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Dieudonné modules and p–divisible groups associated with
Morava K –theory of Eilenberg–Mac Lane spaces

VICTOR BUCHSTABER

ANDREY LAZAREV

We study the structure of the formal groups associated to the Morava K–theories of
integral Eilenberg–Mac Lane spaces. The main result is that every formal group in
the collection fK.n/�K.Z; q/; q D 2; 3; : : :g for a fixed n enters in it together with
its Serre dual, an analogue of a principal polarization on an abelian variety. We also
identify the isogeny class of each of these formal groups over an algebraically closed
field. These results are obtained with the help of the Dieudonné correspondence
between bicommutative Hopf algebras and Dieudonné modules. We extend P Goerss’
results on the bilinear products of such Hopf algebras and corresponding Dieudonné
modules.

55N22; 14L05

1 Introduction

The theory of formal groups gave rise to a powerful method for solving various
problems of algebraic topology thanks to the fundamental works by Novikov [9] and
Quillen [12]. Formal groups in topology arise when one applies a complex oriented
cohomology theory to the infinite complex projective space CP1 . However the formal
groups obtained in this way are all one-dimensional and so far the rich and intricate
theory of higher dimensional formal groups remained outside of the realm of algebraic
topology. One could hope to get nontrivial examples in higher dimensions by applying
a generalized cohomology to an H –space. For most known cohomology theories and
H –spaces this hope does not come true, however there is one notable exception. Quite
surprisingly, the Morava K–theories applied to the integral Eilenberg–Mac Lane spaces
give rise to formal groups in higher dimensions. Moreover, these formal groups are
exceptionally good in the sense that they have finite height.

This striking result belongs to Ravenel and Wilson [14] who used it to prove the so-
called Conner–Floyd conjecture. However until now there has not been a systematic
study of the remarkable collection of formal groups discovered by Ravenel and Wilson.
This study is our main objective in this paper.
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The main tool for Ravenel and Wilson was the notion of a Hopf ring and its behaviour
in spectral sequences. The definition of a Hopf ring was recently put in a conceptual
framework by Goerss by introducing a suitable symmetric monoidal category for
bicommutative Hopf algebras in [4]. We make substantial use of the results of this
paper.

It is well-known that the most effective way to study formal groups, particularly those
of finite height or, more generally, p–divisible groups is via the Dieudonné functor
which associates to a formal group a module over a certain ring called the Dieudonné
ring (see Manin [7] or Demazure [2]. Goerss supplied the category of Dieudonné
modules with a monoidal structure and showed that the Dieudonné functor is monoidal.
We use this technique to study the structure of Ravenel–Wilson formal groups.

Our main result is that the spectrum multiplication

K.Z=p� ; q/^K.Z=p� ; n� q/!K.Z=p� ; n/

induces a kind of Poincaré duality on K.n/�K.Z=p
� ;�/ where K.n/ is the nth

Morava K–theory. More precisely, we show that the Hopf algebras K.n/�K.Z=p
� ; q/

and K.n/�K.Z=p
� ; n� q/ are dual to each other for n odd and ‘twisted dual’ for n

even (precise formulations are found in the main text). Moreover, the formal groups
K.n/�K.Z; q C 1/ and K.n/�K.Z; n� q C 1/ are Serre dual to each other and we
identify explicitly the isogeny classes of these formal groups over an algebraic closure
of Fp , the field of p elements.

The main ingredient in the proof is the theorem of Ravenel and Wilson which shows
that the collection of Hopf algebras K.n/�K.Z=p

� ;�/ forms an exterior Hopf ring
on K.n/�K.Z=p

� ; 1/. The ‘Poincaré duality’ mentioned above is not a formal conse-
quence of the Ravenel–Wilson theorem, though, but follows from rather exceptional
properties of the Hopf algebra K.n/�K.Z=p

� ; 1/.

The paper is organized as follows. In sections 2 and 3 we introduce the so-called
�–product (or bilinear product) in the category of bicommutative Hopf algebras H .
We mostly follow Goerss’ paper [4]; however our construction of the bilinear product
is more explicit than his and we provide some instructive examples. In section 4 we
discuss an appropriate version of the Cartier duality which is more general than the
usual one in that we do not restrict our study to finite-dimensional Hopf algebras. We
also answer Paul Goerss’ question to explicitly describe the internal Hom functor in
H . Sections 5 through 8 discuss the monoidal structure on the category of Dieudonné
modules D as well as the Dieudonné correspondence. Again, our main source is [4],
but we also consider the internal Hom functor and duality in D . In section 9 we discuss
exterior Hopf rings, exterior Dieudonné algebras and their relations to generalized
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homology of �–spectra. Sections 10 and 11 are devoted to the study of the structure of
the exterior Hopf algebra on K.n/�K.Z=p

� ; 1/ and the associated Dieudonné exterior
algebra. The main results are formulated and proved in Section 12.

1.1 Notation and conventions

We consider bialgebras over a fixed field k, ie collections of data .H; �H ;mH ; �H ; iH /.
Here H is a vector space over k, mH W H ˝k H !H and �H W H !H ˝k H are
associative and coassociative multiplication and comultiplication, �H W H ! k and
iH W k! H are the counit and the unit respectively. The comultiplication and the
counit are required to be homomorphisms of unital algebras. We will usually omit the
subscript H when it is clear from the context. A bialgebra having an antipode will be
called a Hopf algebra.

Additionally all bialgebras and Hopf algebras will be assumed to be commutative and
cocommutative. The antipode H !H will be denoted by Œ�1�H . Thus, for two Hopf
algebras A;B the set of all Hopf algebra homomorphisms A!B is an abelian group.
The addition of two homomorphisms f;gW A! B is defined as the composition

A
�A // A˝A

f˝g // B˝B
mB // B :

The zero homomorphism is the composite map

A
�A // k

iB // B :

The additive inverse to a homomorphism f W A!B is given by precomposing f with
Œ�1�BW B!B or, equivalently, postcomposing it with Œ�1�AW A!A. According to a
well-known theorem of Grothendieck, see [2, page 30], the category of Hopf algebras
form an abelian category which will be denoted by H . The zero object in H is the
ground field k.

If A D B then the set of endomorphisms of A is also a ring with respect to the
composition of endomorphisms. The ring of integers Z maps canonically into this ring
and we denote by Œn�A or simply by Œn� the image of n 2 Z under this map.

For an element x in a Hopf algebra we will write �.x/D
P

x.1/˝x.2/ . Similarly the
n–fold diagonal �nW H !H˝n will be written as

P
x.1/˝ : : :˝x.n/: Our ground

field k will have characteristic p unless indicated otherwise; from Section 8 onwards
p will be odd. In Sections 2 through 4 the symbol ˝ will stand for ˝k ; later on all
unmarked tensor products are assumed to be taken over the p–adic integers Zp . We
will denote by Fp the field consisting of p elements, and by Qp the field of p–adic
rational numbers. For a Hopf algebra H we will denote by F W H !H the Frobenius
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morphism. The dual vector space H� to H has the structure of an algebra and so the
raising to the p th power determines a linear map H�!H� . The (continuous) dual
to this map gives a linear endomorphism V W H !H called the Verschiebung.

2 Bilinear products of Hopf algebras

In this section we will introduce the operation in the category of Hopf algebras which
models the tensor product of abelian groups.

Definition 2.1 Let H1;H2;K be Hopf algebras. Let � be a morphism of coalgebras

�W H1˝H2!K:

We will write x ı y for �.x;y/. Then � is called a bilinear map if the following
axioms hold for all x;y 2H1; z; w 2H2 :

(1) xy ı z D
P
.x ı z.1//.y ı z.2//

(2) x ıwz D
P
.x.1/ ıw/.x.2/ ı z/

(3) x ı 1D �.x/ � 1

(4) 1 ı z D �.z/ � 1

The bilinear product of two Hopf algebras is defined with the help of a suitable universal
property with respect to bilinear maps. More precisely:

Definition 2.2 For two Hopf algebras H1;H2 their bilinear product H1 � H2 is the
unique Hopf algebra together with a bilinear map

 W H1˝H2!H1 � H2

such that for any bilinear map H1˝H2!K there exists a unique Hopf algebra map
H1 � H2!K making the following diagram commute:

H1˝H2

 //

��

H1 � H2

xxpppppppppppp

K

Of course, one still needs to prove that H1 � H2 satisfying the afore-mentioned
universal property exists. A proof of this result is contained in [4]. Below we will give
another, hopefully more explicit description of the bilinear product.
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Let S.H1˝H2/ be the symmetric algebra on H1˝H2 . For a1 2H1; a2 2H2 we will
write the elements a1˝a2 2 S.H1˝H2/ as a1 ıa2 . The algebra S.H1˝H2/ has a
unique structure of a bialgebra defined by the requirement that the canonical inclusion
H1˝H2! S.H1˝H2/ be a map of coalgebras. Explicitly, for a1 2H1; a2 2H2

we have

(2–1) �.a1 ı a2/D
X

a
.1/
1
ı a

.1/
2
˝ a

.2/
1
ı a

.2/
2
:

