Growth series for vertex-regular $CAT(0)$ cube complexes

RICHARD SCOTT

We show that the known formula for the growth series of a right-angled Coxeter group holds more generally for any CAT(0) cube complex whose vertex links all have the same f -polynomial.

20F55, 20F67, 20F69; 05A15

1 Introduction

A *cube complex* is a regular cell complex X all of whose cells are cubes and such that the intersection of any two cells is a face of both. An *edge-path* in a cube complex X is a sequence e_1, \ldots, e_n of oriented edges such that the head of e_i coincides with the tail of e_{i+1} for $1 \le i \le n-1$. The number of edges in an edge-path is called the *length* of the path. Given two vertices x, x' in a cube complex X, we define the distance $d(x, x')$ to be the minimum length (possibly infinite) of an edge-path connecting x to x'. For each vertex x_0 in X, we let $G(X, x_0; t)$ denote the corresponding growth series for X . That is,

$$
G(X, x_0; t) = \sum_{i=0}^{\infty} \sigma(i) t^i
$$

where $\sigma(i)$ is the number of vertices in X whose distance to x_0 is i.

The link of any vertex in a cube complex X is a simplicial complex, and by a result of Gromov, X is nonpositively curved with respect to the standard piecewise Euclidean metric if and only if every link is a flag complex. If, in addition, X is simply-connected then it is $CAT(0)$ (see, for example, Bridson and Haefliger [1]). The main result of this article is the following.

Theorem 1 Let X be a connected n–dimensional CAT(0) cube complex with the property that the link of every vertex has the same number of i –simplices for each $i \in \{0, \ldots, n-1\}$. Let $f(t)$ be the polynomial $f(t) = f_{-1} + f_0 t + f_1 t^2 + \cdots + f_{n-1} t^n$ where $f_{-1} = 1$ and f_i is the number of i –simplices in the link of a vertex (for $0 \le i < n$). Then the growth series of X is independent of the point x_0 and given by the formula

$$
\frac{1}{G(X, x_0; t)} = f\left(\frac{-t}{1+t}\right).
$$

Published: 29 March 2007 DOI: 10.2140/agt.2007.7.285

In the case where X is the cube complex associated to a right-angled Coxeter group W this formula is well-known (it is a special case of the known formula for the growth series of a Coxeter group relative to the standard generators, see Steinberg [7, Theorem 1.25 and Corollary 1.29]). More generally, Theorem 1 applies to any group acting on a CAT(0) cube complex X whose action on the vertex set is simply-transitive. Such groups were considered by Noskov [4] who proved that the geodesic words corresponding to edge-paths in X form a regular language and that the corresponding growth series is a rational function. Not only does Theorem 1 give an explicit formula for that rational function, but it applies to even more general $CAT(0)$ cube complexes. In particular, X need not admit a group action, and the vertex links need not even be isomorphic; the only requirement for the vertex links is that they all have the same f –polynomial.

The organization of the paper is as follows. In Section 2 we describe examples and applications of the formula. In Section 3 we summarize results of Sageev [5] concerning the geometry of $CAT(0)$ cube complexes. In particular, we describe the notion of hyperplanes in a cube complex, and their manifestation in contracting disks as a collection of embedded arcs. By using Reidemeister-type moves on these contracting disks, we are then able to control the distance between certain minimal edge-paths. We use this in Section 4 to establish the distance from a fixed vertex x_0 to each vertex of an arbitrary cube in X . In particular, we show that any such cube has a unique closest vertex to x_0 . In Section 5 we use these vertex distances to set up a recurrence relation for the number of k-cubes starting at distance l from x_0 . We then derive formulas for growth series of k -cubes in X (one for each k), the formula in Theorem 1 being the $k = 0$ case.

2 Examples and consequences

The simplest example of a $CAT(0)$ cube complex to which the formula applies is a regular tree. In this case, the f-polynomial is of the form $f(t) = 1 + at$ where a is the degree of a vertex. The formula for the growth series simplifies to the usual one:

$$
G(t) = \frac{1+t}{1-(a-1)t} = 1 + at + a(a-1)t^{2} + a(a-1)^{2}t^{3} + \cdots
$$

Other examples are provided by $CAT(0)$ cube complexes X that have vertex-transitive automorphism groups. Consider the special case where the automorphism group Aut (X) has a subgroup G that acts simply-transitively on the vertex set. In this case the group G can be identified with the vertex set of X , and if we let S denote the set of group elements that are adjacent to the vertex 1, then the Cayley graph of G with

respect to S can be identified with the 1–skeleton of X. It follows that the growth series for the group G with respect to the word metric induced by S coincides with the growth series $G(X, x_0; t)$. We describe some examples of this situation.

