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Volumes of highly twisted knots and links

JESSICA S PURCELL

We show that for a large class of knots and links with complements in S3 admitting a
hyperbolic structure, we can determine bounds on the volume of the link complement
from combinatorial information given by a link diagram. Specifically, there is a
universal constant C such that if a knot or link admits a prime, twist reduced diagram
with at least 2 twist regions and at least C crossings per twist region, then the link
complement is hyperbolic with volume bounded below by 3.3515 times the number
of twist regions in the diagram. C is at most 113.

57M25, 57M50

1 Introduction

Given a diagram of a knot or link, our goal is to determine geometric information about
the complement of that link in S3 . In particular, if the complement admits a hyperbolic
structure, then by Mostow–Prasad rigidity that structure is unique. We ought to be
able to make explicit statements about the geometry of this link complement, including
statements about its volume. However, such results based purely on a diagram seem to
be rare.

Given a particular diagram, there are examples of volume computations. For example,
Cao and Meyerhoff proved the smallest volume knot or link complement was the figure
eight knot complement [4]. Given a simple diagram, computer software such as Weeks’
SnapPea can often compute a hyperbolic structure, including the volume [16].

For particular classes of knots and links, other results on volume have been determined.
Lackenby proved that in the special case in which a knot or link is alternating, the
volume of the complement is bounded above and below by the twist number of a diagram
[10]. In fact, the upper bound is valid for all knots, not just alternating. This upper
bound was further improved by Agol and D Thurston in an appendix to Lackenby’s
paper. Additionally, they found a sequence of links with volume approaching the upper
bound.

Recently, the lower bound has been improved by work of Agol, Storm and Thurston [2].
The proof of this result still requires that the links in question be alternating, however.
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Our result is an extension of these results. We prove that a similar lower bound holds for
a large class of knots and links, without the requirement that these knots be alternating.
We do, however, need to introduce a requirement that the links be highly twisted in each
twist region. Our methods use explicit deformation of a hyperbolic structure through
cone manifolds, using methods of Hodgson and Kerckhoff [8; 9]. The high amount
of twisting ensures that the explicit estimates in their papers and this one will apply
throughout the deformation.

In order to state our results, we review some definitions concerning the diagram of a
knot or link, following Lackenby [10].

Consider the diagram of a knot or link as a 4–valent graph in the plane, where associated
to each vertex is over-under crossing information. A bigon region is a region of this
graph bounded by only two edges.

Definition 1.1 A twist region of a diagram of a link K consists of maximal collections
of bigon regions arranged end to end. A single crossing adjacent to no bigons is also a
twist region. Let DK denote the diagram of K . We denote the number of twist regions
in a diagram by tw.DK /. See Figure 1.

Figure 1: Twist regions of the diagram are encircled with dashed lines. For
this diagram, tw.DK /D 3 .

Our statements concern the number of twist regions of a diagram of a knot or link. In
order to rule out extraneous twist regions, we need the diagram to be reduced in the
sense of the following two definitions.

First, we require the diagram to be prime. That is, any simple closed curve which
meets two edges of the diagram transversely must bound a region of the diagram with
no crossings.

Second, we require the diagram to be twist reduced. That is, if any simple closed curve
meets the diagram transversely in four edges, with two points of intersection adjacent
to one crossing and the other two adjacent to another crossing, then that simple closed
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curve must bound a region of the diagram consisting of a (possibly empty) collection
of bigons arranged end to end between the crossings.

If a diagram of a hyperbolic knot or link is not prime, them some crossings are
extraneous and can be removed to obtain a prime diagram. If it is not twist reduced,
then a series of flypes will decrease the number of twist regions of the diagram, until
we are left with a twist reduced diagram.

With these definitions, we are ready to state our results.

Theorem 1.2 There is a universal constant C such that if K is a knot or link admitting
a prime, twist reduced diagram DK with at least 2 twist regions and at least C crossings
in each twist region, then S3�K is hyperbolic with volume bounded below:

Volume.S3
�K/� tw.DK /.3:3515/:

Further, the universal constant C is at most 113.

