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Z k
2

–actions fixing RP 2[RP even

ROGÉRIO DE OLIVEIRA

PEDRO L Q PERGHER

ADRIANA RAMOS

This paper determines, up to equivariant cobordism, all manifolds with Zk
2

–action
whose fixed point set is RP2[RPn , where n> 2 is even.

57R85; 57R75

1 Introduction

Suppose M is a smooth, closed manifold and T W M !M is a smooth involution
defined on M . It is well known that the fixed point set F of T is a finite and disjoint
union of closed submanifolds of M . For a given F , a basic problem in this context is
the classification, up to equivariant cobordism, of the pairs .M;T / for which the fixed
point set is F . For related results, see for example Royster [16], Hou and Torrence
[6; 7], Pergher [11], Stong [17; 18], Conner and Floyd [4, Theorem 27.6], Kosniowski
and Stong [8, page 309] and Lü [9; 10].

For F D RPn , the classification was established in [4] and [17]. D C Royster [16]
then studied this problem with F the disjoint union of two real projective spaces,
F D RPm [RPn . He established the results via a case-by-case method depending
on the parity of m and n, with special arguments when one of the components is
RP0 D fpointg, but his methods were not sufficient to handle the case when m and n

are even and positive. If m and n are even and mD n, one knows from [8] that .M;T /

is an equivariant boundary when dim.M /� 2n; it was later shown in [7] that .M;T /

also is a boundary when n� dim.M / < 2n. To understand the case .m; n/D .0; even/
and also the goal of this paper, consider the involution .RPmCnC1;Tm;n/, for any m

and n, defined in homogeneous coordinates by

Tm;nŒx0;x1; : : : ;xmCnC1�D Œ�x0;�x1; : : : ;�xm;xmC1; : : : ;xmCnC1�:

The fixed set of Tm;n is RPm[RPn . From Tm;n , it may be possible to obtain other
involutions fixing RPm[RPn : in general, for a given involution .W;T / with fixed
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set F and W a boundary, the involution

�.W;T /D
�S1 �W

� Id�T
; �
�

is equivariantly cobordant to an involution fixing F ; here, S1 is the 1–sphere, Id is the
identity map and � is the involution induced by c� Id, where c is complex conjugation
(see Conner and Floyd [5]). If .S1 �W /=.� Id�T / is a boundary, we can repeat the
process taking �2.W;T /, and so on. If F is nonbounding, this process finishes, that
is, there exists a smallest natural number r � 1 for which the underlying manifold
of �r .W;T / is nonbounding; this follows from the .5=2/–theorem of J Boardman in
[1] and its strengthened version in [8]. In particular, if m and n are even and m< n,
RPm[RPn does not bound and RPmCnC1 bounds, so this number r makes sense for
.RPmCnC1;Tm;n/, and we denote r by hm;n . In [16], Royster proved the following
theorem:

Theorem Let .M;T / be an involution fixing fpointg[RPn , where n is even. Then
.M;T / is equivariantly cobordant to �j .RPnC1;T0;n/ for some 0� j � h0;n .

Later, in [15], R E Stong and P Pergher determined the value of h0;n , thus answering
the question posed by Royster in [16, page 271]: writing n D 2pq with p � 1 and
q � 1 odd, they showed that h0;n D 2 if p D 1 and h0;n D 2p � 1 if p > 1.

In this paper, we contribute to this problem by solving the case .m; n/ D .2; even/.
Specifically, we will prove the following:

Theorem 1 Let .M;T / be an involution fixing RP2 [ RPn , where M is con-
nected and n � 4 is even. If n > 4, then .M;T / is equivariantly cobordant to
�j .RPnC3;T2;n/ for some 0� j � h2;n . If nD 4, then .M;T / is either equivariantly
cobordant to �j .RP7;T2;4/ for some 0 � j � h2;4 , or equivariantly cobordant to
�2.RP3;T0;2/[ .RP5;T0;4/.

In addition, we generalize the result of Stong and Pergher of [15], calculating the
general value of hm;n (which, in particular, makes numerically precise the statement
of Theorem 1).

Theorem 2 For m; n even, 0 � m < n, write n�m D 2pq with p � 1 and q � 1

odd. Then hm;n D 2 if p D 1, and hm;n D 2p � 1 if p > 1.

Finally, we also extend the results for Zk
2

–actions. This extension is automatic from
the combination of the above results and the case F DRPeven with a recent paper of the
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first two authors [13]. The details concerning this extension will be given in Section 4.
Section 2 and Section 3 will be devoted, respectively, to the proofs of Theorem 1 and
Theorem 2.

Acknowledgements The authors would like to thank Professor Robert E Stong of the
University of Virginia for suggestions and techniques. The second author was partially
supported by CNPq and FAPESP, and the third was supported by CAPES.