2.1 Right-angled Coxeter groups

Let Γ be a graph with vertex set V and edge set E. The *right-angled Coxeter group* with defining graph Γ is the group W given by the presentation

$$
W = \langle V \mid v^2 = 1 \text{ for all } v \in V \text{ and } uv = vu \text{ for all } \{u, v\} \in E \rangle.
$$

There is a natural CAT(0) cube complex X (called the *Davis complex*) on which W acts. We give a rough description here, and refer the reader to Davis [3] for details. The Cayley 2–complex of the presentation for W is a square complex with the property that the link of every vertex can be naturally identified with the graph Γ . The cube complex X is obtained by attaching higher dimensional cubes in such a way that every clique (complete subgraph) in every link gets "filled in". Thus all vertex links in X are isomorphic to this "flag completion" of Γ , so the f-polynomial is $k_{\Gamma}(t) = 1 + k_1 t + k_2 t^2 + \cdots$ where k_i denotes the number of *i*-cliques in Γ . The formula for the growth series of X (hence for W) in this case is a (well-known) special case of our theorem:

$$
\frac{1}{G(t)} = k_{\Gamma} \left(\frac{-t}{1+t} \right).
$$

Example 2 Let Γ be the graph with $V = \{a, b, c, d\}$ shown in Figure 1 (on the left). Then W is the group $(\mathbb{Z}_2)^3 *_{\mathbb{Z}_2} (\mathbb{Z}_2)^2$, and the Cayley 2–complex of the presentation is shown in Figure 1 (on the right). By filling in all of the 3–cubes, we obtain the Davis complex. The f-polynomial for the link is $f(t) = 1 + 4t + 4t^2 + t^3$, so the growth series for X (and hence W) is

$$
G(t) = \frac{(1+t)^3}{1-t-t^2} = 1 + 4t + 8t^2 + 15t^3 + 23t^4 \cdots
$$

2.2 Right-angled mock reflection groups

More generally, suppose Γ is a graph as above and for each vertex $v \in V$, one specifies an involution j_v defined on vertices adjacent to v. Let J denote the collection $\{j_v\}$ of these "local involutions". For any pair of adjacent vertices v_0 , v_1 , one can then define a sequence v_0, v_1, \ldots inductively by the formula $v_{k+1} = j_{v_k}(v_{k-1})$. We call

Figure 1: A graph Γ and the corresponding Davis complex

such a sequence a *trajectory*, and assume that all trajectories are 4–periodic (that is, $v_k = v_{k+4}$ for all k). We define the group $W(J)$ by the presentation

 $W(J) = \langle V \mid v^2 = 1$ for $v \in V$ and $v_0v_1v_2v_3 = 1$ for all trajectories v_0, v_1, \dots in Γ),

noting that if all of the involutions in J are trivial, this reduces to the (ordinary) right-angled Coxeter group W described above.

With some additional assumptions on the local involutions, one can mimic the Davis complex construction to get a CAT(0) cube complex $X(J)$ with an action of $W(J)$ that is simply transitive on the vertex set. We refer the reader to [6] for details. For such groups $W(J)$ (the ones that act on CAT(0) cube complexes) we call the graph with local involutions a *mock reflection system*, and we call the group $W(J)$ a *mock reflection group*. The link of every vertex in $X(J)$, as for the ordinary Davis complex, is again obtained by filling in all cliques in the graph Γ . Thus, by Theorem 1, the growth series for $W(J)$ (with respect to the generators V) depends only on the underlying graph Γ , not on the choice of local involutions J . This is not an obvious fact, considering that the complexes $X(J)$ definitely do depend on J .

