The D(2) property for D_8

WH MANNAN

Wall's D(2) problem asks if a cohomologically 2-dimensional geometric 3-complex is necessarily homotopy equivalent to a geometric 2-complex. We solve part of the problem when the fundamental group is dihedral of order 2^n and give a complete solution for the case where it is D_8 the dihedral group of order 8.

57M20; 57M05

1 Introduction

Wall introduced the D(2) problem in [5]. This asks if a cohomologically 2-dimensional geometric 3-complex is necessarily homotopy equivalent to a geometric 2-complex. The answer depends only on the fundamental group and we say that a group *has the* D(2) property if the answer is "yes" for complexes with this fundamental group. The D(2) property has been verified for dihedral groups of order 4n + 2 by Johnson [2]. Therefore we concentrate on dihedral groups of order 4n. Since these do not have periodic resolutions, not all the methods of [2] can be applied to them. Our main result is orthogonal to the result of Johnson in [3], in the sense that it concerns dihedral groups whose order is a power of 2, rather than twice an odd number.

We begin by recalling some of the theory of k-invariants. We work over a finite group G of order n.

Definition 1.1 (Algebraic complex) We define an algebraic n-complex, to be a sequence of maps and modules:

$$F_n \xrightarrow{d_n} F_{n-1} \xrightarrow{d_{n-1}} \cdots \to F_1 \xrightarrow{d_1} F_0$$

where the F_i are free finitely generated modules over $\mathbb{Z}[G]$, the cokernel of d_1 is \mathbb{Z} (with trivial G action) and the sequence is exact at F_1 .

Let (F_i, d_i) and (F'_i, d'_i) , i = 0, 1, 2, denote algebraic 2-complexes. Suppose given f_i : $F_i o F'_i$, i = 0, 1, 2, which constitute a chain map f between them.

Published: 25 April 2007 DOI: 10.2140/agt.2007.7.517

Proposition 1.2 [3, Proposition 47.1] f is a homotopy equivalence if and only if it induces isomorphisms $ker(d_2) \rightarrow ker(d'_2)$ and $coker(d_1) \rightarrow coker(d'_1)$.

Definition 1.3 (Algebraic π_2) We define $\pi_2(F_i, d_i)$ to be $\ker(d_2)$.

Let J denote the kernel of d_2 and let J' denote the kernel of d'_2 .

Proposition 1.4

- (i) Given $\alpha: J \to J'$, we may choose a chain map $f_{\alpha}: (F_i, d_i) \to (F'_i, d'_i)$ which induces $\alpha: J \to J'$. A map $\mathbb{Z} \to \mathbb{Z}$, is induced on the cokernels. Suppose that this map is given by multiplication by k.
- (ii) The congruence class of k modulo n is independent of the choice of f_{α} .
- (iii) Given k' congruent to k modulo n, we may choose a chain map f'_{α} , which also induces $\alpha: J \to J'$, and which induces multiplication by k' on \mathbb{Z} .

Proof (i) See [3, Proposition 25.3].

(ii) See [3, Propositions 25.3 33.3].

(iii) Let $\epsilon\colon F_0\to F_0/\mathrm{Im}(d_i)\cong\mathbb{Z},\ \epsilon'\colon F_0'\to F_0'/\mathrm{Im}(d_i')\cong\mathbb{Z}$ denote the natural quotient maps. Pick $x\in F_0'$ such that $\epsilon'x=1$. Let $h\colon\mathbb{Z}\to F_0'$ be the map sending $1\in\mathbb{Z}$ to $\sum_{g\in G}xg$. Then

$$\epsilon' h(1) = \epsilon' (\sum_{g \in G} xg) = \sum_{g \in G} (\epsilon' x)g = \sum_{g \in G} 1 = n$$

$$(f'_{\alpha})_2 = (f_{\alpha})_2$$

$$(f'_{\alpha})_1 = (f_{\alpha})_1$$

$$(f'_{\alpha})_0 = (f_{\alpha})_0 + (\frac{k' - k}{n})h\epsilon.$$

Let

Then f'_{α} is a chain map since:

$$(f_{\alpha}')_{0}d_{1} = (f_{\alpha})_{0}d_{1} + (\frac{k'-k}{n})h\epsilon d_{1} = (f_{\alpha})_{0}d_{1} + 0 = d'_{1}(f_{\alpha})_{1} = d'_{1}(f'_{\alpha})_{1}$$

Finally note:
$$\epsilon'(f'_{\alpha})_0 = \epsilon'(f_{\alpha})_0 + \epsilon'(\frac{k'-k}{n})h\epsilon = k\epsilon + (k'-k)\epsilon = k'\epsilon$$

Definition 1.5 (k-invariant) Given α as in the proposition, we define k_{α} to be the congruence class of k modulo n.

