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The D(2) property for Dg

W H MANNAN

Wall’s D(2) problem asks if a cohomologically 2—dimensional geometric 3—complex
is necessarily homotopy equivalent to a geometric 2—complex. We solve part of the
problem when the fundamental group is dihedral of order 2" and give a complete
solution for the case where it is Dg the dihedral group of order 8.

57M20; 57MO05

1 Introduction

Wall introduced the D(2) problem in [5]. This asks if a cohomologically 2—dimensional
geometric 3—complex is necessarily homotopy equivalent to a geometric 2—complex.
The answer depends only on the fundamental group and we say that a group has the
D(2) property if the answer is “yes” for complexes with this fundamental group. The
D(2) property has been verified for dihedral groups of order 4n + 2 by Johnson [2].
Therefore we concentrate on dihedral groups of order 4n. Since these do not have
periodic resolutions, not all the methods of [2] can be applied to them. Our main result
is orthogonal to the result of Johnson in [3], in the sense that it concerns dihedral groups
whose order is a power of 2, rather than twice an odd number.

We begin by recalling some of the theory of k—invariants. We work over a finite group
G of order n.

Definition 1.1 (Algebraic complex) We define an algebraic n—complex, to be a
sequence of maps and modules:

d dy d
Fo— Fpoy == oo > F| —> F,

where the F; are free finitely generated modules over Z[G], the cokernel of d; is Z
(with trivial G action) and the sequence is exact at Fj.

Let (F;.d;) and (F}.d]), i =0,1,2, denote algebraic 2-complexes. Suppose given
fi: Fi = F}, i =0,1,2, which constitute a chain map / between them.
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Proposition 1.2 [3, Proposition 47.1] f is a homotopy equivalence if and only if it
induces isomorphisms ker(d,) — ker(d}) and coker(d,) — coker(dy).

Definition 1.3 (Algebraic 7,) We define 7, (F;, d;) to be ker(d,).
Let J denote the kernel of d; and let J' denote the kernel of ;.

Proposition 1.4

(i) Given a: J — J', we may choose a chain map fy: (F;.d;) — (F},d]) which
induces a: J — J'. A map Z — 7, is induced on the cokernels. Suppose that
this map is given by multiplication by k .

(i1) The congruence class of k modulo n is independent of the choice of f,, .

(iii) Given k' congruent to k modulo n, we may choose a chain map f,,, which also
induces «: J — J', and which induces multiplication by k" on Z.
Proof (i) See [3, Proposition 25.3].
(i) See [3, Propositions 25.3 33.3].

(iii) Let e: Fo — Fo/Im(d;) = Z, €': Fjy — Fj/Im(d]) = Z denote the natural
quotient maps. Pick x € F| such that €’x = 1. Let h: Z — F be the map sending
l€Zw ) ;e xg. Then

e€h(l) = e/(Z xg) = Z(e/x)g = Z l=n

geG geG geCG
Le ()2 = o2
TAIIIAY
(2o = (o + (e,

Then f,, is a chain map since:

k'—k
n

(fo)odi = (fa)odi + ( Yhedy = (fo)odr +0 =d{(fa)1 = di(fo)

/_
k k)h€=k€+(k/—k)€=k/6 O

Finally note:  €'(f)o = €' (fa)o +€'(
n

Definition 1.5 (k—invariant) Given « as in the proposition, we define k, to be the
congruence class of k& modulo 7.
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We have a ring homomorphism «: End(J) — Z,, defined by o > k.

Lemma 1.6 [3, Proposition 26.6] The kernel of ¥ comprises all maps which factor
through a projective module.

Lemma 1.7 [3, Proposition 33.7] « is independent of the choice of algebraic complex
(Fi,d;).

Proof «; =1, so « is surjective. Hence « is equal to the quotient map End(J) —
End(J)/Ker(x) composed with a ring isomorphism Z,, — Z,. However, any ring
isomorphism Z, — Z, must map 1 +— 1. Hence it must be the identity. a

Definition 1.8 (Swan map) The Swan map is the homomorphism Aut(J) — Zj;
which sends an automorphism to its k—invariant.

