A function on the homology of 3-manifolds

Vladimir Turaev

Abstract

In analogy with the Thurston norm, we define for an orientable 3-manifold M a numerical function on $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. This function measures the minimal complexity of folded surfaces representing a given homology class. A similar function is defined on the torsion subgroup of $H_{1}(M ; \mathbb{Z})$. These functions are estimated from below in terms of abelian torsions of M.

57M27; 57Q10

1 Introduction

One of the most beautiful invariants of a 3-dimensional manifold M is the Thurston semi-norm on $H_{2}(M ; \mathbb{Q})$ [9]. The geometric idea leading to this semi-norm is to consider the minimal genus of a surface in M realizing any given 2-homology class of M. Thurston's definition of the semi-norm uses a suitably normalized Euler characteristic of the surface rather than the genus. The Thurston semi-norm is uninteresting for a rational homology sphere M, since then $H_{2}(M ; \mathbb{Q})=0$. However, a rational homology sphere may have nontrivial 2-homology with coefficients in \mathbb{Q} / \mathbb{Z}. Homology classes in $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ can be realized by folded surfaces, locally looking like unions of several half-planes in \mathbb{R}^{3} with common boundary line. It is natural to consider "smallest" folded surfaces in a given homology class.

We use this train of ideas to define for an arbitrary orientable 3-manifold M (not necessarily a rational homology sphere) a function

$$
\theta=\theta_{M}: H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow \mathbb{R}_{+}=\{r \in \mathbb{R} \mid r \geq 0\} .
$$

This function measures the "minimal" normalized Euler characteristic of a folded surface representing a given class in $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$.

Using the boundary homomorphism

$$
d: H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H_{1}(M)=H_{1}(M ; \mathbb{Z}),
$$

whose image is equal to Tors $H_{1}(M)$, we derive from θ a function

$$
\Theta=\Theta_{M}: \text { Tors } H_{1}(M) \rightarrow \mathbb{R}_{+}
$$

by $\Theta(u)=\inf _{x \in d^{-1}(u)} \theta(x)$ for any $u \in$ Tors $H_{1}(M)$. One can view $\Theta(u)$ as a "normalized minimal genus" of oriented knots in M representing u. If M is a rational homology sphere, then d is an isomorphism and $\Theta=\theta \circ d^{-1}$.

We give an estimate of the function θ from above in terms of the Thurston semi-norm on knot complements in M. This estimate implies that θ is bounded from above and is upper semi-continuous with respect to a natural topology on $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. (I do not know whether θ is continuous.) The functions θ and Θ are also estimated from below using abelian torsions of M. These estimates are parallel to the McMullen estimate [6] of the Thurston semi-norm in terms of the Alexander polynomial.

A simple example of nonzero functions θ and Θ is provided by the lens space $M=$ $L(5,1)$. We identify $H_{1}(M)=\mathbb{Z} / 5 \mathbb{Z}$ so that the core circles of the two solid tori forming M represents $\pm 1 \in \mathbb{Z} / 5 \mathbb{Z}$. It is shown in Section 2.3, Section 2.4, and Section 6.1 that $\Theta_{M}(\pm 1)=\Theta_{M}(0)=0$ and $\Theta_{M}(2)=\Theta_{M}(-2) \geq 1 / 5$. In this example, the function Θ takes nonzero values only on $\pm 2 \in \mathbb{Z} / 5 \mathbb{Z}$. This shows that, in contrast to the Thurston semi-norm, the function Θ may not satisfy the triangle inequality and may be nonhomogeneous, that is in general $\Theta(k x) \neq k \Theta(x)$ for $k \in \mathbb{Z}$ and $x \in H_{1}(M)$. The same remarks apply to θ since in this example $H_{2}(M ; \mathbb{Q} / \mathbb{Z})=H_{1}(M)$ and $\theta=\Theta \circ d$.

The Thurston semi-norm of a 3-manifold M is fully determined by the Heegaard-Floer homology of M (see Ozsváth and Szabó [8]), and by the Seiberg-Witten monopole homology of M (see Kronheimer and Mrowka [4]). It would be interesting to obtain similar computations of the functions θ and Θ.

The organization of the paper is as follows. We introduce the functions θ and Θ in Section 2 and estimate them from above in Section 3. In Section 4 these functions are estimated from below in the case where the first Betti number of the 3 -manifold is nonzero. A similar estimate for rational homology spheres is given in Section 5. In Section 6 we describe a few examples. In Section 7 we make several miscellaneous remarks.

Throughout the paper, the unspecified group of coefficients in homology is \mathbb{Z}.

2 Folded surfaces and the functions θ, Θ

2.1 Folded surfaces

By a folded surface (without boundary), we mean a compact 2-dimensional polyhedron such that each point has a neighborhood homeomorphic to a union of several half-planes
in \mathbb{R}^{3} with common boundary line. Such a neighborhood is homeomorphic to $\mathbb{R} \times \Gamma_{n}$ where n is a positive integer and Γ_{n} is a union of n closed intervals with one common endpoint and no other common points.

The interior $\operatorname{Int}(X)$ of a folded surface X consists of the points of X which have neighborhoods homeomorphic to \mathbb{R}^{2}. Clearly, $\operatorname{Int}(X)$ is a 2-dimensional manifold. The singular set $\operatorname{sing}(X)=X-\operatorname{Int}(X)$ of X consists of a finite number of disjoint circles. A neighborhood of a component of $\operatorname{sing}(X)$ in X fibers over this component with fiber Γ_{n} for some $n \neq 2$.

Cutting out X along $\operatorname{sing}(X)$ we obtain a compact 2 -manifold (with boundary) $X_{\text {cut }}$. Each component of $\operatorname{Int}(X)$ is the interior of a component of $X_{\text {cut }}$. Set

$$
\chi-(X)=\sum_{Y} \chi-(Y),
$$

where Y runs over all components of $X_{\text {cut }}$ and

$$
\chi-(Y)=\max (-\chi(Y), 0) .
$$

The number $\chi-(X) \geq 0$ measures the complexity of X. It is equal to zero if and only if all components of $X_{\text {cut }}$ belong to the following list: spheres, tori, projective planes, annuli, Möbius bands, disks.

By an orientation of a folded surface X, we mean an orientation of the 2-manifold $\operatorname{Int}(X)$. An orientation of X allows us to view X as a singular 2-chain with integer coefficients. This 2 -chain is denoted by the same letter X. Its boundary expands as $\sum_{K} i(K)\langle K\rangle$ where K runs over connected components of $\operatorname{sing}(X)$, the symbol $\langle K\rangle$ denotes a 1-cycle on K representing a generator of $H_{1}(K) \cong \mathbb{Z}$ and $i(K) \in \mathbb{Z}$. Multiplying, if necessary, both $\langle K\rangle$ and $i(K)$ by -1 , we can assume that $i(K) \geq 0$. In this way the integer $i(K)$ is uniquely determined by K. It is called the index of K in X. For K with $i(K) \neq 0$, the 1 -cycle $\langle K\rangle$ determines an orientation of K. We say that this orientation is induced by the one on X.

We call a folded surface X simple if it is oriented, the set $\operatorname{sing}(X)$ is homeomorphic to a circle, and its index in X is nonzero. This index is denoted i_{X}. Note that X is not required to be connected; however, all components of X but one are closed oriented 2-manifolds.

2.2 Representation of 2-homology by folded surfaces

Let M be an orientable 3-manifold. By a folded surface in M, we mean a folded surface embedded in M. Given a simple folded surface X in M, the 2 -chain $\left(i_{X}\right)^{-1} X$
with rational coefficients is a 2 -cycle modulo \mathbb{Z}. This cycle represents a homology class in $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ denoted $[X]$.

The short exact sequence of groups of coefficients $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$ induces an exact homology sequence:

$$
\begin{equation*}
\cdots \rightarrow H_{2}(M ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H_{1}(M) \rightarrow H_{1}(M ; \mathbb{Q}) \rightarrow \cdots \tag{1}
\end{equation*}
$$

The homomorphism $H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H_{1}(M)$ in this sequence will be denoted d_{M} and called the boundary homomorphism. The exactness of (1) implies that the image of d_{M} is equal to the group Tors $H_{1}(M)$ consisting of all elements of $H_{1}(M)$ of finite order.

For a simple folded surface X in M, the homomorphism d_{M} sends $[X]$ into the homology class in $H_{1}(M)$ represented by the circle $\operatorname{sing}(X)$ with orientation induced by the one on X.

For example, if $X \subset M$ is a compact oriented 2 -manifold with connected nonvoid boundary, then X is a simple folded surface with $\operatorname{sing}(X)=\partial X, i_{X}=1$, and $[X]=0$. Another example: consider an unknotted circle K lying in a 3-ball in M and pick $n \neq 2$ closed 2-disks bounded by K in this ball and having no other common points. We orient these disks so that the induced orientations on K are the same. The union of these disks, $X=X(n)$, is a simple folded surface with $\operatorname{sing}(X)=K, i_{X}=n$, and $[X]=0$.

