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High-codimensional knots spun about manifolds

DENNIS ROSEMAN

MASAMICHI TAKASE

Using spinning we analyze in a geometric way Haefliger’s smoothly knotted .4k�1/–
spheres in the 6k –sphere. Consider the 2–torus standardly embedded in the 3–sphere,
which is further standardly embedded in the 6–sphere. At each point of the 2–torus
we have the normal disk pair: a 4–dimensional disk and a 1–dimensional proper sub-
disk. We consider an isotopy (deformation) of the normal 1–disk inside the normal
4–disk, by using a map from the 2–torus to the space of long knots in 4–space, first
considered by Budney. We use this isotopy in a construction called spinning about
a submanifold introduced by the first-named author. Our main observation is that
the resultant spun knot provides a generator of the Haefliger knot group of knotted
3–spheres in the 6–sphere. Our argument uses an explicit construction of a Seifert
surface for the spun knot and works also for higher-dimensional Haefliger knots.

57R40; 57R65, 55P35

1 Introduction

Various kinds of spinning constructions, all of which stem from Artin’s original con-
struction [1], are now basic tools in the study of high-dimensional knots in codimension
two, that is, in the study of embeddings of n–manifolds in the .nC2/–sphere.

On another front, Haefliger [11; 12] found smooth knots in codimensions greater than
two. He showed that the group C

q
n of isotopy classes of smooth embeddings of the

n–sphere Sn into .nCq/–sphere SnCq is often non-trivial even when q� 3. Although
many spinning constructions can be applied for such “high-codimensional” knots, there
have been very few related studies (see Budney [4], Hsiang and Sanderson [13] and
Milgram [15]).

Budney [4] gave a new description of a generator of the Haefliger knot group C 3
3

. This
was related to his study on the space K4;1 of “long” knots in 4–space. Here, Kn;j

is the space of long knots — smooth embeddings of Rj ,! Rn which are standard
outside the unit disk in Rj . We note that the restriction of a long embedding to the
unit disk gives a properly embedded j –disk in the unit n–disk — our construction
will refer to it. In his paper, a map (the resolution map) ˆW T 2 ! K4;1 from the
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2–torus T 2 , defined in an ingenious way (see Section 2.2), plays a key role. This map
gives rise to generators of certain homotopy groups and of the Haefliger group, via
successive graphing constructions. The geometric nature of graphing constructions
here is a high-codimensional version of Litherland’s deform-spinning [14].

We give yet another description of a generator of the Haefliger knot group C 3
3

in terms
of the notion spinning about a submanifold, introduced by the first-named author [16].
Our main result is as follows (see Section 3 for the details). Consider the 2–torus
T 2 standardly embedded in S3 , which is further standardly embedded in S6 . At
each point of T 2 , we have the normal 4–disk D4 to T 2 � S6 and the normal 1–
disk D1 to T 2 � S3 . Then, we “deform” D1 inside D4 , by using ˆ. Namely, at
each point of � 2 T 2 , we replace the standard disk pair .D4;D1/ with the new disk
pair .D4; ˆ.�/.D1//. We then show that the resultant smoothly embedded 3–sphere
†3
ˆ
� S6 represents a generator of the Haefliger knot group C 3

3
.

Our study is motivated by Budney’s construction and in particular his resolution map
ˆW T 2 ! K4;1 . Our approach is different. We use a basic technique in the spirit
of codimension two knot theory — examination of how the homology of a Seifert
surface relates to the knot complement. It is very geometric, uses higher-dimensional
visualization, does not involve any homotopy groups and might be useful for more
general high-codimensional knots.

Additionally, all of Budney’s and our arguments work for higher-dimensional Haefliger
knot groups C 2kC1

4k�1
, k � 2. We need just to consider the triple

S2k�1
�S2k�1

� S4k�1
� S6k

and use everywhere a higher-dimensional Budney map [4, Section 3]

S2k�1
�S2k�1

!K2kC2;1

instead of ˆW T 2 D S1 �S1!K4;1 .

Throughout the paper, we work in the smooth category; all manifolds and mappings
are supposed to be differentiable of class C1 , unless otherwise stated. We use the
symbol ‘Š’ for a group isomorphism and ‘�’ for a diffeomorphism.