We have a ring homomorphism $\kappa \colon \operatorname{End}(J) \to \mathbb{Z}_n$ defined by $\alpha \mapsto k_{\alpha}$.

Lemma 1.6 [3, Proposition 26.6] The kernel of κ comprises all maps which factor through a projective module.

Lemma 1.7 [3, Proposition 33.7] κ is independent of the choice of algebraic complex (F_i, d_i) .

Proof $\kappa_1 = 1$, so κ is surjective. Hence κ is equal to the quotient map $\operatorname{End}(J) \to \operatorname{End}(J)/\operatorname{Ker}(\kappa)$ composed with a ring isomorphism $\mathbb{Z}_n \to \mathbb{Z}_n$. However, any ring isomorphism $\mathbb{Z}_n \to \mathbb{Z}_n$ must map $1 \mapsto 1$. Hence it must be the identity.

Definition 1.8 (Swan map) The Swan map is the homomorphism $\operatorname{Aut}(J) \to \mathbb{Z}_n^*$ which sends an automorphism to its k-invariant.

Proposition 1.9 If the Swan map $\operatorname{Aut}(J) \to \mathbb{Z}_n^*$ is surjective and we have an isomorphism $\alpha: J \to J'$, then (F_i, d_i) and (F_i', d_i') are chain homotopy equivalent.

Proof By surjectivity we may choose $\beta: J \to J$, such that $k_{\beta} = k_{\alpha}^{-1}$. Then by Proposition 1.4(iii), we may pick $f_{\alpha\beta}$ which induces isomorphisms $J \to J'$ and the identity $\mathbb{Z} \to \mathbb{Z}$. Hence by Proposition 1.2, $f_{\alpha\beta}$ is a homotopy equivalence.

Lemma 1.10 Given a map $\alpha: J \to J$, let $\alpha': J \oplus \mathbb{Z}[G] \to J \oplus \mathbb{Z}[G]$ denote the map $\alpha \oplus 1$. Then $k_{\alpha} = k_{\alpha'}$.

Hence it is sufficient to show that the Swan map is surjective for J, in order to deduce that it is surjective for $J \oplus \mathbb{Z}[G]^r$, for all natural numbers r. Consequently we have:

Proposition 1.11 If the Swan map is surjective for J, then, for each r, there is an algebraic 2–complex, unique up to chain homotopy equivalence, with algebraic π_2 equal to $J \oplus \mathbb{Z}[G]^r$.

Here is an outline of the rest of the paper.

For n coprime to 3, we will show that, in the case $G = \mathbb{Z}[D_{4n}]$, the unit $3 \in \mathbb{Z}_{4n}$ is in the image of the Swan map for J, where J is the algebraic π_2 of a particular algebraic 2-complex. We will then show that -1 and 3 generate the units of \mathbb{Z}_{2^n} , so the Swan map is surjective for J, for dihedral groups of order 2^n . Thus, for each r, there is a algebraic 2-complex, unique up to chain homotopy equivalence, with algebraic π_2 equal to $J \oplus \mathbb{Z}[D_{4n}]^r$.

We then show that J has minimal \mathbb{Z} -rank, for a module which occurs as an algebraic π_2 . We use a cancellation result due to Swan [4] to show that for the group D_8 , the only modules which arise as an algebraic π_2 of an algebraic 2-complex, are of the form $J \oplus \mathbb{Z}[D_{4n}]^r$. We have shown by this point, that, up to chain homotopy equivalence, there is only one algebraic 2-complex which has each of these algebraic π_2 's. We show each of these are geometrically realized.

Finally, we quote [3, Theorem I] which states that if every algebraic 2–complex over a finite group G is geometrically realized, then G satisfies the D(2) property.