Lemma 2.1 Any homology class $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ can be represented by a simple folded surface.

Proof Set $d=d_{M}: H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H_{1}(M)$. We can represent $d(x) \in \operatorname{Tors} H_{1}(M)$ by an oriented embedded circle $K \subset \operatorname{Int}(M)=M-\partial M$. Pick an integer $n \geq 1$ such that $n d(x)=0$. The standard arguments, using the Poincaré duality and transversality, show that there is a simple folded surface X in M such that $\operatorname{sing}(X)=K$ and $i_{X}=n$.

Since both X and M are orientable, the 1 -dimensional normal bundle of $\operatorname{Int}(X)$ in M is trivial. Keeping $\operatorname{sing}(X)$ and pushing $X-\operatorname{sing}(X)$ in a normal direction, we obtain a "parallel" copy X_{1} of X such that $X \cap X_{1}=\operatorname{sing}\left(X_{1}\right)=\operatorname{sing}(X)=K$. The orientation of X induces an orientation of X_{1} in the obvious way. Repeating this process $k \geq 1$ times, we can obtain k parallel copies $X_{1}, X_{2}, \ldots, X_{k}$ of X meeting each other exactly at K. Then $X^{(k)}=X_{1} \cup X_{2} \cup \ldots \cup X_{k}$ is a simple folded surface such that $\operatorname{sing}\left(X^{(k)}\right)=K$ and $i_{X^{(k)}}=n k$. It follows from the construction that $\left[X^{(k)}\right]=[X] \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ for all $k \geq 1$.

The equalities $d(x)=[K]=d([X])$ imply that $x-[X] \in \operatorname{Ker} d=\operatorname{Im} j$, where j is the homomorphism $H_{2}(M ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ induced by the projection $\mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z}$. Pick $y \in j^{-1}(x-[X]) \subset H_{2}(M ; \mathbb{Q})$. There is an integer $k \geq 1$ such that $k y$ lies in the image of the coefficient homomorphism $H_{2}(M ; \mathbb{Z}) \rightarrow H_{2}(M ; \mathbb{Q})$. A fortiori, the homology class $n k y$ lies in this image. We represent $n k y$ by a closed oriented (possibly nonconnected) surface $\Sigma \subset M$. Since $d(x) \in$ Tors $H_{1}(M)$, the intersection number $\Sigma \cdot K=\Sigma \cdot d(x)$ is 0 . Applying if necessary surgeries of index 1 to Σ, we can assume that $\Sigma \cap K=\varnothing$. Then y is represented by the $2-$ cycle $(n k)^{-1} \Sigma$ in $M-K$ and $x=[X]+j(y)=\left[X^{(k)}\right]+j(y)$ is represented by the 2-cycle $(n k)^{-1}\left(X^{(k)}+\Sigma\right)$ $\bmod \mathbb{Z}$. Applying to $X^{(k)}$ and Σ the usual cut and paste technique, we can transform their union into a simple folded surface Z such that $\operatorname{sing}(Z)=\operatorname{sing}\left(X^{(k)}\right)=K$ and $i_{Z}=n k$. Clearly, $[Z]=x$.

2.3 Functions $\boldsymbol{\theta}$ and $\boldsymbol{\Theta}$

For an orientable 3-dimensional manifold M, we define a function $\theta=\theta_{M}$ from $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ to \mathbb{R}_{+}by

$$
\begin{equation*}
\theta(x)=\inf _{X} \frac{\chi-(X)}{i_{X}}, \tag{2}
\end{equation*}
$$

where $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ and X runs over all simple folded surfaces in M representing x. In particular, the class $x=0$ can be represented by the simple folded surface $X=X(n) \subset M$ with $n \neq 2$, constructed before Lemma 2.1. The equality $\chi-(X)=0$ implies that $\theta(0)=0$.

For a simple folded surface X, denote by $-X$ the same simple folded surface with opposite orientation in its interior. The obvious equalities

$$
[-X]=-[X], \quad \chi-(-X)=\chi-(X), \quad i_{-X}=i_{X}
$$

imply that $\theta(-x)=\theta(x)$ for all $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$.
We define a function $\Theta=\Theta_{M}$: Tors $H_{1}(M) \rightarrow \mathbb{R}_{+}$by

$$
\begin{equation*}
\Theta(u)=\inf _{x \in d^{-1}(u)} \theta(x)=\inf _{X} \frac{\chi-(X)}{i_{X}}, \tag{3}
\end{equation*}
$$

where $u \in$ Tors $H_{1}(M), X$ runs over all simple folded surfaces in M such that the circle $\operatorname{sing}(X)$ represents u, and $d: H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H_{1}(M)$ is the boundary homomorphism. In (3), we can restrict ourselves to connected X. Indeed, all components of X disjoint from $\operatorname{sing}(X)$ are closed oriented surfaces. They may be removed from X without increasing $\chi_{-}(X)$.

The properties of θ imply that $\Theta(0)=0$ and $\Theta(-u)=\theta(u)$ for all $u \in \operatorname{Tors} H_{1}(M)$. By the very definition of Θ, for all $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$,

$$
\theta(x) \geq \Theta(d(x))
$$

Using folded surfaces with boundary, we can similarly define relative versions

$$
H_{2}(M, \partial M ; \mathbb{Q} / \mathbb{Z}) \rightarrow \mathbb{R}_{+} \quad \text { and } \quad \text { Tors } H_{1}(M, \partial M ; \mathbb{Z}) \rightarrow \mathbb{R}_{+}
$$

of the functions θ and Θ. We will not study them in this paper.

2.4 Constructions and examples

2.4.1 Let Σ be a closed connected 2-manifold embedded in an oriented 3-manifold M. Let $K \subset \Sigma$ be a simple closed curve such that $\Sigma-K$ has an orientation which switches to the opposite when one crosses K in Σ. (Such an orientation exists when Σ is orientable and K splits Σ into two surfaces or when Σ is nonorientable and K represents the Stiefel-Whitney class $w^{1}(\Sigma) \in H^{1}(\Sigma ; \mathbb{Z} / 2 \mathbb{Z})=H_{1}(\Sigma ; \mathbb{Z} / 2 \mathbb{Z})$.) The orientations of M and $\Sigma-K$ induce an orientation of the normal bundle of $\Sigma-K$ in M. Keeping K and pushing $\Sigma-K$ in the corresponding normal direction, we obtain a copy Σ^{\prime} of Σ such that Σ^{\prime} transversely meets Σ along K. The union $X=\Sigma \cup \Sigma^{\prime}$ is a simple folded surface such that $\operatorname{sing}(X)=K$ and $i_{X}=4$. Then $\theta([X]) \leq(1 / 4) \chi_{-}(X)=(1 / 2) \chi_{-}(\Sigma-K)$.

For example, we can apply this construction to the projective plane $\Sigma=\mathbb{R} P^{2}$ in $\mathbb{R} P^{3}$ taking as K a projective circle on $\mathbb{R} P^{2}$. The resulting simple folded surface X represents the only nonzero element x of $H_{2}\left(\mathbb{R} P^{3} ; \mathbb{Q} / \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}$ because $\operatorname{sing}(X)$ represents the nonzero element of $H_{1}\left(\mathbb{R} P^{3}\right)=\mathbb{Z} / 2 \mathbb{Z}$. The equality $\chi_{-}(\Sigma-K)=0$ implies that $\theta_{\mathbb{R} P^{3}}=0$ and $\Theta_{\mathbb{R} P^{3}}=0$.
2.4.2 Consider the 3-dimensional lens space $M=L(p, q)$, where p, q are coprime integers with $p \geq 2$. The manifold M splits as a union of two solid tori with common boundary. It is easy to exhibit a folded surface $X \subset M$ such that $\operatorname{sing}(X)$ is the core circle of one of the solid tori and $X-\operatorname{sing}(X)$ is a disjoint union of p open 2-disks. This implies that the function Θ_{M} annihilates the elements of $H_{1}(M)$ represented by the core circles of the solid tori. Under an appropriate isomorphism $H_{1}(M) \cong \mathbb{Z} / p \mathbb{Z}$, these elements correspond to $1(\bmod p)$ and $q(\bmod p)$. This implies that $\Theta_{M}=0$ if $p=2$ or $p=3$ or $p=5, q=2$. For $p=2$, we recover the previous example, since $L(2,1)=\mathbb{R} P^{3}$.
2.4.3 Let K be an oriented homologically trivial knot in an oriented 3-manifold N. Let M be obtained by a (p, q)-surgery on K where p, q are coprime integers with $p \geq 2$. Thus, M is obtained by cutting out a tubular neighborhood $U \subset N$ of K and gluing it back along a homeomorphism $\partial U \rightarrow \partial U$ mapping the meridian $\mu \subset \partial U$ of K onto a curve on ∂U homological to $p \mu+q \lambda$, where $\lambda \subset \partial U$ is the longitude of K homologically trivial in $N-K$. The element $u \in H_{1}(M)$ represented by the (oriented) core circle of the solid torus $U \subset M$ has finite order. This follows from the fact that the p-th power of the core circle is homotopic in $U \subset M$ to $\lambda \subset \partial U$. We claim that $\Theta(u)=0$ if K is a trivial knot in N and $\Theta(u) \leq p^{-1}(2 g-1)$ if K is a nontrivial knot of genus $g \geq 1$. Indeed, the longitude λ bounds in $N-\operatorname{Int}(U)$ an embedded compact connected oriented surface of genus g. This surface extends in the obvious way to a simple folded surface X in M such that $\operatorname{sing}(X)$ is the core circle of $U \subset M$ and $i_{X}=p$. Clearly, $\chi-(X)=\max (2 g-1,0)$. This implies our claim. (For $p=2$, one should "double" X along $\operatorname{sing}(X)$ as in Section 2.4.1.) As we shall see below, if K is a nontrivial fibred knot and $p \geq 4 g-2$, then $\Theta(u)=p^{-1}(2 g-1)$.