The authors would like to thank the referee for his or her careful reading and sug-
gestions which greatly improved the exposition of this paper. The second-named
author would like to thank Ryan Budney for fruitful conversations. The second-named
author is partially supported by the Iwanami Fujukai Foundation and by the Sumitomo
Foundation.
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2 Preliminaries

2.1 Haefliger’s knots

Haefliger showed in [11; 12] that the group C n
q of smooth isotopy classes of smooth

embeddings of the n–sphere Sn in the .nCq/–sphere SnCq is often non-trivial even
when the codimension q is greater than 2. In a particular case, for each k � 1 the
group C 4k�1

2kC1
of smooth isotopy classes of smooth embeddings S4k�1 ,! S6k forms

the infinite cyclic group Z. This is in contrast with Zeeman’s unknotting theorem [20]
stating that any n–sphere is unknotted in the piecewise linear sense in the .nCq/–
sphere if q > 2.

According to Boéchat and Haefliger [2; 3] and the second-named author [19; 18], the
smooth isotopy class of Haefliger’s knot can be read off from geometric characteristics
of its Seifert surface. When k D 1, we have the following (see Guillou–Marin [10]
and Boéchat–Haefliger [3]).

Theorem 2.1 Every embedding F W S3 ,!S6 has a Seifert surface zF W V 4 ,!S6 and

H.F /D�1
8

�
�.V 4/� e zF ^ e zF

�
gives the isomorphism HW C 3

3
! Z, where e zF denotes the normal Euler class of zF .

2.2 Budney’s isomorphism

Several papers, including those by Boéchat [2], Boéchat–Haefliger [3], Guillou–Marin
[10], the second author [19; 18], and Skopenkov [17], give geometric descriptions for
the Haefliger knot groups C 2kC1

4k�1
and their generators. Recently, Budney [4] has given

a description of such Haefliger knots in terms of the space of long knots, which is
related to the Litherland-type deform-spinning.

Let Kn;j be the space of smooth embeddings (long embeddings) Rj ,! Rn being
the standard inclusions on jxj � 1 for x 2 Rj . Then, Budney [4], using results of
Goodwillie [9], showed that there is an isomorphism �2K4;1! C 3

3
. His isomorphism

gives a new description of the Haefliger group C 3
3
� Z.

We briefly review Budney’s construction. Note that he deals with more general cases
in [4, Section 3], so that he constructs an epimorphism �2d�2KdC2;1! C dC1

2d�1
(for

d > 1), which gives an isomorphism when d is even.
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2.2.1 The graphing map Consider the “graphing” map gr1W �Kn�1;j�1 ! Kn;j

defined by

.gr1f /.t0; t1; : : : ; tj�1/D .t0; f .t0/.t1; : : : ; tj�1//:

Budney [4] showed that the maps �K4;1!K5;2 and �K5;2!K6;3 induce isomor-
phisms

�2K4;1 Š �1K5;2 Š �0K6;3:

Furthermore, the group �0K6;3 is isomorphic to C 3
3

due to Haefliger [12].

2.2.2 The resolution map ˆW T 2!K4;1 Take a “long” immersion f W R! R3 �

R4 such that f .t/D .t; 0; 0; 0/ for jt j> 1 and has two double points f .t1/D f .t3/,
f .t2/D f .t4/ with �1< t1 < t2 < t3 < t4 < 1 and such that df .Tt1

R/\df .Tt3
R/D

df .Tt2
R/\df .Tt4

R/D f0g (see Figure 1). At f .t1/D f .t3/ and f .t2/D f .t4/, we
have the 2–dimensional normal complements P1 to df .Tt1

R/˚df .Tt3
R/ and P2 to

df .Tt2
R/˚ df .Tt4

R/, respectively.

Figure 1: An immersed long line with two intersections, thickened and shown
as a thin tube.

Let S1 and S2 be the unit 1–dimensional sphere in P1 and P2 respectively. Given
.�;  / 2 S1 � S2 , we perturb a small neighborhood of f .t1/ in direction � using
a bump function and a small neighborhood of f .t2/ with  . In this way, we can
eliminate the double points, separating via a fourth dimension. Thus we obtain a
“resolution map”

ˆW T 2
D S1 �S2!K4;1:

Finally, Budney, Conant, Scannell and Sinha [5] showed that ˆ generates H2.K4;1IZ/

and hence generates �2K4;1 Š Z since K4;1 is simply-connected.
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2.3 Deform-spinning about a submanifold

The spinning describes several methods of constructing higher-dimensional knots from
lower-dimensional knots. The most fundamental method, simply called spinning, is
due to Artin [1]. It has been generalized in various ways (a useful reference in this area
is Friedman [8]). In this paper, we will use the deform-spinning about a submanifold
(in [8] called frame deform-spinning), introduced by the first-named author [16].