2 Surjectivity of the Swan map

Let D_{4n} be the group given by the presentation, $\langle a, b \mid a^{2n} = b^2 = e, \ aba = b \rangle$. Σ will denote $\sum_{i=0}^{2n-1} a^i$. This presentation has a Cayley complex, which in turn has an associated algebraic complex. This is an exact sequence over $\mathbb{Z}[D_{4n}]$:

(1)
$$J \hookrightarrow \mathbb{Z}[D_{4n}]^3 \xrightarrow{\partial_2} \mathbb{Z}[D_{4n}]^2 \xrightarrow{\partial_1} \mathbb{Z}[D_{4n}] \xrightarrow{\epsilon} \mathbb{Z}$$

 ϵ is determined by mapping $1 \in \mathbb{Z}[D_{4n}]$ to $1 \in \mathbb{Z}$. J is the kernel of ∂_2 . Let e_1 , e_2 denote basis elements of $\mathbb{Z}[D_{4n}]^2$. Then $\partial_1 e_1 = a - 1$, $\partial_1 e_2 = b - 1$.

Let E_1 , E_2 , E_3 be basis elements of $\mathbb{Z}[D_{4n}]^3$, which correspond to the relations in the presentation so that:

$$\partial_2 E_1 = e_1 \Sigma$$

$$\partial_2 E_2 = e_2 (1+b)$$

$$\partial_2 E_3 = e_1 + e_2 a + e_1 b a - e_2 = e_1 (1+ba) + e_2 (a-1)$$

With respect to the basis $\{E_1, E_2, E_3\}$ and the basis $\{e_1, e_2\}$, ∂_2 is given by:

$$\left[\begin{array}{ccc} \Sigma & 0 & 1+ba \\ 0 & 1+b & a-1 \end{array}\right]$$

$$\alpha_0 = 1 + a + b$$

$$\alpha_1 = \begin{bmatrix} 1 + a - ba & b - 1 \\ 0 & 1 \end{bmatrix}$$

$$\alpha_2 = \begin{bmatrix} 1 + a - ba & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The following result is easily verified.

Proposition 2.1 The following diagram commutes

where θ is the restriction of α_2 .

For the remainder we will assume 3 coprime to n. Our goal is to show that θ is an isomorphism. As we know that $\kappa_{\theta} = 3$, this will suffice to show that 3 is in the image of the Swan map.

Note that, if we regard the above diagram as a diagram of commutative \mathbb{Z} -modules and \mathbb{Z} -linear maps, there are well defined integer determinants for all the maps in the chain map. A map is an isomorphism if and only if it has determinant ± 1 . (As the property of being an isomorphism is dependent only on surjectivity and injectivity, it does not depend on whether we are regarding modules as being over $\mathbb{Z}[D_{4n}]$, or \mathbb{Z}).

Note also that, over \mathbb{Z} , all the maps in the exact sequences above are given by quotienting a summand, followed by inclusion of a summand. Consequently, the following proposition holds:

Proposition 2.2
$$3\text{Det}(\theta)\text{Det}(\alpha_1) = \text{Det}(\alpha_2)\text{Det}(\alpha_0)$$

Proof Let u be the restriction of α_1 to the kernel of ∂_1 and let v be the restriction of α_0 to the kernel of ϵ . Then by the previous discussion, we have

$$3\text{Det}(\theta)\text{Det}(\alpha_1) = \text{Det}(\theta)\text{Det}(u)\text{Det}(v)3 = \text{Det}(\alpha_2)\text{Det}(\alpha_0).$$

We will use this to show that $Det(\theta) = 1$.

Proposition 2.3
$$Det(1 + a + b) = -3$$

Proof Let A be the matrix for left multiplication by 1+a+b in the regular representation, with basis $\{a^{2n-1}, a^{2n-2}, \ldots, a, 1, ba^{2n-1}, ba^{2n-2}, \ldots, ba, b\}$. Then the upper right quadrant of A and the lower left quadrant of A are copies of the identity matrix. The upper left quadrant has 1's along the diagonal and immediately above as well as a 1 in the bottom left corner. The lower right quadrant has 1's along the diagonal and immediately below, as well as a 1 in the top right corner. All the other entries in A are 0.

For example, if n were equal to 4, the matrix A would be:

Label the rows of A, v_1 , v_2 v_{4n} . We will perform row operations.