2 Involutions fixing RP2 [ RPeven

We start with an involution .M;T / fixing RP2 [RPn , where M is connected and
n � 4 is even, and first establish some notations. We will always use �r ! RPr

to denote the canonical line bundle over RPr . Denote by ˛ 2 H 1.RP2;Z2/ and
ˇ 2H 1.RPn;Z2/ the generators of the 1–dimensional Z2 –cohomology. The model
involution .RPnC3;T2;n/ fixes RP2 [RPn with normal bundles .nC 1/�2! RP2

and 3�n! RPn . The total Stiefel–Whitney classes are W ..nC 1/�2/D .1C˛/
nC1 ,

W .3�n/D .1Cˇ/
3 . Denote by �! RP2 and �! RPn the normal bundles of RP2

and RPn in M . To prove Theorem 1, it suffices to prove the following:

Lemma 3 If n> 4, then W .�/D .1C˛/nC1 and W .�/D .1Cˇ/3 . If nD 4, then
either W .�/D .1C˛/5 and W .�/D .1Cˇ/3 , or W .�/D 1C˛ and W .�/D 1Cˇ .

In fact, suppose Lemma 3 is true, and denote by R the trivial one-dimensional vector
bundle over any base space. Set k D dim.�/ and l D dim.�/, that is, k D dim.M /�2

and l D dim.M /� n� 1.

First consider n > 4. By [5], for 0 � j � h2;n , the involution �j .RPnC3;T2;n/ is
equivariantly cobordant to an involution with fixed data

..nC 1/�2˚ jR! RP2/[ .3�n˚ jR! RPn/:

Using the notations W D 1Cw1Cw2C : : : for Stiefel–Whitney classes and
�

a
b

�
for

binomial coefficients mod 2, note that w3.�/D
�
3
3

�
ˇ3 D ˇ3 6D 0 and thus l � 3. Then

�[ � and ..nC 1/�2˚ .l � 3/R/[ .3�n˚ .l � 3/R/

are cobordant because they have the same characteristic numbers. If l � 3C h2;n , one
then has from [4] that .M;T / and � l�3.RPnC3;T2;n/ are equivariantly cobordant,
proving the result. By contradiction, suppose then l > 3C h2;n . Again from [4],

..nC 1/�2˚ .l � 3/R/[ .3�n˚ .l � 3/R/
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is the fixed data of an involution .W;S/, and by removing sections if necessary we can
suppose, with no loss, that dim.W /D nC h2;nC 4 [4, Theorem 26.4]. Let .N;T 0/
be an involution cobordant to �h2;n.RPnC3;T2;n/ and with fixed data

..nC 1/�2˚ h2;nR/[ .3�n˚ h2;nR/:

One knows that N is not a boundary. Then �.N;T 0/[ .W;S/ is cobordant to an
involution with fixed data R!N , and from [4] R!N then is a boundary, which is
impossible.

Now suppose nD 4. The case W .�/D .1C˛/5 and W .�/D .1Cˇ/3 is included in
the above approach, hence suppose W .�/D 1C˛ and W .�/D 1Cˇ . Since h0;2D 2,
the involution �2.RP3;T0;2/ is cobordant to an involution with fixed data

.5R! fpointg/[ .�2˚ 2R! RP2/:

Then the involution �2.RP3;T0;2/[.RP5;T0;4/ is cobordant to an involution .W 5;T /

with fixed data .�2˚2R!RP2/[.�4!RP4/, and the total Stiefel–Whitney classes
are W .�2˚ 2R/ D 1C ˛ and W .�4/ D 1C ˇ . Because h0;2 D 2, the underlying
manifold of �2.RP3;T0;2/ does not bound; since RP5 bounds, W 5 does not bound.
By contradiction, suppose l � 2. Using the hypothesis, [4] and removing sections if
necessary, we can suppose with no loss that .M;T / has fixed data

.�2˚ 3R! RP2/[ .�4˚R! RP4/:

Using the same above argument for �.W 5;T /[ .M;T /, we conclude R!W is a
boundary, which is false. Then l D 1 and .M;T / and .W 5;T / (and hence the union
�2.RP3;T0;2/[ .RP5;T0;4/) have fixed data with same characteristic numbers.

In order to prove Lemma 3, we will intensively use the following basic fact from [4]: the
projective space bundles RP.�/ and RP.�/ with the standard line bundles �! RP.�/
and �!RP.�/ are cobordant as elements of the bordism group NkC1.BO.1//. Then
any class of dimension kC1, given by a product of the classes wi.RP.�// and w1.�/,
evaluated on the fundamental homology class ŒRP.�/�, gives the same characteristic
number as the one obtained by the corresponding product of the classes wi.RP.�//
and w1.�/, evaluated on ŒRP.�/�. To evaluate characteristic numbers, the following
formula of Conner will be useful [2, Lemma 3.1]: if � W �!N is any r –dimensional
vector bundle, c is the first Stiefel–Whitney class of the standard line bundle over
RP.�/, SW .�/D 1C xw1.�/C xw2.�/C : : : is the dual Stiefel–Whitney class defined
by W .�/ SW .�/D 1 and ˛ 2H�.N;Z2/, then