Consider the ideal J in S.H1˝H2/ generated by the elements:

(1) a1.x;y; z/D xy ı z�
P
.x ı z.1//.y ı z.2//

(2) a2.x; w; z/D x ıwz�
P
.x.1/ ıw/.x.2/ ı z/

(3) b1.x/D x ı 1� �.x/ � 1

(4) b2.z/D 1 ı z� �.z/ � 1

Let us show that J is a coideal with respect to the coalgebra structure in S.H1˝H2/.
We will restrict ourselves with checking the elements a1.x;y; z/ and b1.x/ only; the
proof for a2.x; w; z/ and b2.z/ is similar. We have:

�b1.x/D
X

x.1/ ı 1˝x.2/ ı 1� �.x/1˝ 1

D

X
.b1.x

.1//C �.x.1//1/˝ .b1.x
.2//C �.x.2//1/� �.x/1˝ 1

D

X
b1.x

.1//˝ b1.x
.2//C b1.x

.1//˝ �.x.2//1C �.x.1/1/˝ b1.x
.2//

We see that �b1.x/ 2 J ˝S CS ˝J . Further,

�.xy ı z/D .�x�y/ ı�z D
X

.x.1/y.1// ı z.1/˝ .x.2/y.2// ı z.2/:

On the other hand:

�
X

.x ı z.1//.y ı z.2//D
X

�.x ı z.1//�.y ı z.2//

D

X
Œ.x.1/ ı z.1/.1//˝ .x.2/ ı z.1/.2//�Œ.y.1/ ı z.2/.1//˝ .y.2/ ı z.2/.2//�

D

X
.x.1/ ı z.1/.1//.y.1/ ı z.2/.1//˝ .x.2/ ı z.1/.2//.y.2/ ı z.2/.2//

Using cocommutativity of the comultiplication on H2 we can rewrite the last expression
as follows:X

.x.1/ ı z.1/.1//.y.1/ ı z.1/.2//˝ .x.2/ ı z.2/.1//.y.2/ ı z.2/.2/ ��.xy ı z/

mod .S ˝J CJ ˝S/

We have the following result.
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Proposition 2.3 The algebra S.H1 ˝H2/=J has the structure of a Hopf algebra
where the diagonal is given by the formula (2–1). The antipode is given by the formula

Œ�1�.x ıy/D .Œ�1�x/ ıy:

Proof It follows from the foregoing discussion that S.H1˝H2/=J is a bialgebra;
thus it only remains to check that the endomorphism Œ�1� on S.H1˝H2/=J defined
by the above formula is indeed the antipode. Denoting by m the multiplication map
on S.H1˝H2/=J we have

x ıy
�
�!

X
x.1/ ıy.1/˝x.2/ ıy.2/

Œ�1�˝Œ1�
�!

X
.Œ�1�x.1// ıy.1/˝x.2/ ıy.2/

m
�!

X
Œ.Œ�1�x.1//x.2/� ıy D

X
�.x/1 ıy D �.x/�.y/1

as required.

Remark 2.4 Similarly we can show that Œ�1�.x ı y/ D x ı .Œ�1�y/. Furthermore,
using the equality Œ�1�2 D Œ1�D id it is easy to see that the following identity holds
for any x 2H1;y 2H2 :

x ıy D Œ�1�x ı Œ�1�y:

Finally we have the following result which is a direct consequence of the above
constructions.

Corollary 2.5 The Hopf algebra S.H1˝H2/=J satisfies the universal property of
Definition 2.2 and thus realizes the bilinear product H1 � H2 .

Example 2.6 Let G1;G2 be abelian groups. Then we have the following isomorphism
of Hopf algebras:

kŒG1�� kŒG2�Š kŒG1˝Z G2�:

Indeed, it is easy to see, using the universal property of the bilinear product, that a
bilinear map kŒG1�˝kŒG2�!H is equivalent to (the usual notion of) a bilinear map
from G1 �G2 to the group of group-like elements of H .

Example 2.7 For any Hopf algebra H we have natural isomorphisms:

kŒZ�� H ŠH ŠH � kŒZ�:

The canonical bilinear map kŒZ�˝H !H is constructed as follows. Let tn 2 kŒZ�D
kŒt; t�1� and a 2H . Then tn ıa 7! Œn�.a/. This determines a homomorphism of Hopf
algebras kŒZ�� H ! H . The inverse map is specified by a 7! t ı a. The second
isomorphism is constructed similarly.
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Example 2.8 Let H1 D kŒx1; : : : ;xn�;H2 D kŒy1; : : : ;yk � where xi and yi are
primitive. Then H1 � H2 is isomorphic to the polynomial algebra on primitive
generators xi ıyj where i D 1; 2; : : : n; j D 1; 2; : : : k .

Example 2.9 Let H D kŒx�=xp . Then H � H Š kŒx� where x is primitive.

Remark 2.10 The isomorphisms of Examples 2.8 and 2.9 could be obtained directly
using our explicit construction of H1 � H2 . For example, a simple calculation shows
that in kŒx�� kŒx� one has xn ıxm D ımnn!.x ıx/n and thus x ıx is a polynomial
generator in kŒx� � kŒx�. It is simpler, however, to do this using the Dieudonné
correspondence which will be discussed later on.

Remark 2.11 We are only interested in the case when the field k has characteristic
p ¤ 0. Note, however, that the construction of the bilinear product goes through also
in the characteristic zero case. The isomorphisms of examples 2.6, 2.7 and 2.8 continue
to hold. Example 2.9 has no analogue in characteristic zero.

Summing up the above discussion we have the following result.

Theorem 2.12 The category H together with the bilinear product � is a symmetric
monoidal category. The unit for this monoidal structure is the Hopf algebra kŒZ�.

Proof The existence of the natural commutativity and associativity isomorphisms
follows from the corresponding properties of the usual tensor product together with the
universality of �. The same arguments give rise to the commutativity of the hexagon
and pentagon diagrams. We will refer to Mac Lane [6] for the definition and basic
properties of symmetric monoidal categories.

3 Further properties of the bilinear product

We list a few basic properties of the product �.

Proposition 3.1 Let x 2H1;y 2H2 . Then the following formulas hold in H1 � H2 :

(1) V .x ıy/D Vx ıVy

(2) F.Vx ıy/D x ıFy

(3) F.x ıVy/D Fx ıy:

(4) .Œn�x/ ıy D Œn�.x ıy/D x ı Œn�y
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Proof The stated formulas follow directly from the definition of the product �.
Equations (1), (2) and (3) are essentially proved in [14, Lemma 7.1]. For .4/ we have
the following identities:

.Œn�x/ ıy D
X

.x.1/ : : :x.n// ıy

D

X
.x.1/ ıy.1// : : : .x.n/ ıy.n//

D Œn�.x ıy/

D

X
x ı .y.1/ : : :y.n//

D x ı .Œn�y/

Furthermore, for any two Hopf algebras H1;H2 there exists an internal Hom object
Hom.H1;H2/, cf [4, Corollary 5.8]. It is characterized by the property that for any K

in H
HomH.H1 � K;H2/Š HomH.H1;Hom.K;H2//:

We will denote by H� the subcategory of H consisting of the Hopf algebras H such
that Œp� �.a/ D �.a/ for any a 2 H (the equivalent condition is that Œp� � is the zero
element in the ring HomH.H;H /). Using the language of algebraic geometry one can
say that H represents a p� –torsion group scheme. The union of all subcategories H�
will be denoted by H1 .

Similarly we denote by H.N / the subcategory of H formed by those Hopf algebras for
which the N th iteration of the Verschiebung V N is the zero endomorhism. The union
of all H.N / will be denoted by H.1/. We will call the objects in H.1/ irreducible
Hopf algebras (in algebraic geometry the corresponding objects are called unipotent
group schemes.)

Note that the category H� as well as H1 forms an ideal inside the symmetric monoidal
category H in the sense that if H 2H� then for any A 2H the Hopf algebras H � A

and A � H belong to H� . This follows from formula (4) of Proposition 3.1.

We also have the corresponding statement for the internal Hom functor:

Proposition 3.2 Let H be a Hopf algebra in H� . Then for any A 2 H the Hopf
algebra Hom.A;H / as well as Hom.H;A/ also belong to H� .

Proof Let us prove that Hom.A;H / 2 H� , the remaining case is treated similarly.
Consider Hom.A;H / as a functor of the second argument; we claim that for any n

the map Œn�W Hom.A;H / �! Hom.A;H / is induced by the map Œn�W H �!H . The
claim obviously implies the statement of the proposition.
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We have two maps: Œn� and Hom.A; Œn�/W Hom.A;H / �! Hom.A;H /; to show that
they coincide it suffices to check that the induced two maps

�; W Hom.C;Hom.A;H // �! Hom.C;Hom.A;H //

coincide for any C 2H . Identifying Hom.C;Hom.A;H // with Hom.C �A;H / we
see that � and  are both equal to the map C �! Hom.A;H / which is induced by
Œn�W C �! C .