First let $v'_{2n} = v_{2n} - v_1 + v_2 - v_3 \dots - v_{2n-1}$. Now let $v''_{2n} = v_{4n}$ and $v''_{4n} = v'_{2n}$. Let the remaining $v''_i = v_i$. This swap causes a change of sign in the determinant, so the matrix with rows v''_i has determinant -DetA. In the case n = 4, this matrix is:

For each $2n+1 \le i \le 4n-2$, let $v_i''' = v_i'' + v_{i+1}'' - v_{i-2n}''$. Let $v_{4n-1}''' = v_{4n-1}'' + v_{2n}'' - v_{2n-1}''$ and for $i \le 2n$ let $v_i''' = v_i''$.

When n = 4, the matrix with rows $v_i^{"}$ is:

In general, the matrix with rows v_i''' has an upper triangular top left quadrant, with 1's along the diagonal and a lower left quadrant with no non-zero entries. Let B denote the lower right quadrant. Then $\mathrm{Det}(1+a+b)=-\mathrm{Det}(B)$.

Cycle the top 2n-1 rows of B upwards to get the matrix B'. As this is a cycle of odd length, Det(B') = Det(B). When n = 4, B' is:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \end{bmatrix}$$

Label the rows of B' as w_1, \ldots, w_{2n} . Set $u_i = w_i - w_{i+1}$ for $i = 1, 2, \ldots, 2n - 3$. Let B'' denote the matrix with rows u_i . After these row operations, we have Det(1 + a + b) = -Det(B'').

When n = 4, B'' is:

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \end{bmatrix}$$

We must consider two cases: n congruent to 1 modulo 3 and n congruent to 2 modulo 3.

If n = 1 modulo 3 then replace u_{2n-1} with

$$u_{2n-1}-u_1-u_2-u_4-u_5-u_7-u_8\cdots-u_{2n-3}$$
.

Also, replace u_{2n} with

$$u_{2n}+(u_1-u_2+u_3)+(u_7-u_8+u_9)+(u_{13}-u_{14}+u_{15})\cdots+(u_{2n-7}-u_{2n-6}+u_{2n-5}).$$

We are left with a matrix with 1's along the diagonal and 0's below, except in the last four columns. The 4 by 4 matrix in the bottom right corner is:

$$\begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & -1 & 1
\end{bmatrix}$$

$$Det(1+a+b) = -Det \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -1 & 1 \end{bmatrix} = -Det \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix} = -3$$

If n = 2 modulo 3 then replace u_{2n-1} with

$$u_{2n-1}-u_1-u_2-u_4-u_5-u_7-u_8\cdots-u_{2n-5}$$
.

Also, replace u_{2n} with

$$u_{2n}+(u_1-u_2+u_3)+(u_7-u_8+u_9)+(u_{13}-u_{14}+u_{15})\cdots+(u_{2n-9}-u_{2n-8}+u_{2n-7}).$$

We are left with a matrix with 1's along the diagonal and 0's below, except in the last four columns. The 4 by 4 matrix in the bottom right corner is:

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

$$Det(1+a+b) = -Det \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix} = -Det \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

$$= -Det \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & -1 \end{bmatrix} = -Det \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -3 \end{bmatrix} = -3$$

Proposition 2.4 $Det(2-b) = 3^{2n}$

Proof Let A be the matrix for 2-b in the regular representation, with basis $\{1,b,a,ba,a^2,ba^2,\ldots,a^{2n-1},ba^{2n-1}\}$. Then A consists of 2n two by two blocks of the form $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ along the diagonal. Hence $\operatorname{Det}(A) = 3^{2n}$.

Proposition 2.5 Det $(1 + a - ba) \neq 0$

Proof Let
$$\alpha_2' = \begin{bmatrix} 2-b & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. The following diagram commutes:

$$J \hookrightarrow \mathbb{Z}[D_{4n}]^3 \xrightarrow{\partial_2} \mathbb{Z}[D_{4n}]^2 \xrightarrow{\partial_1} \mathbb{Z}[D_{4n}] \xrightarrow{\epsilon} \mathbb{Z}$$

$$\downarrow \eta \qquad \downarrow \alpha'_2 \qquad \downarrow \alpha_1 \qquad \downarrow \alpha_0 \qquad \downarrow 3$$

$$J \hookrightarrow \mathbb{Z}[D_{4n}]^3 \xrightarrow{\partial_2} \mathbb{Z}[D_{4n}]^2 \xrightarrow{\partial_1} \mathbb{Z}[D_{4n}] \xrightarrow{\epsilon} \mathbb{Z}$$

where η is the restriction of α'_2 Therefore $3\text{Det}(\eta)\text{Det}(\alpha_1) = \text{Det}(\alpha'_2)\text{Det}(\alpha_0)$.