(1) cj��.˛/ŒRP.�/�D xwj�rC1.�/˛ŒN � when j � r � 1:
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In this context, our numerical arguments will always be considered modulo 2. Write
W .�/D 1C c and W .�/D 1C d for the Stiefel–Whitney classes of � and � . The
structure of the Grothendieck ring of orthogonal bundles over real projective spaces
says that W .�/D .1C˛/p and W .�/D .1Cˇ/q for some p; q � 0. From [4, 23.3],
one then has

W .RP.�//D .1C˛/3
� 2X

iD0

.1C c/k�i
�
p
i

�
˛i
�

W .RP.�//D .1Cˇ/nC1
� lX

iD0

.1C d/l�i
�
q
i

�
ˇi
�
;and

where here we are suppressing bundle maps.

Fact 1 The numbers p and q are odd; in particular, w1.�/D ˛ and w1.�/D ˇ .

Proof One has

w1.RP.�//D
�
k
1

�
cC˛C

�
p
1

�
˛ and w1.RP.�//D

�
l
1

�
d CˇC

�
q
1

�
ˇ:

Since kC 2D l C n and n is even,
�
k
1

�
D
�

l
1

�
, and thus

w1.RP.�//C
�
k
1

�
c D .

�
p
1

�
C 1/˛ and w1.RP.�//C

�
l
1

�
d D .

�
q
1

�
C 1/ˇ

are corresponding characteristic classes. Because n> 2, it follows that

0D
��

p
1

�
C 1

�
˛ncl�1ŒRP.�/�D

��
q
1

�
C 1

�
ˇnd l�1ŒRP.�/�

D
��

q
1

�
C 1

�
ˇnŒRPn�D

�
q
1

�
C 1;

which gives that q is odd. Also�
p
1

�
C 1D

��
p
1

�
C 1

�
˛2ck�1ŒRP.�/�D .

�
q
1

�
C 1/ˇ2dk�1ŒRP.�/�D 0;

and p is odd.

Fact 2 If l D 1, then nD 4, W .�/D 1C˛ and W .�/D 1Cˇ .

Proof Since l D 1 and w1.�/ D ˇ , we have W .�/ D 1C ˇ . Then the involution
.M;T /[ .RPnC1;T0;n/ is cobordant to an involution with fixed data

.�! RP2/[ ..nC 1/R! fpointg/:

From [16] and the fact that h0;2 D 2, we have W .�/D 1C˛ and nD 4.
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Fact 2 reduces Lemma 3 to the following assertion: if l > 1, then W .�/D .1C˛/nC1

and W .�/ D .1C ˇ/3 ; so we assume throughout the remainder of this section that
l > 1. Note that .1C˛/nC1D .1C˛/3 if

�
n
2

�
D 1 and .1C˛/nC1D 1C˛ if

�
n
2

�
D 0.

Denote by r the greatest power of 2 that appears in the 2–adic expansion of n, that
is, 4� 2r � n< 2rC1 . We can assume q < 2rC1 and p < 4. Then Fact 3 and Fact 4
show that W .�/D .1C˛/nC1 :

Fact 3 If
�
n
2

�
D 1, then p D 3.

Fact 4 If
�
n
2

�
D 0, then p D 1.

Set p0 D 4�p , q0 D 2rC1� q . Then the dual Stiefel–Whitney classes of � and � are
given by SW .�/D .1C ˛/p

0

, SW .�/D .1Cˇ/q
0

. Since p and q are odd, p0 and q0

are odd; further,
�
p
2

�
C
�
p0

2

�
D 1 and

�
q

2u

�
C
�

q0

2u

�
D 1 for each 1� u� r .

Proof of Fact 3 We will use several times the fact that a binomial coefficient
�

a
b

�
is

nonzero modulo 2 if and only if the 2–adic expansion of b is a subset of the 2–adic
expansion of a. We have nD 4j C2, with j � 1, and want to show that pD 3; since
p < 4 is odd, it suffices to show that

�
p
2

�
D 1, or equivalently that

�
p0

2

�
D 0. Suppose

by contradiction that
�
p0

2

�
D 1. By Conner’s formula (1),

ckC1ŒRP.�/�D
�
p0

2

�
˛2ŒRP2�D

�
p0

2

�
D dkC1ŒRP.�/�D

�
q0

4jC2

�
:

Then
�

q0

4jC2

�
D 1 and consequently

�
q0

2

�
D 1. We formally introduce the class (with

l � 1� 1) fW .RP. //D
W .RP. //
.1C c/l�1

:

Since k D l C 4j and p and q are odd, on RP2 this class isfW .RP.�//D .1C˛/3.1C c4/j .1C cC˛C .1C c/�1
�
p
2

�
˛2/;

and on RPn it isfW .RP.�//D .1Cˇ/4jC3.1C d CˇC .1C d/�1
�
q
2

�
ˇ2
C .1C d/�2

�
q
3

�
ˇ3
C : : :/:

Then ew3.RP.�//D ˛2cC
�
p
2

�
˛2c D

�
p0

2

�
˛2c D ˛2c;

and since
�
q
2

�
C
�
q
3

�
D 0 because q is odd, ew3.RP.�// D

�
q0

2

�
ˇ2d D ˇ2d: Now we

observe that, if a and b are one-dimensional cohomology classes, then by the Cartan
formula one has Sq2u

.a2u

b/D a2uC1

b , where Sq is the Steenrod operation and u� 1.
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Also one has, by the Wu and Cartan formulae, that Sqi evaluated on a product of
characteristic classes gives a polynomial in the characteristic classes. Then

Sq2r�1

.: : : .Sq4.Sq2.˛2c/// : : :/D ˛2r

c

Sq2r�1

.: : : .Sq4.Sq2.ˇ2d/// : : :/D ˇ2r

dand

are corresponding classes on RP2 and RPn . Using Conner’s formula (1) and the fact
that 2r � 4, one then has

0D .˛2r

c/c4jC1�2rCl�1ŒRP.�/�D .ˇ2r

d/d4jC1�2rCl�1ŒRP.�/�D
�

q0

4j C 2� 2r

�
:

Since
�

q0

4jC2

�
D1 and 2r belongs to the 2–adic expansion of 4jC2, also

�
q0

4jC2�2r

�
D1,

which is impossible. Hence Fact 3 is proved.

Proof of Fact 4 We consider nD 4j with j � 1; in this case, to show that p D 1, it
suffices to show that

�
p0

2

�
D 1, and again by contradiction we suppose

�
p0

2

�
D 0. Then�

p
2

�
D 1 and k D l C 4j � 2 gives

fW .RP.�//D .1C˛/3..1C c/4j�1
C .1C c/4j�2˛C .1C c/4j�3˛2/

and ew2.RP.�//D c2C˛2C c˛: Also

fW .RP.�//D .1Cˇ/4jC1.1C d CˇC .1C d/�1
�
q
2

�
ˇ2
C .1C d/�2

�
q
3

�
ˇ3
C : : :/

and ew2.RP.�//D
�
q
2

�
ˇ2Cˇd Cˇ2: Let 2t be the lesser power of 2 of the 2–adic

expansion of nD 4j (2t � 4). For t � x � r and with the same preceding tools, we
then get

Sq2x�1

.: : : .Sq4.Sq2.ew2.RP.�//c/// : : :/c4jCl�2x�2ŒRP.�/�

D .c2x

cC˛2x

cC c2x

˛/c4jCl�2x�2ŒRP.�/�

D
�
p0

2

�
C 0C

�
p0

1

�
D 1

D Sq2x�1

.: : : .Sq4.Sq2.ew2.RP.�//d/// : : :/d4jCl�2x�2ŒRP.�/�

D .
�
q
2

�
ˇ2x

d Cˇd2x

Cˇ2x

d/d4jCl�2x�2ŒRP.�/�

D
�
q
2

��
q0

4j�2x

�
C
�

q0

4j�1

�
C
�

q0

4j�2x

�
D
�
q0

2

��
q0

4j�2x

�
C
�

q0

4j�1

�
;

0D
�
p0

2

�
D ckC1ŒRP.�/�D dkC1ŒRP.�/�D

�
q0

4j

�
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and ew2.RP.�//c4jCl�3ŒRP.�/�D
�
p0

2

�
C 1C

�
p0

1

�
D 0

D ew2.RP.�/d4jCl�3ŒRP.�/�

D
�
q
2

��
q0

4j�2

�
C
�

q0

4j�1

�
C
�

q0

4j�2

�
D
�
q0

2

��
q0

4j�2

�
C
�

q0

4j�1

�
:

That is, we get the equations:

0D
�

q0

4j

�
(2)

0D
�
q0

2

��
q0

4j�2

�
C
�

q0

4j�1

�
(3)

1D
�
q0

2

��
q0

4j�2x

�
C
�

q0

4j�1

�
(4)

By using equations (3) and (4), we conclude that
�
q0

2

�
D 1 and

�
q0

4j�2x

�
6D
�

q0

4j�2

�
.

Suppose t < r . If
�

q0

4j�2r

�
D 1, equation (2) and the fact that 2r belongs to the 2–adic

expansion of 4j imply that 2r is the only power of 2 of the 2–adic expansion of 4j

that does not belong to the 2–adic expansion of q0 . Hence
� q0

4j�2t

�
D 0, which is a

contradiction. Then
�

q0

4j�2r

�
D
� q0

4j�2t

�
D 0. In this case, equation (2) and

�
q0

4j�2

�
D 1

give that 2t is the only power of 2 of the 2–adic expansion of 4j that does not belong
to the 2–adic expansion of q0 , giving the contradiction

� q0

4j�2t

�
D 1. Now suppose

t D r , that is, nD 4j D 2r . One has

.ew2.RP.�//2c2rCl�5ŒRP.�/�D
�
p0

2

�
C 0C 1

D 1D .ew2.RP.�//2d2rCl�5ŒRP.�/�

D
�
q
2

��
q0

2r�4

�
C
�

q0

2r�2

�
C
�

q0

2r�4

�
D
�
q0

2

��
q0

2r�4

�
C
�

q0

2r�2

�
D
�

q0

2r�4

�
C
�

q0

2r�2

�
:

Since
�
q0

2

�
D 1, we have

�
q0

2r�4

�
D
�

q0

2r�2

�
, which gives a contradiction. Thus Fact 4 is

proved.