The category H� (but not H.N /) has a unit making it a symmetric monoidal category:

Proposition 3.3 The unit in the monoidal category H� is the Hopf algebra kŒZ=p� �.

Proof Let t 2 kŒZ=p� � be the generator in Z=p� . The unit map kŒZ=p� �� H !H

is specified by tn ı a 7! Œn�a for a 2H . This is a well-defined map since

�.a/D Œp� �aD tp�

ı aD 1 ı a:

The inverse map is defined as a 7! t ı a.

We will finish this section by introducing another subcategory H f inside H consisting
of finite dimensional Hopf algebras. In the algebro–geometric literature they are known
under the name of finite abelian group schemes. It is well-known (Demazure and
Gabriel, [3]) that the category H f splits as a direct product:

Hf DHl l �Hlr �Hrl �Hrr :

Here Hl l consists of Hopf algebras which are local with local dual, Hlr are the Hopf
algebras which are local and whose duals are reduced (have no nilpotent elements),
Hrl are the Hopf algebras which are reduced with local duals and Hrr stands for those
Hopf algebras which are reduced together with their duals. Let us give some typical
examples of Hopf algebras in each of the four categories listed above.

(1) Hl l : kŒx�=xp where x is primitive;

(2) Hlr : a group algebra of a finite abelian p–group:

(3) Hrl : a k–dual to the group algebra of a finite abelian p–group;

(4) Hrr : a group algebra of a finite abelian group whose order is coprime to p .

Remark 3.4 Note that Hl l � Hlr � Hrl coincides with Hf1 WD Hf
T
H . The

reason for considering the category Hf1 is that it is closed with respect to the Cartier
duality which will be discussed in the next section and that it behaves well with
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respect to the Dieudonné correspondence. However observe, that Hf or Hf1 are not
closed with respect to �. Consider, for example the Hopf algebra H D kŒx�=xp with
�.x/D x˝ 1C 1˝x . Then H � H Š kŒx� according to Example 2.9, in particular,
H � H is not finite-dimensional.

4 Duality for Hopf algebras

We will now describe a version of the Cartier duality in the category H and some of its
subcategories. We start by defining for any Hopf algebra H 2H its dual Hopf algebra
H 0 . This construction makes sense for an arbitrary (not necessarily commutative or
cocommutative) Hopf algebra over a field.

Note that if H is not finite dimensional over k then H�DHom.H;k/ is a topological
Hopf algebra rather than a usual Hopf algebra. That means that the comultiplication
�W H� �!H� y̋H� WD .H ˝H /� does not take its values in H�˝H� as required
for a Hopf algebra but in a bigger space H� y̋H� . We say that A � H� is a Hopf
subalgebra of H� if A is a subalgebra and �.A/2A˝A�H� y̋H� . In addition, we
require that A be closed under the antipode. Clearly then, A itself is a Hopf algebra.

Definition 4.1 Let H 2H . Define the (Cartier) dual Hopf algebra H 0 to be the union
of all Hopf subalgebras inside H� .

Remark 4.2 Note that if A;B are Hopf subalgebras in H� then so is A �B , the set
of all linear combinations of products of elements in A and B . It implies that the
union of all Hopf subalgebras in H� is again a Hopf algebra.

Clearly, if H is finite-dimensional then H 0 coincides with H� . However, in general
H 0 could be very complicated. Consider, for example the Hopf algebra kŒt � where
the generator t is primitive. It is well-known that the graded dual to kŒt � (where
t is taken to be a homogeneous element of degree 2) is � , the algebra of divided
powers. However, kŒt �0 is much bigger than � , in particular it always contains kŒk�,
the k–group ring of k considered as an additive group. To see that observe that there is
a natural evaluation map kŒt � �!Map.k;k/ where Map.k;k/ stands for the set of all
maps of sets k�! k. It is clear that Map.k;k/ is a topological Hopf algebra which is
dual to kŒk�. Taking the continuous dual to the above map we arrive at the inclusion
kŒk� �!H� . Related questions are discussed in authors’ paper [1].

Definition 4.3 The dualizing object Dh in H is defined as Dh WD kŒZ�0 , the dual
Hopf algebra to the unit object kŒZ�. Similarly define the dualizing object in H� to be
D.�/h WD kŒZ=p� �� , the k–linear dual to the unit object in H� .

Algebraic & Geometric Topology, Volume 7 (2007)



Dieudonné modules and p–divisible groups 539

Remark 4.4 The subscript h in the notation for the dualizing object stands for ‘Hopf’
and its purpose is to distinguish it from the dualizing object in the category of Dieudonné
modules. We will suppress this subscript as well as the dependence on � in cases when
no confusion is possible.

Definition 4.5 Let A;B be Hopf algebras in H . A map h; iW A˝B! k is called a
bilinear pairing if the following axioms hold for any a; a1; a2 2A; b; b1; b2 2 B :

(1) ha; b1b2i D h�a; b1˝ b2i

(2) ha1a2; bi D ha1˝ a2; �bi

(3) h1; bi D �.b/

(4) ha; 1i D �.a/

Clearly, a bilinear pairing A˝B! k is equivalent to a map of Hopf algebras A!B0 .
In what follows we treat the Cartier duality in the category H� . However Lemma 4.6,
Definition 4.7 and Theorem 4.8 have obvious analogues, with similar proofs in the
category H .

Lemma 4.6 A bilinear pairing A˝B!k for A;B2H� determines and is determined
by a map of Hopf algebras A � B!D.�/.

Proof Let �W A�B!D.�/ be a Hopf algebra map. Taking its linear dual we obtain
a map of algebras D.�/� D kŒZ=p� �! .A � B/� (since � is a map of coalgebras).
The latter gives rise to an invertible element in .A � B/� whose p� th power is 1.
We can consider this element as a map A˝B! k. The axioms 1–4 for the bilinear
pairing follow from the corresponding axioms for a bilinear map.

Conversely, a bilinear pairing h; iW A˝B ! k could be considered as an element
f 2 .A˝B/� . We need to show that f p�

D 1 in .A˝B/� . Let a˝b 2A˝B . We
have:

f p�

.a˝ b/D
X

f .a.1/˝ b.1// : : : f .a.p
�/
˝ b.p

�//

D

X
ha.1/; b.1/i : : : ha.p

�/; b.p
�/
i

D ha.1/ : : : a.p
�/; bi

D hŒp� �.a/; bi

D h�.a/; bi

D �.a/�.b/

as required.
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Definition 4.7 For H 2H� define its dual DhH as DhH WD Hom.H;D.�//.

Following our customary abuse of notation we will usually shorten DhH to DH .
Then we have the following result.

Theorem 4.8 There is a natural isomorphism of Hopf algebras DH ŠH 0 in H� .

Proof Let A be a Hopf algebra in H . We have a natural isomorphism HomH�
.A;DH /

ŠHomH�
.A�H;D/. By the previous lemma the set HomH�

.A�H;D/ is in natural
1�1 correspondence with the set of bilinear pairings A˝H ! k and the latter bijects
with the set of topological Hopf algebra maps A ! H� . Thus, there is a natural
bijection of sets

HomH�
.A;DH /� HomH�

.A;H 0/

and therefore DH ŠH 0 .

Corollary 4.9 The Cartier duality functor restricts to the subcategory Hf .

Proof Indeed, it interchanges the categories Hlr and Hrl and maps the category Hl l

to itself.

Corollary 4.10 For any finite-dimensional Hopf algebra H in H� there is a natural
isomorphism H ŠDDH .

Corollary 4.11 Let H1;H2 be Hopf algebras in H� and assume that H2 is finite
dimensional. Then

Hom.H1;H2/Š .H1 � H�2 /
0:

Proof We have the following sequence of isomorphisms of Hopf algebras:

Hom.H1;H2/Š Hom.H1;DDH2/

Š Hom.H1 � DH2;D/

ŠD.H1 � DH2/

Š .H1 � H�2 /
0

The above formula for the internal Hom functor answers the question of Paul Goerss [4,
Section 5] at least for finite dimensional p–torsion Hopf algebras. In the next section
we will give a corresponding formula for the internal Hom of Dieudonné modules.
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5 The bilinear product of Dieudonné modules

In this section we specialize kDFp . There is little doubt that all our constructions could
be generalized to the case of an arbitrary perfect field, however our topological examples
do not require this level of generality and we restrict ourselves with considering the
case of a prime field only.

Definition 5.1 The category D is the category of modules over the Dieudonné ring
RD Zp ŒV;F �=.VF �p/. The objects in D will be called Dieudonné modules. The
subcategory D.N / consists of those Dieudonné modules for which V N acts trivially.
The subcategory D� of D consists of those Dieudonné modules for which p� acts
trivially. The union of D.N / will be denoted by D.1/.

Clearly D;D.N /;D� are abelian categories. We will next introduce the notion of a
bilinear map in D similar to the bilinear map of Hopf algebras discussed in the second
section of the paper.