Example 3 Let Γ be the same graph as in Example 2. For the vertices b, c, and d, we define the corresponding local involutions to be the identity, and for the vertex a , we define j_a to be the involution that swaps b and c. If an involution at a vertex v interchanges two adjacent vertices u and w , then we indicate this in the diagram for Γ by connecting the edges vu and vw by an arc at the vertex v (Figure 2). This collection of local involutions determines a mock reflection system, and the corresponding mock reflection group is

$$
W(J) = \langle a, b, c, d \mid a^2 = b^2 = c^2 = d^2 = 1, abac = bcbc = cdcd = 1 \rangle.
$$

The cube complex $X(J)$ which is shown in Figure 2 is clearly not isomorphic to the Davis complex in the previous example, but by Theorem 1 it does have the same growth series.

Figure 2: A mock reflection system and the corresponding complex $X(J)$

2.3 Right-angled Artin groups

By removing the involution relations from the presentations for right-angled Coxeter groups, one obtains the class of right-angled Artin groups. That is, given a graph Γ with vertex set V and edge set E, the corresponding *right-angled Artin group* is the group A given by

$$
A = \langle V \mid uv = vu \text{ for all } \{u, v\} \in E \rangle.
$$

The group A also acts on a $CAT(0)$ cube complex Y (namely, the universal cover of the "Salvetti complex" $\tilde{\Sigma}$ in Charney and Davis [2].) In this case the action on Y is free, and the quotient Y/A is a finite $K(A, 1)$ –space. The group A acts simply-transitively on the vertices of Y, and if we let S be the subset $V \cup V^{-1}$, then the 1-skeleton of Y coincides with the Cayley graph of A with respect to S . Thus, again, the growth series for Y coincides with the growth series for the Artin group Λ with respect to its standard generating set.

The link of a vertex in Y is well-understood (see, for example, [2]). In particular, if $\hat{\Gamma}$ denotes the simplicial complex obtained by filling in all of the cliques in Γ , and L denotes the link of a vertex in Y, then each i –simplex in $\hat{\Gamma}$ corresponds to 2^{i+1} simplices in L of the same dimension. It follows that the f -polynomial for L is

 $f(t) = k_{\Gamma}(2t) = 1 + 2k_1t + 4k_2t^2 + \cdots$ and, by Theorem 1, that the growth series for Y (and hence A) is determined by

$$
\frac{1}{G(t)} = k_{\Gamma} \left(\frac{-2t}{1+t} \right).
$$

Remark There is also a notion of a right-angled *mock* Artin group. Again one starts with a graph Γ with local involutions J, and removes the involution relations from the presentation for the mock reflection group $W(J)$. There is a corresponding complex $Y(J)$ in this case, and the link of a vertex coincides with the link of a vertex in the (ordinary) Artin group associated to the underlying graph Γ . (See [6] for the details.) In particular, the growth series for a mock Artin group $A(J)$ does not depend on the involutions J and coincides with the growth series for the corresponding Artin group for Γ

3 Hyperplanes, contracting disks and pictures

Given an *n*–dimensional cube Q and an edge $e \subset Q$, let $Q(e)$ denote the $(n-1)$ – dimensional subcube obtained by intersecting Q with the hyperplane orthogonal to e passing through the midpoint of e . Following Sageev [5], we call $O(e)$ a *dual block* in Q . The dual blocks in Q determines an equivalence relation on edges of Q by $e \sim e' \Leftrightarrow Q(e) = Q(e')$. More generally, given a cube complex X, we consider the equivalence relation on edges generated by this relation on each cell. That is, e and e' are equivalent if and only if there exists a sequence of edges $e = e_0, e_1, \dots, e_n = e'$ and a sequence of cubes Q_1, \ldots, Q_n in X such that for $0 \le i < n$, $e_i \sim e_{i+1}$ in Q_i . Given an equivalence class ϵ of edges, we then define its *dual hyperplane* to be the union of dual blocks $H(\epsilon) = \bigcup Q(\epsilon)$ where the union is taken over all $e \in \epsilon$ and all cells Q in X (we adopt the obvious convention that $Q(e) = \emptyset$ if e is not an edge of O). We let H denote the collection of all hyperplanes in X .

Figure 3 shows a cube complex and the hyperplane dual to the equivalence class consisting of vertical edges. (The collection H in this case consists of this hyperplane together with three other hyperplanes that are not shown.)

Now suppose X is a CAT(0) cube complex, and suppose $\gamma = e_1, \ldots, e_n$ is an edgepath that starts and ends at the same vertex x_0 (that is, γ is an *edge-loop*). Since X is simply-connected, there exists a 2-disk D and a map $f: D \to X$ that restricts to a map $f: \partial D \to \gamma$. Given such a contracting map f, let D_f denote the union of the preimages $f^{-1}(H)$ as H runs over all hyperplanes in H.

