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The D.2/ property for D8

W H MANNAN

Wall’s D.2/ problem asks if a cohomologically 2–dimensional geometric 3–complex
is necessarily homotopy equivalent to a geometric 2–complex. We solve part of the
problem when the fundamental group is dihedral of order 2n and give a complete
solution for the case where it is D8 the dihedral group of order 8.

57M20; 57M05

1 Introduction

Wall introduced the D.2/ problem in [5]. This asks if a cohomologically 2–dimensional
geometric 3–complex is necessarily homotopy equivalent to a geometric 2–complex.
The answer depends only on the fundamental group and we say that a group has the
D.2/ property if the answer is “yes” for complexes with this fundamental group. The
D.2/ property has been verified for dihedral groups of order 4nC 2 by Johnson [2].
Therefore we concentrate on dihedral groups of order 4n. Since these do not have
periodic resolutions, not all the methods of [2] can be applied to them. Our main result
is orthogonal to the result of Johnson in [3], in the sense that it concerns dihedral groups
whose order is a power of 2, rather than twice an odd number.

We begin by recalling some of the theory of k –invariants. We work over a finite group
G of order n.

Definition 1.1 (Algebraic complex) We define an algebraic n–complex, to be a
sequence of maps and modules:

Fn
dn
�! Fn�1

dn�1
�! � � � ! F1

d1
�! F0

where the Fi are free finitely generated modules over ZŒG�, the cokernel of d1 is Z

(with trivial G action) and the sequence is exact at F1 .

Let .Fi ; di/ and .F 0i ; d
0
i/, i D 0; 1; 2, denote algebraic 2–complexes. Suppose given

fi W Fi! F 0i , i D 0; 1; 2, which constitute a chain map f between them.

Published: 25 April 2007 DOI: 10.2140/agt.2007.7.517



518 W H Mannan

Proposition 1.2 [3, Proposition 47.1] f is a homotopy equivalence if and only if it
induces isomorphisms ker.d2/! ker.d 0

2
/ and coker.d1/! coker.d 0

1
/.

Definition 1.3 (Algebraic �2 ) We define �2.Fi ; di/ to be ker.d2/.

Let J denote the kernel of d2 and let J 0 denote the kernel of d 0
2

.

Proposition 1.4

(i) Given ˛W J ! J 0 , we may choose a chain map f˛W .Fi ; di/! .F 0i ; d
0
i/ which

induces ˛W J ! J 0 . A map Z! Z, is induced on the cokernels. Suppose that
this map is given by multiplication by k .

(ii) The congruence class of k modulo n is independent of the choice of f˛ .

(iii) Given k 0 congruent to k modulo n, we may choose a chain map f 0˛ , which also
induces ˛W J ! J 0 , and which induces multiplication by k 0 on Z.

Proof (i) See [3, Proposition 25.3].

(ii) See [3, Propositions 25.3 33.3].

(iii) Let �W F0 ! F0=Im.di/ Š Z, �0W F 0
0
! F 0

0
=Im.d 0i/ Š Z denote the natural

quotient maps. Pick x 2 F 0
0

such that �0x D 1. Let hW Z! F 0
0

be the map sending
1 2 Z to

P
g2G xg . Then

�0h.1/D �0.
X
g2G

xg/D
X
g2G

.�0x/g D
X
g2G

1D n

.f 0˛/2 D .f˛/2Let

.f 0˛/1 D .f˛/1

.f 0˛/0 D .f˛/0C .
k 0� k

n
/h�:

Then f 0˛ is a chain map since:

.f 0˛/0d1 D .f˛/0d1C .
k 0� k

n
/h�d1 D .f˛/0d1C 0D d 01.f˛/1 D d 01.f

0
˛/1

Finally note: �0.f 0˛/0 D �
0.f˛/0C �

0.
k 0� k

n
/h� D k�C .k 0� k/� D k 0�

Definition 1.5 (k –invariant) Given ˛ as in the proposition, we define k˛ to be the
congruence class of k modulo n.
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We have a ring homomorphism �W End.J /! Zn defined by ˛ 7! k˛ .

Lemma 1.6 [3, Proposition 26.6] The kernel of � comprises all maps which factor
through a projective module.