Definition 2.2 Suppose M k is a submanifold of Sp � Sq with trivial tubular neigh-
borhood N � M k � Dp�k � Sp . Then M has a trivial tubular neighborhood
T �M k �Dq�k in Sq . We can write:

.T;N /DM k
� .Dq�k ;Dp�k/:

Suppose ˆW M k!Kq�k;p�k is a smooth map. The deform spun knot †ˆ about M k

is the embedded p–sphere in Sq , obtained from Sp � Sq by replacing the standard
ball pair fxg�.Dq�k ;Dp�k/ with fxg�.Dq�k ; ˆ.x/.Dp�k// at each point x 2M k .

This generalizes Litherland’s deform-spinning [14], that corresponds to the case where
M k is taken as S1 standardly embedded in Sp � SpC2 .

Deform-spinning about a submanifold is one of the most generalized forms of spinning.
For example, we can describe Artin’s original spinning as †ˆ where M k D S1

in S2 � S3 and ˆ is a constant map. A super-spun p–knot (see Cappell [6]) is
given by deform-spinning about M k D Sk � Sp with a constant map ˆ. Zeeman’s
twist-spun knot [21] is a deform-spun knot about M k D S1 � S2 � S3 via the map
ˆW S1! K3;1 ; where ˆ.�/ is the rotated image of a knotted arc about the x–axis
by an angle of � . Another variation is Fox’s roll-spinning [7]. Yet another extension
spinning of a knot about a projection of a knot uses a mapping of a manifold into Sp

[16].

3 The main theorem

Consider the 2–torus T2 standardly embedded in S3 , which is further included in S6

in the standard manner: T2 � S3 � S6 . At each point of T2 we consider the normal
4–disk to T2 � S6 and the normal 1–disk to T2 � S3 , which form the standard disk
pair .D4;D1/.

We can deform-spin S3 � S6 about the torus T2 � S3 � S6 with Budney’s resolution
map (Section 2.2.2) ˆW T2 ! K4;1 . In the normal plane at each point � 2 T2 , we
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replace the standard disk pair .D4;D1/ with a new disk pair .D4; ˆ.�/.D1//. We
denote the resultant embedded 3–sphere in S6 by †3

ˆ
. Namely, in S6

†3
ˆ D S3 X .T2 �D1/[

[
�2T2

ˆ.�/.D1/:

Let J W S3 ,! S6 be a smooth embedding so that J.S3/D†3
ˆ
� S6 . Then, our main

theorem is the following:

Theorem 3.1 H.J /D˙1; J represents a generator of C 3
3
Š Z.

4 A Seifert surface and the proof

Consider the 2–torus T2 � S3 � S6 , along which we performed the spinning, to be

T2
D S1

� �S1
 D f.�;  /I �;  2 R=2�Zg:

At each point .�;  / 2 T2 , we identify the normal 4–disk D4
.�; /

to T2 � S6 with the
unit disk D4 in R4 D f.x;y; z; w/g. Thus, ..�;  /; .x;y; z; w// gives a coordinate
system for a tubular neighborhood (diffeomorphic to T2 �D4 ) of T2 in S6 .

Let B4 be the northern hemisphere of S4 � S6 , which we think of as the standard
Seifert surface for the unknot S3 � S6 . We can assume that in each normal 4–disk
D4
.�; /

to T2�S6 , the 4–disk B4 is seen as in Figure 2, which depicts the hyperplane
section by w D 0 of D4

.�; /
and where the intersection of B4 and D4

.�; /
is shown in

gray. We denote this intersection B4\D4
.�; /

by B2
�; 

.

4.1 A Seifert surface

To construct a Seifert surface for our spun knot †3
ˆ
� S6 , we first consider the

punctured 2–dimensional torus in the 4–disk D4
.0;0/

, as shown in Figure 3. In Figure
3, †3

ˆ
is the arc drawn with a thick line. We remark that although this arc appears

knotted since it is pictured in three-dimensional space, it is really smoothly unknotted
in D4

.0;0/
. We view

ı

T .0;0/ in a standard way as a 2–disk C with two bands A and B ,
as in Figure 4. The figures show piecewise smooth objects which, by standard methods
in differential topology, correspond to unique smooth objects.