Figure 3: A hyperplane in a cube complex

Proposition 4 (Sageev [5, Theorem 4.4]) Let X be a CAT(0) cube complex and let γ be an edge-loop. Then there exists a contracting map $f: D \to X$ for γ satisfying

- (1) $f(D)$ is contained in the 2–skeleton $X^{(2)}$
- (2) The subset $D_f \subset D$ is the union of a collection A of embedded arcs with endpoints on ∂D and such that any two arcs intersect at most once.
- (3) Any point on the boundary of D is an endpoint of at most one arc in A , and any point in the interior of D is contained in at most two arcs of A .

An example of such a contracting map is shown in Figure 4. Here the edge-loop is the one passing through the vertices x_0, x_1, \ldots, x_7 , and the map $f: D \rightarrow X$ maps the disk homeomorphically onto the front three faces of the 3–cube and the adjoining 2–cube. The four hyperplanes in X meet the image of this disk in the four arcs indicated (the arc corresponding to the shaded hyperplane is in bold).

Figure 4: A contracting map $f: D \to X$ for an edge-loop

To prove the proposition, one first uses transversality results to make the hyperplane preimages D_f a collection of immersed closed curves and arcs meeting in general position. Using the fact that links of vertices in X are all flag simplicial complexes, one then uses certain Reidemeister-type moves to simplify this collection of curves. The complete argument can be found in Sageev [5].

To simplify our exposition, we shall call the pair (D, D_f) a *picture* if it satisfies all of the conditions in Proposition 4. We will need to be able to modify our pictures using one of the Reidemeister moves mentioned above: the so-called "triangle move". In a picture, the disk D gets broken up into a collection of contractible regions, each of which is bounded by a finite number of sub-arcs. We call such a region a *triangle* if it is bounded by precisely 3 sub-arcs.

Proposition 5 Let $f: D \to X$ define a picture for the closed edge-loop γ , and suppose this picture has a triangle region with bounding arcs α_1 , α_2 , and α_3 . Then there exists another contracting map g: $D \to X$ for γ such that (D, D_g) is a picture identical to (D, D_f) except that the arc α_1 is on the other side of the intersection point $\alpha_2 \cap \alpha_3$.

Proof The triangle in (D, D_f) corresponds to a vertex v in the 2–skeleton $X^{(2)}$ where 3 squares meet like the corner of a 3–cube. The flag condition on the link of this vertex in X ensures that there is, in fact, a 3-cube in X that is attached to these three squares. Replacing these three squares with the opposite three squares in this cube yields a homotopic contracting map g with the desired picture. For example, the contracting map in Figure 4 can be modified so that the disk maps onto the *back* three faces of the 3–cube. The resulting picture is shown on the right in Figure 5. \Box

4 Cube positions in a CAT(0) cube complex

In this section we now fix a vertex x_0 in X. We shall say that a vertex x is *at level* l if $d(x, x_0) = l$. An immediate consequence of the existence of pictures for edge-loops in X is that any edge-loop has even length (twice the number of embedded arcs). This means that the vertices of any 1 -cube in X must be at different levels. In fact they must be at levels l and $l + 1$ for some $l \ge 0$. In general we have the following.

Lemma 6 Let Q be a k -dimensional cube in X and let l be the minimum level attained by vertices of Q. Then for each $j \in \{0, \ldots k\}$, there are precisely $\binom{k}{i}$ $j^{(k)}$ vertices of Q at level $l + j$ (Figure 6). In particular, Q has a unique (closest) vertex at level l and a unique (farthest) vertex at level $l + k$.

Figure 5: A triangle move on a picture

Figure 6: Level sets in a $CAT(0)$ cube complex

Proof First we show that there exists a unique vertex of Q at level l. For suppose x and x' are two different vertices of Q at level l. Let α be a minimal edge-path connecting x_0 to x, let α' be a minimal edge-path connecting x' to x_0 , and let β be an edge-path in Q connecting x to x' that has minimal length (in Q). Then the composition of α , β , and α' is an edge-loop γ , so by Proposition 4, there exists a contracting map $f: D \to X$ such that (D, D_f) is a picture for γ . We can assume this picture is minimal in the sense that it has the minimum number of interior crossings among all pictures for γ . We claim that such a picture has the following properties:

- (1) If two arcs each have an endpoint on α (respectively, α'), then they do not intersect.
- (2) If two arcs each have an endpoint on β , then they do not intersect.
- (3) No arc has both endpoints on α , α' , or β .