Lemma 1.7 [3, Proposition 33.7] � is independent of the choice of algebraic complex
.Fi ; di/.

Proof �1 D 1, so � is surjective. Hence � is equal to the quotient map End.J /!
End.J /=Ker.�/ composed with a ring isomorphism Zn ! Zn . However, any ring
isomorphism Zn! Zn must map 1 7! 1. Hence it must be the identity.

Definition 1.8 (Swan map) The Swan map is the homomorphism Aut.J /! Z�n
which sends an automorphism to its k –invariant.

Proposition 1.9 If the Swan map Aut.J /! Z�n is surjective and we have an isomor-
phism ˛W J ! J 0 , then .Fi ; di/ and .F 0i ; d

0
i/ are chain homotopy equivalent.

Proof By surjectivity we may choose ˇW J ! J , such that kˇ D k�1
˛ . Then by

Proposition 1.4(iii), we may pick f˛ˇ which induces isomorphisms J ! J 0 and the
identity Z! Z. Hence by Proposition 1.2, f˛ˇ is a homotopy equivalence.

Lemma 1.10 Given a map ˛W J ! J , let ˛0W J ˚ZŒG�! J ˚ZŒG� denote the map
˛˚ 1. Then k˛ D k˛0 .

Hence it is sufficient to show that the Swan map is surjective for J , in order to deduce
that it is surjective for J ˚ZŒG�r , for all natural numbers r . Consequently we have:

Proposition 1.11 If the Swan map is surjective for J , then, for each r , there is an
algebraic 2–complex, unique up to chain homotopy equivalence, with algebraic �2

equal to J ˚ZŒG�r .

Here is an outline of the rest of the paper.

For n coprime to 3, we will show that, in the case G D ZŒD4n�, the unit 3 2 Z4n is in
the image of the Swan map for J , where J is the algebraic �2 of a particular algebraic
2–complex. We will then show that �1 and 3 generate the units of Z2n , so the Swan
map is surjective for J , for dihedral groups of order 2n . Thus, for each r , there is a
algebraic 2–complex, unique up to chain homotopy equivalence, with algebraic �2

equal to J ˚ZŒD4n�
r .
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We then show that J has minimal Z–rank, for a module which occurs as an algebraic
�2 . We use a cancellation result due to Swan [4] to show that for the group D8 , the
only modules which arise as an algebraic �2 of an algebraic 2–complex, are of the form
J ˚ZŒD4n�

r . We have shown by this point, that, up to chain homotopy equivalence,
there is only one algebraic 2–complex which has each of these algebraic �2 ’s. We
show each of these are geometrically realized.

Finally, we quote [3, Theorem I] which states that if every algebraic 2–complex over a
finite group G is geometrically realized, then G satisfies the D.2/ property.

2 Surjectivity of the Swan map

Let D4n be the group given by the presentation, ha; b j a2n D b2 D e; abaD bi. †
will denote

P2n�1
iD0 ai . This presentation has a Cayley complex, which in turn has an

associated algebraic complex. This is an exact sequence over ZŒD4n�:

(1) J ,! ZŒD4n�
3 @2
�! ZŒD4n�

2 @1
�! ZŒD4n�

�� Z

� is determined by mapping 1 2 ZŒD4n� to 1 2 Z. J is the kernel of @2 . Let e1 , e2

denote basis elements of ZŒD4n�
2 . Then @1e1 D a� 1; @1e2 D b� 1.

Let E1; E2; E3 be basis elements of ZŒD4n�
3 , which correspond to the relations in

the presentation so that:

@2E1 D e1†

@2E2 D e2.1C b/

@2E3 D e1C e2aC e1ba� e2 D e1.1C ba/C e2.a� 1/

With respect to the basis fE1; E2; E3g and the basis fe1; e2g, @2 is given by:�
† 0 1C ba

0 1C b a� 1

�
˛0 D 1C aC bLet

˛1 D

�
1C a� ba b� 1

0 1

�

˛2 D

24 1C a� ba 0 0

0 1 0

0 0 1

35
The following result is easily verified.
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Proposition 2.1 The following diagram commutes

J ,! ZŒD4n�
3 @2
�! ZŒD4n�

2 @1
�! ZŒD4n�

�� Z

#� #˛2 #˛1 #˛0 #3

J ,! ZŒD4n�
3 @2
�! ZŒD4n�

2 @1
�! ZŒD4n�

�� Z

where � is the restriction of ˛2 .