3 Estimates from above and semi-continuity

In this section we estimate the function $\theta=\theta_{M}$ from above using the Thurston norm. Throughout this section, M is a connected orientable 3-manifold (possibly, noncompact).

3.1 Comparison with the Thurston norm

Recall first the definition of the Thurston semi-norm $\|\cdot\|_{M}$ on $H_{2}(M ; \mathbb{Q})$. The Poincaré duality (applied to compact submanifolds of M) implies that the abelian group $H_{2}(M)=H_{2}(M ; \mathbb{Z})$ has no torsion. We shall view $H_{2}(M)$ as a lattice in the \mathbb{Q}-vector space $H_{2}(M ; \mathbb{Q})=\mathbb{Q} \otimes_{\mathbb{Z}} H_{2}(M)$. For any $x \in H_{2}(M ; \mathbb{Q})$, there is an integer $n \geq 1$ such that $n x \in H_{2}(M)$. Then $\|x\|_{M}=n^{-1} \min _{\Sigma} \chi-(\Sigma) \in \mathbb{Q}$, where Σ runs over all closed oriented embedded surfaces in M representing $n x$. The number $\|x\|_{M}$ does not depend on the choice of n and is always realized by a certain Σ. Using surfaces in M with boundary on ∂M, one similarly defines the Thurston semi-norm on $H_{2}(M, \partial M ; \mathbb{Q})$.

Lemma 3.1 Let j be the coefficient homomorphism $H_{2}(M ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. Then $\theta(j(x)) \leq\|x\|_{M}$ for any $x \in H_{2}(M ; \mathbb{Q})$.

Proof Let Σ be a closed oriented embedded surface in M representing $n x \in H_{2}(M)$ with $n \geq 3$. The surface Σ is an oriented folded surface with empty singular set.

Consider a folded surface $X=X(n)$ inside a 3-ball in $M-\Sigma$, as constructed before Lemma 2.1. The union $Z=X \cup \Sigma$ is a simple folded surface representing x and $i_{Z}=i_{X}=n$. By the definition of θ,

$$
\theta(j(x)) \leq n^{-1} \chi_{-}(Z)=n^{-1} \chi_{-}(\Sigma) .
$$

Therefore $\theta(j(x)) \leq\|x\|_{M}$.
Lemma 3.2 Let K be an oriented knot in M. Set $N=M-K$ and let ι be the inclusion homomorphism $H_{2}(N ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q})$. Let j be the coefficient homomorphism $H_{2}(M ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. Then for any simple folded surface X in M with $\operatorname{sing}(X)=K$ and any $y \in H_{2}(N ; \mathbb{Q})$,

$$
\begin{equation*}
\theta([X]+j \iota(y)) \leq\left(i_{X}\right)^{-1} \chi_{-}(X)+\|y\|_{N} \tag{4}
\end{equation*}
$$

Proof Set $n=i_{X}$ and let k be a positive integer such that $k y \in H_{2}(N) \subset H_{2}(N ; \mathbb{Q})$. It is enough to prove that for any closed oriented surface $\Sigma \subset N$ representing $n k y$,

$$
\begin{equation*}
\theta([X]+j \iota(y)) \leq n^{-1} \chi_{-}(X)+(n k)^{-1} \chi_{-}(\Sigma) . \tag{5}
\end{equation*}
$$

This can be reformulated in terms of the simple folded surface $X^{(k)}$ as

$$
\theta\left(\left[X^{(k)}\right]+j \iota(y)\right) \leq(n k)^{-1}\left(\chi_{-}\left(X^{(k)}\right)+\chi_{-}(\Sigma)\right) .
$$

Therefore it is enough to prove that for any simple folded surface T in M with $\operatorname{sing}(T)=K$ and $i_{T}=n k$,

$$
\begin{equation*}
\theta([T]+j \iota(y)) \leq(n k)^{-1}\left(\chi_{-}(T)+\chi_{-}(\Sigma)\right) . \tag{6}
\end{equation*}
$$

Suppose first that T is compressible in $N=M-K$ in the sense that there is an embedded closed 2-disk $D \subset N$ such that $T \cap D=\partial D \subset T-K$ and the circle ∂D does not bound a 2 -disk in $T-K$. The surgery on T along D yields a simple folded surface T_{D} with $\left[T_{D}\right]=[T]$ and $\chi-\left(T_{D}\right)<\chi-(T)$. Applying this procedure several times, we can reduce (6) to the case where T is incompressible, ie T admits no disks D as above. By the same reasoning, we can assume that Σ is incompressible in N (it may be compressible in M). The homology class $[T]+j \iota(y) \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ is represented by the 2 -cycle $(n k)^{-1} T \cup \Sigma(\bmod \mathbb{Z})$. Deforming Σ in N so that it meets T transversely and applying to $T \cup \Sigma$ the usual cut and paste technique, we can transform $T \cup \Sigma$ into a simple folded surface Z with $\operatorname{sing}(Z)=\operatorname{sing}(T)=K$ and $i_{Z}=n k$. Clearly, $[Z]=[T]+j \iota(y)$. The folded surface Z may have spherical components (that is components homeomorphic to S^{2}) created from pieces of $T-K$ and Σ by cutting and pasting. One of these pieces will necessarily be a 2 -disk D such that either $D \subset T-K$ and $D \cap \Sigma=\partial D$ or $D \subset \Sigma$ and $D \cap(T-K)=\partial D$.

In the first case the incompressibility of Σ implies that the circle ∂D bounds a disk on Σ. The surgery on Σ along D yields a surface $\Sigma_{+} \approx \Sigma \amalg S^{2}$ homological to Σ in N. Then $\chi_{-}\left(\Sigma_{+}\right)=\chi_{-}(\Sigma)$ and the $1-$ manifold $T \cap \Sigma_{+}$has one component less than $T \cap \Sigma$. Similarly, if $D \subset \Sigma$, then the incompressibility of $T-K$ implies that ∂D bounds a disk on $T-K$. The surgery on T along D yields a simple folded surface $T_{+} \approx T \amalg S^{2}$ such that $\left[T_{+}\right]=[T], \chi_{-}\left(T_{+}\right)=\chi_{-}(T)$, and the $1-$ manifold $T_{+} \cap \Sigma$ has one component less than $T \cap \Sigma$. Continuing in this way, we can reduce ourselves to the case where Z does not have spherical components except the spherical components of T disjoint from Σ and the spherical components of Σ disjoint from T. A similar argument allows us to assume that the components of $Z-K$ are not disks except the disk components of $T-K$ disjoint from Σ. Then the additivity of the Euler characteristic under cutting and pasting implies that $\chi_{-}(Z)=\chi_{-}(T)+\chi_{-}(\Sigma)$. Therefore

$$
\theta([T]+j \iota(y)) \leq(n k)^{-1} \chi-(Z)=(n k)^{-1}\left(\chi-(T)+\chi_{-}(\Sigma)\right) .
$$

This proves (6), (5), and (4).

Theorem 3.3 If M is compact, then there is a number $C>0$ (depending on M) such that $\theta(x) \leq C$ for all $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$.

Proof Set $d=d_{M}: H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H_{1}(M)$. Since the group $\operatorname{Im} d=$ Tors $H_{1}(M)$ is finite, it is enough to prove that for every $u \in \operatorname{Tors} H_{1}(M)$, the values of θ on the elements of the set $d^{-1}(u)$ are bounded from above.