(4) If p is the last arc endpoint along α and q is the first arc endpoint along β (that is, p and q are the closest arc endpoints to x) then p and q do *not* belong to the same arc. Similarly for the two arc endpoints that are closest to x' .

Assuming the claim, it is not hard to see that no such picture can exist. For consider the arc A with endpoint closest to x along α and the arc B with endpoint closest to x along β (Figure 7). By (4), A and B are different. By (3) A cannot have both endpoints on α and B cannot have both endpoints along β . It follows that B must have second endpoint along α' (if it were along α , A and B would be forced to cross and each would have an endpoint on α , contradicting (1)). By symmetry, the arc B' that has endpoint closest to x' along β must have second endpoint along α . But then B and B' must intersect, violating (2).

Figure 7

To establish (1) of the claim, it suffices to show that no two arcs with consecutive endpoints along α can intersect. For suppose A and B are two such arcs that intersect in the point p . By applying repeated triangle moves one can first ensure that all arcs crossing A and B to the left of the intersection point are parallel (Figure 8). Then one can use repeated triangle moves to move all of these arcs to the right of p . We now have a triangular region in the picture with one edge along α . The intersection point p is dual to a square R in $X^{(2)}$ having two consecutive edges along α . Replacing these edges with the opposite two edges of R would result in fewer interior crossings (Figure 9), contradicting our choice of a picture that minimizes these crossings.

The proof of (2) is identical to the proof of (1) except that one needs to observe that the square R is in fact a *face of Q* (thus replacing the two edges along β with the opposite edges of the square, still gives an edge-path *in* Q). But this is clear since the intersection of Q and R must be a face of both, hence it must be the entire square R .

Figure 9

To prove (3), suppose without loss of generality that there exists an arc with both endpoints along α . No other arc can cross this one since it would either have to cross it twice (which is not allowed) or it would result in two crossing arcs that both meet α (violating (1)). It follows that we can choose such an arc A so that no other arcs touch α between the endpoints of A. In this case, the endpoints of A must map (under f) to the midpoint of the same 1–cell in X. If we let y denote the endpoint of this 1–cell that is not enclosed by A , then we see (in the left-hand picture in Figure 10) that the edge-path α can be shortened, contradicting its minimality.

For (4), we simply note that the existence of such an arc connecting p to q would imply that the last edge in the edge-path α coincides with the first edge of β . In particular, if y is the endpoint of this edge that is opposite x, then y would be a point in Q closer to x_0 than x (the right-hand picture in Figure 10).

Finally, to see that there are $\binom{k}{i}$ $j^{(k)}$ vertices of Q at level $l+j$, let x be the closest vertex (at level l). Index the vertices of Q using subsets of $\{1, 2, \ldots, k\}$ so that $v_{\emptyset} = x$ and v_I is adjacent to v_J if and only if the symmetric difference of I and J has one element. It suffices to show then that the vertex v_I is at level $I + |I|$ for each subset $I \subset \{1, ..., k\}$. We proceed by induction on |I|, the case $|I| = 0$ being trivial.

Figure 10

Consider the vertex v_I where $|I| > 0$. For every proper subset $J \subset I$, the vertex v_J is at level $l + |J|$ (by induction). The level of v_I is at most $l + |I|$ since removing an element from I gives an adjacent vertex at level $l + |I| - 1$. Suppose the level of v_I were less than $l + |I|$, say $l + j$. Pick a subset $J \subset I$ with $|J| = j$ and consider the face $Q_J \subset Q$ consisting of vertices v_K with $J \subset K \subset I$. Then both v_I and v_J would attain the minimum level for vertices of Q_J , contradicting the uniqueness of a closest vertex. Hence v_I must be at level $l + |I|$. \Box

Lemma 7 Let x be a vertex at level l, and let S be any set of vertices at level $l - 1$ that are adjacent to x. Then there exists a unique cube of dimension $|S|$ that contains all of the vertices $S \cup \{x\}$. (By the previous lemma, this cube starts at level $l - |S|$.)