The upper bound on volume given by Lackenby, Agol and D Thurston is also linear
in the number of twist regions of the diagram [10]. Specifically, Agol and Thurston
showed

Volume.S3
�K/� 10 v3.tw.DK /� 1/

where v3 .� 1:01494/ is the volume of a regular hyperbolic ideal tetrahedron.

Thus the results in this paper extend the class of knots and links for which volume is
bounded above and below by linear functions of tw.DK /.

Our proof is geometric in nature. We begin with a link L whose complement is
geometrically explicit. We show that S3�K can be obtained from S3�L by Dehn
filling. We determine a lower bound on the volume of the link complement S3�L.
We then perform hyperbolic Dehn filling by a cone deformation. Our final result is
obtained by bounding the change in geometry under this cone deformation.

In Section 2, we describe the link L and explain how to obtain S3�K from S3�L

by Dehn filling. In Section 3, we review results on cone deformations and describe
their application to our particular situation. Finally, in Section 4 we put these results
together to conclude the proof of Theorem 1.2.

2 Initial geometric estimates

2.1 The augmented link L

Start with a prime, twist reduced diagram DK of a link K . In the rest of this paper, we
will assume the diagram DK is fixed once and for all. To simplify notation, we will
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refer to this fixed diagram and the knot by the same symbol K . Thus we will write
tw.K/ to mean tw.DK /. The reader should note that the twist number tw.DK / is
dependent upon the particular choice of prime, twist reduced diagram. However, since
our diagram is now fixed, this simplification should cause no confusion.

Given our diagram of K , we obtain a new link by adding additional link components
to the diagram. At each twist region, encircle the twist region by a simple curve, called
a crossing circle. See Figure 2 (a) and (b). Links with added crossing circles have been
studied by many people, including Adams [1]. These links were used by Lackenby,
and also by Agol and D Thurston to improve Lackenby’s volume results for alternating
links [10]. Provided the original diagram of K was prime and twist reduced with
at least two twist regions, then the link with crossing circles added is known to be
hyperbolic. This can be shown either using methods of Adams [1], or directly using
Andreev’s theorem [13].

Let J be the link with crossing circles added to each twist region of K . Modify the
diagram of J by removing pairs of crossings at each twist region, and let L be this new
link. Now, S3�J is homeomorphic, and thus isometric by Mostow–Prasad rigidity,
to the manifold S3�L. The diagram of L consists of strands in the projection plane
encircled in pairs by crossing circles. These strands in the projection plane only cross,
if at all, in pairs at crossing circles, and here they may only cross once. We will call
such a link an augmented link. See Figure 2 (c).

(a) (b) (c)

Figure 2: (a) The original link diagram K (b) Crossing circles added
(c) The diagram of L

The augmented link L has a complement with nice geometric properties, allowing us
to give estimates on the volume of S3�L. Before giving these estimates, we relate
S3�L to the complement of the original link, S3�K .
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2.2 Dehn filling on S 3 � L

Let Ci be the i –th crossing circle of the link L. Take a horoball neighborhood Ni of
the cusp corresponding to Ci in S3�L. Then Ni has torus boundary, with meridian
� and longitude �. If we glue a solid torus onto S3�L�Ni in such a way that the
boundary of the solid torus is glued to the boundary @Ni , with the curve �Cni� on @Ni

bounding a meridional disk of the solid torus, then we obtain a new link complement
in S3 . The diagram of this link is the same as that of L, only now ni full twists (ie
2ni crossings) have been inserted into the i –th twist region, and the crossing circle Ci

has been removed (see for example Rolfsen [14, Chapter 9]). Recall that the insertion
of a solid torus into the manifold S3�L in this manner is called the Dehn filling of
S3�L along the slope 1=ni on Ci .

Now, since L was originally obtained from K by adding crossing circles and removing
crossings at twist regions in a diagram, by choosing values for the ni appropriately at
each crossing circle, this type of Dehn filling performed at each crossing circle will
give us back the original link complement S3�K . Precisely, we perform Dehn filling
of S3�L along the slopes .1=n1; 1=n2; : : : ; 1=ntw.K // on crossing circle components
to obtain the manifold S3�K .