So
$$3 * \text{Det}(\eta)\text{Det}(1 + a - ba) = -3 * 3^{2n}$$
. Hence $\text{Det}(1 + a - ba)$ cannot be 0. \square

Proposition 2.6 θ is an isomorphism.

Proof We have $3\text{Det}(\theta)\text{Det}(\alpha_1) = \text{Det}(\alpha_2)\text{Det}(\alpha_0)$. Therefore

$$3Det(\theta)Det(1 + a - ba) = -3Det(1 + a - ba).$$

As Det(1 + a - ba) is non-zero, we can conclude that $Det(\theta) = -1$. Hence θ is an isomorphism.

Corollary 2.7 If $3 \in (\mathbb{Z}_{4n})^*$ then 3 is in the image of the Swan Map: $\operatorname{Aut}(J) \to (\mathbb{Z}_{4n})^*$.

Let us now consider dihedral groups of order 2^m for $m \ge 2$. Clearly 2^m is divisible by 4 and coprime to 3. Hence we know that 3 is in the image of the Swan Map.

Lemma 2.8 2^m divides $3^{2^{m-3}} - 1 + 2^{m-1}$ for m > 4.

Proof We proceed by induction. $3^{2^{4-3}} - 1 + 2^{4-1} = 16$. So the proposition holds for m = 4. Now suppose it holds for some m. Then $2^m z = 3^{2^{m-3}} - 1 + 2^{m-1}$ for some z. Rearranging gives $3^{2^{m-3}} = 1 - 2^{m-1} + 2^m z$. Then squaring gives:

$$3^{2^{m+1-3}} = (3^{2^{m-3}})^2 = (2^m z + 1 - 2^{m-1})^2$$
So
$$3^{2^{m+1-3}} - 1 + 2^{m+1-1} = (2^m z + 1 - 2^{m-1})^2 - 1 + 2^m$$

$$= 2^{2m} z^2 + 2^{2m-2} + 2^{m+1} z - 2^{2m} z = 2^{m+1} (2^{m-1} (z^2 - z) + 2^{m-3} + z).$$

So the proposition holds for m + 1. Hence by induction it holds for all $m \ge 4$. \Box

Proposition 2.9 The elements 3, -1 generate $(\mathbb{Z}/2^m)^*$ for $m \ge 2$.

Proof The order of $(\mathbb{Z}/2^m)^*$ is 2^{m-1} . $(\mathbb{Z}/4)^* = \{1, 3\}$ and $(\mathbb{Z}/8)^* = \{1, -1, 3, -3\}$, so only the case $m \ge 4$ remains. We know that the order of 3 in $(\mathbb{Z}/2^m)^*$ is a power of 2. The previous lemma shows us that for $m \ge 4$ it is at least 2^{m-2} , as

$$3^{2^{m-3}} \equiv 1 + 2^{m-1} \bmod 2^m.$$

It remains to show that -1 is not a power of 3, as then the $\pm 3^k$ give us all 2^{m-1} elements of $(\mathbb{Z}/2^m)^*$.

Suppose $3^k = -1 \mod 2^m$ for some $m \ge 4$. Then $3^k = -1 \mod 8$ which is impossible as 3^k only takes the values 1 and 3 modulo 8.

Combining this result with Corollary 2.7 we obtain:

Corollary 2.10 The Swan Map $\operatorname{Aut}(J) \to (\mathbb{Z}_{2^m})^*$ is surjective for all $m \ge 2$.

From Proposition 1.11, we may conclude:

Theorem 2.11 Over $\mathbb{Z}[D_{2^m}]$ an algebraic 2–complex X with $\pi_2(X) = J \oplus \mathbb{Z}[D_{2^m}]^r$ is unique up to chain homotopy equivalence.

3 The D(2) property for $\mathbb{Z}[D_8]$

Let \mathbb{F}_2 denote the two element module over $\mathbb{Z}[D_{4n}]$, on which the action of $\mathbb{Z}[D_{4n}]$ is trivial.

Proposition 3.1 [1, page 127]

- (i) $H^0(D_{4n}, \mathbb{F}_2) = \mathbb{F}_2$
- (ii) $H^1(D_{4n}, \mathbb{F}_2) = \mathbb{F}_2^2$
- (iii) $H^2(D_{4n}, \mathbb{F}_2) = \mathbb{F}_2^3$

Recall the sequence (1), from Section 2. By Schanuel's lemma, any module occurring as the algebraic π_2 of an algebraic 2-complex, over $\mathbb{Z}[D_{4n}]$, must be stably equivalent to J.