Proof If S is empty or consists of a single vertex, the statement is trivial. Suppose S is a two-element set $\{y, y'\}$. Let α be a minimal edge-path from x_0 to y, and let α' be a minimal edge-path from y' to x_0 . Let e be the oriented edge from y to x, and let e' be the oriented edge from x to y'. Then composing the paths α , e, e', and α' , we obtain an edge-loop γ , and we let (D, D_f) be a picture for γ . As in the previous proof, we assume that α , and α' are chosen so that the number of interior crossings in this picture is minimized. Let A denote the arc that meets the midpoint of the edge e and let A' denote the arc that meets the midpoint of e' (Figure 11). Since $y \neq y'$, we know $e \neq e'$, so the arcs A and A' cannot coincide. By an argument similar to the previous proof we know that the arc A must connect to the boundary segment α' , and the arc A' must connect to α , hence A and A' must cross. By using triangle moves, we can assume this crossing is "at the top" (that is, the crossing point of A and A' is the closest crossing point to e along \overrightarrow{A} and the closest crossing point to e' along A'). This new crossing point then has a dual square R having e and e' as consecutive edges. This R is the desired 2–cube; it is unique since the intersection of two cubes must be a (single) face of each.

Now suppose S has more than two elements. These elements correspond to vertices in the link of x . By the previous paragraph, any two-element subset determines a square and hence an edge connecting the corresponding vertices in the link of x . Since the link of x is a flag complex, the vertices in the link that correspond to S must span a simplex; hence, there exists a cube of dimension $|S|$ containing $S \cup \{x\}$. Uniqueness follows (again) from the fact that the intersection of two cubes must be a face of both. \Box

5 Generating functions

Let X and x_0 be as above, and let $s_{k,l}$ denote the number of k cells in X that start at level l. In particular, the numbers $s_{k,0}$ for $k = 0, \ldots, n$ are the coefficients of the f-polynomial for the link of the vertex x_0 , and $s_{0,l}$ is the number of vertices in X at level l .

Lemma 8 We have the following identities for the $s_{k,l}$:

- (1) $s_{k,l} = 0$ if $k < 0$ or $l < 0$.
- (2) $\sum_{k=0}^{l} (-1)^{k} s_{k,l-k}$ is 1 if $l = 0$ and 0 if $l > 0$.
- (3) $s_{k,0} s_{0,l} = \sum_{j=0}^{k} {k \choose j}$ $j^{(k)}$ $s_{k,l-j}$ if $k > 0$.

Proof The first statement is obvious. For the second, note that by Lemma 6, the sum in question can be interpreted as

$$
\sum (-1)^{\dim Q}
$$

where the sum is taken over all cubes Q that end at level l . By Lemma 7, any such cube is contained in a unique maximal cube (ending at level l). If we restrict the sum to one of these maximal cubes Q_0 we get a sum of the form

$$
\sum_{I \subset J} (-1)^{|I|}
$$

where J is the set of vertices of Q_0 at level $l-1$. Since this sum is zero for each maximal cube (it's the binomial expansion of $(1 - 1)^{|J|}$), the result follows. The third identity corresponds to two different ways of counting the number of $(k-1)$ –simplices in the links of all of the vertices at level l. Since $s_{0,l}$ is the number of vertices at level l and $s_{k,0}$ is the number of $(k-1)$ –simplices in the link of each vertex, the left hand side $s_{k,0} s_{0,l}$ certainly gives this number. On the other hand, since $s_{k,l-j}$ is the number of k–cells starting at level $l-j$, and (by Lemma 6) each such k–cell contributes a $(k-1)$ –simplex to the links of its $\binom{k}{k}$ $j^{(k)}$) vertices at level l, the right-hand sum also yields this number. \Box

For $k = 0, \ldots, n$ we let $g_k(t)$ be the generating function

$$
g_k(t) = \sum_{l=0}^{\infty} s_{k,l} t^l.
$$

That is, $g_k(t)$ is the growth series for k-cells in X. In particular, $g_0(t)$ is the growth series $G(X, x_0; t)$.

Lemma 9 These generating functions satisfy the following identities:

- (1) $(1 + t)^k g_k(t) = s_{k,0} g_0(t)$ for all $k \ge 0$.
- (2) $\sum_{k=0}^{\infty} (-t)^k g_k(t) = 1$.

