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On non-compact Heegaard splittings

SCOTT A TAYLOR

A Heegaard splitting of an open 3–manifold is the partition of the manifold into two
non-compact handlebodies which intersect on their common boundary. This paper
proves several non-compact analogues of theorems about compact Heegaard splittings.
The main result is a classification of Heegaard splittings of those open 3–manifolds
obtained by removing boundary components (not all of which are 2–spheres) from
a compact 3–manifold. Also studied is the relationship between exhaustions and
Heegaard splittings of eventually end-irreducible 3–manifolds. It is shown that
Heegaard splittings of end-irreducible 3–manifolds are formed by amalgamating
Heegaard splittings of boundary-irreducible compact submanifolds.

57N10; 57M50

1 Introduction

To what extent do non-compact 3-manifolds share the structures and properties of their
compact cousins? Investigating this question has long been a central concern in the
study of non-compact 3–manifolds. Given the importance of Heegaard splittings in
the topology and geometry of compact 3–manifolds, it seems natural to consider them
in this exploration. Non-compact Heegaard splittings, however, rarely appear in the
literature. This is, perhaps, surprising since every open 3–manifold has a Heegaard
splitting: Heegaard splittings can be constructed from triangulations or, if the open
manifold covers a closed manifold, by lifting a Heegaard splitting of the closed manifold.
Heegaard splittings of an open manifold may also be constructed from an exhaustion
of the the manifold (Section 2).

Exhaustions have traditionally been the main tool for studying non-compact 3–manif-
olds; this paper is no exception. Indeed, the interplay between exhaustions and Heegaard
splittings is the focus of much of this present work. Considering the interaction between
Heegaard splittings and exhausting sequences leads to the first main theorem: a non-
compact analogue of Casson and Gordon’s theorem on weakly reducible Heegaard
splittings.

Applying this result to manifolds such as M D (closed orientable surface)�R leads to a
non-compact version of the classification of Heegaard splittings of (closed surface)�I
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by Scharlemann and Thompson and (closed surface)�S1 by Schultens. If the closed
surface is not a 2–sphere we discover that, in fact, Heegaard splittings of M are unique
up to proper ambient isotopy. The next section explains these results in more detail.

This paper builds upon methods used by Frohman and Meeks in their program (com-
pleted in [14]) of topologically classifying minimal surfaces in R3 . In [13], they show
that every complete one-ended minimal surface in Euclidean 3–space is a Heegaard
surface and prove two theorems about Heegaard splittings of R3 . The first is a non-
compact analogue of the Reidemeister–Singer theorem and the second is an analogue
of Waldhausen’s classification of Heegaard splittings of S3 . Perhaps our analogues of
compact Heegaard splitting theorems will also be useful for studying minimal surfaces
in non-compact 3–manifolds.

1.1 Main results

This paper focuses on the two most tractable types of non-compact 3–manifolds:
eventually end-irreducible 3–manifolds and deleted boundary 3–manifolds. A non-
compact 3–manifold M is eventually end-irreducible if there is a compact set C �M

and an exhaustion fKig for M where the frontier of each Ki is incompressible in
M � C . We say that M is end-irreducible (rel C ). The class of eventually end-
irreducible 3–manifolds includes uncountably many manifolds with infinitely generated
fundamental group and uncountably many simply connected 3–manifolds (such as the
Whitehead manifold) but excludes uncountably many others. A deleted boundary 3–
manifold is a particular type of eventually end-irreducible 3–manifold. M is a deleted
boundary 3–manifold if it is obtained by removing at least one boundary component
from a compact 3–manifold. For example, F � R is a deleted boundary manifold
for any closed surface F since it can be obtained by removing the boundary from
F � Œ0; 1�.

Even though these classes of 3–manifolds are relatively manageable their Heegaard
splittings can still exhibit strange behavior. Section 2.4 constructs a Heegaard splitting
of the Whitehead manifold which contains infinitely many stabilizing balls, but where
no infinite collection of stabilizing balls is locally finite. This is similar in spirit (though
not in method) to Peter Scott’s construction [26] of a 3–manifold which does not have
a prime decomposition.

The tractability of eventually end-irreducible 3–manifold Heegaard splittings is shown
by our first main theorem, Theorem 5.1. This theorem shows that, for these manifolds,
every Heegaard splitting is built from smaller Heegaard splittings in way analogous to
the construction of compact weakly reducible Heegaard splittings.
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Weakly reducible Heegaard splittings of compact 3-manifolds were first studied by
Casson and Gordon [9]. They prove that if a compact Heegaard splitting is weakly
reducible (ie, there are disjoint essential discs in the opposing handlebodies of the
splitting) then the manifold contains a closed incompressible surface (other than an
inessential 2–sphere). Every non-compact Heegaard splitting (other than the genus 0
splitting of R3 ) is weakly reducible, so we might hope that if an open manifold (other
than R3 ) has a non-stabilized Heegaard splitting then it contains a closed incompressible
surface (other than an inessential S2 ). It is, however, unclear if such a result holds.

Casson and Gordon’s result can be rephrased as the claim that a weakly reducible
splitting is either stabilized or was created by amalgamating Heegaard splittings of
submanifolds across a separating incompressible surface. The first main result of this
paper is a non-compact analogue of this statement. Notice that, although we assume
the existence of incompressible surfaces, we can make a strong conclusion about the
structure of the Heegaard splitting.

Simplified Version of Theorem 5.1 If M is orientable and end-irreducible (rel C )
with Heegaard splitting U [S V then there is an exhaustion fKig of M with the
frontier of each Ki incompressible in M �C such that U [S V is obtained by the
amalgamation of splittings of the submanifolds cl.KiC1�Ki/.

If M is a deleted boundary manifold, each end of M is a copy of (closed surface)�RC .
In this case, each submanifold cl.KiC1�Ki/ is a copy of (closed surface)� I whose
Heegaard splittings were classified by Scharlemann and Thompson [23]. Using their
classification and a theorem, due essentially to Frohman and Meeks, we classify the
Heegaard splittings of nearly every deleted boundary 3–manifold:

Simplified Version of Theorem 6.4 If M is an orientable compact 3–manifold such
that @M is non-empty and contains no S2 component then any two Heegaard splittings
of M DM � @M are properly ambient isotopic. If M is S3� (3–balls) or contains
at least one boundary component which is not S2 then the Heegaard splittings of
M � @M can also be classified.

Just as the Frohman–Meeks classification of Heegaard splittings of R3 is analogous to,
and depends on, Waldhausen’s classification of the splittings of S3 , so the classification
of splittings of deleted boundary 3-manifolds is analogous to, and depends on, the
Scharlemann–Thompson classification [23] of splittings of (closed surface)� I . Since,
(closed surface)�R is a deleted boundary manifold which covers (closed surface)�S1 ,
our result may also be viewed as a non-compact analogue of Schulten’s classification
[25] of Heegaard splittings of (closed surface)�S1 .