Definition 5.2 Let M;N;L be R–modules. A map f W M ˝N �! L is called a
bilinear map if it is Zp –bilinear and

(1) Ff .Vm˝ n/D f .m˝Fn/

(2) Ff .m˝V n/D f .Fm˝ n/

(3) Vf .m˝ n/D f .Vm˝V n/.

Just as before, the notion of a bilinear map leads naturally to the notion of a bilinear
product in the category of Dieudonné modules.

Definition 5.3 For two Dieudonné modules M and N we define their bilinear product
M � N as the unique Dieudonné module supplied with a bilinear map M ˝N !

M � N such that for any bilinear map M ˝N !L there exists a unique R–module
map M � N !L making the following diagram commute:

M ˝N //

��

M � N

xxrrrrrrrrrrr

L

An explicit description of M � N is given in the following construction.

Let M;N 2D and consider M ˝N as an Zp ŒV �–module so that

V .x˝y/D Vx˝Vy:
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Then R˝ZpŒV � .M ˝N / has an obvious structure of a left R–module. Set

M � N WDR˝ZpŒV � .M ˝N /=�

where � is the R–submodule generated by the following elements:

F ˝Vm˝ n� 1˝m˝Fn(5–1)

F ˝m˝V n� 1˝Fm˝ n(5–2)

Hence the structure of an R–module on M � N as follows:

F.r ˝m˝ n/D Fr ˝m˝ n

V .r ˝m˝ n/D r ˝Vm˝V n

The element 1˝m˝ n 2M � N will be denoted by m ı n.

The following result is an analogue of Theorem 2.12. Its proof is a direct inspection of
definitions.

Theorem 5.4 The category D together with the bilinear product � is a symmetric
monoidal category. The unit for this monoidal structure is R–module ID D Zp where
F acts as a multiplication by p and V is the identity automorphism.

The product � also determines a monoidal structure in D� and D.N /. The unit in
D� is the module ID.�/ D Zp=p

� where, as above, F acts as a multiplication by p

and V is the identity automorphism. The category D.N / has no unit.

Remark 5.5 The structure of the bilinear product of two R–modules is not so obvious
even in the simplest cases. For example one can prove that R � R is isomorphic to the
direct sum of copies of R with generators 1 ı 1;V l ı 1; 1 ıV l where l D 1; 2; : : :.

6 Duality for Dieudonné modules

We will start our treatment of duality in the category D by introducing the internal
Hom functor.

Definition 6.1 Let M;N 2D or M;N 2D� . Define Hom.M;N / to be the subgroup
of Hom.R˝M;N / consisting of such f W R˝M �!N for which:

(1) Ff .V r ˝m/D f .r ˝Fm/

(2) Ff .r ˝Vm/D f .Fr ˝m/

(3) Vf .r ˝m/D f .V r ˝Vm/
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Furthermore, define the structure of an R–module on Hom.M;N / by the following
formula:

(6–1) .r �f /.a˝m/D f .ra˝m/

Remark 6.2 It is clear that Hom.M;N / is isomorphic to HomR.R � M;N / as an
abelian group. It implies, in particular, that Hom.M;N / is a Zp –module. However the
structure of an R–module on Hom.M;N / is different from that on HomR.R�M;N /

Proposition 6.3 Formula (6–1) determines the structure of an R–module on
Hom.M;N /.

Proof One needs to check that .F � f /.a ˝ m/ and .V � f /.a ˝ m/ belong to
Hom.M;N /, ie, that they satisfy the formulas (1)–(3) of Definition 6.1 and that
the relations VF D FV D p hold. This verification is completely straightforward.

Proposition 6.4 There is a natural isomorphism in D :

(6–2) HomR.M � N;L/Š HomR.M;Hom.N;L//

Proof The R–module Hom.N;L/ is, by definition, a subgroup in Hom.R˝N;L/.
Therefore HomR.M;Hom.N;L// is identified with a certain subgroup inside

HomR.M;Hom.R˝N;L//Š Hom.M ˝R .R˝N /;L/

Š Hom.M ˝N;L/:

More precisely, an easy inspection shows that this subgroup consists of f 2Hom.M ˝
N;L/ for which the identities (1)–(3) of Definition 5.2 hold. It follows that the
collection of such f is isomorphic to HomR.M � N;L/.

So we showed that (6–2) is an isomorphism of abelian groups. Let us now check that
this is an R–module isomorphism. Let f 2 HomR.M � N;L/. We will consider f
as a map M ˝N �!L. Denote by xf the corresponding homomorphism

M �! Hom.N;L/� Hom.R˝N;L/:

Thus, xf .m/.r ˝ n/D f .rm˝ n/: Let a 2R. We have:

xf .am/.r ˝ n/D f .ram˝ n/

D xf .m/.ar ˝ n/

D .a � xf /.m/.r ˝ n/

Finally, we introduce the notion of the Cartier duality in the category D� .
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Definition 6.5 The dualizing module in the category D� is the group Dd .�/ WDZ=p�Z

where V acts as multiplication by p and F is the identity automorphism. For M 2D�
define its dual Dieudonné module DdM as Hom.M;Dd .�//.

Remark 6.6 The subscript d in the definition of the dualizing module is supposed
to distinguish it from the dualizing object for Hopf algebras. We will suppress this
subscript as well as the dependence on � whenever practical.

We now introduce the notion of a bilinear pairing of Dieudonné modules analogous to
the corresponding notion in the category of Hopf algebras.

Definition 6.7 A bilinear pairing of two Dieudonné modules M;N 2D� is a map

f; gW M ˝N ! Z=p�

such that for any m 2M and n 2N :

(1) fm;Fng D fVm; ng

(2) fFm; ng D fm;V ng

Remark 6.8 Obviously a bilinear pairing M ˝N ! Z=p� nothing but a bilinear
map M ˝N !D or, equivalently, a map of Dieudonné modules M � N !D .

We have the following result whose proof is a simple check.

Proposition 6.9 For M 2 D� the module DM can be identified with the abelian
group Hom.M;Z=p�/. The action of the operators F and V is specified by the
formulas:

.F �f /.m/D f .Vm/

.V �f /mD f .Fm/

Remark 6.10 It is also possible to consider the Cartier duality in the whole category
D . In this case the dualizing module D will be the abelian group Qp=Zp where V

and F act as before. The analogue of Proposition 6.9 continues to hold in this context.
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7 The Dieudonné correspondence

Recall that the Witt Hopf algebra W Z
n D ZŒx0; : : : ;xn� admits a unique Hopf algebra

structure over Z for which the Witt polynomials Pk D x
pk

0
Cpx

pk�1

1
C : : :Cpkxk

are primitive. We will write Wn for W Z
n ˝ Fp .

There is a map of Hopf algebras xVnW WnC1 �! Wn defined as xVn.x0/ D 0 and
xVn.xi/D xi�1 for i > 0. Then the classical Dieudonné theorem, cf [3], states:

Theorem 7.1 The functor F W H �!D :

H 7! lim
�!

n

HomH.Wn;H /

establishes an equivalence of the subcategory H.1/ of H and the subcategory D.1/
of D .

The proof of the above theorem uses the fact that Wn is a projective generator of the
abelian category H.n/.

Next recall that the categories H.1/ and D are monoidal. The following result shows
that F is a monoidal functor.

Theorem 7.2 There is a natural isomorphism

F.H1 � H2/Š F.H1/�F.H2/:

Proof A detailed proof in the graded case is contained in Goerss’ paper [4]. Goerss’
scheme carries over to the ungraded case and we will show briefly how this is done.

The first step is to construct a homomorphism of R–modules

(7–1) �W F.H1/�F.H2/ �! F.H1 � H2/:

Arguing as in Goerss’ paper one can show that for a Hopf algebra H over Zp having a
lifting of the Frobenius the Dieudonné module F.H ˝Fp/ is isomorphic to R˝ZpŒV �

Q.H / where Q.H / is the space of indecomposables of H . Next one proves that for
such Hopf algebras H1;H2 there is an isomorphism

Q.H1 � H2/ŠQ.H1/˝Q.H2/:

Since the Hopf algebra Wn �Wn does have a lifting of the Frobenius we conclude that

F.Wn � Wn/ŠR˝ZpŒV �Q.W
Z

n � W Z
n /

ŠR˝ZpŒV �Q.W
Z

n /˝Q.W Z
n /:
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Consider the element

�n ı �n D 1˝xn˝xn 2R˝ZpŒV �Q.W
Z

n /˝Q.W Z
n /:

This element represents a map of Hopf algebras

�nW Wn �!Wn � Wn:

We will use �n to construct the homomorphism (7–1) as follows. Without loss of
generality assume that in H1 and H2 the operator V n is trivial. Then F.H1/ D

HomH.Wn;H1/ and F.H2/D HomH.Wn;H2/. Consider the composite map:

z�W F.H1/˝F.H2/Š HomH.Wn;H1/˝HomH.Wn;H2/

��
HomH.Wn � Wn;H1 � H2/ // HomH.Wn;H1 � H2/Š F.H1 � H2/

Here the last map is induced by �n . Then one can show that z� is a bilinear map and
therefore induces a map (7–1).