2.3 Decomposition of S 3 � L

In their appendix to Lackenby’s paper [10], Agol and D Thurston describe how to
decompose the link complement S3�L into totally geodesic ideal polyhedra when L

happens to have no crossings of strands in the projection planes (ie in our case, when
K had an even number of crossings at each twist region). Their methods immediately
extend to the case when single crossings of the strands in the projection plane are
allowed at each twist region. In the following paragraphs, we review the main results.
See also Futer and Purcell [6] for more details and pictures.

First, consider a link with no single crossings in the projection plane. Call this link xL.
Notice that a reflection through the projection plane preserves xL. Thus the projection
plane is a totally geodesic surface in S3� xL (see for example Leininger [11]). Now
slice S3� xL along the projection plane. This breaks the manifold into two pieces with
totally geodesic boundary. Each 2–punctured disc bounded by a crossing circle has
been sliced in half. Next slice each of these halves and open them up into two triangles.
Since triangles can be taken to be totally geodesic, the result is two identical polyhedra,
P1 and P2 , with totally geodesic faces.

The ideal polyhedra P1 and P2 have two kinds of faces. “White faces” come from
regions of the projection plane. The triangular “shaded faces” consist of halves of the
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2–punctured discs bounded by crossing circles. These two types of faces intersect each
other at right angles. The intersections are the edges of the polyhedra. The edges meet
in 4–valent ideal vertices. At these vertices, two white and two shaded faces lie across
from each other in pairs. See Figure 3.

A

A

C C

Figure 3: Decomposing S3 �L into ideal polyhedra: first slice along the
projection plane, then split the remaining halves of two–punctured disks to
obtain the polyhedron on the right.

We obtain the manifold S3� xL from these polyhedra by reversing the slicing procedure
above. First, on each Pi , form the 2–punctured disc halves by gluing back together the
two shaded triangles which were opened along their common vertex. Then glue the
white faces of P1 to the identical white faces of P2 .

By changing the gluing procedure slightly, we can obtain the manifold S3�L from
the polyhedra P1 and P2 as well. Recall the link L may have single crossings at some
crossing circles. For each crossing circle Ci of L, consider the four shaded triangles
(two on P1 , and two on P2 ) making up the disc bounded by the corresponding crossing
circle of xL. For example, the shaded faces labelled with A in Figure 3 are two of the
four triangles. The other two lie on an identical polyhedron.

If there are no single crossings at the twist region of Ci , then the gluing is the same
as for S3� xL: Glue the triangles of Pi , i D 1; 2, to each other across their common
vertex. For example, in Figure 3, the faces labelled A would be glued together. If there
is a single crossing at Ci , glue each triangle of P1 to the opposite one of P2 , matching
vertices from the crossing circle. For example, if we replace the link on the left in
Figure 3 with one with a single crossing in the top twist region, then in the gluing of
the two polyhedra the top face labelled A in the figure on the right would be glued to
the opposite face labelled A of the opposite polyhedron. This puts a “half-twist” into
the manifold. See Figure 4 for another schematic picture. In either case, S3 �L is
then obtained by gluing corresponding white faces of P1 and P2 together, as in the
gluing of S3� xL.
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Figure 4: Left: Gluing 2–punctured discs with no crossings Right: Gluing
2–punctured discs with a single crossing

Now, we wish to find lower bounds on volume. We will give a rough lower bound first
by considering the cusp volume of S3�L.

2.4 Volume estimate for S 3 � L

To give an estimate on the cusp volume of S3�L, we must analyze neighborhoods of
the ideal vertices of the polyhedra. These neighborhoods were analyzed quite carefully
with Futer in [6]. Again we record the results here.

A horospherical torus about a cusp of the manifold S3�L will intersect the polyhedra
P1 and P2 in rectangles. This is because at a cusp, ideal vertices of P1 and P2

meet. These vertices are all 4–valent, meaning their intersection with a horosphere is a
quadrilateral, and all faces of the Pi meet at right angles, forcing the quadrilateral to
be a rectangle. The sides of this rectangle can be colored according to the color of the
faces of intersection. Thus each rectangle will have two “white sides” across from each
other, and two “shaded sides” across from each other. When we glue the polyhedra
together to form S3�L, we glue these rectangles along white and shaded sides. Thus
each cusp of S3�L is tiled by rectangles. The number and size of these rectangles
will give us a volume estimate.