The proof of Theorem 6.4 relies on the following theorem of Frohman and Meeks:
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Simplified Version of Theorem A.1 (Frohman–Meeks) If U1[S1
V1 and U2[S2

V2

are two Heegaard splittings of a one-ended manifold M such that for each splitting
there is a properly embedded collection of infinitely many disjoint stabilizing balls then
S1 and S2 are properly ambient isotopic in M .

This theorem says that any two Heegaard splittings are equivalent after, possibly infin-
itely many, stabilizations. It is, therefore, a non-compact analogue of the Reidemeister-
Singer theorem for compact 3–manifolds. A complete proof of this theorem (and its
trivial extension to the case where M has multiple ends and compact boundary) is
given in the Appendix. We also correct a misstatement1 in their proof. The correction
is not difficult, but does require some work and an additional hypothesis for one of
their propositions.

For simplicity, the previous statements have been for open orientable 3–manifolds.
Since we require the use of compressionbodies throughout the paper, it requires no extra
work to prove all of our results for orientable non-compact 3–manifolds with compact
boundary. Most of the work in this paper occurs in the ends of the manifold; requiring
compact boundary allows us to, for the most part, ignore the boundary altogether. It is
likely that the situation where M has infinitely many compact boundary components
could be handled using the methods of this paper.

1.2 Acknowledgements

Martin Scharlemann has provided many helpful comments and suggestions in the
research leading to and on early drafts of this paper. I am especially grateful for his
sustained patience and encouragement. Thanks also to Maggy Tomova, Ben Benoy,
Kelly Delp for our many conversations. This research was partially supported by an
NSF grant. Portions of this paper were written while I was in residence at Westmont
College.

1.3 Outline
� Section 2 provides several examples of non-compact Heegaard splittings, shows

how to construct a Heegaard splittings by amalgamation and proves that the
inclusion of a Heegaard surface into a non-compact 3–manifold induces a home-
omorphism of ends.

1The error occurs in the last sentence of Prop. 2.2. After including the collars of Ji �Li and Li �Ji

you have arranged for Ki to have a relative (hollow) Heegaard splitting, but KiC1 �Ki may not. For
example, the frontier of Ki \H1 may not be incompressible in H1 \ cl.KiC1 �Ki/ . This error affects
the proof of Proposition 2.3. In our correction of the proof of Prop 2.2 we need to use the assumption that
the splitting is end-stabilized.
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� Sections 3 and 4 provide preliminary work. Section 3 defines and studies handle-
slides of boundary-reducing discs in compressionbodies. Section 4 examines a
certain type of submanifold which is “balanced” on a non-compact Heegaard
surface. We discuss the type of Heegaard splittings (called “relative Heegaard
splittings”) which these submanifolds inherit from the splitting of the manifold.
Both balanced submanifolds and relative Heegaard splittings are central in the
work of Frohman and Meeks.

� Section 5 proves the non-compact analogue of Casson and Gordon’s theorem.
While there does not seem to be a way to usefully quote Casson and Gordon’s
theorem, we do rely heavily on the proof of their result given in [21].

� Section 6 provides the classification of Heegaard splittings of deleted boundary
3–manifolds.

� Appendix A proves Theorem A.1, the non-compact analogue of the Reidemeister–
Singer theorem.

1.4 History

Scharlemann, in his survey paper [21], gives an overview of the history of Heegaard
splittings of compact 3–manifolds. As he notes in that paper, very few types of compact
3–manifolds are known to have unique Heegaard splittings of a given genus and partition
of the boundary. The 3-sphere [28], lens spaces [4],(closed orientable surface)� I [2;
23], and (closed orientable surface)�S1 [2; 25] are among these. R3 and manifolds
which are homeomorphic to R3 minus closed 3–balls, on the other hand, are the only
non-compact manifolds whose Heegaard splittings (of the type considered here) have
received attention. Frohman and Meeks [13] show that R3 has (up to proper ambient
isotopy) a unique Heegaard splitting of given (finite or infinite) genus. Meeks and
Rosenberg [17] observe that the work of [13] can also be applied to S2 �R.

Pitts and Rubinstein [18] have also considered Heegaard splittings of non-compact
3–manifolds. They, however, consider only deleted boundary 3–manifolds and compact
Heegaard surfaces which split the manifold into two “hollow handlebodies”. For them,
a hollow handlebody is simply a compact compressionbody with @� removed. Frohman
and Meeks also use the term “hollow handlebody”, but they refer to what Canary and
McCullough [8] call “relative compressionbodies”, terminology which has become
standard. In an effort to avoid confusion with Pitts and Rubinstein’s use of “hollow
handlebody”, this paper uses “relative compressionbody”. Both Frohman–Meeks and
Pitts–Rubinstein use Heegaard surfaces in non-compact 3–manifolds to study minimal
surfaces from a topological point of view. The main appearances of non-compact
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handlebodies and Heegaard splittings have been in minimal surface theory, for example
Freedman [11], Froman [12], Froman and Meeks [13], and Meeks and Rosenberg [17].

This paper focuses on “eventually end-irreducible” 3–manifolds. These manifolds were
first studied by Brown and Tucker [7]. They are an important class of 3–manifolds since
some questions about arbitrary non-compact 3–manifolds can be reduced to questions
about eventually end-irreducible 3–manifolds [5].

1.5 Definitions

Notation If X is a subcomplex of a complex Y , then �.X / denotes a closed regular
neighborhood of X in Y . The term “submanifold” will be reserved for codimension 0
submanifolds. If X is a submanifold of a manifold Y then cl.X / indicates the closure
of X in Y and int.X / indicates the interior of X in Y . The number of components
of a complex X is denoted jX j. The spaces Œ0; 1� and Œ0;1/ are denoted by I and
RC respectively. Rn denotes n–dimensional Euclidean space and Sn denotes the
sphere of dimension n. The closed unit disc in R2 is denoted by D2 . The integers
and natural numbers are indicated by Z and N respectively. All homology groups use
Z coefficients.