Finally, one shows that � is an isomorphism for H1 DWk ;H2 DWl for any k and l

and then derives that � is an isomorphism in general.

Observe that the Dieudonné functor is defined on the category H.1/ of irreducible
Hopf algebras. This category is not closed with respect to the Cartier duality. There is
another version of the Dieudonné equivalence which is defined on the category Hf1 of
finite dimensional p–torsion Hopf algebras. We will now describe this version. Note
that this category is closed with respect to the Cartier duality.

The categories Hl l and Hlr consist of irreducible Hopf algebras and therefore the
Dieudonné functor is defined on them as above. We will define the Dieudonné functor on
Hrl using the fact that D.Hrl/DHlr . Namely, for H 2Hrl set F.H /DDF.DH /.

Thus, the functor F maps the category Hf1 onto the subcategory Df of R–modules
consisting of Dieudonné module of finite length. This subcategory is the product of
three subcategories Dl l ;Dlr and Drl . Here Dl l consists of those R–modules for
which V and F act nilpotently, Dlr is the R–modules with nilpotent F and invertible
V and Drl is the R–modules with nilpotent V and invertible F . We will sum this up
in the following theorem, cf [2]:

Theorem 7.3 The functor F establishes an equivalence of categories Hf1 and Df .
The functor F respects the Cartier duality in Hf and Df .
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8 Twisted duality

Over the prime field Fp there are other candidates for a dualizing object in the categories
H and D all of which become isomorphic upon passing to the algebraic closure of Fp .
In this section we consider one particular choice of a dualizing object since it will arise
naturally in our study of the Morava K–theories of Eilenberg–Mac Lane spaces.

From now on our ground field k will have characteristic p > 2. We will work here
in the categories H� and D� of Hopf algebras and Dieudonné modules which are
annihilated by the � th power of p although one could make similar constructions in
other categories.

Definition 8.1

(1) The twisted dualizing module D0
d

in D� is the abelian group Z=p� where F

and V act as the multiplication by �1 and �p respectively. For a Dieudonné
module M its twisted dual D0

d
M is defined as D0

d
M D Hom.M;D0

d
/.

(2) The twisted dualizing object in H� is the Hopf algebra D0
h

whose Dieudonné
module is D0

d
. For a Hopf algebra H we define its twisted dual D0

h
H as

D0
h
H WD Hom.M;D0

h
/.

Remark 8.2 Recall that the usual dualizing object in H� is the dual to the group
algebra of the group Z=p� . It is unlikely that one can give such a simple explicit
description of D0

h
and so we have to resort to the Dieudonné correspondence instead.

The notion of a twisted dualizing object leads one to introduce twisted bilinear pairing.

Definition 8.3 A twisted bilinear pairing of two Dieudonné modules M;N 2D� is a
map

Œ; �W M ˝N ! Z=p�

such that for any m 2M and n 2N :

(1) Œm;Fn�D�ŒVm; n�

(2) ŒFm; n�D�Œm;V n�

Remark 8.4 Obviously a twisted bilinear pairing M ˝N ! Z=p� is nothing but a
bilinear map M ˝N !D0

d
or, equivalently, a map of Dieudonné modules M �N !

D0
d

.
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To relate two types of duality in H� we need a more general form of the Dieudonné
correspondence, cf [3], which we will now recall.

Let k be an algebraic extension of Fp obtained by adjoining a root of some irreducible
polynomial h.x/ so that kŠ Fp Œx�=.h.x//. Denote by xh.x/ an integral lifting of h.x/.
Then the ring of Witt vectors W .k/ is the ring Zp Œx�=xh.x/. It possesses a lifting of
the Frobenius automorphism on k which will be denoted by � . Then the Dieudonné
ring R.k/ consists of all finite sums of the formX

i>0

˛�iV
i
C˛0C

X
i>0

˛iF
i

where ˛i 2W .k/. The multiplication law is determined by the commutation relations

VF D FV D p

F˛ D �.˛/F

V�.˛/D ˛V

where ˛ 2W .k/. Furthermore for any Dieudonné module M the R.k/–module M.k/
is defined as W .k/˝M where F and V act according to the commutation rules
above. Note that the definition of the ring W .k/ can easily be extended to the case of
an infinite algebraic extension by simply taking the union of W .L/ over subfields L

of k having finite degree over Fp .

The Dieudonné correspondence in this case reads as follows:

Theorem 8.5 The category H.1/ of irreducible Hopf algebras over k is equivalent
to the subcategory of modules over R.k/ for which V acts nilpotently. For a Hopf
algebra H over Fp the Dieudonné module corresponding to k˝H is isomorphic to
F.H /.k/.

We now have the following result.

Proposition 8.6 Let k be a quadratic extension of Fp . Then k˝D0
h

and k˝Dh are
isomorphic Hopf algebras.

Proof The Dieudonné module corresponding to k˝Dh is W .k/˝Z=p� where F

and V act on the factor Z=p� as the identity and multiplication by p respectively.
Similarly the Dieudonné module of k˝D0

h
is the same abelian group W .k/˝Z=p�

where now F and V act on the factor Z=p� as the minus identity and multiplication
by �p respectively.
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Observe that since p > 2 the extension k is obtained by adding to Fp the square root
of a certain element q 2 Fp . Note that the Frobenius automorphism � W k! k permutes
the roots of the quadratic polynomial x2 � q , ie �.

p
q/D �

p
q . It follows that the

map 1˝x 7!
p

q˝xW k˝D0
h
! k˝Dh establishes an isomorphism between these

two Dieudonné module structures. By Theorem 8.5 the corresponding Hopf algebras
are isomorphic.

Corollary 8.7 Let H be a Hopf algebra in H� . Then for a quadratic extension k of
Fp the Hopf algebras k˝DhH and k˝D0

h
H are isomorphic.

9 Hopf rings, Dieudonné algebras and generalized homology
of �–spectra

In this section we introduce the notion of a Hopf ring, the corresponding notion of a
Dieudonné algebra and relate them to generalized homology of multiplicative spectra.
Note that Hopf rings originally appear in the work of Milgram [8] and were later
studied by Ravenel and Wilson [13] in the context of their calculation of the homology
of �–spectrum M U .

Definition 9.1 A Hopf ring A is a Hopf k–algebra together with a map �W A�A�!A

which is required to be associative: �.��1/D �.1��/. A commutative Hopf ring is
a Hopf ring A for which the product � is commutative. In other words a (commutative)
Hopf ring is a (commutative) monoid in the symmetric monoidal category H .

Remark 9.2 Sometimes it is convenient to require that a Hopf ring A have a unit. In
other words there is a map kŒZ��!A subject to the obvious conditions. (Of course in
the category H� the appropriate notion of a unit is a map kŒZ=p� � �!A).

The main example of a Hopf ring is the exterior Hopf ring on a Hopf algebra H

(Ravenel and Wilson use the term ’free Hopf ring’).

Definition 9.3 Let H be a Hopf algebra. Then its exterior Hopf ring ƒ�.H / is
defined as

ƒ�.H /D I˚H ˚ .H � H /=†2˚ : : :˚H �n=†n˚ : : : :

Here I stands for the appropriate unit (kŒZ� in H and kŒZ=p� � in H� ) and †n is the
symmetric group on n symbols which operates on H �n according to the rule

�.h1 ı : : : ı hn/D Œ�1�sgn�h�.1/ ı : : : ı h�.n/
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where h1; : : : ; hn 2H .

The nonunital version ƒ�C.H / is defined as

ƒ�C.H /DH ˚ .H � H /=†2˚ : : :˚H �n=†n˚ : : : :

Clearly ƒ�.H / and ƒ�C.H / are both Hopf rings with respect to the operation ı, and
ƒ�.H / also has a unit. The Hopf rings ƒ�C.H / and ƒ�.H / are not commutative,
but rather skew-commutative Hopf rings in the sense that the following relation holds
for any h1; h2 2H :

h1 ı h2 D Œ�1�h2 ı h1:

The corresponding notion in the category of Dieudonné modules is called the Dieudonné
algebra:

Definition 9.4 A (commutative) Dieudonné algebra is a (commutative) monoid in the
category D or D� .

The definition of an exterior Dieudonné algebra is likewise clear:

Definition 9.5 Let M be an R–module. Then its exterior algebra in D or D� is
defined as

ƒ�.M /D I˚M ˚ .M � M /=†2˚ : : :˚M �n=†n˚ : : : :

Here I is the unit in D or D� , ie, the Dieudonné module Zp or Z=p� with appropriate
actions of F and V . The symmetric group †n operates on M �n according to the rule

�.m1 ı : : : ımn/D .�1/sgn�m�.1/ ı : : : ım�.n/

where m1 : : :mn 2m. The nonunital version ƒC.M / is defined as

ƒ�C.M /DM ˚ .M � M /=†2˚ : : :˚M �n=†n˚ : : : :

Again, the exterior Dieudonné algebra ƒ�.M / is not commutative, but rather skew-
commutative in the obvious sense.