Consider first the case $u=0$. Then $d^{-1}(u)=\operatorname{Im} j$ where j is the coefficient homomorphism $H_{2}(M ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. We need to prove that the values of $\theta \circ j$ are bounded from above. Since M is compact, the group $H_{2}(M)$ is finitely generated. Pick a basis a_{1}, \ldots, a_{n} in $H_{2}(M)$ and let $Q \subset H_{2}(M ; \mathbb{Q})$ be the cube consisting of the vectors $r_{1} a_{1}+\ldots+r_{n} a_{n}$ with rational nonnegative $r_{1}, \ldots, r_{n} \leq 1$. The supremum $s=\sup _{x \in Q}\|x\|_{M}$ is a finite number, because the Thurston semi-norm extends to a continuous semi-norm on $H_{2}(M ; \mathbb{R})$ and the closure of Q in $H_{2}(M ; \mathbb{R})$ is compact. We claim that $\theta(j(x)) \leq s$ for any $x \in H_{2}(M ; \mathbb{Q})$. Indeed, there is $a \in H_{2}(M)$ such that $x+a \in Q$. Then $j(x)=j(x+a)$ and $\theta(j(x))=\theta(j(x+a)) \leq s$.

Consider now the case $u \neq 0$. Pick an oriented knot $K \subset M$ representing u and a simple folded surface X in M with $\operatorname{sing}(X)=K$. Then $d^{-1}(u)=\{[X]+j \iota(y)\}_{y}$ where ι is the inclusion homomorphism $H_{2}(M-K ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q})$ and y runs over $H_{2}(M-K ; \mathbb{Q})$. The rest of the argument goes as in the case $u=0$ using Lemma 3.2.

3.2 Semi-continuity

For compact M, the group $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ has a natural topology as follows. The image of the coefficient homomorphism $j: H_{2}(M ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ can be identified with the quotient $H_{2}(M ; \mathbb{Q}) / H_{2}(M)$. Provide $\operatorname{Im}(j)$ with the quotient topology induced by the standard topology in the finite dimensional \mathbb{Q}-vector space $H_{2}(M ; \mathbb{Q})$. This extends to a topology in $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ by declaring a set $U \subset H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ open if $(a+U) \cap \operatorname{Im}(j)$ is open in $\operatorname{Im}(j)$ for all $a \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. Recall that an \mathbb{R}-valued function f on a topological space A is upper semi-continuous if for any point $a \in A$ and any real $\varepsilon>0$, there is a neighborhood $U \subset A$ of a such that $f(U) \subset(-\infty, f(a)+\varepsilon)$.

Lemma 3.4 For compact M, the function $\theta=\theta_{M}$ is upper semi-continuous.
Proof Let $a \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ and $\varepsilon>0$. Let X be a simple folded surface in M representing a and such that $\left(i_{X}\right)^{-1} \chi_{-}(X) \leq \theta(a)+\varepsilon / 2$. Set $K=\operatorname{sing}(X)$ and $N=M-K$. Let $\iota: H_{2}(N ; \mathbb{Q}) \rightarrow H_{2}(M ; \mathbb{Q})$ be the inclusion homomorphism. Put

$$
V=\left\{y \in H_{2}(N ; \mathbb{Q}) \mid\|y\|_{N}<\varepsilon / 2\right\} .
$$

The set V is open in $H_{2}(N ; \mathbb{Q})$ since the Thurston norm is continuous. The set $\iota(V)$ is open in $H_{2}(M ; \mathbb{Q})$ since ι is an epimorphism. The set $j \iota(V)$ is open in $\operatorname{Im}(j)$ by definition of the topology in $\operatorname{Im}(j)$. Finally, the set $U=a+j \iota(V)$ is an open neighborhood of a in $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ by definition of the topology in $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. By (4), we have $\theta(U) \subset(-\infty, \theta(a)+\varepsilon)$. Hence θ is upper semi-continuous.

4 Estimates from below: the case $b_{1} \geq 1$

In this section we give an estimate from below for the functions $\theta=\theta_{M}$ and $\Theta=\Theta_{M}$ of a 3-manifold M with nonzero first Betti number $b_{1}(M)$. We begin with preliminaries on group rings and abelian torsions of 3-manifolds.

4.1 Preliminaries

Let H be a finitely generated abelian group written in multiplicative notation. Any element a of the group ring $\mathbb{Q}[H]$ expands uniquely in the form $a=\sum_{h \in H} a_{h} h$, where $a_{h} \in \mathbb{Q}$ and $a_{h}=0$ for all but finitely many h. We say that an element $h \in H$ is a-basic if $a_{h} \neq 0$. The (finite) set of a-basic elements of H is denoted B_{a}. The element $\sum_{h \in \operatorname{Tors} H} h$ of $\mathbb{Q}[H]$ will be denoted Σ_{H}. Clearly, $B_{\Sigma_{H}}=$ Tors H.

The classical ring of quotients of $\mathbb{Q}[H]$ that is, the (commutative) ring obtained by inverting all nonzero-divisors of $\mathbb{Q}[H]$ is denoted $Q(H)$. It is known that $\mathbb{Q}[H]$ splits as a direct sum of domains. Therefore $Q(H)$ splits as a direct sum of fields and the natural ring homomorphism $\mathbb{Q}[H] \rightarrow Q(H)$ is an embedding. We identify $\mathbb{Q}[H]$ with its image under this embedding. Note that if H is a finite abelian group, then $Q(H)=\mathbb{Q}[H]$.
Let M be a compact connected 3-manifold. From now on, we use multiplicative notation for the group operation in $H=H_{1}(M)$. In particular, the neutral element of H is denoted 1. The manifold M gives rise to a maximal abelian torsion $\tau(M)$ which is an element of $Q(H)$ defined up to multiplication by -1 and elements of H (see Turaev [11] and Nicolaescu [7]). If $b_{1}(M) \geq 2$, then all representatives of $\tau(M)$ belong to $\mathbb{Z}[H] \subset \mathbb{Q}[H] \subset Q(H)$. We express this by writing $\tau(M) \in \mathbb{Z}[H]$. If $b_{1}(M)=1$ and $\partial M \neq \varnothing$, then $\tau(M) \in \mathbb{Z}[H]+\Sigma_{H} \cdot Q(H)$. This implies that $(h-1) \tau(M) \in \mathbb{Z}[H]$ for all $h \in$ Tors H (indeed $(h-1) \Sigma_{H}=0$).
If M is oriented and $b_{1}(M) \geq 2$, then the Thurston semi-norm $\|\cdot\|_{M}$ on $H_{2}(M, \partial M ; \mathbb{Q})$ can be estimated in terms of $\tau(M)$ as follows (see [11]): for any $s \in H_{2}(M, \partial M ; \mathbb{Q})$ and any representative $a \in \mathbb{Z}[H]$ of $\tau(M)$,

$$
\begin{equation*}
\|s\|_{M} \geq \max _{h, h^{\prime} \in B_{a}}\left|h \cdot s-h^{\prime} \cdot s\right|, \tag{7}
\end{equation*}
$$

where $h \cdot s \in \mathbb{Z}$ is the intersection index of h and s. Note that the right hand side of (7) does not depend on the choice of a in $\tau(M)$.

4.2 An estimate for $\boldsymbol{\theta}_{\boldsymbol{M}}$

The function θ will be estimated in terms of spans of subsets of \mathbb{Q} / \mathbb{Z}. The span $\operatorname{spn}(A)$ of a finite set $A \subset \mathbb{Q} / \mathbb{Z}$ is a rational number defined as the minimal length of an interval in \mathbb{Q} / \mathbb{Z} containing A, that is the minimal rational number $t \geq 0$ such that for some $r \in \mathbb{Q}$, the projection of the set $[r, r+t] \cap \mathbb{Q}$ into \mathbb{Q} / \mathbb{Z} contains A. Clearly, $1>\operatorname{spn}(A) \geq 0$ and $\operatorname{spn}(A)=0$ if and only if A is empty or has only one element.
Given an oriented 3-manifold M and a homology class $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$, we set for any $a \in \mathbb{Q}\left[H_{1}(M)\right]$,

$$
\operatorname{spn}_{x}(a)=\operatorname{spn}\left(\{h \cdot x\}_{h \in B_{a}}\right),
$$

where $h \cdot x \in \mathbb{Q} / \mathbb{Z}$ is the intersection index of h and x. Clearly, $1>\operatorname{spn}_{x}(a) \geq 0$.
Theorem 4.1 Let M be a compact connected oriented 3-manifold with $b_{1}(M) \geq 1$. Set $H=H_{1}(M)$ and let $\tau \in Q(H)$ be a representative of the torsion $\tau(M)$. Let $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ and $u=d_{M}(x) \in H$. Then $(u-1) \tau \in \mathbb{Z}[H]$ and

$$
\begin{equation*}
\theta_{M}(x) \geq \operatorname{spn}_{x}((u-1) \tau) \tag{8}
\end{equation*}
$$

Proof If $b_{1}(M) \geq 2$, then $\tau \in \mathbb{Z}[H]$ and $(u-1) \tau \in \mathbb{Z}[H]$. The inclusion $u \in$ Tors H and the remarks in Section 4.1 imply that $(u-1) \tau \in \mathbb{Z}[H]$ for $b_{1}(M)=1$ as well.