The following two lemmas are essentially Lemmas 2.3 and 2.6 of [6].

Lemma 2.1 A horospherical torus about a cusp in S3�L corresponding to a crossing
circle is tiled by two rectangles. These rectangles are given by the intersection of the
horospherical torus with P1 and P2 .

� A longitude of the crossing circle is isotopic to the curve given by stepping along
two shaded sides of the rectangles.

� A meridian is isotopic to the curve given by a white side of a rectangle plus
� times a shaded side, where � D 0;˙1 depending on whether the crossing
circle bounded no crossings, or one crossing in the positive or negative direction,
respectively.
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Lemma 2.2 A horospherical torus about a cusp in S3 �L corresponding to a link
component Li in the projection plane is tiled by 2 C.Li/ rectangles, where C.Li/ is
the number of crossing circles, counted with multiplicity, through which Li passes in
the diagram of L.

When K is a knot with diagram DK , there is just one link component in the projection
plane, and so it passes through each crossing circle twice. Since the number of crossing
circles in the diagram of L is tw.K/, in this case the number of rectangles in the cusp
of S3�L corresponding to the link component in the projection plane is 4 tw.K/.

When K is a link, we still have two strands passing through each crossing circle.
Thus the total number of rectangles in all the cusps of S3�L corresponding to link
components on the projection plane is still 4 tw.K/.

We record these results in the following lemma.

Lemma 2.3 There are a total of 4 tw.K/ rectangles tiling all horospherical tori about
the cusps of S3�L corresponding to link components in the projection plane.

We need the sizes of these rectangles. Again these results were previously computed.
The following is essentially Corollary 3.9 of [6].

Lemma 2.4 There exists a choice of horospheres expanded about all cusps of S3�L

so that given this expansion, the length of any shaded side of a rectangle is exactly one.
The length of any white side of a rectangle is at least one.

These lemmas immediately give the following proposition.

Proposition 2.5 Let K be a link with a prime, twist reduced diagram with tw.K/� 2

twist regions. Then the augmented link L obtained by adding a crossing circle to the
diagram of K at each twist region has complement S3�L with cusp volume at least
3 tw.K/.

Proof We can compute the cusp volume by computing the volume of a region in the
universal cover H3 of S3�L which projects to the cusp in a one-to-one manner.

Consider the upper half space model of H3 . For any cusp, we can conjugate so that the
point at infinity in this model of H3 projects to that cusp under the covering map. Then
the rectangles tiling that cusp lift to give rectangles tiling a horosphere about infinity.
For each rectangle on the cusp, choose a representative on the horosphere projecting
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to that rectangle. Then the volume of the cusp is given by the sum of the volumes of
regions of H3 lying over these rectangles.

By Lemma 2.4, the volume over any of these rectangles is at least as large as the volume
lying over the square with side length 1. A calculation shows that the volume lying
over a square of side length 1 is 1=2. So the volume is at least 1=2 times the total
number of rectangles tiling all cusps of S3�L.

To determine the total number of rectangles tiling all cusps of S3 �L, we use the
previous lemmas. By Lemma 2.3, there are 4 tw.K/ rectangles tiling all cusps coming
from link components in the projection plane. By Lemma 2.1, there are 2 rectangles
per crossing circle. But there are tw.K/ total crossing circles in the diagram of L.
Hence there are 2 tw.K/ rectangles tiling cusps coming from crossing circles. So the
total number of rectangles tiling all cusps of S3�L is 6 tw.K/.

Thus the total cusp volume is at least 6 tw.K/.1=2/D 3 tw.K/.