Remark 9.6 Let H be an irreducible Hopf algebra. Then H �n as well as .H �n/=†n

will be irreducible as well for any n> 0. By the Dieudonné correspondence the R–
module F.ƒ�C.H // is isomorphic to ƒ�C.F.H //. In particular, it is a Dieudonné
algebra. If H is a finite-dimensional Hopf algebra we can use the version of the
Dieudonné equivalence given in Theorem 7.3 and extend F to the unital Hopf ring
ƒ.H /. In this case we obtain F.ƒ�.H //Dƒ�.F.H //.
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Now let E be an �–spectrum, ie, a sequence fEq , q D 0; 1; : : :g of based spaces
together with weak equivalences �.EqC1/'Eq . We assume that E is a ring spectrum,
ie there exist maps of based spaces

(9–1) Eq ^El �!EqCl

satisfying the usual associativity axioms.

Furthermore, let h�.�/ be a generalized (multiplicative) homology theory which
satisfies the perfect Künneth formula, ie, h�.X � Y / Š h�.X /˝h� h�.Y / for any
spaces X and Y . In addition, we will assume that h�.En/ is concentrated in even
degrees for all n. The last requirement is imposed because in our context all Hopf
algebras are evenly graded (ungraded, in fact). To deal with a more general case the
theory should be reworked to incorporate graded Hopf algebras.

According to [13] the graded h�–module
L

n h�.En/ has the structure of a Hopf ring
where the ı–product

ıW h�.En/˝ h�.Em/ �! h�.EnCm/

is induced by the mutiplication (9–1) in E . Now take EDH Z=p� , the Eilenberg–Mac
Lane spectrum mod p� . In this case Eq DK.Z=p� ; q/. Next, set h�.�/DK.n/�.�/,
the nth Morava K–theory at an odd prime p . It will be convenient for us to consider
its ungraded version xK.n/. It is defined as xK.n/�.X /DK.n/�.X /˝K.n/� Fp where
K.n/� acts on Fp through the map K.n/� D Fp Œv

˙1
n �! FpW vn 7! 1. Since we do

not consider the graded Morava K–theory we will use the notation K.n/�.�/ for
xK.n/�.�/.

Now recall the following fundamental result of Wilson and Ravenel [14].

Theorem 9.7 The Hopf ring K.n/�K.Z=p
� ;�/ is the exterior Hopf ring on

K.n/�K.Z=p
� ; 1/.

The Hopf algebra H� DK.n/�K.Z=p
� ; 1/ is a well-understood object. It is a finite

dimensional Hopf algebra whose dual has the form H�� D Fp ŒŒt ��=Œp
� �.t/ where the

diagonal is induced by the formal group law of the Morava K–theory and Œp� �.t/ is the
corresponding p–series. If one uses Hazewinkel’s generators to construct the spectrum
K.n/ then its p–series has the form Œp�.t/D tpn

.

Note that H� is a finite-dimensional irreducible Hopf algebra. Let us now find its
Dieudonné module. Consider instead the Hopf algebra

H D lim
 �
�

H�� DK.n/�K.Z; 2/:
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Then H D Fp ŒŒt �� and �.t/ 2 H y̋H is determined by the formal group law of the
Morava K–theory. It has finite height n and it is easy to see that ˆ.�/, the characteristic
polynomial of the Frobenius endomorphism t 7! tp has the form �n�p .

Recall (see for example [2]) that there is a contravariant one-to-one correspondence
between formal groups of finite height and Dieudonné modules of finite type which are
free as Zp –modules. We claim that the Dieudonné module corresponding to H has the
form M DR=.V n�1�F /. Indeed, M clearly has height n and the dimension of the
formal group corresponding to M equals the length of the R–module M=VM which
is equal to one. Now a 1–dimensional formal group of a given height is determined
uniquely by the characteristic polynomial of the Frobenius which is �n � p in our
case. Under the contravariant correspondence between formal groups and Dieudonné
modules the Frobenius endomorphism on the formal group side corresponds to the
Verschiebung on the Dieudonné module side. Since this characteristic polynomial of
the Verschiebung on M is �n�p we conclude that the Dieudonné module of H is
indeed M .

Finally, the Dieudonné module F.H�/ is obtained by reducing M modulo p� and
we arrive at the following result:

Lemma 9.8 The Dieudonné module F.H�/ is isomorphic to Z=p� ŒF;V �=� where
� is generated by the relations V n�1 D F and VF D p .

This lemma allows one to obtain results about the Hopf ring ƒ�H� via the correspond-
ing Dieudonné algebra ƒ�.M�/.

Remark 9.9 The ring of coefficients of K.n/ is isomorphic to Fp Œv
˙1
n � where vn has

degree 2.pn�1/. For this version of the Morava K–theory its multiplicative structure is
determined uniquely and leads to a unique formal group law whose Dieudonné module
is as described. Over the field Fp there exist many nonisomorphic 1–dimensional
formal groups of height n (all of which become isomorphic after passing to the algebraic
closure of Fp ). These formal groups could be realized by the 2–periodic version of
K.n/ (which supports many inequivalent product structures).

10 Structure of the Dieudonné algebra ƒ�ŒR=.V n�1�F /�

In this section we investigate the structure of the exterior Dieudonné algebra on the
module M DR=.V n�1�F /. It turns out that with this particular choice of a module
this exterior algebra is isomorphic to the conventional exterior algebra on M . Note that
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the formula for the Dieudonné module of K.n/�K.Z=p
� ; q/ also appears in Sadofsky

and Wilson [15].

To fix the notation, observe that M is a free Zp –module with basis 1;V;V 2; : : : ;V n�1

D F . Denote V k by an�k�1 where k D 0; : : : ; n� 1. In the basis a0; : : : ; an�1 the
R–module structure on M is specified by the formulas:

Va0 D pan�1IVai D ai�1; i � 1

Fai D V n�1ai ; i � 0

Let us consider the (conventional) exterior algebra ƒ.M / of the free Zp –module M .
Thus,

ƒ.M /Dƒ0
˚ƒ1

˚ : : :˚ƒn

where ƒq is a free Zp –module with the basis aI D ai1
^ : : : aiq

; 0� i1 < : : : < iq < n:

We will denote the generator of the 1–dimensional Zp –module ƒ0 by 1, and that of
ƒn , by a� D a0 ^ : : :^ an�1 .

We will regard ƒ0 D Zp as the R–module I. Note that ƒ1 DM has a structure of an
R–module. Define the structure of an R–module on ƒq for q > 1 inductively by the
formulas:

VaI D V .ai1
^ : : :^ aiq�1

/^ aiq�1(10–1)

FaI D ai1C1 ^F.ai2
^ : : :^ aiq

/(10–2)

Note that the right hand side of (10–1) and (10–2) is well defined since i1 < n� 1 and
iq > 0 when q > 1. Let us check the consistency of the above action. We have:

FVaI D F.V .ai1
^ : : :^ aiq�1

/^ aiq�1/

D .�1/q�1F.aiq�1 ^V .ai1
^ : : :^ aiq�1

//

D .�1/q�1aiq
^FV .ai1

^ : : :^ aiq�1
/

D .�1/q�1paiq
^ .ai1

^ : : :^ aiq�1
/

D pai1
^ : : :^ aiq

D paI

The condition VF D p is checked similarly. Observe that formulas (10–1) and (10–2)
imply the following identities:

V .ai1
^ : : :^ aiq

/D Vai1
^ : : :^Vaiq

(10–3)

F.V .ai1
^ : : :^ ais

/^ aisC1
^ : : :^ aiq

/D ai1
^ : : :^ ais

^F.aisC1
^ : : :^ aiq

/

(10–4)
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Note that for these formulas to hold the indices do not necessarily have to be ordered.

The structure of a Dieudonné module on ƒn turns out to be especially simple as the
following result demonstrates.

Lemma 10.1 The following formulas hold:

Va� D .�1/n�1pa�(10–5)

Fa� D .�1/n�1a�(10–6)

Proof

F.a0 ^ : : :^ an�1/D a1 ^F.a1 ^ : : :^ an�1/

D : : :D a1 ^ a2 : : :^ an�1 ^Fan�1

D a1 ^ a2 ^ : : :^ an�1 ^ a0

D .�1/n�1a�

Next, using formula (10–6) and the identity VF D p we arrive at formula (10–5).

We will introduce a Zp –linear scalar product on ƒ.M / as follows. For A2ƒq.L/;B 2

ƒp.L/ the product hA;Bi D 0 if pC q ¤ n; the case pC q D n is determined by
the formula

(10–7) A^B D hA;Bia�:

Lemma 10.2 The scalar product h; iW ƒq˝ƒn�q! Zp satisfies the following prop-
erty:

hVaI ; aJ i D .�1/n�1
haI ;FaJ i

Proof We have for q > 0:

VaI ^ aJ D hVaI ; aJ ia�

Applying the operator F to the last formula we obtain:

F.VaI ^ aJ /D hVaI ; aJ iFa� D .�1/n�1
hVaI ; aJ ia�

On the other hand according to formula (10–4) we have:

F.VaI ^ aJ /D aI ^FaJ D haI ;FaJ ia�

as required.
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Now let q D 0. For the generator 1 2 Zp Dƒ
0 we have V � 1D 1. Therefore

hV � 1; a�i D h1; a�i:

Using (10–6) we get

h1;Fa�i D .�1/n�1
h1; a�i:

As a final preparation to our main theorem in this section we will formulate and prove
the following general result.