For the remainder we will assume 3 coprime to n. Our goal is to show that � is an
isomorphism. As we know that �� D 3, this will suffice to show that 3 is in the image
of the Swan map.

Note that, if we regard the above diagram as a diagram of commutative Z–modules
and Z–linear maps, there are well defined integer determinants for all the maps in the
chain map. A map is an isomorphism if and only if it has determinant ˙1. (As the
property of being an isomorphism is dependent only on surjectivity and injectivity, it
does not depend on whether we are regarding modules as being over ZŒD4n�, or Z).

Note also that, over Z, all the maps in the exact sequences above are given by quoti-
enting a summand, followed by inclusion of a summand. Consequently, the following
proposition holds:

Proposition 2.2 3Det.�/Det.˛1/D Det.˛2/Det.˛0/

Proof Let u be the restriction of ˛1 to the kernel of @1 and let v be the restriction of
˛0 to the kernel of � . Then by the previous discussion, we have

3Det.�/Det.˛1/D Det.�/Det.u/Det.v/3D Det.˛2/Det.˛0/:

We will use this to show that Det.�/D 1.

Proposition 2.3 Det.1C aC b/D�3

Proof Let A be the matrix for left multiplication by 1C aC b in the regular repre-
sentation, with basis fa2n�1; a2n�2; : : : ; a; 1; ba2n�1; ba2n�2; : : : ; ba; bg. Then the
upper right quadrant of A and the lower left quadrant of A are copies of the identity
matrix. The upper left quadrant has 1’s along the diagonal and immediately above
as well as a 1 in the bottom left corner. The lower right quadrant has 1’s along the
diagonal and immediately below, as well as a 1 in the top right corner. All the other
entries in A are 0.
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For example, if n were equal to 4, the matrix A would be:26666666666666666666666666664

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

37777777777777777777777777775
Label the rows of A, v1; v2:::::v4n . We will perform row operations.

First let v0
2n
D v2n�v1Cv2�v3::::�v2n�1 . Now let v00

2n
D v4n and v00

4n
D v0

2n
. Let

the remaining v00i D vi . This swap causes a change of sign in the determinant, so the
matrix with rows v00i has determinant �DetA. In the case nD 4, this matrix is:26666666666666666666666666664

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 �1 1 �1 1 �1 1 �1 1

37777777777777777777777777775
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For each 2nC 1 � i � 4n� 2, let v000i D v
00
i C v

00
iC1
� v00

i�2n
. Let v000

4n�1
D v00

4n�1
C

v00
2n
� v00

2n�1
and for i � 2n let v000i D v

00
i .

When nD 4, the matrix with rows v000i is:26666666666666666666666666664

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 �1 1 �1 1 �1 1 �1 1

37777777777777777777777777775
In general, the matrix with rows v000i has an upper triangular top left quadrant, with 1’s
along the diagonal and a lower left quadrant with no non-zero entries. Let B denote
the lower right quadrant. Then Det.1C aC b/D�Det.B/.

Cycle the top 2n� 1 rows of B upwards to get the matrix B0 . As this is a cycle of
odd length, Det.B0/D Det.B/. When nD 4, B0 is:266666666664

1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0

0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 1

�1 1 �1 1 �1 1 �1 1

377777777775
Label the rows of B0 as w1; : : : ; w2n . Set ui D wi �wiC1 for i D 1; 2; : : : ; 2n� 3.
Let B00 denote the matrix with rows ui . After these row operations, we have Det.1C
aC b/D�Det.B00/:
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When nD 4, B00 is: 266666666664

1 0 0 �1 0 0 0 0

0 1 0 0 �1 0 0 0

0 0 1 0 0 �1 0 0

0 0 0 1 0 0 �1 0

0 0 0 0 1 0 0 �1

0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 1

�1 1 �1 1 �1 1 �1 1

377777777775
We must consider two cases: n congruent to 1 modulo 3 and n congruent to 2 modulo
3.

If nD 1 modulo 3 then replace u2n�1 with

u2n�1�u1�u2�u4�u5�u7�u8 � � � �u2n�3:

Also, replace u2n with

u2nC.u1�u2Cu3/C.u7�u8Cu9/C.u13�u14Cu15/ � � �C.u2n�7�u2n�6Cu2n�5/:

We are left with a matrix with 1’s along the diagonal and 0’s below, except in the last
four columns. The 4 by 4 matrix in the bottom right corner is:2664

1 0 0 �1

0 1 1 1

0 0 1 2

0 0 �1 1

3775

Det.1C aC b/D�Det

2664
1 0 0 �1

0 1 1 1

0 0 1 2

0 0 �1 1

3775D�Det

2664
1 0 0 �1

0 1 1 1

0 0 1 2

0 0 0 3

3775D�3

If nD 2 modulo 3 then replace u2n�1 with

u2n�1�u1�u2�u4�u5�u7�u8 � � � �u2n�5:

Also, replace u2n with

u2nC.u1�u2Cu3/C.u7�u8Cu9/C.u13�u14Cu15/ � � �C.u2n�9�u2n�8Cu2n�7/:
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We are left with a matrix with 1’s along the diagonal and 0’s below, except in the last
four columns. The 4 by 4 matrix in the bottom right corner is:2664

1 0 0 �1

0 1 1 1

1 1 0 1

�1 1 �1 1

3775

Det.1C aC b/D�Det

2664
1 0 0 �1

0 1 1 1

1 1 0 1

�1 1 �1 1

3775D�Det

2664
1 0 0 �1

0 1 1 1

0 1 0 2

0 1 �1 0

3775

D�Det

2664
1 0 0 �1

0 1 1 1

0 0 �1 1

0 0 �2 �1

3775D�Det

2664
1 0 0 �1

0 1 1 1

0 0 �1 1

0 0 0 �3

3775D�3

Proposition 2.4 Det.2� b/D 32n

Proof Let A be the matrix for 2 � b in the regular representation, with basis
f1; b; a; ba; a2; ba2; : : : ; a2n�1; ba2n�1g . Then A consists of 2n two by two blocks

of the form
�

2 �1

�1 2

�
along the diagonal. Hence Det.A/D 32n .

Proposition 2.5 Det.1C a� ba/¤ 0

Proof Let ˛0
2
D

24 2� b 0 0

0 1 0

0 0 1

35. The following diagram commutes:

J ,! ZŒD4n�
3 @2
�! ZŒD4n�

2 @1
�! ZŒD4n�

�� Z

#� #˛0
2

#˛1 #˛0 #3

J ,! ZŒD4n�
3 @2
�! ZŒD4n�

2 @1
�! ZŒD4n�

�� Z

where � is the restriction of ˛0
2

Therefore 3Det.�/Det.˛1/D Det.˛0
2
/Det.˛0/.

So 3�Det.�/Det.1C a� ba/D�3� 32n . Hence Det.1C a� ba/ cannot be 0.

Proposition 2.6 � is an isomorphism.
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Proof We have 3Det.�/Det.˛1/D Det.˛2/Det.˛0/. Therefore

3Det.�/Det.1C a� ba/D�3Det.1C a� ba/:

As Det.1C a� ba/ is non-zero, we can conclude that Det.�/D�1. Hence � is an
isomorphism.

Corollary 2.7 If 3 2 .Z4n/
� then 3 is in the image of the Swan Map: Aut.J/ !

.Z4n/
� .

Let us now consider dihedral groups of order 2m for m� 2. Clearly 2m is divisible
by 4 and coprime to 3. Hence we know that 3 is in the image of the Swan Map.

Lemma 2.8 2m divides 32m�3

� 1C 2m�1 for m� 4.

Proof We proceed by induction. 324�3

�1C24�1D 16. So the proposition holds for
mD 4. Now suppose it holds for some m. Then 2mz D 32m�3

� 1C 2m�1 for some
z . Rearranging gives 32m�3

D 1� 2m�1C 2mz . Then squaring gives:

32mC1�3

D .32m�3

/2 D .2mzC 1� 2m�1/2

32mC1�3

� 1C 2mC1�1
D .2mzC 1� 2m�1/2� 1C 2mSo

D 22mz2
C 22m�2

C 2mC1z� 22mz D 2mC1.2m�1.z2
� z/C 2m�3

C z/:

So the proposition holds for mC 1. Hence by induction it holds for all m� 4.