Proof These are just generating function versions of the identities (2) and (3) in Lemma 8. For the first identity, the case $k = 0$ is trivial, and for $k \ge 1$ we have

$$
s_{k,0}g_0(t) = \sum_{l=0}^{\infty} s_{0,l} s_{k,0}t^l = \sum_{l=0}^{\infty} \sum_{j=0}^k {k \choose j} s_{k,l-j}t^l
$$

by (3) in Lemma 8. Interchanging the sums and noting that $s_{k,l-j} = 0$ for $l < j$ gives

$$
\sum_{j=0}^{k} \sum_{l=j}^{\infty} s_{k,l-j} t^{l-j} {k \choose j} t^{j} = \sum_{j=0}^{k} g_{k}(t) {k \choose j} t^{j} = g_{k}(t) (1+t)^{k},
$$

as desired.

For the second identity, we have

$$
\sum_{k=0}^{\infty} (-t)^k g_k(t) = \sum_{k=0}^{\infty} (-t)^k \sum_{i=0}^{\infty} s_{k,i} t^i.
$$

Substituting $l - k$ for i, this becomes

$$
\sum_{k=0}^{\infty} \sum_{l=k}^{\infty} (-1)^k s_{k,l-k} t^l.
$$

Interchanging the sums then gives

$$
\sum_{l=0}^{\infty} \left(\sum_{k=0}^{l} (-1)^k s_{k,l-k} \right) t^l
$$

which, by (2) in Lemma 8, reduces to 1.

The formula for the growth series $G(X, x_0; t)$ given in the introduction is the special case $k = 0$ of the following theorem.

Theorem 10 The generating functions $g_k(t)$ are given by

$$
\frac{1}{g_k(t)} = \frac{(1+t)^k}{f_{k-1}} f\left(\frac{-t}{1+t}\right).
$$

Proof Since $f(t) = \sum s_{k,0}t^k$ where the sum is taken over all $k \ge 0$, we have

$$
f\left(\frac{-t}{1+t}\right) = \sum_{k=0}^{\infty} s_{k,0} \left(\frac{-t}{1+t}\right)^k
$$

=
$$
\sum_{k=0}^{\infty} \left(\frac{g_k(t)(1+t)^k}{g_0(t)}\right) \left(\frac{-t}{1+t}\right)^k
$$

=
$$
\frac{1}{g_0(t)} \sum_{k=0}^{\infty} (-t)^k g_k(t)
$$

=
$$
\frac{1}{g_0(t)}
$$

where the second line follows from (1) of Lemma 9, and the last line follows from (2). This gives the desired formula in the case $k = 0$. The general formula then follows again from (1) in Lemma 9. \Box

Algebraic & Geometric Topology*, Volume 7 (2007)*

 \Box

References

- [1] M R Bridson, A Haefliger, *Metric spaces of non-positive curvature*, Grundlehren der Mathematischen Wissenschaften 319, Springer, Berlin (1999) MR1744486
- [2] **R Charney, M W Davis,** *Finite* $K(\pi, 1)$ *s for Artin groups*, from: "Prospects in topology (Princeton, NJ, 1994)", Ann. of Math. Stud. 138, Princeton Univ. Press, Princeton, NJ (1995) 110–124 MR1368655
- [3] M W Davis, *Nonpositive curvature and reflection groups*, from: "Handbook of geometric topology", (R Daverman, R Sher, editors), North-Holland, Amsterdam (2002) 373–422 MR1886674
- [4] G A Noskov, *Growth of certain non-positively curved cube groups*, European J. Combin. 21 (2000) 659–666 MR1771984
- [5] M Sageev, *Ends of group pairs and non-positively curved cube complexes*, Proc. London Math. Soc. (3) 71 (1995) 585-617 MR1347406
- [6] R Scott, *Right-angled mock reflection and mock Artin groups*, Trans. Amer. Math. Soc. (to appear)
- [7] R Steinberg, *Endomorphisms of linear algebraic groups*, Memoirs of the American Mathematical Society 80, American Mathematical Society, Providence, R.I. (1968) MR0230728

Department of Mathematics and Computer Science, Santa Clara University Santa Clara CA 95053, USA

rscott@math.scu.edu

Received: 21 November 2006