3–manifold topology We work in the PL category and use, with a few exceptions,
standard terminology from 3–manifold theory (see [15; 16]). All 3–manifolds and
surfaces are assumed to be orientable. A map �W X ! Y between complexes is
proper if the preimage of each compact set is compact. If X is a surface and Y is
3–manifold, � is a proper embedding if, in addition to being proper and an embedding,
��1.@Y /D @X . To say that a graph is properly embedded in a 3–manifold means that
the inclusion map is proper and an embedding. In particular, for a graph we do not
require that the valence one vertices of the graph be on the boundary of the manifold.
A homotopy �W X � I ! Y is proper if it is proper as a map. If X is a surface and
Y is a 3–manifold we also require that ��1.@Y / D @.X � I/. The homotopy � is
ambient if X � Y and there is an extension of � to a proper homotopy �W Y �I ! Y .
An isotopy �W X � I ! Y is a homotopy where for each t 2 I , �.�; t/W X ! Y is an
embedding. An ambient isotopy �W Y � I ! Y is required to be a homeomorphism at
each time t 2 I . To say that a homotopy � is fixed on a set C means that, for each
t 2 I , � restricted to C � ftg is the identity map.

A loop on a surface is essential if it is not null-homotopic in the surface. An embedded
2–sphere in a 3–manifold is essential if it does not bound a 3–ball. A compressing disc
for a surface F in a 3–manifold is an embedded disc D for which D\F D @D and
@D is an essential loop on F . A surface F properly embedded in M is incompressible
if there are no compressing discs for F in M .
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Remark Note that our definition considers inessential 2–spheres and discs to be
incompressible surfaces. This is slightly non-standard, but it makes the statements and
proofs of some of the results easier. We will emphasize places where this observation
matters.

If S �M is a surface embedded in a 3–manifold and if � is the union of pairwise
disjoint compressing discs for S then �.S I�/ will denote the surface obtained from F

by compressing along �. If R�S is a topologically closed subsurface (ie cl.R/DR)
with each component of @R either contained in or disjoint from @� then �.RI�/
will denote the surface obtained from R by compressing along those discs of � with
boundary in R. If S � @M then the manifold obtained by boundary-reducing M

along � is denoted �.M I�/. As it will always be clear when we have a surface and
when we have a 3–manifold this should not cause confusion.

A manifold (2- or 3–dimensional) is open if it is non-compact and without boundary.
It is closed if it is compact and without boundary. A 3–manifold is irreducible if
every embedded 2–sphere bounds an embedded 3–ball. As much as possible, we do
not assume irreducibility. A submanifold of a 3–manifold is a product region if it is
homeomorphic to F � I where F is a surface. A fiber of F � I is fxg � I where
x 2 F . A set X � F � I is vertical if it is the union of fibers.

Heegaard splittings The survey article [21] is a good reference for compact Heegaard
splittings – particularly for the proof of Casson and Gordon’s theorem which will be
referred to later in this paper. Since we are interested in splittings of non-compact
3–manifolds, some of our definitions differ from conventions in the compact setting.

Let F be either a compact, orientable surface (possibly disconnected) or the empty set.
A compressionbody H is formed by taking the disjoint union of F � I and countably
(finitely or infinitely) many disjoint 3–balls and then attaching 1–handles. 1–handles
are attached to F � I on the interior of F � f1g and to the boundaries of the 3–balls.
Only finitely many 1–handles are to be attached to each 3–ball and only finitely many
may be attached to F � f1g. We usually require that the result be connected. The
surface F �f0g is denoted @�H and the surface cl.@H � @�H / is denoted @CH and
is called the preferred surface of H . If F is a closed surface then H is an absolute
compressionbody; if F has non-empty boundary then H is a relative compressionbody.
If H D F � I then H is a trivial compressionbody. If F is empty, then H is a
handlebody. We will generally require that F contain no S2 components, as then H

is irreducible. At one point in Section 5 we will need to allow S2 components. This
will be explicitly pointed out. A subcompressionbody A of H is a submanifold of H

whose frontier in H consists of properly embedded discs. (We do not require these
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discs to be essential. Thus, for example, R3
C , which is a handlebody, has an exhaustion

consisting of subcompressionbodies.) We denote @A\ @CH by @@CH A. There is a
proper strong deformation retraction of a compressionbody H onto @�H [† where †
is a properly embedded graph in H attached at valence one vertices to @�H . †[@�H

is called the spine of the compressionbody.

A properly embedded collection � of disjoint discs in a compressionbody H with
boundary on @CH will be called a disc set for H or for @CH . If the union of some
components of �.H I�/ is @�H � I , then � is collaring. If �.H I�/ consists of
3–balls and @�H � I the disc set is defining.

Remark The discs in a (defining) disc set are not required to be essential in the
compressionbody. Thus, for example, upper half space (which is a handlebody) has a
defining disc set.

Remark Although every defining disc set is collaring, we use the term “collaring” to
focus attention on the property that is used most often. In Section 4, for example, we
use collaring disc sets which may not be defining disc sets.

A Heegaard splitting of a 3–manifold M is a decomposition of M into two com-
pressionbodies U and V glued along @CU D @CV = S. If U and V are absolute
compressionbodies the splitting is an absolute Heegaard splitting. If U and V are
relative compressionbodies then the splitting is a relative Heegaard splitting. The
surface S is called the Heegaard surface. We write M D U [S V . If the term
“Heegaard splitting” is used without either the adjective “absolute” or “relative”, we
will mean “absolute Heegaard splitting”. Usually, relative Heegaard splittings will be
of compact submanifolds of a non-compact 3–manifold.

A Heegaard splitting of a manifold M D U [S V is reducible if there is an essential
simple closed curve on S which bounds embedded discs in U and V . To stabilize
a Heegaard surface, push the interior of an embedded arc on the surface into one
of the compressionbodies and include a regular neighborhood of the arc into the
other compressionbody. A Heegaard splitting has been stabilized if there is, in M ,
an embedded 3–ball which intersects the Heegaard surface in a properly embedded,
unknotted, once-punctured torus. Such a ball is called a stabilizing ball. A Heegaard
splitting M D U [S V is end-stabilized if for every compact set C �M and every
non-compact component W of cl.M �C / there is a stabilizing ball for S entirely
contained in W .
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Non-compact 3–manifolds An exhaustion for a non-compact 3–manifold M is a
sequence fKig of compact, connected 3-submanifolds such that Ki � int.KiC1/ and
M D[iKi . A 3–manifold M is end-irreducible (rel C ) for a compact subset C if
there is an exhaustion for M such that the frontier of each element of the exhaustion
is incompressible in M �C . If C can be taken to be the empty set, then M is simply
end-irreducible. If M is end-irreducible (rel C ) for some C then M is eventually
end-irreducible. If a non-compact 3–manifold is obtained by removing at least one
boundary component from a compact 3–manifold then the non-compact 3–manifold
is a deleted boundary 3–manifold. Deleted boundary 3–manifolds are eventually end-
irreducible. Except for compressionbodies, all 3–manifolds considered in this paper
will have compact boundary. When the manifold is end-irreducible (rel C ) we will
assume that C contains @M .