We obtain a better estimate on volume by combining this cusp estimate with Böröczky’s
lower bound for the density of a horoball packing in hyperbolic space [3]. By his
result, the volume of a maximal cusp neighborhood in a hyperbolic 3–manifold M

is at most
p

3=.2v0/� 0:853276 times the volume of the manifold M , where v0 is
the volume of a regular ideal hyperbolic tetrahedron. Thus the volume of S3�L is at
least .3 tw.K//=.0:853276/� 3:51586 tw.K/.

Corollary 2.6 Let K be a link with a prime, twist reduced diagram with tw.K/� 2

twist regions. Then the augmented link L obtained by adding a crossing circle to
the diagram of K at each twist region has complement S3 �L with volume at least
.3:51586/ tw.K/.

3 Deformation through cone manifolds

3.1 Hyperbolic Dehn filling

In the previous section, we obtained a hyperbolic link whose geometry could be
determined explicitly. This hyperbolic link was related to our original link by a Dehn
filling, ie by gluing solid tori into the cusps corresponding to crossing circles.

Thurston showed that most Dehn fillings on components of a hyperbolic link comple-
ment can be obtained by a hyperbolic Dehn filling, that is, by deforming the complete
hyperbolic geometric structure on the cusped manifold through incomplete hyperbolic
structures, yielding a new manifold with a final complete hyperbolic structure [15].
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Hodgson and Kerckhoff were able to make this explicit in [9]. They showed that if the
normalized lengths of the slopes along which the hyperbolic Dehn filling is performed
are each longer than a universal constant, then hyperbolic Dehn filling is possible. In
particular, in this case of long slopes, a special type of deformation through incomplete
hyperbolic structures exists, called a hyperbolic cone deformation. In a hyperbolic
cone deformation, each of the intermediate incomplete structures of the deformation is
a hyperbolic cone manifold.

For a complete description of hyperbolic cone manifolds and the metrics involved,
see Hodgson and Kerckhoff [8]. For our purposes, a hyperbolic cone manifold M

admits a smooth hyperbolic metric everywhere except along a link †. At each link
component †i of †, a tubular neighborhood has meridional cross section which is a
2–dimensional hyperbolic cone, with cone angle ˛i . The cone manifold structure on
M is locally parameterized by the collection of angles .˛1; ˛2; : : : ; ˛N /.

In our case, recall that we wish to perform Dehn filling on S3�L to obtain S3�K .
The fillings are performed along the slopes 1=ni on the crossing circles. Thus our
singular locus † will consist of the cores of the crossing circles. Provided our slopes are
long enough to meet the requirements found in [9], we will obtain a cone deformation
of the hyperbolic structure on S3�L with initial cone angles all 0. Each cone angle
will increase strictly monotonically to cone angle 2� under the deformation.

In [9], Hodgson and Kerckhoff found bounds on the change of volume under certain
cone deformations, in particular those with a single component of the singular locus
†. Since we are filling along multiple cusps, with multiple components of † (one per
crossing circle), we will need versions of the results in [9] which allow filling along
more than one cusp. We state those results here.

3.2 Change of volume

The following theorem is Theorem 6.5 of [9], modified for the case of multiple compo-
nents of the singular locus †. The notation is from that paper. In particular,

(1) H.z/D
1C z2

3:3957 z.1� z2/
;

and

(2) eG .z/D .1C z2/2

6:7914 z3.3� z2/
:
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Theorem 3.1 Let X be a cusped hyperbolic 3–manifold and M a hyperbolic 3–
manifold which can be joined by a smooth family of hyperbolic cone manifolds with
cone angles 0 � ˛i � 2� along the i –th component †i of a link †. Suppose that
˛i`i � 0:5098 holds throughout the deformation, where `i denotes the length of †i .
Then the difference in volume

�V D Volume.X /�Volume.M /

satisfies �V �
X

i

Z 1

yzi

H 0.w/

8H.w/.H.w/� eG .w// dw:

Here yzi D tanh.y�i/, y�i is the unique solution of 1:69785 tanh.y�i/= cosh.2y�i/D 2� ỳi
with y�i � 0:531, and ỳi is the length of †i in M .

Since this version of the theorem is somewhat different from that in [9], we outline its
proof in the appendix, Section 5.