Proposition 1.9 If the Swan map Aut(J) — Z;; is surjective and we have an isomor-
phism a: J — J', then (F;, d;) and (F},d}) are chain homotopy equivalent.

Proof By surjectivity we may choose B: J — J, such that kg = kg 1. Then by
Proposition 1.4(iii), we may pick fog which induces isomorphisms J — J' and the
identity Z — Z. Hence by Proposition 1.2, f,g is a homotopy equivalence. a

Lemma 1.10 Givenamap a: J — J, let o’: J & Z[G] — J & Z|G] denote the map
a@® 1. Then ky = kg .

Hence it is sufficient to show that the Swan map is surjective for J, in order to deduce
that it is surjective for J @ Z[G]", for all natural numbers ». Consequently we have:

Proposition 1.11 If the Swan map is surjective for J, then, for each r, there is an
algebraic 2—complex, unique up to chain homotopy equivalence, with algebraic m;
equal to J & Z[G]".

Here is an outline of the rest of the paper.

For n coprime to 3, we will show that, in the case G = Z[Dy,], the unit 3 € Z4,, is in
the image of the Swan map for J, where J is the algebraic m, of a particular algebraic
2—complex. We will then show that —1 and 3 generate the units of Z,», so the Swan
map is surjective for J, for dihedral groups of order 2”. Thus, for each r, there is a
algebraic 2—complex, unique up to chain homotopy equivalence, with algebraic m,
equal to J @ Z[Dy,]".
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We then show that J has minimal Z-rank, for a module which occurs as an algebraic
5. We use a cancellation result due to Swan [4] to show that for the group Dsg, the
only modules which arise as an algebraic 7, of an algebraic 2—complex, are of the form
J @ Z[Dy4y]" . We have shown by this point, that, up to chain homotopy equivalence,
there is only one algebraic 2—complex which has each of these algebraic m,’s. We
show each of these are geometrically realized.

Finally, we quote [3, Theorem I] which states that if every algebraic 2—complex over a
finite group G is geometrically realized, then G satisfies the D(2) property.

2 Surjectivity of the Swan map

Let D4, be the group given by the presentation, (a,b | a*® =b%> =e, aba=b). T
will denote Zfﬁgl a'. This presentation has a Cayley complex, which in turn has an
associated algebraic complex. This is an exact sequence over Z[Dyy]:

d 0
(1) J <> Z[D4p)’ —> Z[Dgn)* —> Z[Dgp) ~> Z

€ is determined by mapping 1 € Z[D4,] to 1 € Z. J is the kernel of d,. Let e1, e;
denote basis elements of Z[Dy4,]*>. Then d1ey =a—1, d1e, =b—1.

Let E;, E,, E; be basis elements of Z[Dy4,]?, which correspond to the relations in
the presentation so that:

82E1 =€1E
d2Ey =ex(1+b)
0, Es =e1+eya+eba—ey;=e(1+ba)+ey(a—1)

With respect to the basis {£1, E,, E3} and the basis {eq, e»}, 0, is given by:

X 0 1+ba
0 14+b a-—1

Let ay=14+a+b
o = l+a—ba b—1
1= 0 1
l1+a—ba 0 0
0y = 0 1 0
0 0 1

The following result is easily verified.
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Proposition 2.1 The following diagram commutes
3 32 2 31 €
J < Z[D4n]’ —> Z[D4n)” —> Z[Dsn] —> Z
Y’ Jaz Jay oo 13

d 0
J < Z[D4n]® = ZIDgnl? —> Z[D4y] ~> Z

where 0 is the restriction of o5 .

For the remainder we will assume 3 coprime to 7. Our goal is to show that 8 is an
isomorphism. As we know that kg = 3, this will suffice to show that 3 is in the image
of the Swan map.

Note that, if we regard the above diagram as a diagram of commutative Z-modules
and Z-linear maps, there are well defined integer determinants for all the maps in the
chain map. A map is an isomorphism if and only if it has determinant £1. (As the
property of being an isomorphism is dependent only on surjectivity and injectivity, it
does not depend on whether we are regarding modules as being over Z[Dy,], or Z).