Lemma 10.3 Let M;N be two R–modules which are free as Zp –modules. Then the
canonical map

M ˝N !M � N W m˝ n 7!m ı nD 1˝m˝ n 2M � N

is a monomorphism.

Proof Since M;N have no p–torsion it suffices to prove that the map M ˝N !

M � N is monomorphic after tensoring with Q. In other words we have to show that
the localization map

M ˝M !QŒV;V �1�˝QŒV �M ˝M

is an inclusion. The latter condition is equivalent to the QŒV �–module M ˝N having
no V –torsion. This holds since M ˝N has no p–torsion.

Corollary 10.4 Let M be a free Zp –module. Then the canonical map

ƒ.M /!ƒ�.M /

is an inclusion.

We are now ready to relate ƒ.M / to the exterior Dieudonné algebra ƒ�.M /.

Theorem 10.5 For any q D 0; 1; : : : ; n there is an isomorphism of R–modules
�qW ƒ

q.M /!ƒ
q
�
.M / given by the formulas

IDƒ0
!ƒ0

�
D IW 1 7! 1

ƒq
!ƒ

q
�
W ai1
^ : : :^ aiq

7! ai1
ı : : : ı aiq

for q > 0:
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Proof A straightforward inspection shows that � is indeed a map of R–modules. It
follows from Corollary 10.4 that � is an inclusion. It remains to prove that it is an
epimorphism. Consider the elements ai1

ı : : :ıaiq
2ƒ

q
�

where i1 < : : : < iq . We will
call such elements admissible. Therefore we are reduced to proving that admissible
elements additively span ƒq

�
. Suppose by induction that this is so and show that

admissible elements span ƒqC1
�

.

We are assuming that q > 1 since the cases q � 1 are obvious. It follows from the
inductive assumption that the collection fFk ˝ ai1

ı : : : ı aiqC1
g span ƒqC1

�
. Here

kD 0; 1; 2 : : : and i1< : : :< iqC1 . Since q> 1 for any given xDFk˝ai1
ı: : :ıaiqC1

the elements ai1
; : : : ; aiq

are in the image of V , namely ai1
D V .ai1C1/; : : : ; aiq

D

V .aiqC1/. Using repeatedly the relation (5–1) we conclude that x can be rewritten as
a multiple of an admissible element. This completes the inductive step.

Now fix a positive integer � and consider the Dieudonné module M� WDM ˝Z=p�

and the corresponding Hopf algebra H� . Then the corresponding exterior algebra
ƒ.M�/ Š ƒ�.M�/ has a scalar product induced from ƒ.M / and we arrive at the
following result.

Corollary 10.6

(1) Let n � 1 be odd, 0 � q � n. Then the Dieudonné modules ƒq
�
.M�/ and

ƒ
n�q
�

.M�/ as well as Hopf algebras ƒq
�

H� and ƒn�q
�

H� are dual to each
other.

(2) Let n > 1 be even, 0 � q � n. Then the Dieudonné modules ƒq
�
.M�/ and

ƒ
n�q
�

.M�/ as well as Hopf algebras ƒq
�

H� and ƒn�q
�

H� are twisted dual to
each other. Thus, they become dual in the usual sense after a quadratic extension
of Fp .

Proof It follows from Lemma 10.2 that the scalar product on ƒ�.M / induces a
bilinear pairing between ƒq

�
.M�/ and ƒn�q

�
.M�/ for n odd. Similarly for n even

this pairing is twisted bilinear. It is clearly nondegenerate and the result follows.

We conclude this section with the useful observation that the R–module ƒq.M /Š

ƒ
q
�
.M / is actually a module over R=.V n�q �Fq/.

Proposition 10.7 In the R–module ƒq.M / the following relation holds: V n�q D

Fq .
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Proof Note that since VF D p and ƒq.M / is a free Zp –module the operator V is
monomorphic on ƒq.M /. Therefore it suffices to prove the relation V q � V n�q D

V q �Fq or V n D pq . For a generator ai1
^ : : :^aiq

, according to formula (10–3), we
have

V n.ai1
^ : : :^ aiq

/DV nai1
^ : : :^V naiq

Dpai1
^ : : :^paiq

Dpqai1
^ : : :^ aiq

as required.

Remark 10.8 We want to stress that the isomorphism of ƒ�.M / with the usual
exterior algebra ƒ.M / relies essentially on the peculiar properties of the module
M D R=.V n�1 � F /. Calculations show that bilinear products as well as exterior
Dieudonné algebras of cyclic R–modules which are free of finite rank over Zp usually
contain p–torsion and are often no longer finitely generated over Zp .

11 Decomposition of ƒ�ŒR=.V n�1 �F /� up to isogeny over
xFp

Here k will be an algebraic extension of Fp , in fact we will be most interested in the
case when kD xFp , the algebraic closure of Fp . Recall the definition of the Dieudonné
ring R.k/ and R.k/–module N.k/ for an R–module N from Section 8. We will
denote by fW .k/ the field of fractions of W .k/. The ring fW .k/˝W .k/RŠQ˝R.k/
will be denoted by zR.k/ and zN .k/ will stand for the zR.k/–module fW .k/˝W .k/N Š

Q˝N.k/.

Definition 11.1 An F –space is a zR.k/–module which is finite-dimensional as afW .k/–vector space. F –spaces form a category whose morphisms are simply the
morphisms of zR.k/–modules.

The R.k/–modules we will be interested in here will be torsion-free and finite rank
over W .k/. Any such module N determines a lattice in the F –space zN DQ˝N .

Definition 11.2 Let N1 and N2 be two torsion-free R.k/ modules of finite rank over
W .k/. We say that N1 and N2 are isogenous if the corresponding F –spaces zN1 and
zN2 are isomorphic.
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Now let us introduce the Dieudonné modules Rn;q DR=.V n�q �Fq/. Observe that

zRn;q D
fW .k/ŒT �=.pn�q

�T n/

and F acts as a multiplication by T . It is interesting to note that for p; q coprime and
k an algebraic extension of Fp of degree n the module zRn;q.k/ is a division algebra
over Qp with Hasse invariant q=n, see Pierce [11, Chapter 17]. The module Rn;q.k/
is in this case a maximal order in zRn;q.k/.

From now on we assume that kD Fp . It is known that the category of F –spaces is
semisimple and all simple objects are of the form zRn;q where n; q are nonnegative
relatively prime integers and n > 0. Recall that we denoted by M the R–module
Rn;1 DR=.V n�1�F /. Let .n; q/ be the greatest common factor of n and q and set
n0 WD

n
.n;q/

, q0 WD
q

.n;q/
We have the following result.

Theorem 11.3 The R.k/–module ƒq.M / is isogenous to the direct sum of 1
n0

�
n
q

�
copies of the R.k/–module Rn0;q0

.

Proof Observe that the operator V permutes (up to multiplication by a scalar factor)
the basis vectors aI in the zR–module Q˝ƒq.M /. Since V nDpq in Q˝ƒq.M / by
Proposition 10.7 we see that this module decomposes into a direct sum of submodules
isomorphic to quotients of zRn;q . Similarly Q˝ƒq.M /.k/ decomposes into a direct
sum of quotients of zRn;q.k/. Therefore it suffices to show that zRn;q.k/ is isomorphic
to the direct sum of copies of zRn0;q0

.k/. We claim that if there exists a nontrivial map
of R–modules

(11–1) zRr;s.k/! zRn;q.k/

then r
s
D

n
q

. This claim will clearly imply what we need.

The proof of the claim is similar to Proposition D in [2, page 79]. A map (11–1) is
equivalent to having an element x 2 zRn;q.k/ for which F r x D pr�sx . Note that
zRn;q.k/ has a basis fj such that if x D

P
bjfj then

Fnx D
X

�n.bj /p
n�qfj

and so
F rnx D

X
�rn.bj /p

r.n�q/fj :

On the other hand if F r x D pr�sx then

F rnx Dp.r�s/nx

D

X
bj p.r�s/nfj :

Algebraic & Geometric Topology, Volume 7 (2007)



Dieudonné modules and p–divisible groups 559

It follows that �n.bj /p
.r�s/nDbj pr.n�q/ and since the Frobenius � preserves p–adic

valuation on fW .k/ we conclude that .r � s/nD r.n� q/. It follows that r
s
D

n
q

as
required.

12 p–divisible groups associated with K.n/�K.Z; q/

12.1 Basic definitions

We start by recalling some standard definitions and facts from the theory of p–divisible
groups referring the reader to Demazure [2], Tate [17] or Schatz [16] for details. Here
k is an algebraic extension of Fp .

Definition 12.1 A p–divisible group of height h over a field Fp is a sequence G D

.H� ; i�/, �D 0; 1; 2; : : : of Hopf algebras over k with dim H� D �h and i� W H�C1!