In the normal 4–disk D4
.�; /

for general .�;  / 2 T2 , we consider the embedded
punctured 2–torus

ı

T .�; / , defined as follows. The punctured torus
ı

T .�; / coincides
with

ı

T .0;0/ on the disk C and differs from
ı

T .0;0/ only on the two bands A and B . In
the punctured torus

ı

T .�; / , the band A has been replaced with A� and B has been
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B2
�; 

X

Y

Z

Figure 2: For any values of .�;  / , the standard Seifert surface of the unknot
is as shown. The center point of the cube has coordinates .0; 0; 0; 0/; the last
coordinate w is not shown.

replaced with B :
ı

T .�; / D C [A� [B . Now we describe the band A� in detail;
B will be treated similarly.

We obtain A� by rotating A around the 2–dimensional axis fw D z D 0g by an angle
of  .y/� , where  .y/ is a smooth bump function with  .y/D 0 in a neighborhood
of ˙1 and  .y/D 1 for �1=4� y � 1=4 (see Figure 5). So  allows us to smoothly
attach the band A� to C . If we only consider the motion of the edges of the band A

in the above process, it corresponds to Budney’s resolution process (see Section 2.2.2)
for one intersection point.

To clarify this construction, we show
ı

T .�;0/ in Figure 6. In the generic case, the rotation
will move points not in the center of the band so that it has non-zero w–coordinate
and the points of

ı

T .�; / in fw D 0g is shown in Figure 7.

Putting together all the punctured tori
ı

T .�; / � D4
.�; /

, we obtain the embedded
4–manifold

W 0 WD
[

.�; /2T2

ı

T .�; / � T2
� (the punctured torus)� S6:
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ı

T .0;0/

X

Y

Z

Figure 3: The Seifert surface for � D  D 0 in fw D 0g .

Then

W WD B4 X

[
.�; /2T2

B2
.�; /

[

[
.�; /2T2

ı

T .�; / D B4 X

[
.�; /2T2

B2
.�; /

[W 0

becomes a smoothly embedded 4–manifold.

In each D4
.�; /

the thick arc (smoothed) gives our deformation
S
�2T2 ˆ.�/.D1/ and

the rest of @W is S3 X .T2 �D1/. Therefore, W is a Seifert surface bounded by
the knot †3

ˆ
� S6 . We abuse notation and identify W � S6 with the image of an

embedding zJ W W ,! S6 .

4.2 The second homology group

Now let us compute the second homology group H2.W IZ/ of our Seifert surface W

and its intersection form.

Since W 0 is diffeomorphic to T2 � (the punctured 2–torus), we have

H2.W
0/� Z˚Z˚Z˚Z˚Z;
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A

B

C

X

Y

Z

Figure 4: The bands A and B of
ı

T .0;0/ are shown here in darkened gray,
the disk C in light gray.

�1:0 �0:5 0:5 1:0

0:2

0:4

0:6

0:8

1:0

Figure 5: The bump function

by the Künneth lemma. If we take two closed curves ˛ , ˇ in the punctured torus
ı

T .0;0/ at .0; 0/ 2 S1
�
�S1

 
as shown in Figure 8, then the above five Zs are generated
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ı

T .�;0/

X

Y

Z

Figure 6: The Seifert surface for � D �; D 0 in fw D 0g . Note the twist
of the A band is reversed if compared to Figure 3.

by the five tori

T˛� WD˛�S1
� ; T˛ WD˛�S1

 ; Tˇ� WDˇ�S1
� ; Tˇ WDˇ�S1

 and f�g�S1
��S1

 ;

each embedded in W 0 . Here � is a point of
ı

T .0;0/ .

Since W is obtained by gluing D4 XT2 �D2 (� the 4–disk) to W 0 along a part of
their boundaries, killing Œf�g�S1

�
�S1

 
� 2H2.W

0/, we have

H2.W /� Z˚Z˚Z˚Z

� hŒT˛� �i˚ hŒTˇ �i˚ hŒT˛ �i˚ hŒTˇ� �i;

by the Mayer–Vietoris sequence.