Proposition 2.9 The elements 3, �1 generate .Z=2m/� for m� 2.

Proof The order of .Z=2m/� is 2m�1 . .Z=4/�Df1; 3g and .Z=8/�Df1;�1; 3;�3g,
so only the case m� 4 remains. We know that the order of 3 in .Z=2m/� is a power
of 2. The previous lemma shows us that for m� 4 it is at least 2m�2 , as

32m�3

� 1C 2m�1 mod 2m:

It remains to show that �1 is not a power of 3, as then the ˙3k give us all 2m�1

elements of .Z=2m/� .

Suppose 3k D�1 mod 2m for some m� 4. Then 3k D�1 mod 8 which is impossible
as 3k only takes the values 1 and 3 modulo 8.

Combining this result with Corollary 2.7 we obtain:

Corollary 2.10 The Swan Map Aut.J /! .Z2m/� is surjective for all m� 2.
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From Proposition 1.11, we may conclude:

Theorem 2.11 Over ZŒD2m � an algebraic 2–complex X with �2.X /D J˚ZŒD2m �r

is unique up to chain homotopy equivalence.

3 The D.2/ property for ZŒD8�

Let F2 denote the two element module over ZŒD4n�, on which the action of ZŒD4n� is
trivial.

Proposition 3.1 [1, page 127]

(i) H 0.D4n; F2/D F2

(ii) H 1.D4n; F2/D F2
2

(iii) H 2.D4n; F2/D F3
2

Recall the sequence (1), from Section 2. By Schanuel’s lemma, any module occurring
as the algebraic �2 of an algebraic 2–complex, over ZŒD4n�, must be stably equivalent
to J .

Proposition 3.2 J has minimal Z–rank in its stable class.

Proof Given any finite algebraic 2–complex, consider the cochain obtained by applying
HomZ ŒD4n�.�; F2/:

F
d2

2

v2
 � F

d1

2

v1
 � F

d0

2

where d0 , d1 , d2 , are the ZŒD4n� ranks of the modules in the complex. As
H 0.D4n; F2/DF2 , the kernel of v1 has F2 –rank 1. Consequently, the image of v1 has
F2 –rank d0�1. H 1.D4n; F2/D F2

2
so v2 has kernel of F2 –rank 2Cd0�1D d0C1.

The image of v2 is then seen to have rank d1 � d0 � 1. H 2.D4n; F2/ D F3
2

so we
know that d2 � 3C d1� d0� 1. Rearranging gives d2� d1C d0 � 2.

Exactness implies that the Z–rank of the algebraic �2 of the algebraic complex must
be 4n.d2 � d1 C d0/� 1. Hence our inequality implies that this is at least 8n� 1,
which is the Z–rank of J .

We now restrict to the case nD 2.

Proposition 3.3 The only elements in the stable class of J are modules of the form
J ˚ZŒD8�

k .
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Proof We refer to [3, Theorem 6.1]. This states that over ZŒD8�, A˚C D B˚C

implies AD B for torsion free, finitely generated modules A, B , C .

If a module M is in the stable class of J then M ˚ ZŒD8�
r D J ˚ ZŒD8�

s . From
proposition 3.2 we have s � r . From the theorem, we deduce that M D J˚ZŒD8�

s�r .

Theorem 3.4 The group D8 satisfies the D.2/ property.

Proof The only modules that can turn up as the algebraic �2 of an algebraic 2–
complex over ZŒD8� are ones of the form J ˚ZŒD8�

s for some s � 0. Theorem 2.11
tells us that for each s , up to chain homotopy equivalence, there is a unique algebraic
2–complex with algebraic �2 equal to J ˚ZŒD8�

s . Given any r , the chain homotopy
equivalence class of this algebraic 2–complex is realized by the Cayley complex of the
presentation:

ha; b j a2n
D b2

D e; abaD b; r1 D e; r2 D e; : : : rs D ei

where ri D e for i D 1; : : : ; s .

Hence we know that every algebraic 2–complex over D8 is geometrically realized. By
[3, Theorem I], this is equivalent to D8 satisfying the D.2/ property.
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