Note also that, over Z, all the maps in the exact sequences above are given by quoti-
enting a summand, followed by inclusion of a summand. Consequently, the following
proposition holds:

Proposition 2.2 3Det(6)Det(x;) = Det(a,)Det(cg)
Proof Let u be the restriction of o to the kernel of d; and let v be the restriction of

o to the kernel of €. Then by the previous discussion, we have

3Det(0)Det(a1) = Det(0)Det(u)Det(v)3 = Det(a;)Det(ag). O
We will use this to show that Det(6) = 1.
Proposition 2.3 Det(l +a+b) = —3

Proof Let A be the matrix for left multiplication by 1 + a + b in the regular repre-
sentation, with basis {a?>"~1,a?""2, ... a,1,ba*"" ', ba*"2,...,ba,b}. Then the
upper right quadrant of A and the lower left quadrant of A are copies of the identity
matrix. The upper left quadrant has 1’s along the diagonal and immediately above
as well as a 1 in the bottom left corner. The lower right quadrant has 1’s along the
diagonal and immediately below, as well as a 1 in the top right corner. All the other
entries in 4 are 0.
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For example, if n were equal to 4, the matrix A would be:

10000000

11000000

01100000 01000000O0
00110000 00100000
00011000 00010000
00001100 00001000
00000110 00000100

00000011

00000010

0000000O01

10000001

10000001

1000000O0
01000000

11000000

00100000 011000O0O0

00010000 001100O0O0

00001000 OOO1T1O0O0O0

00000100 0OOOTI1T1O0O0

00000010 OOOOOT1IT1O0

00000001

00000011

V4. We will perform row operations.

Label the rows of A4, vy, v,....

/
Vs, Let

"
4n

V4p and v

"o
2n

= v;. This swap causes a change of sign in the determinant, so the

Now let v
matrix with rows vg’ has determinant —DetA . In the case n = 4, this matrix is:

—VU2p—1-

-
p=y

|

(9

p=y
|_|

-
-

|

=
NS
S
I o0
=.8
/W?..m
R =
- Q
MM. S
= 0
i s

000 0O0O0 07

1

0

1
0
0

11000000
01100000
00110000
00011000
00001100

000 O0O0TUO

1

0 00

00 00O
1

0 0 00

0 0 00
1

00 00O

0 00
1

000 O0O0°TO
000 O0O0O

0

0
1
1

00000110

00000011

1

00000001

1

000 O0O0O

1
1

0

1
1
0
0

1000000O0
01000000
00100000
00010000
00001000

0000 O0O

1
1

000 0O

1
1

0 00O

1
1

0 00
1
1

0 0 0

0

1

0 000

00000100

0

0 00 0O

00000010

-11-11-11-11

000000O0O0
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F/(?reac/lll 2n+1<i<4n-2, let vg”=v§’+v;’_|_l—vlf’_2n.Let vy =+

vy, —V5,_; and for i <2n let v/’ =v}.

When n = 4, the matrix with rows v is:
11000000 1 0 0 O OO O 07
01100000 O 1 O0O0OO0OO0OOTUO
00110000 OO T1TO0O0OO0OO0OTUO
00011000 OO0 OT1O0TO0OO0OTUO
00001100 O O0OOO0OTTO0OUO0ODO
00000110 OO0OOOOT1TO0OTPO
00000011 OO0 O0OO0OOOTO
00000001 O O OOOOTI11
00000000 1 1 0 0 0 O0 01
000000O0O 1110 0 0 0O
000000O0OO0O O1 1 1 0 0 0O
00000000 O OT1T1 1 00O
00000000 O OOT1TT1T1TO0OTPO
00000000 O OOOT1TT1T1TFPO
00000000 O OOOOTI1I 11
| 00000000 -11-11-11-11

In general, the matrix with rows v has an upper triangular top left quadrant, with 1’s

along the diagonal and a lower left quadrant with no non-zero entries. Let B denote
the lower right quadrant. Then Det(1 4+ a + b) = —Det(B).

Cycle the top 2n — 1 rows of B upwards to get the matrix B’. As this is a cycle of
odd length, Det(B’) = Det(B). When n =4, B’ is:

1 1100 00 O0
01 1 10000
001 11000
00 011100
00 0 O0OT1TT1T1FPO
00 00 O0T1T11
1 1.0 00 0 01
-11-11-11-11
Label the rows of B’ as wy,...,Wyy,. Set u; = w; —w;4q fori =1,2,...,2n—3.