Now we prove that q D 3. To do this, first we prove:

Fact 5
�
q
2

�
D 1; in particular, q � 3.

Proof As before, first consider nD 4j C 2, with j � 1. In this case, we know that
0D

�
p0

2

�
D
�

q0

4jC2

�
, ew2.RP.�//D

�
p
2

�
˛2C˛cD˛2C˛c and ew2.RP.�//D

�
q
2

�
ˇ2Cˇd .

Then

.ew2.RP.�///2c4jCl�3ŒRP.�/�D 1

D .ew2.RP.�///2d4jCl�3ŒRP.�/�D
�
q
2

��
q0

4j�2

�
C
�

q0

4j

�
:
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Since the sum
�
q
2

�
C
�
q0

2

�
equals 1 and 2 belongs to the 2–adic expansion of 4j � 2,

one has that
�
q
2

��
q0

4j�2

�
D 0, and thus

�
q0

4j

�
D 1. Now

�
q0

4jC2

�
D 0 and

�
q0

4j

�
D 1 imply

that
�
q0

2

�
D 0, and thus

�
q
2

�
D 1. Since q is odd, this means that q � 3.

Now suppose nD4j , with j �1. One then has
�
p0

2

�
D1, ew3.RP.�//D c3C

�
p0

2

�
˛2cD

c3C˛2c and ew3.RP.�//D
�
q
2

�
ˇ2d . Then

Sq2r�1

.: : : .Sq4.Sq2.ew3.RP.�//// : : :/c4jCl�2r�2ŒRP.�/�

D .c2r

cC˛2r

c/c4jCl�2r�2ŒRP.�/�

D
�
p0

2

�
D 1

D Sq2r�1

.: : : .Sq4.Sq2.
�
q
2

�
ˇ2d//// : : :/d4jCl�2r�2ŒRP.�/�

D .
�
q
2

�
ˇ2r

d/d4jCl�2r�2ŒRP.�/�D
�
q
2

��
q0

4j�2r

�
:

Thus
�
q
2

�
D 1, and Fact 5 is proved.

To end our task, we will show that q � 3. The strategy will consist in finding nonzero
characteristic numbers coming from characteristic classes involving ˛q�1 . To do this,
we need the following:

Fact 6 nC l � 1> 2.q� 1/.

Proof First suppose nD 4j C2, j � 1. From the proof of Fact 5,
�

q0

4j

�
D 1, and thus�

q0

2r

�
D 1 and

�
q
2r

�
D 0. Since q< 2rC1 , q< 2r < 4jC2. In particular, wq.�/D˛

q 6D 0

and q � l . Then nC l�1D 4j C2C l�1> 2q�1> 2.q�1/. Now suppose nD 4j ,
j � 1. In this case,

�
p0

2

�
D 1D

�
q0

4j

�
, so the argument is the same.

Fact 6 says that we can consider characteristic numbers coming from classes involvingewq�1
2

; in this direction, first consider nD 4j C 2, j � 1. In this case,

ew2.RP.�//D
�
p
2

�
˛2
C˛cD ˛.˛Cc/ and ew2.RP.�//D

�
q
2

�
ˇ2
Cˇd Dˇ.ˇCd/:

Thus

.˛q�1.˛C c/q�1c4jCl�2qC3/ŒRP.�/�D .ˇq�1.ˇC d/q�1d4jCl�2qC3/ŒRP.�/�:

The last term is the coefficient of ˇ4jC2 in ˇq�1.1Cˇ/q�1.1Cˇ/q
0

, by Conner’s
formula (1). If nD 4j , j � 1, similarly one has

ew2.RP.�//C c2
D .c2

C
�
p
2

�
˛2
C˛c/C c2

D ˛c;ew2.RP.�//C d2
D
�
q0

2

�
ˇ2
Cˇd C d2

D .ˇC d/d;

..˛q�1cq�1/c4jCl�2qC1/ŒRP.�/�D ..ˇC d/d/q�1d4jCl�2qC1/ŒRP.�/�;
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and the last term is the coefficient of ˇ4j in .1C ˇ/q�1.1C ˇ/q
0

. These numbers
have value 1, since .1Cˇ/q�1.1Cˇ/q

0

D .1Cˇ/�1 , which means that ˛q�1 6D 0

and q� 1� 2, thus ending the proof of Lemma 3.