We prove (8). Let X be a simple folded surface in M representing x. The knot $\operatorname{sing}(X) \subset M$ endowed with orientation induced from the one on X represents the class $u \in \operatorname{Tors} H$. Let E be the exterior of this knot in M. The homological sequence of the pair (M, E) and the inclusion $u \in$ Tors H imply that $b_{1}(E) \geq b_{1}(M)+1 \geq 2$. Therefore $\tau(E) \in \mathbb{Z}\left[H_{1}(E)\right]$. Pick a representative $a \in \mathbb{Z}\left[H_{1}(E)\right]$ of $\tau(E)$. Denote by ι the inclusion homomorphism $H_{1}(E) \rightarrow H_{1}(M)=H$ and denote by ι_{*} the induced ring homomorphism $\mathbb{Z}\left[H_{1}(E)\right] \rightarrow \mathbb{Z}[H]$. By [11, Theorem VII.1.4], we have $\iota_{*}(a)=(u-1) b$ where b is a representative of $\tau(M)$. Note that the right hand side of (8) does not depend on the choice of τ in $\tau(M)$. Therefore without loss of generality we can assume that $\tau=b$.

Deforming, if necessary, X in M, we can assume that $S=X \cap E$ is the complement in X of a regular neighborhood of $\operatorname{sing}(X)$. Then S is a proper surface in E and $\chi_{-}(X)=\chi_{-}(S)$. The orientation of $\operatorname{Int}(X)$ induces an orientation of S. The oriented surface S represents a relative homology class $s \in H_{2}(E, \partial E)$. By (7),

$$
\chi_{-}(X)=\chi_{-}(S) \geq \max _{h, h^{\prime} \in B_{a}}\left|h \cdot s-h^{\prime} \cdot s\right|,
$$

where $B_{a} \subset H_{1}(E)$ is the set of a-basic elements. Let $r \in \mathbb{Q}$ be the minimal element of the set $\{h \cdot s\}_{h \in B_{a}}$. Then

$$
\{h \cdot s\}_{h \in B_{a}} \subset[r, r+\chi-(X)] .
$$

Denote the projection $\mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z}$ by π. Observe that for any $h \in H_{1}(E)$,

$$
\iota(h) \cdot x=\pi\left(\frac{h \cdot s}{i_{X}}\right) .
$$

Therefore

$$
\{\iota(h) \cdot x\}_{h \in B_{a}} \subset \pi\left(\left[\frac{r}{i_{X}}, \frac{r+\chi_{-}(X)}{i_{X}}\right]\right)
$$

The equality $\iota_{*}(a)=(u-1) \tau$ implies that $B_{(u-1) \tau} \subset \iota\left(B_{a}\right)$. Hence

$$
\{g \cdot x\}_{g \in B_{(u-1) \tau}} \subset\{\iota(h) \cdot x\}_{h \in B_{a}} \subset \pi\left(\left[\frac{r}{i_{X}}, \frac{r+\chi_{-}(X)}{i_{X}}\right]\right) .
$$

Therefore

$$
\operatorname{spn}_{x}((u-1) \tau) \leq\left(i_{X}\right)^{-1} \chi_{-}(X)
$$

Since this holds for all simple folded surfaces X representing x, we have (8).

4.3 An estimate for $\boldsymbol{\Theta}_{\boldsymbol{M}}$

Let M and H be as in Theorem 4.1. To estimate the function Θ_{M} : Tors $H \rightarrow \mathbb{Q} / \mathbb{Z}$, we need the linking form L_{M} : Tors $H \times$ Tors $H \rightarrow \mathbb{Q} / \mathbb{Z}$ of M. It is defined by $L_{M}(h, g)=h \cdot x \in \mathbb{Q} / \mathbb{Z}$ where x is an arbitrary element of $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ mapped to g by the boundary homomorphism $d: H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H$. The pairing L_{M} is well defined, bilinear, and symmetric.
Given $u \in$ Tors H and $a \in \mathbb{Q}[H]$, set

$$
\operatorname{spn}_{u}(a)=\operatorname{spn}\left(\left\{L_{M}(h, u)\right\}_{h \in B_{a} \cap \operatorname{Tors} H}\right) .
$$

Clearly, $\operatorname{spn}_{x}(a) \geq \operatorname{spn}_{d(x)}(a)$ for any $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ and any $a \in \mathbb{Q}[H]$. This and Theorem 4.1 imply that, under the conditions of this theorem,

$$
\begin{equation*}
\Theta_{M}(u) \geq \operatorname{spn}_{u}((u-1) \tau), \tag{9}
\end{equation*}
$$

for any $u \in \operatorname{Tors} H$ and any representative τ of $\tau(M)$. Generally speaking, the right-hand side of (9) depends on the choice of τ.

Remark Estimate (7) strengthens the McMullen estimate [6] of the Thurston norm via the Alexander polynomial. For recent more general estimates of this type, see Friedl [3].

5 Estimates from below: the case of \mathbb{Q}-homology spheres

For \mathbb{Q}-homology spheres, the functions θ and Θ contain the same information and it is enough to give an estimate for Θ. We begin with preliminaries on refined torsions and \mathbb{Q}-homology spheres, referring for details to [11, Chapters I and X].

5.1 Refined torsions

The maximal abelian torsion $\tau(M)$ of a compact connected 3-manifold M admits a refinement $\tau(M, e, \omega) \in Q\left(H_{1}(M)\right)$ depending on an orientation ω in the vector space $H_{*}(M ; \mathbb{Q})=\oplus_{i \geq 0} H_{i}(M ; \mathbb{Q})$ and an Euler structure e on M. An Euler structure on M is determined by a nonsingular vector field on M directed outside on ∂M. Two such vector fields determine the same Euler structure if for a point $x \in \operatorname{Int}(M)$, the restrictions of these fields to $M-\{x\}$ are homotopic in the class of nonsingular vector field on $M-\{x\}$ directed outside on ∂M. The set of Euler structures on M is denoted $\operatorname{Eul}(M)$. This set admits a canonical free transitive action of the group $H_{1}(M)$. The torsion $\tau(M, e, \omega)$ satisfies $\tau(M, h e, \pm \omega)= \pm h \tau(M, e, \omega)$ for any $e \in \operatorname{Eul}(M), h \in H_{1}(M)$. The unrefined torsion $\tau(M)$ is just the set $\{ \pm \tau(M, e, \omega)\}_{e \in \operatorname{Eul}(M)}$. If $\partial M=\varnothing$, then the set $\operatorname{Eul}(M)$ can be identified with the set of Spin^{c}-structures on M.

5.2 Homology spheres

Let M be an oriented 3-dimensional \mathbb{Q}-homology sphere. Denote ω_{M} the orientation in $H_{*}(M ; \mathbb{Q})=H_{0}(M ; \mathbb{Q}) \oplus H_{3}(M ; \mathbb{Q})$ determined by the following basis: (the homology class of a point, the fundamental class of M).

The group $H=H_{1}(M)$ is finite and the linking form $L_{M}: H \times H \rightarrow \mathbb{Q} / \mathbb{Z}$ is nondegenerate in the sense that the adjoint homomorphism $H \rightarrow \operatorname{Hom}(H, \mathbb{Q} / \mathbb{Z})$ is an isomorphism. Recall that we use multiplicative notation for the group operation in H. Every Euler structure $e \in \operatorname{Eul}(M)$ determines a torsion $\tau\left(M, e, \omega_{M}\right) \in Q(H)=\mathbb{Q}[H]$. The linking form L_{M} can be computed from this torsion by

$$
\begin{equation*}
L_{M}(h, g)=-\pi\left(\left((1-h)(1-g) \tau\left(M, e, \omega_{M}\right)\right)_{1}\right) \in \mathbb{Q} / \mathbb{Z} \tag{10}
\end{equation*}
$$

for all $h, g \in H$, where π is the projection $\mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z}$ and for any $a \in \mathbb{Q}[H]$, the symbol $a_{1} \in \mathbb{Q}$ denotes the coefficient of the neutral element $1 \in H$ in the expansion of a as a formal linear combination of elements of H with rational coefficients. The Euler structure e determines a function $q_{e}: H \rightarrow \mathbb{Q} / \mathbb{Z}$ by

$$
\begin{equation*}
q_{e}(u)=\pi\left(\left((1-u) \tau\left(M, e, \omega_{M}\right)\right)_{1}\right), \tag{11}
\end{equation*}
$$

for any $u \in H$. It follows from (10) and (11) that q_{e} is quadratic in the sense that $q_{e}(h g)=q_{e}(h)+q_{e}(g)+L_{M}(h, g)$ for all $h, g \in H$. Formula (11) also implies that

$$
\begin{equation*}
q_{h e}(u)=q_{e}(u)+L_{M}(h, u), \tag{12}
\end{equation*}
$$

for any $h \in H$.
If $u \in H$ has order n (ie n is the minimal positive integer such that $u^{n}=1$), then by [11, Section X.4.3] there is a unique residue $K(e, u) \in \mathbb{Z} / 2 n \mathbb{Z}$ such that

$$
\begin{equation*}
q_{e}(u)=\frac{K(e, u)}{2 n}+\frac{1}{2}(\bmod \mathbb{Z}) . \tag{13}
\end{equation*}
$$

Formula (12) implies that the residue $K(e, u)(\bmod 2)$ does not depend on e. We say that u is even if this residue is 0 and odd if it is 1 .

