which contains a Y2n –subtree T , as represented in Figure 7.5.

Consider in N a 3–ball B which intersects C as depicted. By several applications of
the move of [12, Figure 38] and of Habiro’s move 6, we obtain the clasper G1 � G

which is identical to C outside B , where it is as shown in Figure 7.7. By Habiro’s
move 6 and 4, we can freely remove the pair of I–shaped claspers which appear in
the figure (see the proof of Lemma 7.3). By further applying four times Lemma 7.2,
we thus obtain the clasper G2 of Figure 7.7, which satisfies NG2

�Y2nC1
NG1

. By an

7 Here we say that a leaf of a clasper G laces an edge if it forms an unknot which bounds a disk D

with respect to which it is 0–framed, such that the interior of D intersects G once, transversally, at an
edge.
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��
��
��
��

��

G1 G3G2 G4

Figure 7.7: These four claspers are identical to C outside B .

isotopy, we can apply Habiro’s move 12 to show that NG2
� NG3

, where G3 is as
shown in Figure 7.7. By using [20, page 398], we obtain NG3

�Y2nC1
NG4

.8

Observe that G4 satisfies the hypothesis of Lemma 7.3. Actually, we can apply Lemma
7.3 recursively (n� 3) times. By further applying, to the resulting clasper, strictly the
same arguments as in the proof of Lemma 7.3, we obtain NG4

�Y2nC1
NG5

, where
G5 is the clasper shown in Figure 7.8. It follows, by the zip construction and Lemma
2.6, that

NG5
�Y2nC1

NG6[G7
;

where G6 and G7 are two disjoint claspers in N as represented in Figure 7.8.

;

G7G5 G6

Figure 7.8

By Lemma 7.1 and Theorem 3.2 (for l D 1), it is not hard to check that NG7
�Y2nC1

N

and that NG6
�Y2nC1

N‚n
.

This concludes the proof of Proposition 3.8.
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