2 Examples

Some examples of non-compact Heegaard splittings are in order. When thinking about
non-compact Heegaard splittings, keep in mind that an absolute handlebody is the closed
regular neighborhood of a properly embedded, locally finite graph in R3 . Frohman and
Meeks [13] (adapting an example of Fox and Artin) give an example of a non-compact
3–manifold whose interior is an open infinite genus handlebody but where the closure
of the interior is not a handlebody. A handlebody has a properly embedded disc set
which cuts it into 3–balls. Another observation, which may help the reader’s intuition,
is that no essential loop in an absolute compressionbody can be homotoped out of
every compact set. This is easily proved using the proper deformation retraction of the
compressionbody to its spine. This implies, for example, that if F ¤D2 is a compact
connected surface then F �R is not a handlebody.

2.1 Heegaard splittings of R3

Heegaard splittings of R3 are easy to construct. Since the upper and lower half spaces
are each homeomorphic to a closed regular neighborhood of the positive z -axis, R3 has
a genus zero Heegaard splitting. Obviously, this splitting can be stabilized any given
(finite) number of times. By choosing an infinite, properly embedded collection of arcs
in the surface, it can also be stabilized an infinite number of times simultaneously to
give an infinite genus Heegaard surface. Frohman and Meeks prove that these are, up
to proper ambient isotopy, the only infinite genus Heegaard splittings of R3 .
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2.2 Finite genus Heegaard splittings

Let M be a compact 3–manifold with Heegaard splitting U [S V . Let B be an
embedded closed 3–ball in M which intersects S in a properly embedded disc. Let
X DX�B for X DM;U;S;V . Then M DU[S V is a finite genus Heegaard splitting
of the deleted boundary manifold M . (Infinitely many discs parallel to @B\U (@B\V /

are in any defining set of discs for U (V ).) Classifying such Heegaard splittings would
be equivalent to classifying all Heegaard splittings of compact manifolds. No such
simple classification is to be hoped for, and so our classification of Heegaard splittings
for deleted boundary 3–manifolds does not address such examples. Fortunately, this is
the only type not covered by our classification.

2.3 Amalgamating Heegaard splittings

Heegaard splittings of non-compact manifolds can be created by amalgamating splittings
of compact submanifolds. We describe a way to do this, beginning with a description
of amalgamation. See [25] for the definition of amalgamation. Let N0 and N1 be
two compact 3–manifolds with absolute Heegaard splittings N0 D U0 [S0

V0 and
N1 D U1 [S1

V1 and collections of components F0 � @�V0 and F1 � @�V1 which
are homeomorphic via a homeomorphism hW F1! F0 . In the amalgamated manifold
N DN0[h N1 we can amalgamate the Heegaard splittings of N0 and N1 as follows:

In Vi there are collaring discs ıi which cut off a product region Fi�I contained in Vi .
Choose labels so that FiDFi�f0g. Let P denote the product region .F1�I/[.F0�I/

in N . Identify P with F1 � Œ0; 2�. Note that it is contained in V0 [ V1 . Perform
an isotopy of N1 so that, in P , A1 D ı1 � Œ0; 2� is disjoint from ı0 . Let U D

U0[ .V1� .F1� I//[A1 , V D cl.N �U / and S D V \U . Then M DU [S V is
a Heegaard splitting of genus equal to genus.S0/Cgenus.S1/�genus.F1/. Note that
there there are disjoint discs ı1 � U and ı0 � V which, when we compress S along
them, leave us with a surface parallel to F0 D F1 in N .

Here is a method of producing an infinite genus Heegaard splitting of a non-compact
3–manifold M . Let fKig be an exhaustion for M with the properties that @M �K1 ,
that no component of cl.M �Ki/ is compact for any i , and that for each i and for
each component J of cl.KiC1�Ki/ the intersection J \Ki is connected. For each
i , let Li D cl.KiC1�Ki/ and Fi DLi \Ki . KiC1 is formed by amalgamating Ki

and each component of Li along a single component of the surface Fi .

We now carefully choose absolute Heegaard splittings of K1 and each component
of Li for each i � 1. Choose a Heegaard splitting K1 D U1 [S1

V1 of K1 so that
every boundary component of K1 is contained in V1 . Let ı0

1
be a set of collaring
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discs for V1 . Now for each component of Li choose a Heegaard splitting so that
Li DXi [Ti

Yi . Choose the splitting so that @Li � Yi . Figure 1 provides a schematic
depiction of our choices. Inductively, form a Heegaard splitting of Kn D Un[Sn

Vn

for n� 2 by amalgamating the Heegaard splittings of Kn�1 and Ln�1 . Let Vn be the
compressionbody which contains ı0

1
and let Un be the other.

Recall from the definition of amalgamation that if Fn � Un then UnC1 \ Un can
be created by removing 1–handles in Un which join Fi to Si and are vertical in
the product structure of Un compressed along a defining set of discs. Denote these
1–handles by An . The surface Fn is contained in Un whenever n is even (by our
choice of Heegaard splitting for Ln ). If n is odd then Fn is not in Un , so for odd n,
let An D¿. If n is even then Un � UnC1 . Define U 0n D cl.Un�An/. Since for each
n, @Ln � Yn , U 0n �U 0

nC1
for all n. In particular, when we extend the 1–handles from

Yn into Kn�1 they do not not need to reach into Ln�2 . Let U D [NU 0n . Figure 2
depicts the 1–handles A1 .

K2

K1
L1

ı0
1

V1 Y1

ı2

U1

X1

X2

X3

Figure 1: Choosing the splittings of Li

We desire to show that U is an absolute compressionbody. Since @M � V , U will be
an absolute handlebody. To prove this we will produce a properly embedded collection
of discs in U which cut U into compact handlebodies. Let ın be a collaring set of
discs contained in Ln�1 for Un for each even n. We may assume that ın is disjoint
from An and so ın is a properly embedded finite collection of discs in U , for each even
n. Furthermore, since ın �Ln�1 the infinite collection of discs ı D[ın is properly
embedded in M . The discs ın cut off a compact submanifold U 0n � .@KnC2 � I/.
As U D [U 0n every component of �.U I ı/ is compact. Let H be a component of
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Un

Vn

A1

Figure 2: After the amalgamations

�.U I ı/. Choose an even n large enough so that H � U 0
n�2

. H is thus a component
of �.U 0nI ı/ which is not contained in @U 0n � I . As such, it must be a handlebody as
U 0n , for n even, is an absolute compressionbody. Hence, U is a handlebody.