Every homology class $u \in H$ gives rise to a group

$$
G=G_{u}=\left\{g \in H \mid L_{M}(u, g)=0\right\} \subset H .
$$

The nondegeneracy of L_{M} implies that the quotient H / G is a finite cyclic group whose order is equal to the order, n, of u in H. Moreover, there is an element $v=v_{u} \in H$ such that $L_{M}(u, v)=n^{-1}(\bmod \mathbb{Z})$. Such v is determined by u uniquely
up to multiplication by elements of G. The inclusion $v^{n} \in G$ implies that the order, p, of v is divisible by n (in particular, $p \geq n$). Set

$$
\begin{equation*}
\alpha_{v}=\frac{1+2 v+3 v^{2}+\ldots+p v^{p-1}}{p}-\frac{p+1}{2} \cdot \frac{1+v+\ldots+v^{p-1}}{p} . \tag{14}
\end{equation*}
$$

This element of $\mathbb{Q}[H]$ can be uniquely characterized by the following property: if φ is any ring homomorphism from $\mathbb{Q}[H]$ to a field, then $\varphi(v)=1 \Rightarrow \varphi\left(\alpha_{v}\right)=0$ and $\varphi(v) \neq 1 \Rightarrow \varphi\left(\alpha_{v}\right)=(\varphi(v)-1)^{-1}$. In [11] we used the notation $(v-1)_{\text {par }}^{-1}$ for α_{v}.

Theorem 5.1 Let M be an oriented 3-dimensional \mathbb{Q}-homology sphere. Let u be an element of $H=H_{1}(M)$ of order $n \geq 1$. Set $G=\left\{g \in H \mid L_{M}(u, g)=0\right\}$ and $\Sigma_{G}=\sum_{g \in G} g \in \mathbb{Z}[G] \subset \mathbb{Z}[H]$. Pick any $v \in H$ such that $L_{M}(u, v)=n^{-1}(\bmod 1)$. For $e \in \operatorname{Eul}(M)$, set

$$
a_{e}(u)=(u-1) \tau\left(M, e, \omega_{M}\right)-\frac{v^{K(e, u) / 2}(v+1)}{2} \alpha_{v} \Sigma_{G} \in \mathbb{Q}[H],
$$

if u is even and

$$
a_{e}(u)=(u-1) \tau\left(M, e, \omega_{M}\right)-v^{(K(e, u)+1) / 2} \alpha_{v} \Sigma_{G} \in \mathbb{Q}[H],
$$

if u is odd. Then for any $e \in \operatorname{Eul}(M)$,

$$
\Theta_{M}(u) \geq \operatorname{spn}_{u}\left(a_{e}(u)\right)=\operatorname{spn}\left(\left\{L_{M}(h, u)\right\}_{h \in B_{a_{e}(u)}}\right) .
$$

Proof If u is even (resp. odd), then $K(e, u) \in \mathbb{Z}_{2 n}$ is even (resp. odd). Therefore the power of v in the definition of $a_{e}(u)$ is well defined up to multiplication by v^{n}. However, $v^{n} \in G$ and $v^{n} \Sigma_{G}=\Sigma_{G}$. Therefore the right hand sides of the formulas for $a_{e}(u)$ are well defined. If v^{\prime} is another element of H such that $L_{M}\left(u, v^{\prime}\right)=$ $n^{-1}(\bmod 1)$, then $v^{\prime} \in v G$ and $v^{k} \Sigma_{G}=\left(v^{\prime}\right)^{k} \Sigma_{G}$ for all $k \in \mathbb{Z}$. Therefore $a_{e}(u)$ does not depend on the choice of v. It is easy to see that $a_{h e}(u)=h a_{e}(u)$ for all $h \in H$. Therefore the number $\operatorname{spn}_{u}\left(a_{e}(u)\right)$ does not depend on e.

Consider a simple folded surface $X \subset M$ which represents the 2-homology class $x=d_{M}^{-1}(u) \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. The knot $K=\operatorname{sing}(X)$ with orientation induced from the one on X represents $u \in H_{1}(M)$. Let E be the exterior of K in M. Clearly $b_{1}(E)=1$. Fix an orientation ω in $H_{*}(E ; \mathbb{Q})$ and an Euler structure e_{K} on E. The torsion $\tau\left(E, e_{K}, \omega\right) \in Q\left(H_{1}(E)\right)$ can be canonically expanded as a sum of a certain $[\tau]=[\tau]\left(E, e_{K}, \omega\right) \in \mathbb{Q}\left[H_{1}(E)\right]$ with an element of $Q\left(H_{1}(E)\right)$ given by an explicit formula using solely ω and the Chern class of e_{K} [11, Section II.4.5]. The inclusion homomorphism $\mathbb{Q}\left[H_{1}(E)\right] \rightarrow \mathbb{Q}\left[H_{1}(M)\right]$ sends $[\tau]$ to $\pm a_{e}(u)$ for some $e \in \operatorname{Eul}(M)$ [11, Formula X.4.d]. The inequality (7) holds for any $s \in H_{2}(E, \partial E ; \mathbb{Q})$ and $a=[\tau]$
[11, Chapter IV]. The rest of the argument goes as the proof of Theorem 4.1 with τ replaced by $[\tau]$. This gives $\left(i_{X}\right)^{-1} \chi_{-}(X) \geq \operatorname{spn}_{x}\left(a_{e}(u)\right)=\operatorname{spn}_{u}\left(a_{e}(u)\right)$. Since this holds for all X representing x, we have $\Theta_{M}(u)=\theta_{M}(x) \geq \operatorname{spn}_{u}\left(a_{e}(u)\right)$.

Remarks 1. Let $\frac{1}{2} \mathbb{Z}$ be the additive group of integers and half-integers. Then in Theorem 5.1, $a_{e}(u) \in \mathbb{Z}[H]$ if u is even and $a_{e}(u) \in \frac{1}{2} \mathbb{Z}[H]$ if u is odd. This follows from the proof of this theorem and the inclusion $[\tau] \in \mathbb{Z}\left[H_{1}(E)\right]$ if u is even and $[\tau] \in \frac{1}{2} \mathbb{Z}\left[H_{1}(E)\right]$ if u is odd.
2. It is proven by Deloup and Massuyeau [2] that the function $q_{e}: H \rightarrow \mathbb{Q} / \mathbb{Z}$ derived from the torsion coincides with the quadratic function defined geometrically by Looijenga and Wahl [5] and Deloup [1].

6 Examples

6.1 Lens spaces

The computation of the abelian torsions for the lens space $M=L(p, q)$ goes back to K Reidemeister. See, for instance, [10] for an introduction to the theory of torsions. Let t, t^{q} be the generators of $H=H_{1}(M)$ represented by the core circles of the two solid tori forming M. For an appropriate choice of an orientation on M and an Euler structure e on M, we have $\tau\left(M, e, \omega_{M}\right)=\alpha_{t} \alpha_{t^{q}}$, where $\alpha_{v} \in \mathbb{Q}[H]$ is defined by (14) for any $v \in H$. This allows us to compute $a_{e}(u)$ for any $u \in H$ and to apply Theorem 5.1. We give here a few examples.