4 The volume estimate

In this section, we will find conditions under which Theorem 3.1 will apply. Using
these conditions, we can complete the proof of Theorem 1.2.

For Theorem 3.1 to apply, we first need a smooth cone deformation from the manifold
S3�L to the manifold S3�K . We also need each pair of cone angle ˛i and length
of singular locus component `i to satisfy the inequality ˛i`i � 0:5098.

In fact, the existence of the deformation and the bound on ˛i`i are both given by
Hodgson and Kerckhoff in Theorem 5.12 of [9]. (More accurately, these are given
in the proof of that theorem.) In our situation, this theorem states that provided the
slopes 1=ni along which we perform Dehn filling have normalized length at leastp

2.56:4696/� 10:628, then a cone deformation exists with initial point the complete
hyperbolic structure on S3�L, and extends to give the complete hyperbolic structure
on S3�K with each cone angle equal to 2� .

Normalized length is defined as follows.

Definition 4.1 Let s be a slope on a cusp with cusp torus T . Let ˛ be a geodesic
representative of s on T . The normalized length of s is defined to be the length of ˛
divided by the square root of the area of T :

Normalized length.s/D
Length.˛/p

Area.T /
:
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At the i –th crossing circle, recall we perform Dehn filling along the curve �iD�Cni�,
where � is a meridian of a torus about this crossing circle, and � is a longitude. Thus we
need to estimate the normalized length of this curve, to ensure it is at least

p
2.56:4696/.

In Section 2, Lemma 2.1, we saw that a torus about a crossing circle is tiled by two
rectangles with white and shaded sides, and meridian and longitude given by steps
along those sides. The longitude � is given by two steps along shaded sides. If the
crossing circle bounds a single crossing, then � is given by one step along a white
side, plus or minus a step along a shaded side, and �i is given by a step along a white
side plus (or minus) 2niC 1 steps along shaded sides. If the crossing circle bounds no
single crossing, then � is given by one step along a white side, and �i is given by a
step along a white side plus (or minus) 2ni steps along shaded sides. In either case,
note that if ci is the number of crossings in the i –th twist region, then the curve �i is
given by one step along a white side plus (or minus) ci steps along shaded sides.

Let w denote the length of a white side and let s denote the length of a shaded side.
Since the area of the torus is 2sw , the normalized length bLi of �i is given by

bLi D

s
w

2s
C

c2
i s

2w
:

This will be a minimum when w=2s equals ci=2, and that minimum value is
p

ci .
Hence we need ci large enough that

p
ci �

p
2.56:4696/D

p
112:9392:

Thus ci � 113 will be sufficient.

Then Theorem 5.12 of [9] will apply to X DS3�L to give the desired cone deformation
and bounds on the ˛i`i . Hence Theorem 3.1 applies to X DS3�L and M DS3�K ,
and we find

Volume.X /�Volume.M /�

tw.K /X
iD1

Z 1

yzi

H 0.w/dw

8H.w/.H.w/� eG .w//
Note the sum is over all components of the singular locus. In our case, these correspond
to the crossing circles, and there are exactly tw.K/ of these.

In the i –th cusp, the value of z decreases from 1 to the value yzi . Recall from the
statement of Theorem 3.1 that yzi D tanh.y�i/, where y�i is the unique solution of some
equation such that y�i � 0:531. In particular, y�i is guaranteed to be at least 0:531. So
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yzi is at least z1 D tanh.0:531/. Thus the decrease in volume is at most:

tw.K /X
iD1

Z 1

z1

H 0.w/dw

8H.w/.H.w/� eG .w// �
tw.K /X
iD1

0:16436D tw.K/.0:16436/

Hence Volume.M /� Volume(X)� tw.K/.0:16436/:

Also, we know by Corollary 2.6 that Volume.X /� .3:51586/ tw.K/. Hence we obtain
our final result:

Volume.M /� .3:51586/ tw.K/� tw.K/.0:16436/D tw.K/.3:3515/

This concludes the proof of Theorem 1.2 which we restate.