H� is a Hopf algebra homomorphism such that for each � the sequence

H�C1
Œp� � // H�C1

i� // H�
// 0

is exact in H .

Since Œp�C1�D Œp� � Œp� � is the trivial endomorphism of H�C1 we conclude that there
exists a map j� W H� �!H�C1 making the following diagram commute:

H�C1

H�C1

Œp�

OO

i� // H�

j�

bbEEEEEEEE

The topological Hopf algebra H D lim
 �

H� represents a formal group from which the
sequence .H� ; i�/ could be recovered by setting H� WD cokerfŒp� �W H ! H g. We
will use the term ‘p–divisible group’ also for the corresponding formal group. The
dimension of the p–divisible group G is the Krull dimension of H .

Next, H will be isomorphic to a ring of formal power series (one say that in this case
the corresponding formal group is smooth) if and only if each H� is a local ring.

There is a suitable version of duality for p–divisible groups. As far as we know twisted
duality has not been considered before.

Definition 12.2 If GD .H� ; i�/ is a p–divisible group then its Serre dual p–divisible
group is defined as DG D .H�� ; j

�
� /. It has the same height as .H� ; i�/. Its twisted

Serre dual is the collection D0G D .D0H� ;D
0j�/ where D0 is the functor of twisted

duality on the category of p–torsion Hopf algebras.
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Remark 12.3 Of course, the notions of the Serre dual and twisted Serre dual p–
divisible group coincide when k contains a quadratic extension of Fp .

Example 12.4
(1) A one-dimensional p–divisible group of height 1 is represented by the topologi-

cal Hopf algebra H D kŒŒx�� with �.x/D 1˝xCx˝1Cx˝x , the so-called
multiplicative formal group. This p–divisible group is smooth. Its Serre dual
p–divisible group is represented by the Hopf algebra kŒZ�� , the dual group ring
of the infinite cyclic group. The dimension of this p–divisible group is zero and
it is not smooth.

(2) Let X be an abelian scheme over k. Then the kernel of the multiplication
by p� on X is a finite group scheme which is represented by a Hopf algebra
whose dimension is a power of p . The resulting inverse system of Hopf algebras
constitutes a p–divisible group.

To conclude our review of the background material we note that the height of a p–
divisible group is equal to the sum of its dimension and the dimension of its dual:

height.G/D height.DG/D dim.G/C dim.DG/

12.2 Dieudonné correspondence

We now briefly review the Dieudonné correspondence adapted to p–divisible groups
following [2]. Let G D .H� ; i�/ be a p–divisible group. Its Dieudonné module is
defined as F.G/D lim

 �
F.H�/. Then we have a theorem:

Theorem 12.5 The correspondence G 7! F.G/ induces an equivalence between the
categories of p–divisible groups over k and R.k/–modules which are finite rank free
W .k/–modules. The height of G is equal to the dimension of F.G/. If the Dieudonné
module corresponding to G is actually a module over yR.k/ WD lim

 �n
R.k/=V n then G

is smooth. The dimension of G equals dimkŒ.F.G/=VF.G/�.

Example 12.6 Let Rn;qDR.k/=.V n�q�Fq/. The corresponding p–divisible group
G has height n. It is smooth of dimension q for q D 1; 2 : : : ; n. The Serre dual to G

has Dieudonné module Rn;n�q DR.k/=.V q �Fn�q/.

For any p–divisible group G one can define the F –space F.G/˝Q. Then two
p–divisible groups are isogenous (ie, there exists a monomorphism between their
representing Hopf algebras with a finite-dimensional cokernel) if and only if the
corresponding F –spaces are isomorphic.
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12.3 Main theorems

Now let H�.q/ WDK.n/�K.Z=p� ; q/. Also denote H�� .q/DK.n/�K.Z=p
� ; q/ by

H �.q/. The inclusion
Z=p� �! Z=p�C1

induces a map of spaces

K.Z=p� ; q/ �!K.Z=p�C1; q/

which in turn gives rise to a map of Hopf algebras i� W H�C1.q/!H�.q/.

We can formulate now our main result.

Theorem 12.7

(1) The sequence .H�.q/; i�/ forms a p–divisible group of height
�
n
q

�
.

(2) For q D 1; 2; : : : ; n � 1 the p–divisible group .H�.q/; i�/ is smooth. The
corresponding formal group is represented by a formal power series ring on�
n�1
q�1

�
variables and could be identified with K.n/�K.Z; qC 1/.

(3) If n is odd then there is an isomorphism

H �.n/ŠD.�/ WD Fp ŒZ=p
� ��:

If n is even then H �.n/ Š D0.�/ where D0.�/ is the twisted dualizing Hopf
algebra.

(4) (a) Let n be odd and 0< q < n. Then the ı–pairing

H �.q/�� H �.n� q/ �!H �.n/

induces an isomorphism of the formal group of K.n/�K.Z; qC 1/ with the
Serre dual of the formal group of K.n/�K.Z; n� qC 1/. In particular the
Hopf algebras H �.q/ and H�.n� q/ are isomorphic.

(b) For n even the above statement holds provided one replaces ‘dual’ with
‘twisted dual’.

Proof We saw in Section 10 that the Dieudonné modules corresponding to K.Z=p� ; q/

are obtained by reducing modulo p� from the modules ƒq
�
.M / where M DR=.V n�1

�F /. These modules torsion-free and their rank over Zp is equal to dimƒq.M /D
�
n
q

�
.

This proves part (1).

Further note that since the identity V n�q D Fq holds in ƒ�.M / Š ƒ.M / the
corresponding p–divisible group is smooth for q < n. From the formula (10–3) for
the action of V on ƒ�.M / we deduce that the image of V is spanned modulo p
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by the monomials ai1
^ : : :^ aiq

where iq ¤ n� 1. It follows that the monomials
ai1
^: : :^aiq�1

^an�1 mod V form a basis in ƒq.M /=Vƒq.M / and so its dimension
over Fp equals

�
n�1
q�1

�
. Therefore the dimension of the formal group in question is as

claimed.

Next, observe that there is a homotopy equivalence of spaces

K.Q=Z; q/' hocolim K.Z=p� ; q/

where the homotopy colimit is taken over all � and prime numbers p . This homotopy
equivalence induces an isomorphism of Hopf algebras

lim
 �
�

K.n/�K.Z=p� ; q/ŠK.n/�K.Q=Z; q/:

The obvious map K.Q=Z; q//!K.Z; qC1/ induces an isomorphism on K.n/–theory.
Therefore the p–divisible group H� DK.n/�K.Z=p� ; q/ is indeed representable by
the Hopf algebra K.n/�K.Z; qC 1/ as claimed. This proves part (2). The remaining
claims (3) and (4) follow from Corollary 10.6.

Remark 12.8 It is curious to note that the Serre duality between K.n/�K.Z; qC 1/

and K.n/�K.Z; n�qC1/ breaks down for qD 0. Indeed, K.Z; 1/ is simply the circle
S1 and so K.n/�K.Z; 1/ cannot give rise to a formal group. However the duality
between K.n/�K.Z=p

� ; 0/ and K.n/�K.Z=p
� ; n/ continues to hold. The point is

that K.n/�K.Z; qC 1/ can no longer be related to K.n/�K.Z=p
� ; q/ for q D 0.

Remark 12.9 Our results are formulated under the assumption that k has characteristic
p¤ 2. Note, however, that an appropriate version of Theorem 12.7 holds for pD 2 as
well. The point is that although in this case K.n/ is not a commutative ring spectrum,
K.n/�K.Z=2

� ; q/ is still a bicommutative Hopf algebra. See Johnson and Wilson
[5] for details. In the exterior Dieudonné algebra we should impose the additional
condition that the circle product of two equal elements is zero. The notion of twisted
duality is extraneous; the twisted dualizing object is the same as the untwisted one.

The identification of the isogeny class of K.n/�K.Z; qC 1/ is an immediate conse-
quence of Theorem 11.3. Recall that for two nonnegative integers q; n the pait n0; q0

is specified by the condition that q
n
D

q0

n0
and that q0; n0 be coprime. Thus, we obtain

the following‘ result.

Theorem 12.10 For 0< q < n the formal group of K.n/�K.Z; qC1/ is isogenous to
the product of 1

n0

�
n
q

�
copies of the p–divisible group corresponding to the Dieudonné

module Rn0;q0
.
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Remark 12.11 One might wonder whether the formal groups corresponding to
K.n/�K.Z; q C 1/ are algebraicizable, ie, whether there exists abelian schemes of
which they are formal completions. Since abelian schemes are always isogenous with
their dual the same is true for their completions. This is the so-called Manin symmetry
condition, see Manin [7] or Oort [10]. It follows that if n is odd or if n is even but
q¤ n

2
the formal group of K.n/�K.Z; qC1/ cannot be algebraicized. Note that for n

even the formal group of K.n/�K.Z; n
2
C 1/ is supersingular, ie, it is isogenous (over

xFp ) to the product of copies of one-dimensional formal group of height 2.
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