3 Calculation of hm;n

Denote by Wr the underlying manifold of �r .RPmCnC1;Tm;n/ and by Pr the total
space of the iterated fibration

RP..mC 1/�r ˚ .nC 1/R/! RP.�1˚ .r � 1/R/! RP1;

where �r is the standard line bundle over RP.�1˚ .r � 1/R/:

Lemma 4 Wr is cobordant to Pr .

Proof If .W;T / is a free involution and �! W =T is the usual line bundle, the
sphere bundle S.�˚R/ with the antipodal involution in the fibers can be identified to
the free involution �W �S1

T � c
; �
�
;

where c is complex conjugation and � is induced by Id��Id. Starting with .S1;� Id/
and by iteratively applying this fact, we can see that Wr is diffeomorphic to the total
space of the iterated fibration

RP..mC1/�r˚.nC1/R/!RP.�r�1˚R/! : : :!RP.�2˚R/!RP.�1˚R/!RP1;

where �1 D �1 and �i is the standard line bundle over RP.�i�1˚R/, for each i > 1.
From [4], one knows that N�.BO.1// is a free N�–module, where N� is the unoriented
cobordism ring, with one generator Xj in each dimension j � 0; these generators are
characterized by the fact that cj ŒV j �D 1, where �!V j is a representative of Xj and
c is the first Whitney class of �. Further, it was shown by Conner in [3, Theorem 24.5]
that there is a unique basis fXj g

1
jD0

for N�.BO.1// which satisfies two conditions:

(i) 4.Xj / D Xj�1 , j � 1, where 4W Nj .BO.1//! Nj�1.BO.1// is the Smith
homomorphism.

(ii) If �! V j is a representative of Xj for j � 1, then V j bounds.
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Theorem 24.5 of [3] also showed that X1D Œ�1!RP1� and Xj D Œ�j!RP.�j�1˚R/�

for j � 2. For j � 1, set Yj D Œ�j ! RP.�1˚ .j � 1/R/�. One has

cj ŒRP.�1˚ .j � 1/R/�D xw1.�1/ŒS
1�D 1;

Y1 DX1

4.Œ�j ! RP.�1˚ .j � 1/R/�/D Œ�j�1! RP.�1˚ .j � 2/R/� for j � 2:and

Further, every projective space bundle over S1 bounds [5, Lemma 2.2]. By the
uniqueness, Yj DXj for j � 1, and the result follows.

With the Lemma 4 in hand, Theorem 2 can now be rephrased:

Theorem 2 0 For m; n even, 0 �m < n, write n�mD 2pq with p � 1 and q � 1

odd.

(a) If p D 1, P1 bounds and P2 does not bound.

(b) If p > 1, Pr bounds for each 1� r � 2p � 2 and P2p�1 does not bound.

Denote by ˛ 2H 1.RP1;Z2/ the generator and by �r ! Pr the standard line bundle;
set W .�r /D 1C c and W .�r /D 1C d . The following lemma, which follows from
Conner’s formula (1), will be useful in our computations:

Lemma 5 (i) For f CgChDmCnC 1C r , cf .cCd/gdhŒPr � is the coefficient
of cr in .cf .1C c/g/=..1C c/mC1/.

(ii) For f C g C h D mC nC r , ˛cf .c C d/gdhŒPr � is the coefficient of cr in
.cfC1.1C c/g/=..1C c/mC1/.

If M is a closed manifold and .1Ct1/.1Ct2/ : : : .1Ctl/ is the factored form of W .M /,
one has the s–class sj given by the polynomial in the classes of M corresponding to
the symmetric function t

j
1
C t

j
2
C : : :C t

j

l
. Since

W .Pr /D .1C cC˛/.1C c/r�1.1C cC d/mC1.1C d/nC1;

ci D 0 if i > r and ˛i D 0 if i > 1, the s–class smCnC1Cr of Pr then is

smCnC1Cr D .cC˛/mCnC1Cr C.r � 1/cmCnC1Cr

C.mC 1/.cC d/mCnC1Cr C .nC 1/dmCnC1Cr

D .cC d/mCnC1Cr CdmCnC1Cr :

Using part (i) of Lemma 5 and the fact that

1

.1C c/mC1
D 1C

rX
iD1

�
mCi

i

�
ci
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in H�.Pr ;Z2/, one then has

smCnC1Cr ŒPr �D coefficient of cr in .1C c/nCr
C coefficient of cr in

1

.1C c/mC1

D
�
nCr

r

�
C
�
mCr

r

�
:

Because nD 2pqCm and q is odd, one then gets

smCnC1C2p ŒP2p �D
�
nC2p

2p

�
C
�
mC2p

2p

�
D 1:

It follows that P2p does not bound. Because P1 is a projective space bundle over S1

and hence a boundary, this in particular proves part (a) of Theorem 2 0 . So we can
assume from now that p > 1 and r < 2p . Using again n D 2pq Cm, we rewrite
W .Pr / as