Proposition 3.2 J has minimal Z-rank in its stable class.

Proof Given any finite algebraic 2–complex, consider the cochain obtained by applying $\operatorname{Hom}_{Z[D_{4n}]}(\bullet, \mathbb{F}_2)$:

$$\mathbb{F}_2^{d_2} \xleftarrow{v_2} \mathbb{F}_2^{d_1} \xleftarrow{v_1} \mathbb{F}_2^{d_0}$$

where d_0 , d_1 , d_2 , are the $\mathbb{Z}[D_{4n}]$ ranks of the modules in the complex. As $H^0(D_{4n}, \mathbb{F}_2) = \mathbb{F}_2$, the kernel of v_1 has \mathbb{F}_2 -rank 1. Consequently, the image of v_1 has \mathbb{F}_2 -rank $d_0 - 1$. $H^1(D_{4n}, \mathbb{F}_2) = \mathbb{F}_2^2$ so v_2 has kernel of \mathbb{F}_2 -rank $2 + d_0 - 1 = d_0 + 1$. The image of v_2 is then seen to have rank $d_1 - d_0 - 1$. $H^2(D_{4n}, \mathbb{F}_2) = \mathbb{F}_2^3$ so we know that $d_2 \geq 3 + d_1 - d_0 - 1$. Rearranging gives $d_2 - d_1 + d_0 \geq 2$.

Exactness implies that the \mathbb{Z} -rank of the algebraic π_2 of the algebraic complex must be $4n(d_2-d_1+d_0)-1$. Hence our inequality implies that this is at least 8n-1, which is the \mathbb{Z} -rank of J.

We now restrict to the case n = 2.

Proposition 3.3 The only elements in the stable class of J are modules of the form $J \oplus \mathbb{Z}[D_8]^k$.

Proof We refer to [3, Theorem 6.1]. This states that over $\mathbb{Z}[D_8]$, $A \oplus C = B \oplus C$ implies A = B for torsion free, finitely generated modules A, B, C.

If a module M is in the stable class of J then $M \oplus \mathbb{Z}[D_8]^r = J \oplus \mathbb{Z}[D_8]^s$. From proposition 3.2 we have $s \ge r$. From the theorem, we deduce that $M = J \oplus \mathbb{Z}[D_8]^{s-r}$.

Theorem 3.4 The group D_8 satisfies the D(2) property.

Proof The only modules that can turn up as the algebraic π_2 of an algebraic 2–complex over $\mathbb{Z}[D_8]$ are ones of the form $J \oplus \mathbb{Z}[D_8]^s$ for some $s \ge 0$. Theorem 2.11 tells us that for each s, up to chain homotopy equivalence, there is a unique algebraic 2–complex with algebraic π_2 equal to $J \oplus \mathbb{Z}[D_8]^s$. Given any r, the chain homotopy equivalence class of this algebraic 2–complex is realized by the Cayley complex of the presentation:

$$\langle a, b \mid a^{2n} = b^2 = e, \ aba = b, \ r_1 = e, r_2 = e, \dots r_s = e \rangle$$

where $r_i = e$ for i = 1, ..., s.

Hence we know that every algebraic 2-complex over D_8 is geometrically realized. By [3, Theorem I], this is equivalent to D_8 satisfying the D(2) property.

References

- [1] **A Adem, R J Milgram**, *Cohomology of finite groups*, Grundlehren series 309, Springer, Berlin (1994) MR1317096
- [2] F E A Johnson, Explicit homotopy equivalences in dimension two, Math. Proc. Cambridge Philos. Soc. 133 (2002) 411–430 MR1919714
- [3] **FEA Johnson**, *Stable modules and the D*(2)–*problem*, London Mathematical Society Lecture Note Series 301, Cambridge University Press, Cambridge (2003) MR2012779
- [4] RG Swan, Torsion free cancellation over orders, Illinois J. Math. 32 (1988) 329–360 MR947032
- [5] CTC Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965) 56-69 MR0171284

University College London, Gower Street London WC1E 6BT, UK

wajid@mannan.info

Received: 4 October 2006 Revised: 10 February 2007