Among the above representatives of H2.W /, the two pairs of “complementary” tori
have intersection number 1. That is, the only non-zero intersection numbers are

ŒT˛� � � ŒTˇ �D ŒT˛ � � ŒTˇ� �D 1;
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ı

T .�; /

X

Y

Z

Figure 7: Generically, for �;  ¤ 0; or � the only parts of the two bands
that appear in fw D 0g are the center lines.

where � denotes the intersection pairing. Hence, with respect to the above generators,
the intersection form on H2.W / is expressed as�

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

�
:

Note that the signature �.W /D 0.

4.3 The normal Euler class

We compute the normal Euler class e zJ for the embedding W ,! S6 using an intersec-
tion argument.

First note that any embedding of an oriented 3–manifold in S6 has trivial normal
bundle since it is unique up to regular homotopy and hence is regularly homotopic
to an embedding in S5 . Take a small generic perturbation yW of W in S6 and put
F WD yW \W . Since †3

ˆ
D @W � S6 has trivial normal bundle, F � Int W and the

homology class ŒF � 2H2.W /�H2.W; @W / is dual to the normal Euler class e zJ .
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˛

ˇ

X

Y

Z

Figure 8: The loops ˛ and ˇ

With respect to the generators of H2.W / given in Section 4.2, we represent the class
ŒF � as

ŒF �D a1ŒT˛� �C a2ŒTˇ �C a3ŒT˛ �C a4ŒTˇ� �

D .a1; a2; a3; a4/ 2H2.W /Š Z˚Z˚Z˚Z:

Then, with the intersection form in Section 4.2, we have, for example

a2 D ŒF � � ŒT˛� �:

If we let yT˛� � yW be the perturbation of T˛� , then a2 D ŒF � � ŒT˛� � is equal to the
intersection F and yT˛� in yW . This is further equal to the intersection of W and yT˛� ,
since F D yW \W . Since yT˛� can be thought of as a push-off of T˛� � W into
S6 XW , we only need to count the intersection of W and a push-off of T˛� . By the
same method, we can compute a1 , a3 , a4 and hence the class ŒF � dual to the normal
Euler class e zJ . We carry out this calculation below.

First, the punctured 2–torus
ı

T .0;0/ at .�;  /D .0; 0/ lies in the 3–dimensional hyper-
plane fwD 0g, the hyperplane section by wD 0 of the normal 4–disk D4

.0;0/
. Consider
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a vector field � normal to the punctured 2–torus
ı

T .0;0/ in this 3–dimensional hyper-
plane f.x;y; z; 0/g. In each normal 4–disk D4

.�;0/
, we consider .�; 0/�˛ � T2�D4

to be sitting in
ı

T .�;0/ and push it off along the same normal vector field � . This
determines a push-off yT˛� of the 2–torus T˛� in S6 .

In each normal 4–disk D4
.�;0/

, W \D4
.�;0/
D

ı

T .�;0/ . As we vary � , this punctured
torus, outside the A–band, lies in the 3–dimensional hyperplane fw D 0g and the
A–band lies in f.x;y; t cos �; t sin �/jt 2 Rg. Therefore, the only way that W and
yT˛� could intersect is when .�;  /D .�; 0/.

Q

P

X

Y

Z

Figure 9: Intersection of yT˛� and W . We see the A–band of
ı

T .�;0/ �W .
A part of T˛� is shown as a straight thin line segment parallel to the y –axis.
The push-off yT˛� is a bold curve. For visualization, we show the trace of this
push-off.

When .�;  /D .�; 0/, in the normal 4–plane D4
.�;0/

, the whole A–band lies in the
3–dimensional hyperplane fw D 0g. Figure 9 depicts the situation near the A–band
in this 3–dimensional plane, where yT˛� is viewed as a “half-twisted arc” and the
B –band is an oppositely half-twisted band (Compare Figures 3 and 6). We see that the
intersection of W and yT˛� consists of the two points P and Q, seen in Figure 9.
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However, it is not easy to see from Figure 9 the crucial fact that these intersections
actually have the same sign. For this we use Figure 10.

Figure 10 shows a 3–dimensional sub-disk of W intersecting a 2–dimensional sub-disk
of yT˛� transversely in 5–dimensional space. The array of black dots represent a square
patch S of yT˛� . The arrow in each figure represents a line segment of an A–band in
W ; thus the array of these segments represents a 3–cube of W .