Consider the lens space $M=L(5,1)$. By Section 2.3 and Section 2.4.2, Θ satisfies $\Theta\left(t^{4}\right)=\Theta(t)=\Theta(1)=0$ and $\Theta\left(t^{2}\right)=\Theta\left(t^{3}\right)$. We show that $\Theta\left(t^{2}\right) \geq 1 / 5$. We have

$$
\alpha_{t}=\frac{-2-t+t^{3}+2 t^{4}}{5}
$$

Then

$$
\tau=\tau\left(M, e, \omega_{M}\right)=\alpha_{t}^{2}=\frac{t+t^{2}-2 t^{4}}{5}
$$

A direct computation shows that

$$
L_{M}(t, t)=\left(-(1-t)^{2} \tau\right)_{1}=1 / 5, \quad q_{e}\left(t^{2}\right)=((1-t) \tau)_{1}=0
$$

Note that $u=t^{2}$ has order 5 in H. From (13), we obtain that $K(e, u)=5(\bmod 10)$. Therefore u is odd. The associated group G_{u} is trivial, $v=v_{u}=t^{3}$, and

$$
a_{e}(u)=(u-1) \tau-v^{3} \alpha_{v}=t^{4}-t
$$

Since $L_{M}\left(t^{4}, u\right)=3 / 5(\bmod 1)$ and $L_{M}(t, u)=2 / 5(\bmod 1)$, the span of the set $\left\{L_{M}(h, u)\right\}_{h \in B_{a_{e}(u)}}$ is equal to $1 / 5$. By Theorem 5.1, $\Theta\left(t^{2}\right) \geq 1 / 5$.
Consider the lens space $M=L(6,1)$. Then

$$
\begin{aligned}
\alpha_{t} & =\frac{-5-3 t-t^{2}+t^{3}+3 t^{4}+5 t^{5}}{12} \\
\tau=\alpha_{t}^{2} & =\frac{-5+13 t+19 t^{2}+13 t^{3}-5 t^{4}-35 t^{5}}{72}
\end{aligned}
$$

and $L_{M}(t, t)=1 / 6$. For $u=t^{2}$, the computations similar to the ones above give $q_{e}(u)=0(\bmod 1), K(e, u)=3(\bmod 6), G_{u}=\left\{1, t^{3}\right\}, v_{u}=t$, and $a_{e}(u)=t^{5}-t$. Theorem 5.1 yields $\Theta\left(t^{2}\right) \geq 1 / 3$. For $u=t^{3}$, we similarly obtain $q_{e}(u)=3 / 4(\bmod 1)$, $K(e, u)=1(\bmod 4), G_{u}=\left\{1, t^{2}, t^{4}\right\}, v_{u}=t$, and $a_{e}(u)=t^{5}-t^{2}$. Theorem 5.1 yields $\Theta\left(t^{3}\right) \geq 1 / 2$.

6.2 Surgeries on knots

Let L be an oriented knot in an oriented 3-dimensional \mathbb{Z}-homology sphere N. Let M be the closed oriented 3-manifold obtained by surgery on N along L with framing $p \geq 2$. Let $u \in H=H_{1}(M)$ be the homology class of the meridian of L whose linking number with L is +1 . Clearly, H is a cyclic group of order p with generator u and $L_{M}(u, u)=p^{-1}(\bmod 1)$. We explain now how to estimate $\Theta(u)$ in terms of the Alexander polynomial of L. We will see that in some cases this estimate is exact.
Recall that the span $\operatorname{spn}(\Delta)$ of a nonzero Laurent polynomial $\Delta=\sum_{i} a_{i} t^{i} \in \mathbb{Z}\left[t^{ \pm 1}\right]$ is the number $\max \left\{i \mid a_{i} \neq 0\right\}-\min \left(\left\{i \mid a_{i} \neq 0\right\}\right)$. Let $\Delta=\Delta_{L}(t)$ be the Alexander polynomial of L normalized so that $\Delta\left(t^{-1}\right)=\Delta(t)$ and $\Delta(1)=1$. Expand $\Delta(t)=1+(t-1) \beta(t)$ where $\beta(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$. We claim the expression $a_{e}(u) \in \mathbb{Q}[H]$ defined in Theorem 5.1 is equal to $\beta(u)$ for an appropriate Euler structure e on M. By Theorem 5.1, this will imply that $\Theta(u) \geq \operatorname{spn}_{u}(\beta(u))$. For example, if $p \geq 2 \operatorname{spn}(\beta)$, then $\operatorname{spn}_{u}(\beta(u))=p^{-1} \operatorname{spn}(\beta)=p^{-1}(\operatorname{spn}(\Delta)-1)$. Therefore $\Theta(u) \geq p^{-1}(\operatorname{spn}(\Delta)-1)$. On the other hand, by Section 2.4.3, $\Theta(u) \leq p^{-1}(2 g-1)$, where g is the genus of K. In particular, if $\operatorname{spn}(\Delta)=2 g>0$ (for instance, if K is a nontrivial fibred knot) and $p \geq 4 g-2$, then $\Theta(u)=p^{-1}(2 g-1)$.
We now verify the claim above. Set $\tau=\alpha_{u}^{2} \Delta(u) \in \mathbb{Q}[H]$. It is easy to deduce from the multiplicativity of the torsions that $\tau\left(M, e, \omega_{M}\right)=\tau$ for a certain orientation on M and a certain Euler structure e on M (for details, see [11, Formula X.5.e]). Set $\sigma=1+u+u^{2}+\cdots+u^{p-1} \in \mathbb{Z}[H]$. Clearly, $\sigma u^{k}=\sigma$ for any integer k. Therefore for any integer 1 -variable polynomial f, the product $\sigma f(u)$ is equal to $\operatorname{aug}(f) \sigma$
where $\operatorname{aug}(f)=f(1)$ is the sum of coefficients of f. Since $\operatorname{aug}\left(\alpha_{u}\right)=0$, we have $\sigma \alpha_{u}=0$. A direct computation shows that $(1-u) \alpha_{u}=\sigma / p-1$. Hence

$$
\begin{aligned}
(1-u) \tau & =(1-u) \alpha_{u}^{2} \Delta(u)=(\sigma / p-1) \alpha_{u} \Delta(u)=-\alpha_{u} \Delta(u) \\
& =-\alpha_{u}+\alpha_{u}(1-u) \beta(u)=-\alpha_{u}+(\sigma / p-1) \beta(u)=-\alpha_{u}-\beta(u),
\end{aligned}
$$

where we use the equality $\operatorname{aug}(\beta)=0$ which follows from the symmetry of Δ. Thus,

$$
q_{e}(u)=((1-u) \tau)_{1}=-\left(\alpha_{u}\right)_{1}=(p-1) / 2 p(\bmod 1) .
$$

Formula (13) implies that $K(e, u)=-1(\bmod 2 p)$. In particular, u is odd.
We also have

$$
(1-u)^{2} \tau=(1-u)\left(-\alpha_{u}-\beta(u)\right)=1-\sigma / p-(1-u) \beta(u) .
$$

Hence

$$
L_{M}(u, u)=-\left((1-u)^{2} \tau\right)_{1}=p^{-1}(\bmod 1)
$$

This shows that the orientation of M chosen so that $\tau\left(M, e, \omega_{M}\right)=\tau$ is actually the one induced from the orientation on N. The equality $L_{M}(u, u)=p^{-1}(\bmod 1)$ implies that $v_{u}=u$ and $G_{u}=1$. We conclude that

$$
a_{e}(u)=(u-1) \tau-\alpha_{u}=\alpha_{u}+\beta(u)-\alpha_{u}=\beta(u) .
$$

6.3 Surgeries on 2-component links

Let M be a closed oriented 3-manifold obtained by surgery on a 2 -component oriented link $L=L_{1} \cup L_{2}$ in an oriented 3-dimensional \mathbb{Z}-homology sphere N. Suppose that the linking number of L_{1}, L_{2} in N is 0 , the framing of L_{1} is $p \neq 0$, and the framing of L_{2} is 0 . Then $H=H_{1}(M)=(\mathbb{Z} / p \mathbb{Z}) u_{1} \oplus \mathbb{Z} u_{2}$, where $u_{i} \in H$ is the homology class of the meridian of L_{i} whose linking number with L_{i} is +1 , for $i=1,2$. The Alexander polynomial of L has the form

$$
\Delta_{L}\left(t_{1}, t_{2}\right)=f\left(t_{1}, t_{2}\right)\left(t_{1}-1\right)\left(t_{2}-1\right)
$$

for some Laurent polynomial $f\left(t_{1}, t_{2}\right) \in \mathbb{Z}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}\right]$. Both Δ_{L} and f are defined only up to multiplication by -1 and monomials on t_{1}, t_{2}. By [11, Formula VIII.4.e], the torsion $\tau(M)$ is represented by

$$
\tau=f\left(u_{1}, u_{2}\right) \pm \Delta_{L_{2}}\left(u_{2}\right) u_{2}^{n}\left(u_{2}-1\right)^{-2} \Sigma_{H} \in Q(H)
$$

for an appropriate sign \pm and an integer n, both depending on the choice of f. Here $\Delta_{L_{2}}$ is the Alexander polynomial of L_{2} normalized as in Section 6.2. Pick
$x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ and set $u=d(x) \in$ Tors H. Since $(u-1) \Sigma_{H}=0$, Theorem 4.1 implies that

$$
\begin{equation*}
\theta(x) \geq \operatorname{spn}_{x}\left((u-1) f\left(u_{1}, u_{2}\right)\right) . \tag{15}
\end{equation*}
$$