Let V D cl.M �U /. The argument to show that V is an absolute compressionbody is
similar, except that the disc set ı will cut V into compact handlebodies and, if @M ¤¿,
a compact absolute compressionbody H with @�H D @M . Letting S D U \V , we
have shown that U [S V is an absolute Heegaard splitting of M .

It is instructive to examine this construction in the case when M is a deleted boundary
3–manifold. Let M0 be a compact, orientable 3–manifold with non-empty boundary
component @1M0 D F ¤ S2 . Let M0 D U0 [S0

V0 be a Heegaard splitting of M0

with F � V0 . Let Mi for i � 1 be homeomorphic to F � I and choose a Heegaard
splitting Mi DUi [Si

Vi of Mi which is obtained by tubing together two copies of F

in Mi . Such a Heegaard splitting has both boundary components, @0Mi and @1Mi ,
contained in Vi and has genus which is twice the genus of F . (Heegaard splittings of
F � I are classified by Scharlemann and Thompson in [23]. This classification will
be important for our work in Section 6.) Build a 3–manifold M , homeomorphic to
M0�F by glueing @0Mi to @1Mi�1 for i � 1. At stage n of the glueing process we
can obtain a Heegaard splitting of the new manifold by amalgamating the splittings of
the previously constructed manifold and Mn . The new Heegaard splitting will have
genus equal to genus.S0/C n � genus.F /. This produces an infinite genus splitting of
M . It is easy to verify that the splitting is end-stabilized. The content of Proposition
6.8 is that, up to proper ambient isotopy, this is the only Heegaard splitting of M .

2.4 Infinite genus splittings which are not end-stabilized

Theorem 6.4 shows that all infinite genus splittings of one-ended deleted boundary
3–manifolds are end-stabilized. It is then natural to ask:
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Question Are there examples of one-ended, irreducible 3–manifolds which have
infinite genus Heegaard splittings that are not stabilized? Are there such examples
where the manifold has finitely generated fundamental group? where the manifold
contains no incompressible surfaces (other than inessential 2–spheres)? What if we
simply require that the splitting not be end-stabilized?

In this subsection, we give two examples of splittings which are not end-stabilized. The
first example is a non-stabilized splitting of a one-ended, irreducible 3–manifold M

with infinitely generated fundamental group. The second example, which is obtained
from the first, is a splitting of the Whitehead manifold W which is stabilized, not end-
stabilized, and which cannot be made non-stabilized by finitely many destabilizations.
The key point is that, although there are infinitely many “inequivalent” stabilizing balls,
they are not properly embedded in W . I do not know of a one-ended, irreducible
manifold with finitely generated fundamental group which has an infinite genus non-
stabilized splitting or of an open manifold which contains no incompressible surfaces
(other than inessential 2–spheres) and a non-stabilized positive genus Heegaard splitting.

We begin by constructing the splitting of M . Let W0 be the exterior of the Whitehead
link in S3 . W0 is a compact 3–manifold which contains no essential annuli or essential
tori2. W0 is hyperbolic (Example 3.3.9 of Thurston [27]). As the Whitehead link is a 2-
bridge link, it has tunnel number one, and therefore W0 has a genus 2 Heegaard splitting
which does not separate @W0 . Let @0W0 and @1W0 be the two boundary components
of W0 . Let �j and �j be the longitude and meridian of @j W0 (for j D 0; 1). The
choice should be made so that �j and �j correspond to the longitude and meridian of
the corresponding component of the Whitehead link in S3 . In particular, �0 and �1

are homologically trivial in W0 and �0 and �1 included into W0 generate the first
homology of W0 . Let f W @0W0! @1W0 be a homeomorphism which takes �0 to �1

and �0 to �1 .

For each i 2N let Wi be a copy of W0 . Denote the boundary components of Wi by
@0Wi and @1Wi in such a way that the labelling corresponds to the labelling of the
boundary components of W0 . Let Si be a genus 2 Heegaard surface for Wi which
does not separate the boundary components. Let fi W @0Wi ! @1Wi�1 be the map
f . Let M1 D W1 and, inductively, let Mn DMn�1 [fn

Wn , @0Mn D @0W1 , and
@1MnD @1Wn for n� 2. Let S 0n be the Heegaard surface of Mn and S the Heegaard
surface of M D [i2NMi obtained by amalgamating the surfaces Si , as described
previously. Figure 3 shows the construction of M4 and S 0

4
.

Next we show that S is not stabilized. If it were, then some S 0n would be stabilized, as
stabilizing balls are compact. Without loss of generality, we may assume that n is odd,

2This is easy to prove directly, or see Muñoz and Uchida [10].
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@0W1

@1W1 D @0W2

@1W2 D @0W3

S 0
3

S4

f4

M3 W4

Figure 3: Forming the Heegaard surface S 04 of M4

so that S 0n does not separate the boundary components of Mn . It will be beneficial to
work with a closed 3–manifold: glue a copy of W0 to Mn to obtain a closed 3–manifold
M 0 . Use the glueing maps f W @0W0! @1Mn and f �1W @1W0! @0Mn . We may
form a Heegaard splitting of M 0 by amalgamating a genus 2 splitting, which does not
separate @W0 , of W0 to S 0n across @Mn to obtain a Heegaard surface T . As neither
splitting separates the boundary components of the respective manifolds, this operation
gives a well-defined Heegaard splitting T of M 0 , a closed 3–manifold. Figure 4
shows the process of forming M 0 and T . The genus of S 0n is .2n� .n� 1//D nC 1.
The splitting given by T is obtained from S 0n by adding a single one-handle to the
handlebody in the splitting of Mn . Thus, the genus of T is one more than the genus
of S 0n ; that is, the genus of T is nC 2. By assumption, S 0n is stabilized, and so T is,
as well. Thus, M 0 has an irreducible Heegaard splitting of genus g � nC 1.

We now appeal to a theorem of Scharlemann and Schultens. A consequence of Theorem
4.7 of [22] is that if M 0 (a closed, orientable, irreducible 3–manifold) has a JSJ-
decomposition with q non-Seifert fibered submanifolds, then q � g � 1. Let ‚ be
the union of the boundary tori of Wi for i � n. As each Wi contains no essential
annuli or tori, ‚ is the union of the canonical tori in the JSJ-decomposition of M 0 .
None of the Wi are Seifert fibered, so q D nC1. Therefore, q D nC1� g�1� n, a
contradiction. We conclude that S is not stabilized.

We have just shown that the manifold M has an infinite genus Heegaard surface S

which is not stabilized. M has infinitely generated fundamental group as the tori @Wi

for i � 1 are all incompressible and non-parallel.
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W0

M3

@0M3 @1M3

@1W0 @0W0

Figure 4: Forming the Heegaard surface T of M 0 when nD 3

Remark There are many other similar constructions of 3–manifolds with infinitely
generated fundamental group which have non-stabilized splittings. By allowing arbitrary
glueing maps between boundary tori of the compact pieces, one can use a theorem of
Bachman, Schleimer, and Sedgewick [1] to show that the amalgamated splittings are
not stabilized. We do not pursue this route further in this paper.