This placement of the arrow depends on two sorts of twists — a half twist in the band
in the y–direction and a full twist in the � direction. To help visualize this, we use
disks in gray. The half twist takes place within this disk while (simultaneously) the
full twist has the effect of rotating this disk about the x–axis. These disks in gray are
not part of our construction but only serve to guide visualization of the 3–dimensional
graphics. For example, note that in the right side of the second row we do not see
the dot. This is because as we go along this row, the dot is rotating in the xz–plane,
and the disk has been rotated along the x–axis. The points of the disk with negative
z–coordinate have positive w–coordinate so that our dot is hidden from view by this
disk.

Not shown is a sixth coordinate — the  direction. This is a fourth coordinate for W

and the sixth coordinate of the ambient space — this coordinate will not be considered
for analysis here. What really matters is the normal bundle to W and tangent plane to
the torus and these can be clearly understood using this figure. The � corresponds to
twisting of the first band A and is independent from the twisting with respect to  .

In the fifth row of Figure 10 the arrow and the dot for each value of y are both in the
xz–plane in fw D 0g. The one-parameter family of these two-dimensional figures,
when stacked, give rise to the three dimensional Figure 9.

We will be concerned with the two intersection points of our torus yT˛� and the 4–
manifold W . In Figure 10 these points occur where the black dot lies exactly on the
arrow — P in row 5 column 3; and Q in row 5 column 7. Choose an orientation of
the tangent bundle of yT˛� and an orientation of the normal bundle of W . Transversality
assures that, at each point of W \ yT˛� , we can identify two-dimensional fibers of these
bundles. The sign at the intersection point P is C1 if the two orientations agree, and
�1 if not.

The square patch S of yT˛� is flat in the �xyz–cube, thus its tangent plane coincides
with this square S . Specifically, orient yT˛� with vectors �y in the y direction (that
is along the rows from left to right in Figure 10) and �� the � direction (down the
columns of Figure 10). This ordered pair .�y ; �� / gives an orientation of the tangent
plane of yT˛� . Next we choose a framing for the normal bundle for W. The normal
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2–disks to W are all represented as disks normal to the arrow. In row 5 column 1 we
orient the normal disk W by a vector pair .!1; !2/ where !1 is in the direction of
the z–axis and !2 in direction of the w–axis. Continuing in the fifth row, we choose
!1 orthogonal to the arrow in the gray disk and !2 in the direction of the w–axis.
(The details of the normal frames in other rows will not need to be considered in our
analysis.)

We first focus on �y at P — row 5 column 3. As we go from left to right, the arrow
rotates in the xz–plane while the dot rotates in the opposite direction where we view
y as “time”. At P , �y corresponds to the velocity vector of the dot with y viewed
as time. At P the dot goes from the positive side of the arrow (with respect to !1 )
orthogonally to the negative side. Therefore �y has direction �!1 at P . Similarly
at Q (row 5 column 3) the dot goes from the negative side back to the positive side.
Thus at Q, �y has direction C!1 . This can be seen also in Figure 9.

Next we consider �� at P . This second tangent direction is downwards the third
column. Note that as the dot passes P it goes from below the disk (that is, hidden from
view) to above it (visible). This is in the direction of the positive w–axis. Thus at P ,
�� is in the direction !2 . At Q we see the dot go from above the disk to below it and
so at Q, �� is in the direction �!2 . This information is not apparent in Figure 9.

In summary the intersection numbers at P and Q are both �1. However, this sign
depends on our choice of orientation of yT˛� , so we can only conclude that the signs at
P and Q are the same.

Thus, we conclude

a2 D ŒF � � ŒT˛� �D˙2:

By the same argument for ˇ ,  and the B –band instead of ˛ , � and the A–band, we
have a1 D˙2.

For the two tori ŒT˛ � and ŒTˇ� �, we can easily check that their push-offs along the
same normal field � do not intersect W at all. Therefore, we have a3 D a4 D 0.

Finally, the homology class dual to the desired normal Euler class is

ŒF �D .˙2;˙2; 0; 0/ 2H2.W /Š Z˚Z˚Z˚Z:

Thus, we have:

Proposition 4.1 e zJ D .˙2;˙2; 0; 0/ 2H 2.W /.
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W W W W W W W W W
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Figure 10: Local pictures of yT˛� (dots) and W (arrows). The horizontal
rows correspond to the y –direction and the vertical columns correspond to
the � –direction.