For sufficiently big p, the span on the right hand side does not depend on p.
Note another curious phenomenon. Suppose for simplicity that $f\left(t_{1}, t_{2}\right)=1$ (a constant polynomial). Then $\theta(x) \geq \operatorname{spn}_{x}(u-1)$. If $u=d(x) \neq 1$, then the set $B_{u-1} \subset H$ consists of two elements $u, 1$ and

$$
\operatorname{spn}_{x}(u-1)=\operatorname{spn}(\{u \cdot x, 0\})=\operatorname{spn}\left(\left\{L_{M}(u, u), 0\right\}\right)
$$

For $u=u_{1}^{k}$ with $k \in\{0,1, \ldots, n-1\}$, we have $L_{M}(u, u)=k^{2} / n(\bmod 1)$. For $k<\sqrt{n / 2}$, we obtain $\operatorname{spn}\left(\left\{L_{M}(u, u), 0\right\}\right)=k^{2} / n$. Thus $\Theta\left(u_{1}^{k}\right) \geq k^{2} / n$. This suggests that the number $\Theta\left(u_{1}^{k}\right)$, considered as a function of k, may behave like a quadratic function for small values of k.

7 Miscellaneous

7.1 Quasi-simple folded surfaces

One can use a larger class of folded surfaces to represent 2-homology classes. Let us call a folded surface X quasi-simple if it is oriented, $\operatorname{sing}(X) \neq \varnothing$, and the indices of all components of $\operatorname{sing}(X)$ in X are equal to each other and nonzero. Denote the common value of these indices i_{X}. In particular, simple folded surfaces are quasi-simple.

For a quasi-simple folded surface X in a 3 -manifold M, the 2 -chain $\left(i_{X}\right)^{-1} X$ is a 2 -cycle $\bmod \mathbb{Z}$ representing a homology class $[X] \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$. We claim that

$$
\begin{equation*}
\theta([X]) \leq i_{X}^{-1} \chi-(X)+b_{0}(\operatorname{sing}(X))-1, \tag{16}
\end{equation*}
$$

where $b_{0}(\operatorname{sing}(X))$ is the number of components of $\operatorname{sing}(X)$. Indeed, X can be modified in a neighborhood of $\operatorname{sing}(X)$ so that each point of $\operatorname{sing}(X)$ is adjacent to exactly i_{X} local branches of $\operatorname{Int}(X)$ (which then induce the same orientation on $\operatorname{sing}(X))$. Let Γ be a graph with two vertices and i_{X} edges connecting these vertices. Given an embedded arc in M with endpoints on different components of $\operatorname{sing}(X)$ and with interior in $M-X$, we can modify X by cutting it out along $\operatorname{sing}(X)$ near the endpoints and gluing in $\Gamma \times[0,1]$ along the arc. This gives a quasi-simple folded surface, Z, such that
$b_{0}(\operatorname{sing}(Z))=b_{0}(\operatorname{sing}(X))-1, \quad i_{Z}=i_{X}, \quad[Z]=[X], \quad$ and $\quad \chi_{-}(Z) \leq \chi_{-}(X)+i_{X}$.

Modifying X in this way, we can reduce ourselves to the case where $\operatorname{sing}(X)$ is connected. In this case (16) follows from the definition of θ. It may happen that there are no distinct components of $\operatorname{sing}(X)$ connected by an arc with interior in $M-X$. This occurs if each arc joining distinct components of $\operatorname{sing}(X)$ has to cross the closed 2-manifold X_{0} formed by the components of X disjoint from $\operatorname{sing}(X)$. To circumvent this obstruction, we first modify X_{0} so that $X-X_{0}$ is contained in a connected component of $M-X_{0}$; cf [11, p 60].
Formula (16) implies that for any $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$,

$$
\begin{equation*}
\theta(x)=\inf _{X}\left(\frac{\chi-(X)}{i_{X}}+b_{0}(\operatorname{sing}(X))\right)-1 \tag{17}
\end{equation*}
$$

where X runs over all quasi-simple folded surfaces in M representing x.

7.2 Coverings

Let M be a compact oriented 3-manifold and $p: \widetilde{M} \rightarrow M$ be an n-fold (unramified) covering. Let $p^{*}: H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H_{2}(\widetilde{M} ; \mathbb{Q} / \mathbb{Z})$ be the following composition of the duality isomorphisms and the pull back

$$
H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \cong H^{1}(M, \partial M ; \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(\widetilde{M}, \partial \widetilde{M} ; \mathbb{Q} / \mathbb{Z}) \cong H_{2}(\widetilde{M} ; \mathbb{Q} / \mathbb{Z})
$$

Then for any $x \in H_{2}(M ; \mathbb{Q} / \mathbb{Z})$,

$$
\theta_{\widetilde{M}}\left(p^{*}(x)\right)+1 \leq n\left(\theta_{M}(x)+1\right)
$$

This follows from (17) and the fact that if a simple folded surface X in M represents x, then $p^{-1}(X) \subset \widetilde{M}$ is a quasi-simple folded surface representing $p^{*}(x)$.

7.3 Norms associated with links

A link L in an oriented 3-manifold M determines a semi-norm $\|\cdot\|_{M, L}$ on $H_{2}(M ; \mathbb{Q})$ as follows. Let $U \subset M$ be a regular neighborhood of L and $E=\overline{M-U}$ the exterior of L. We can embed $H_{2}(M ; \mathbb{Q})$ into $H_{2}(E, \partial E ; \mathbb{Q})$ via the inclusion homomorphism

$$
H_{2}(M ; \mathbb{Q}) \hookrightarrow H_{2}(M, L ; \mathbb{Q}) \cong H_{2}(M, U ; \mathbb{Q}) \cong H_{2}(E, \partial E ; \mathbb{Q})
$$

Restricting the Thurston semi-norm on $H_{2}(E, \partial E ; \mathbb{Q})$ to $H_{2}(M ; \mathbb{Q})$, we obtain the semi-norm $\|\cdot\|_{M, L}$. The arguments as above allow us to estimate the latter semi-norm from below for compact M. Namely, if L has $m \geq 1$ components and h_{1}, \ldots, h_{m} are their homology classes in $H=H_{1}(M)$, then

$$
\|x\|_{M, L} \geq \operatorname{spn}_{x}\left(\prod_{i=1}^{m}\left(h_{i}-1\right) \tau\right)
$$

for any $x \in H_{2}(M ; \mathbb{Q})$ and any $\tau \in Q(H)$ representing $\tau(M)$ in the case $b_{1}(M) \geq 2$ and representing $[\tau](M)$ in the case $b_{1}(M)=1$. A similar construction can be used to derive a function on $H_{2}(M ; \mathbb{Q} / \mathbb{Z})$ from the function θ on $H_{2}(E, \partial E ; \mathbb{Q} / \mathbb{Z})$. It would be interesting to see whether these semi-norms and functions may be used to distinguish nonisotopic links.

7.4 Open questions

Is the infimum in (2) realizable by a simple folded surface? Does θ take only rational values? A positive answer to the first question certainly implies a positive answer to the second one. Similar questions can be asked for Θ.

It would be interesting to compute the function Θ for the lens spaces. Is it true that for the lens spaces, the inequality in Theorem 5.1 is an equality?

References

[1] F Deloup, On abelian quantum invariants of links in 3-manifolds, Math. Ann. 319 (2001) 759-795 MR1825407
[2] F Deloup, G Massuyeau, Reidemeister-Turaev torsion modulo one of rational homology three-spheres, Geom. Topol. 7 (2003) 773-787 MR2026547
[3] S Friedl, Reidemeister torsion, the Thurston norm and Harvey's invariants arXiv: math.GT/0508648
[4] PB Kronheimer, T S Mrowka, Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931-937 MR1492131
[5] E Looijenga, J Wahl, Quadratic functions and smoothing surface singularities, Topology 25 (1986) 261-291 MR842425
[6] C T McMullen, The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002) 153-171 MR1914929
[7] L I Nicolaescu, The Reidemeister torsion of 3-manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter \& Co., Berlin (2003) MR1968575
[8] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311-334 MR2023281
[9] W P Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986) i-vi and 99-130 MR823443
[10] V Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2001) MR1809561Notes taken by Felix Schlenk
[11] V Turaev, Torsions of 3-dimensional manifolds, Progress in Mathematics 208, Birkhäuser Verlag, Basel (2002) MR1958479

IRMA, CNRS et Université Louis Pasteur
7 rue René Descartes, 67084 Strasbourg, France
Department of Mathematics, Indiana University
Bloomington IN 47405, USA

Received: 21 November 2006