W .Pr /D .1C cC˛/.1C c/r�1.1C cC d.cC d//mC1.1C d2p

/q:

Then a general characteristic number of Pr is a sum of terms of the form

˛ecf .d.cC d//gd2phŒPr �;

where e C f C 2g C 2ph D mC nC 1C r and either e D 0 or e D 1. Since by
Lemma 5,

˛ecf .d.cC d//gd2phŒPr �D cfC1.d.cC d//gd2phŒPr �;

we can assume e D 0. Thus, to prove the first statement of part (b) of Theorem 2 0 , it
suffices to show that cf .d.cCd//gd2phŒPr �D 0 when f C2gC2phDmCnC1Cr

and r < 2p�1. Since cf D 0 if f > r , we assume f � r and thus 0� r�f < 2p�1.
Take s > p with 2s > mC 1; in particular, 2s > 2p > r and 1=..1C c/mC1/ D

.1C c/2
s�m�1 . Then

cf .d.cC d//gd2phŒPr �D coefficient of cr in cf .1C c/g=.1C c/mC1

D coefficient of cr in cf .1C c/g.1C c/2
s�m�1

D
�2sCg�m�1

r�f

�
D
�2p�1.2s�pC1Cq�h/C.r�fC1/=2�1

r�f

�
:

Write r � f C 1 D 2ta, where a is odd. Since r � f C 1 D 2gC 2ph�m� n is
even and r � f C 1 < 2p , one has 1 � t � p� 1. Then 2t�1 belongs to the 2–adic
expansion of r �f and does not belong to the 2–adic expansion of

2p�1.2s�pC1
C q� h/C .r �f C 1/=2� 1;

which means, as required, that the above number is zero.
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Finally, we must to show that P2p�1 does not bound. One has

w2.P2p�1/D ˛cC
�
mC1

2

�
c2
C d.cC d/:

We have seen above that cf .d.cCd//gd2phŒPr �D0 for f C2gC2phDmCnC1Cr

and 0 � r � f < 2p � 1; in particular, this is true for r D 2p � 1 and f > 0. In this
way,

w2.P2p�1/
mCnC2p

2 ŒP2p�1� D .d.cC d//
mCnC2p

2 ŒP2p�1�

D coefficient of c2p�1 in ..1C c/
mCnC2p

2 /=.1C c/mC1

D coefficient of c2p�1 in .1C c/
n�m

2
C2p�1�1

D
�
2p�1qC2p�1�1

2p�1

�
D 1;

and P2p�1 does not bound.

4 Z k
2

–actions fixing RP2 [ RPeven

Let Fn be a connected, smooth and closed n–dimensional manifold satisfying the
following property, which we call property H: if N m is any smooth and closed m–
dimensional manifold with m> n and T W N m!N m is a smooth involution whose
fixed point set is Fn , then mD 2n. From [8], this implies that .N m;T / is cobordant
to the twist involution .Fn�Fn; t/, given by t.x;y/D .y;x/. This concept was intro-
duced and studied in Pergher and Oliveira [14], inspired by Conner and Floyd [4, 27.6]
(or Conner [3, 29.2]), where it was shown that RPeven has this property.

In [13], we studied the equivariant cobordism classification of smooth actions .M Iˆ/ of
the group Zk

2
on closed and smooth manifolds M for which the fixed point set F of the

action is the union F DK[L, where K and L are submanifolds of M with property
H and with dim.K/ < dim.L/. We showed that, for this F , the Zk

2
–classification

is completely determined by the corresponding Z2 –classification. Specifically, the
equivariant cobordism classes of Zk

2
–actions fixing K [L can be represented by a

special set of Zk
2

–actions which are explicitly obtained from involutions fixing K[L,
K and L. Together with the results of Section 2 and Section 3 and the case F DRPeven ,
this gives a precise cobordism description of the Zk

2
–actions fixing RP2[RPn , where

n> 2 is even; next we give this description.

Here, Zk
2

is the group generated by k commuting involutions T1;T2; : : : ;Tk . The
fixed data of a Zk

2
–action .M Iˆ/, ˆD .T1;T2; : : : ;Tk/, is �D

L
� "�!F; where

F D fx 2M = Ti.x/D x for all 1� i � kg is the fixed point set of ˆ and �D
L
� "�

is the normal bundle of F in M , decomposed into eigenbundles "� with � running
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through the 2k � 1 nontrivial irreducible representations of Zk
2

. A collection of Zk
2

–
actions fixing F can be obtained from an involution fixing F through the following
procedure: let .W;T / be any involution. For each r with 1 � r � k , consider the
Zk

2
–action �k

r .W;T /, defined on the cartesian product W 2r�1

DW � : : :�W (2r�1

factors) and described in the following inductive way: first set �1
1
.W;T /D .W;T /.