Finally, we use the splitting of M to obtain a splitting of the Whitehead manifold
W . The manifold M has a single boundary component @0W1 . By attaching a solid
torus V to @M so that the meridian of the solid torus is equal to the meridian �0

of @0W1 , we obtain the Whitehead manifold W �M . As this same process can be
achieved by attaching first a 2–handle and then a 3–ball to @M , the surface S is still
a Heegaard surface for W . As S is not stabilized in W �V , every stabilizing ball
of S in W must intersect the compact set V . Thus, S is not end-stabilized. S is,
however, stabilized. To see this, recall that S is formed by amalgamating the splitting
S 0n (for any given n) to the splittings Si for i � n. Interpreted in W , S 0n (for any n)
is a splitting of a solid torus. The genus of S 0n is nC 1 and so, by the classification of
splittings of handlebodies, S 0n can be destabilized n times in W . This means, then,
that S can be destabilized infinitely many times in W . The stabilizing balls are not
properly embedded in W and so only finitely many destabilizations can occur at once.
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2.5 Ends of Heegaard surfaces

The remainder of this section is devoted to showing that the inclusion of a Heegaard
surface into M induces a homeomorphism of end spaces. Informally this means that
the Heegaard surface has one end for each end of the manifold. This theorem is used
implicitly in all of the work which follows and may serve to give the reader some feel
for the properties of noncompact Heegaard splittings. Before stating the results, we
recall the definition of the set of ends of a manifold. (See, for example, Brown and
Tucker [7].)

Definition A ray in a connected manifold M is a proper map r W RC!M . An end
of a non-compact manifold M is an equivalence class of rays. Two rays r; sW RC!M

are equivalent if for every compact set C �M there is a number tC 2 RC such that
the images of ŒtC ;1/ under r and under s are in the same component of M �C .
The set of ends is topologized by declaring that for any compact set C and any
non-compact component A of the closure of M �C the set of equivalence classes
fŒr � W 9t 2 RC with r.Œt;1// � Ag is an open set. These open sets form a basis for
the topology on the end space of M . The set of ends of M with this topology is
0–dimensional, compact, and Hausdorff (Raymond [19]).

The proofs of the following lemma and proposition follow suggestions by Martin
Scharlemann.

Lemma 2.1 Let � be a locally finite graph properly embedded in an open 3–manifold
M . Then the inclusion of M � int.�.�// into M induces a homeomorphism of ends.

Proof Let X DM � int.�.�//. Let r and s be two rays determining the same end
of X . Let C �M be a compact set. X is a closed subset of M . As such, C \X

is a compact subset of X . Hence, there exists a t 2 Œ0;1/ such that the images of
Œt;1/ under r and s are contained in the same component of X �C . This means that
the images of Œt;1/ under r and s are contained in the same component of M �C .
Thus, r and s are rays in M and determine the same end of M . Hence, there is a
well-defined map on ends induced by the inclusion of X into M .

We next prove that the induced map on ends is surjective. Suppose that Œr � is an
equivalence class of ends of M . By general position, there is a representative of this
equivalence class which is disjoint from � and, hence, there is a representative r which
is contained in X . Under the induced map the equivalence class Œr � in the set of ends
of X is sent to the equivalence class Œr � in the set of ends of M . Thus, the induced
map on ends is surjective.
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Now suppose that Œr � and Œs� are equivalence classes in the set of ends of X which have
the same image in the set of ends of M under the map induced by the inclusion of X

into M . Let r and s be representatives of these equivalence classes in the set of ends
of X . Since r and s represent the same equivalence class in the set of ends of M , for
any compact set C �M there is a tC 2 Œ0;1/ such that the images of ŒtC ;1/ under
r and s are contained in the same component of M �C . Let K �X be a compact
set. As X is closed in M , K is a compact subset of M . The images r.ŒtK ;1//

and s.ŒtK ;1// are contained in the same component of M �K . The components of
M �K are also the path components of M �K , so there is a path  contained in
M �K joining r.ŒtK ;1// and s.ŒtK ;1//. By general position, we may homotope
 so that its image is contained in M � .K [ �.�//. That is,  is a path in X �K

joining r.ŒtK ;1// and s.ŒtK ;1//. Thus, r.ŒtK ;1// and s.ŒtK ;1// are contained
in the same component of X �K . Since K was an arbitrary compact subset of X ,
Œr �D Œs� in the set of ends of X and the induced map on ends is injective.

We now prove that the induced map is bicontinuous. To show continuity, it suffices
to show that the preimage of a basis element in the topology of ends of M is open in
the ends of X . Let A0 be a basis element in the topology of the set of ends of M . By
definition, there is a compact set C �M and a non-compact component A of M �C

such that for each ray r for which Œr � 2 A0 there is tr 2 Œ0;1/ such that r.Œtr ;1//

is contained in A. By replacing C with �.C /, we may assume that C and A are
submanifolds of M . Since X is closed in M , C \X is compact and so by choosing
representatives r for each Œr � 2A0 such that r is a ray in X , we see that r.Œtr ;1// is
contained in A\X .

We claim that A\X is connected and non-compact. It is easy to see that A\X is
path-connected: choose two points x;y 2 A\X . Since A is path-connected, there
is a path in M joining them. By general position we may assume that the path is
disjoint from � . Thus, there is a path in A disjoint from �.�/. Hence, A\X is
path-connected and therefore connected. A\X is also non-compact since r is a proper
map and the image of Œtr ;1/ under r is contained in A\X . The preimage of A0 is,
therefore, contained in the set A00DfŒs� W 9t 2RC with s.Œt;1//� .A\X /g. Suppose,
now, that s is a representative for Œs� 2A00 . Since A\X �A, s.Œt;1//�A. Thus,
the image of Œs� under the inclusion map of ends of X into ends of M is contained in
A0 . Thus, the preimage of A0 is A00 . A00 is, by definition, an open set in the topology
of the set of ends of X . Hence, the induced map on ends is continuous. Since the set
of ends of a connected manifold is compact and Hausdorff the induced map also has
continuous inverse. Thus, the induced map is a homeomorphism.
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Proposition 2.2 Let M D U [S V be an absolute Heegaard splitting of a non-
compact manifold with compact boundary. Then the inclusion of S into M induces a
homeomorphism of ends.