Let B” denote the matrix with rows u;. After these row operations, we have Det(1 +
a+ b) = —Det(B").
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When n =4, B” is:

1 00 -1 0 0 0 O
6010 0 -10 0 O
6001 0 0 -10 0
000 I 0 O -120
000 0 1 0 0 —1
000 O O 1 1 1
1 10 0 0 0 0 1
-11-11 -1 1 -1 1

We must consider two cases: n congruent to 1 modulo 3 and n congruent to 2 modulo
3.

If n =1 modulo 3 then replace u,,_; with

Upp—1 —UL — U3 — U4 — U5 — U7 — UG —Up—3.
Also, replace u;, with
usp+(ur—uztus)+Wur—ug+ug)+Wmiz—uratuys) -+ (Uap—7—tan—6+u2n—5).

We are left with a matrix with 1°s along the diagonal and 0’s below, except in the last
four columns. The 4 by 4 matrix in the bottom right corner is:

1 0 0 -1
0o 1 1 1
o 0o 1 2
0 0 -1 1

1 0 0 -1 1 0 0 -1

0o 1 1 1 0o 1 1 1

Det(1 +a + b) = —Det 0 0 1 2 = —Det 000 1 2 =-3
0 0-1 1 0 0 0 3
If n = 2 modulo 3 then replace u,,_; with
Upp—1 —Up —U —U4 —U5— U7 —Ug - —Urp—5.

Also, replace u;, with

U+ —uy+uz)+uys—ug+ug)+(ui3—uis+us) - +WUap—9—tzp—g+uz_7).
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We are left with a matrix with 1’s along the diagonal and 0’s below, except in the last

four columns. The 4 by 4 matrix in the bottom right corner is:

10 0-l
001 1 1
11 0 1
1111
10 0 -l 10 0 -1
001 1 1 0 1 1 1
Det(1 +a + b) = —Det {1 0 1 = —Det 0 1 0 2
1111 0 1 -1 0
10 0-1 1 0 0-l
001 1 1 01 1 1
=—Detl o o1 1 |=P g o |T73
0 0 -2 —1 0 0 0 -3

Proposition 2.4 Det(2 —b) = 3%"

Proof Let A be the matrix for 2 — b in the regular representation, with basis
{1,b,a,ba,a* ba?,...,a*>" ! ba?"~1} . Then A consists of 2n two by two blocks

of the form [ 1 9

-l ] along the diagonal. Hence Det(A4) = 3%".

Proposition 2.5 Det(l +a —ba) #0

2-b0 0
Proof Let o)) = 0 1 0 |. Thefollowing diagram commutes:
0 0 1
3 32 2 81 €
J — Z[D4n] — Z[D4n] - Z[D4n] —> 7
In A b beo 13

d 0
J > Z[D4n]® => Z[D4nl —> Z[D4y] ~ 7

where 7 is the restriction of «, Therefore 3Det(n)Det(c;) = Det(a)Det(eg).

So 3 * Det(n)Det(1 4+ a — ba) = —3 * 32". Hence Det(1 + a — ba) cannot be 0.

Proposition 2.6 0 is an isomorphism.
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Proof We have 3Det(6)Det(a;) = Det(ap)Det(ctg). Therefore
3Det(0)Det(1 + a — ba) = —3Det(1 4+ a — ba).

As Det(1 4+ a — ba) is non-zero, we can conclude that Det(8) = —1. Hence 6 is an
isomorphism. |

Corollary 2.7 If 3 € (Z4,)* then 3 is in the image of the Swan Map: Aut(J) —
(Z4n)*-

Let us now consider dihedral groups of order 2" for m > 2. Clearly 2™ is divisible
by 4 and coprime to 3. Hence we know that 3 is in the image of the Swan Map.

Lemma 2.8 27" divides 32" — 142"~ form > 4.