Theorem 4.2 Let K be a link in S3 admitting a prime, twist reduced diagram with
tw.K/� 2 twist regions and at least 113 crossings per twist region. Then the volume
of S3�K satisfies:

Volume.S3
�K/� tw.K/.3:3515/

5 Appendix

In this appendix, we sketch the proof of Theorem 3.1.

The proof is identical to that in [9], except for small modifications that need to be made
for the case in which the cone manifold has multiple components of the singular locus.

In particular, the following changes to that proof need to be made. First, in [9], the
cone deformation was parameterized by t D ˛2 . When there are multiple components,
we can no longer guarantee that the deformation is parameterized by t D ˛2

j for each
j̨ . We do know that some parameterization exists for which the calculations of [9] go

through (see the comment at the bottom of page 41 in [9] and Purcell [12]), but we
don’t know specifically what that parameterization will be. Thus we need to modify
the calculations to be independent of parameterization.

We also need to make modifications to calculations which used the area estimate for a
single cusp, Theorem 4.4 of [9]. As stated in that theorem, the lower bound for the
area is half as large when the singular locus has multiple components. Thus we replace
Corollary 5.1 of [9] with half that estimate:

(3) ˛i`i �
1

2

�
3:3957

tanh.R/
cosh.2R/

�
D 1:6978

tanh.R/
cosh.2R/

:
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We recompute calculations using this new estimate.

With these two modifications, the proof goes through nearly as written in [9]. Following
their notation, we begin by letting ui D ˛i=`i . Hodgson and Kerckhoff bounded the
change in ui by finding bounds on dui=dt , in Proposition 5.6. Rather than take
derivatives with respect to time t , we take derivatives with respect to cone angle ˛i in
the i –th cusp. This is independent of parameterization. The half of Proposition 5.6 of
[9] necessary for Theorem 3.1 becomes:

(4)
1

˛i

dui

d˛i
� 4eG .zi/

where the function eG .z/ is defined as in (2).

Now we are ready to modify the proof of Theorem 6.5 of [9] directly. From the Schläfli
formula (see Cooper, Hodgson and Kerckhoff [5] and Hodgson [7]), the change in
volume V of a hyperbolic cone manifold during a deformation satisfies

dV D�
1

2

X
i

`i d˛i D�

X
i

˛i d˛i

2ui
:

We will rewrite ui in terms of the function H , where H is given by (1). H was
defined so that H.tanh.R// is the reciprocal of the function

h.R/D 3:3957
tanh.R/

cosh.2R/
;

which appears in the inequality (3). Provided R� 0:531, this function h.R/ is strictly
decreasing, and thus we may define its inverse for x in the interval .0; h.0:531/��

.0; 1:019675�. Since ˛i`i � 0:5098, 2˛i`i � h.0:531/. We define �i D h�1.2˛i`i/.
Letting zi D tanh.�i/, we have ui D 2˛2

i H.zi/. So the term �˛i=.2ui/ equals
�1=.4˛iH.zi//, and we obtain:

(5) dV D�
X

i

1

4˛iH.zi/
d˛i

Now, by inequality (4), we have

1

˛i

dui

d˛i
� 4eG .zi/:

Thus
1

˛i

dui

d˛i
D

1

˛i

d

d˛i
.2˛2

i H.zi//D 4H.zi/C 2˛iH
0.zi/

dzi

d˛i
:
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Hence ˛iH
0.zi/

dzi

d˛i
� 2.eG .zi/�H.zi//

which implies

(6) �
1

˛i
�

H 0.zi/

2.H.zi/� eG .zi//

dzi

d˛i
:

To see that the direction of the inequalities is correct, notice that H.zi/� eG .zi/ is
positive.

Now, multiply the inequality (6) by 1=.4H.zi//. This bounds each term in equation (5).

dV �
X

i

H 0.zi/

8H.zi/.H.zi/� eG .zi//
dzi :

We integrate over the deformation. As ˛i increases from 0 to 2� , zi decreases from
1 to yzi . When ˛i has reached 2� , it remains 2� and there is no further contribution.

Hence �V �
X

i

Z 1

yzi

H 0.zi/

8H.zi/.H.zi/� eG .zi//
dzi :
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