4.4 Proof of Theorem 3.1

To prove Theorem 3.1, we have only to compute the Haefliger invariant H.J / for our
spun knot †3

ˆ
� S6 by using its Seifert surface W � S6 constructed in Section 4.1.

By Theorem 2.1, together with Proposition 4.1, we have

H.J /D�.�.W /� e zJ ^ e zJ /=8D˙.2� 2C 2� 2/=8D˙1:
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This completes the proof of Theorem 3.1.

5 Remarks

In view of the proof in Section 4.4, we easily see the following.

Remark 5.1 In the construction of †3
ˆ
� S6 , by using ˆ0.�;  / WD ˆ.m�; n /

(m; n 2 Z) for spinning (i.e. if we change the speed of the resolutions), we obtain the
spun knot representing mn times the generator represented by †3

ˆ
in C 3

3
.

All of our arguments are valid for higher-dimensional Haefliger knots C 2kC1
4k�1

, k � 2.
First of all, Budney’s resolution map is actually defined also in higher dimensions [4,
Section 3] and our construction of the spun knot works there. Furthermore, since we
also have higher-dimensional versions of Theorem 2.1 (see [19, Theorem 2.3] and [18,
Theorem 5.1]), the proof is directly extended in high dimensions. Namely, we have:

Remark 5.2 If we deform-spin S4k�1 � S6k about

S2k�1
�S2k�1

� S4k�1
� S6k

via the higher-dimensional Budney map [4, Section 3]

S2k�1
�S2k�1

!K2kC2;1

(which corresponds to the case where we put nD 2kC 2 in Budney’s description of
the generator of �2n�6Kn;1 [4, Section 3]), then the resultant spun knot represents a
generator of C 2kC1

4k�1
for k � 1.

All the steps of the proof parallel those of the case kD1 (Section 4) with little alteration.
In constructing the resolution map and the Seifert surface, we need to consider smooth
proper arcs inside the normal .2kC2/–disk at each point of S2k�1 �S2k�1 � S6k ,
where we consider S2k�1 �S2k�1 to be the boundary of a tubular neighborhood of
an unknotted S2k�1 in S4k�1 � S6k .
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(1986) 25–95 MR900246

[11] A Haefliger, Knotted .4k�1/–spheres in 6k –space, Ann. of Math. .2/ 75 (1962)
452–466 MR0145539

[12] A Haefliger, Differential embeddings of Sn in SnCq for q > 2 , Ann. of Math. .2/ 83
(1966) 402–436 MR0202151

[13] W-C Hsiang, B J Sanderson, Twist-spinning spheres in spheres, Illinois J. Math. 9
(1965) 651–659 MR0189047

[14] R A Litherland, Deforming twist-spun knots, Trans. Amer. Math. Soc. 250 (1979)
311–331 MR530058

[15] R J Milgram, On the Haefliger knot groups, Bull. Amer. Math. Soc. 78 (1972) 861–865
MR0315728

[16] D Roseman, Spinning knots about submanifolds; spinning knots about projections of
knots, Topology Appl. 31 (1989) 225–241 MR997490

[17] A Skopenkov, Classification of smooth embeddings of 3–manifolds in the 6–space
arXiv:math.GT/0603429

[18] M Takase, A geometric formula for Haefliger knots, Topology 43 (2004) 1425–1447
MR2081431

[19] M Takase, The Hopf invariant of a Haefliger knot, Math. Z. 256 (2007) 35–44

[20] E C Zeeman, Unknotting spheres, Ann. of Math. .2/ 72 (1960) 350–361 MR0117738

Algebraic & Geometric Topology, Volume 7 (2007)



High-codimensional knots spun about manifolds 377

[21] E C Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965) 471–495
MR0195085

Department of Mathematics, University of Iowa
14 MacLean Hall, Iowa City IA 52242-1419, USA

Department of Mathematical Sciences, Faculty of Science, Shinshu University
Matsumoto, Nagano 390-8621, Japan

roseman@math.uiowa.edu, takase@math.shinshu-u.ac.jp

http://www.math.uiowa.edu/~roseman/

Received: 10 October 2006

Algebraic & Geometric Topology, Volume 7 (2007)