Proof If @M ¤¿ we can attach finitely many 2 and 3-handles to @M to obtain an
open 3–manifold M 0 containing M . An absolute Heegaard splitting for M is also
a Heegaard splitting for M 0 , since the 2 and 3-handles were attached to @� of the
compressionbodies. Since we attached only finitely many 2 and 3-handles, the inclusion
of M into M 0 induces a homeomorphism of ends. So, without loss of generality, we
may assume that M is open.

Choose spines †U and †V for U and V respectively. Let � D †U [†V . � is a
locally finite graph properly embedded in M . Let X be the complement of an open
regular neighborhood of � in M . Since †U and †V are spines of handlebodies
giving a Heegaard splitting of M , X is homeomorphic to S � I . By Lemma 2.1, the
inclusion of X into M induces a homeomorphism of ends. Since X is homeomorphic
to S�I there is a proper deformation retraction of X onto S�f1

2
g. Thus the inclusion

of S into X is a proper homotopy equivalence and so induces a homeomorphism on
ends. Therefore, the inclusion of S into M induces a homeomorphism of ends.

Remark In [13], Frohman and Meeks prove by algebraic means that a Heegaard
surface in a 1–ended 3–manifold is 1–ended.

3 Slide-moves

3.1 Handle-slides

Let H be a compressionbody (absolute or relative) with preferred surface S D @CH .
Suppose that we are given a disc set � for H (with @�� @CH ). We now describe a
process which transforms � into a new disc set �0 .

Let ˛ � @CH be an oriented arc such that ˛\ @�D @˛ . Suppose that the endpoints
of ˛ are on distinct discs of �. Let D1 and D2 be the discs of � containing @˛ so
that ˛ joins D1 to D2 . A regular neighborhood of D1 [ ˛ [D2 has frontier in H

consisting of three discs. Two of these discs are parallel to D1 and D2 , the other has
arcs in its boundary which are subarcs of �.˛/. Let D1

Õ

˛
D2 denote this disc. See

Figure 5. Let �0 D .��D1/[ .D1
Õ

˛
D2/.

Definition The disc set �0 is obtained from � by a handle-slide of � along ˛ . If
D1;D2 and ˛ are all disjoint from a closed set X then the handle-slide is said to be
done relative to X or (rel X ).
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D1

D2
D1

Õ

˛
D2

Figure 5: The disc D1
Õ

˛
D2

Suppose that A�H is a subcompressionbody with the property that fr A��. There
is a subcompressionbody A0 of H with frontier contained in �0 which we say is
obtained from A by a handle-slide. The definition of A0 depends on the location of
D1 and ˛ :

� If D1 is not in the frontier of A then A0 is equal to A.

� If D1 is in the frontier of A and ˛ is contained in @SA then we remove the
interior of a collar neighborhood of ˛[D2 from A. (The neighborhood of D2

should be taken to be just on the side of D2 which ˛ intersects. This way, if
D2 � int A, the disc D2 itself is not removed.) If D2 wasn’t in the frontier of
A, it is now contained in fr A0 .

� If D1 is in the frontier of A and ˛ is not contained in @SA then to form
A0 , we add the closure of a regular neighborhood of ˛ [D2 to A. (Again,
the neighborhood of D2 should be taken to be just on the side of D2 which
intersects ˛ .)

Remark The subcompressionbodies A and A0 may not be homeomorphic (if, for
example, both D1 and D2 are contained in fr A and ˛ is not in @SA). We do have,
however, that �.AI�/ is homeomorphic to �.A0I�0/.

Likewise, if R is a topologically closed subsurface of @CH with the following three
properties:

� @D1 is either a component of @R or disjoint from @R.

� @D2 is either a component of @R or disjoint from @R.

� The interior of ˛ is disjoint from @R.

then we can form a new surface R0 which is obtained from R by a handle-slide. If
@D1\@RD¿ then R0 is defined to be R. If @D1� @R and ˛�R then R0 is defined
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to be cl.R��.˛[@D2// where the neighborhood of @D2 is a one-sided neighborhood
on the side of D2 which ˛ meets. This way if @D2 � int.R/ then @D2 � @R

0 . If
@D1 � @R and ˛ is not contained in R then R0 is defined to be R[ �.˛[ @D2/. As
before, the neighborhood of @D2 should be taken to be a one-sided neighborhood on
the side of @D2 which ˛ meets. Figure 6 shows an example of how to obtain R0 from
R.

R

R0

D1
Õ

˛
D2

D2

Before

After

Figure 6: Obtaining R0 from R by a handle-slide

Bonahon developed the use of handle-slides to prove results about compressionbodies.
The following proposition and its corollaries are based on his work in [3]. For proofs
see Appendix B of that paper. The essence of the proof of Proposition 3.1 shows up in
Step 6 of the proof of Proposition 5.2 of this paper.

Proposition 3.1 If D is a boundary-reducing disc for H then there is a collection of
defining discs for H which are disjoint from D .

Corollary 3.2 Boundary-reducing a compressionbody along a finite disc set results in
compressionbodies.

Corollary 3.3 Given any finite disc set for a compressionbody, there is a defining
collection of discs for the compressionbody which contains the given disc set.
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Corollary 3.4 A subcompressionbody with compact frontier is a compressionbody.

The following definition will be useful later. We include it here since Corollary 3.5
follows from Corollary 3.3.

Definition If A and B are relative compressionbodies with A�B , we say that A is
correctly embedded in B if @CA � @CB and if every closed component of @�A is
also a component of @�B .

Another way of stating the definition is that A � B is correctly embedded if each
component of fr A is a component of @�A which has non-empty boundary and is
properly embedded in B . Figure 7 schematically depicts an example of a relative
compressionbody A correctly embedded in a handlebody B .

punctured torus� I1–handle

handlebody

1–handle

handlebody

A

B

Figure 7: A is correctly embedded in B

Remark The notion of “correctly embedded” is similar to Canary and McCullough’s
“normally imbedded” [8, Section 3.4].

Corollary 3.5 Suppose that A is a compact relative compressionbody correctly em-
bedded in a relative compressionbody B . Then cl.B�A/ is a relative compressionbody.
In particular, if each closed component of @�B is contained in A then cl.B �A/ is a
handlebody.

Proof Choose a defining set of discs �A for A. Boundary-reduce B along �A to
obtain B0 . Corollary 3.2 implies that each component of B0 is a (relative) compression-
body. Each component of B0 was either contained in A or contains a copy of fr A� I
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with fr A � f1g a subsurface of @B0 . Subtracting fr A � I from those components
of B0 simply removes a collar of a subsurface of @B0 from B0 and hence leaves us
with a compressionbody. But this is exactly cl.B �A/. If each closed component of
@�B is contained in A then, if C is a component of B0 which is not contained in
A, @�C contains no closed components. By our definition of “compressionbody”,
@C is compact and so C is formed by adding one-handles to F � I where F is
a compact surface, no component of which is boundary-less. Thus, C is obtained
by adding one-handles to handlebodies and, so, is a handlebody. We then form a
component of cl.B�A/ by removing a neighborhood of fr A\C from C . The result
is homeomorphic to C and so is a handlebody.