Taking k � 2 and supposing by inductive hypothesis one has constructed �k�1
k�1

.W;T /,
define

�k
k .W;T /D .W 2k�1

IT1;T2; : : : ;Tk/;

.W 2k�1

IT1;T2; : : : ;Tk�1/D .W
2k�2

�W 2k�2

IT1;T2; : : : ;Tk�1/where

D �k�1
k�1 .W;T /��k�1

k�1 .W;T /;

and Tk acts switching W 2k�2

�W 2k�2

. This defines �k
k
.W;T / for any k � 1. Next,

define

�k
r .W;T /D .W 2r�1

IT1;T2; : : : ;Tk/

.W 2r�1

IT1;T2; : : : ;Tr /D �
r
r .W;T /setting

and letting TrC1; : : : ;Tk act trivially.

If .W;T / fixes F and if �!F is the normal bundle of F in W , then �k
r .W;T / fixes

F and its fixed data consists of 2r�1 copies of �, 2r�1�1 copies of the tangent bundle
of F and 2k � 2r copies of the zero-dimensional bundle over F . In particular, for
the twist involution .F �F; t/, we have �k

r .F �F; t/D .F2r

IT1;T2; : : : ;Tk/, where
.T1;T2; : : : ;Tr / is the usual twist Zr

2
–action on F2r

which interchanges factors and
TrC1; : : : ;Tk act trivially, with the fixed data having in this case 2r � 1 copies of the
tangent bundle of F and 2k � 2r zero bundles. In this special case, we allow r to
be zero, setting �k

0
.F � F; t/ D .F IT1;T2; : : : ;Tk/, where each Ti is the identity

involution.

Now, from a given Zk
2

–action .M Iˆ/, ˆD .T1; : : : ;Tk/, we can obtain a collection of
new Zk

2
–actions, described as follows: first, each automorphism � W Zk

2
!Zk

2
yields

a new action given by .M I �.T1/; : : : ; �.Tk//; we denote this action by �.M Iˆ/.
The fixed data of �.M Iˆ/ is obtained from the fixed data of .M Iˆ/ by a permutation
of eigenbundles, obviously depending on � . Next, it was shown in [12] that if .M Iˆ/
has fixed data

L
� "�! F and one of the eigenbundles "� is isomorphic to "0

�
˚R,

then there is an action .N I‰/ with fixed data
L
� ��! F , where �� D "� if � 6D �

and �� D "0� . We say in this case that .N I‰/ is obtained from .M Iˆ/ by removing
one section. Thus, the iterative process of removing sections may possibly enlarge the
set f�.M Iˆ/; � 2Aut.Zk

2
/g. Summarizing, from a given involution .W;T / that fixes
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F , we obtain a collection of Zk
2

–actions fixing F by applying the operations ��k
r on

.W;T / and next by removing the (possible) sections from the resultant eigenbundles.
The results of [13] say that when F D K [L, where K and L have property H
and dim.K/ < dim.L/, then up to equivariant cobordism, all Zk

2
–actions fixing F

are obtained, with the above procedure, from involutions fixing K [L, K and L.
Together with the Z2 –classification obtained in Section 2 and Section 3 and the case
F D RPeven , this gives the following Zk

2
–classification for F D RP2[RPn , where

n > 2 is even (in our terminology, we agree that the set obtained from .M Iˆ/ by
removing sections includes .M Iˆ/):

Theorem 6 Let .M Iˆ/ be a Zk
2

–action fixing RP2 [ RPn , where n > 2 is even.
Then .M Iˆ/ is equivariantly cobordant to an action belonging to the set A[B , where
the sets A and B are described below in terms of n.

(i) n� 2D 2pq , with q odd and p > 1:

AD∅= the empty set;

B D the set obtained from f��k
r �

2p�1.RPnC3;T2;n/; � 2 Aut.Zk
2
/; 1� r � kg by

removing sections.

(ii) n� 2D 2q , with q odd, and n is not a power of 2:

AD∅;

B D the set obtained from f��k
r �

2.RPnC3;T2;n/; � 2 Aut.Zk
2
/; 1 � r � kg by

removing sections;

(iii) nD 2t is a power of 2 with t � 3:

AD
˚
��k

r .RP2
�RP2; twist/[ � 0�k

r�tC1.RP2t

�RP2t

; twist/;

�; � 0 2 Aut.Zk
2 /; t � 1� r � k

	
I

B D the set obtained from f��k
r �

2.RP2tC3;T2;2t /; � 2 Aut.Zk
2
/; 1 � r � kg by

removing sections (by dimensional reasons, in this case AD∅ if t � 1> k/;

(iv) nD 4: for .W 5;T /D �2.RP3;T0;2/[ .RP5;T0;4/,

AD
˚
��k

rC1.RP2
�RP2; twist/[ � 0�k

r .RP4
�RP4; twist/;

�; � 0 2 Aut.Zk
2 /; 0� r � k � 1

	
[f��k

r .W
5;T /; � 2 Aut.Zk

2 /; 1� r � kgI

BD the set obtained from f��k
r �

2.RP7;T2;4/; � 2Aut.Zk
2
/; 1� r �kg by removing

sections.
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