Proof We proceed by induction. 32°7° 142471 = 16. So the proposition holds for
27 _ 1 4 2m=1 for some
z. Rearranging gives 32" " = 1—2m~1 4 2M_Then squaring gives:

m = 4. Now suppose it holds for some m. Then 2"z =3

2m+1—3 2m—3

3
2m+1—3

=(3* P =@"z+1-2"71)?
So 3 —142mtiml—gmy =2 4 om
:22m22+22m—2+2m+12_22mz:2m+1(2m—1(22_z)+2m—3 +Z)

So the proposition holds for m + 1. Hence by induction it holds for all m > 4. |
Proposition 2.9 The elements 3, —1 generate (Z/2™)* for m > 2.

Proof The order of (Z/2™)* is 2=, (Z/4)* ={1,3} and (Z/8)* ={1,—1,3, -3},
so only the case m > 4 remains. We know that the order of 3 in (Z/2™)* is a power
of 2. The previous lemma shows us that for m > 4 it is at least 272, as

32" = 1 421 ;mod 2.

It remains to show that —1 is not a power of 3, as then the £3% give us all 27!
elements of (Z/2™)*.

Suppose 3k = —1 mod 2 for some m > 4. Then 3k = —1 mod 8 which is impossible
as 3K only takes the values 1 and 3 modulo 8. |

Combining this result with Corollary 2.7 we obtain:

Corollary 2.10 The Swan Map Aut(J) — (Z,m)* is surjective for all m > 2.
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From Proposition 1.11, we may conclude:

Theorem 2.11 Over Z[D,m] an algebraic 2—complex X with ny(X) = J & Z[Dym]"
is unique up to chain homotopy equivalence.

3 The D(2) property for Z| Dg]

Let [, denote the two element module over Z[Dg4y], on which the action of Z[Dy,] is
trivial.

Proposition 3.1 [1, page 127]
(i) H°(D4n.Fy) =T,
(i) H'(Dan.F2) =F
(iii) H?(Dan.F2) =F;
Recall the sequence (1), from Section 2. By Schanuel’s lemma, any module occurring

as the algebraic 7, of an algebraic 2—complex, over Z[D4,], must be stably equivalent
to J.

Proposition 3.2 J has minimal Z —rank in its stable class.

Proof Given any finite algebraic 2—-complex, consider the cochain obtained by applying
HomZ[D4n](o, [Fz):
Fd2 2 pd 2 pdo

where dy, dy, d,, are the Z[Dy4y,] ranks of the modules in the complex. As
H®(Dy,, F,) =F,, the kernel of vy has F,—rank 1. Consequently, the image of v; has
Fpo—rank do—1. H'(Dy,,F,) = [F% so vy has kernel of Fp—rank 2+dy—1=dy+ 1.
The image of v, is then seen to have rank dy —do — 1. H*(D4y,F,) = I]:; SO we
know that d, > 3 4+ dy —do — 1. Rearranging gives dy —dy + do > 2.

Exactness implies that the Z—rank of the algebraic m, of the algebraic complex must
be 4n(d, —d; 4+ dy) — 1. Hence our inequality implies that this is at least 8n — 1,
which is the Z-rank of J. d
We now restrict to the case n = 2.

Proposition 3.3 The only elements in the stable class of J are modules of the form

J & Z[Dglk.
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Proof We refer to [3, Theorem 6.1]. This states that over Z[Dg], A& C =B dC
implies A = B for torsion free, finitely generated modules 4, B, C.

If a module M is in the stable class of J then M & Z[Dg]" = J & Z[Dg]*. From
proposition 3.2 we have s > r. From the theorem, we deduce that M = J & Z[Dg]*™".
O

Theorem 3.4 The group Dyg satisfies the D(2) property.

Proof The only modules that can turn up as the algebraic m, of an algebraic 2—
complex over Z[Dg] are ones of the form J @ Z[Dg]* for some s > 0. Theorem 2.11
tells us that for each s, up to chain homotopy equivalence, there is a unique algebraic
2—complex with algebraic 7, equal to J @ Z[Dg]®. Given any r, the chain homotopy
equivalence class of this algebraic 2—complex is realized by the Cayley complex of the
presentation:

(a,b|a®" =b*=e, aba=b, ry=e,r;=ce,...1rs=c¢)
where r; =e fori =1,...,s.

Hence we know that every algebraic 2—complex over Dg is geometrically realized. By
[3, Theorem I], this is equivalent to Dg satisfying the D(2) property. |
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