Remark We may not be able to choose cl.@CB � @CA/ to be the preferred surface
of cl.B �A/. For example, if B is a compact relative compressionbody, push each
non-closed component of @�B slightly into B and take A to be the closure of the
complement of the product regions.

3.2 Slide-moves and isotopies

For the remainder of this section, let S be an absolute Heegaard surface dividing a
3–manifold M with compact boundary into absolute compressionbodies U and V .

If we have disc sets �1 for U and �2 for V which are disjoint from each other we
can perform handle-slides on each disc set individually. The remainder of this section
studies how these handle-slides affect the surface S .

Definition A 2–sided disc family � for S in M is the union of disc sets �1 and �2

for U and V with the property that the discs of �D�1[�2 are pairwise disjoint.

We can expand the notion of a handle-slide to that of a slide-move on the 2–sided disc
family �D�1[�2 :

Definition A slide-move of � is one of the following operations:

(M1) Perform a handle-slide (rel @�2 ) of �1 .

(M2) Add to �1 a boundary-reducing disc for U which is disjoint from �1[�2 .

(M3) Perform a handle-slide (rel @�1 ) of �2 .

(M4) Add to �2 a boundary-reducing disc for V which is disjoint from �1[�2 .
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Suppose that A is a subcompressionbody of U or V with fr A��. If we perform
a slide-move on � to obtain a 2–sided disc family � we can obtain from A a sub-
compressionbody A0 with frontier contained in �: If slide-move (M2) or (M4) is
performed, A0 is defined to be equal to A. If A�U and slide-move (M1) is performed,
A0 is defined to be the subcompressionbody obtained from A by the handle-slide (see
Section 3.1). Similarly, if A � V and slide-move (M3) is performed, A0 is defined
to be the subcompressionbody obtained from A by the handle-slide. If we perform a
finite sequence of slide-moves to obtain � from � there is a subcompressionbody A0

with fr A0 �� obtained from A by a finite number of handle-slides. We say that � is
obtained from � by slide-moves and that A0 is obtained from A by slide-moves.

Suppose that R is a topologically closed subsurface of S with @R� @�. The boundary
components of R may bound discs in either U or V (ie, discs which are in �1 or
�2 ). If we perform a finite sequence of slide-moves on � to obtain � we may define
a subsurface R0 of S which is obtained from R by slide-moves and has boundary
contained in @�. The definition is basically the same as the definition when a single
handle-slide is performed: If slide-moves (M2) or (M4) are performed, R is left
unchanged. If (M1) or (M3) is performed, so that a disc D1 is slid over a disc D2 via
a path ˛ , we can define R0 as before (see Section 3.1).

The following proposition is an integral part of the proof of Theorem 5.1.

Proposition 3.6 Suppose that � is a 2–sided disc family for S and that � is obtained
from � by slide-moves. Then there is a finite collection of disjoint discs D with
@D � �.S I�/ and a proper ambient isotopy of �.S I�/, fixed outside a compact
subset of M , with the following properties:

(i) The discs D DD1[ : : :[Dp have an ordering such that the disc Di intersects
only on its boundary the surface �.S I�/ compressed along D1; : : : ;Di�1 . (See
the remark below.)

(ii) The isotopy takes �.S I�/ to �.S I�/ compressed along D .

(iii) Let R be a topologically closed subsurface of S such that @R � @� and R0

the subsurface of S obtained from R by that sequence of slide-moves. The
isotopy takes �.R0I�/ to the surface obtained from �.RI�/ by compressing
along whatever discs of D have boundary in R.

Remark The discs D may intersect S on their interiors, so part of the conclusion
of the theorem is that when we compress �.S I�/ along the discs D1; : : : ;Di�1 we
have chosen the regular neighborhoods of D1; : : : ;Di�1 so that Di , although it may
intersect S , does not intersect �.S I�/ compressed along D1; : : : ;Di�1 . We will
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abuse notation and write �.S I� [ D/ for the surface obtained from �.S I�/ by
compressing along the discs D in the order given. Similarly, if R is a topologically
closed subsurface of S with @R� @� we will use �.RI�[D/ to indicate the surface
obtained from R by compressing along the discs of � and then D in the given order
(rather, compressing along those discs which have boundary on R).

The proof of Proposition 3.6 will make use of the following lemma:

Lemma 3.7 If �i is a disc family for S with �i � U or �i � V and if �i is
obtained from �i by a single handle-slide of the disc D1 over the disc D2 via a path ˛ ,
then there is a proper ambient isotopy of M , fixed off a compact set, with the following
properties:

(a) the isotopy takes �.S I�i/ to �.S I�i/.

(b) if the handle-slide is relative to a closed set X then we can choose the isotopy to
be relative to X .

(c) if R is a subsurface of S with all of the following properties:
� @D1 is either a component of @R or disjoint from @R.
� @D2 is either a component of @R or disjoint from @R.
� The interior of ˛ is disjoint from @R.

then if R0 is the subsurface of S obtained from R by the handle-slide, the
isotopy takes �.R0I�i/ to �.RI�i/.

Proof of Lemma 3.7 Recall that �i is obtained from �i by removing the disc D1

and replacing it with the disc D1
Õ

˛
D2 . Let S 0D �.S I�i/. When we compress along

the discs D2 and D1
Õ

˛
D2 we end up with a situation as depicted in Figure 8. Note

that the figure depicts four discs parallel to D2 since a disc parallel to D2 makes up
part of D1

Õ

˛
D2 and both D1

Õ

˛
D2 and D2 are in �i .

After compressing along D1
Õ

˛
D2 we see that there is regular neigborhood N (in

the compressionbody containing �i ) of ˛ homeomorphic to D2 � I with D2 �f0g

glued to a copy of D1 and D2 � f1g glued to a copy of D2 � I . Take a regular
neighborhood in the compressionbody containing �i of N [ .D2 � I/ which misses
the rest of the surface S 0 . This regular neighborhood is a 3–ball B . Choose the regular
neighborhoods so that B\S 0 � @B . The intersection of B with D1 is a disc which is
a regular neighborhood (in the compressionbody) of the point ˛\D1 . Slightly enlarge
B in M to a ball B0 and perform an ambient isotopy supported on B0 and which
takes B �D1 to B \D1 . Next use the regular neighborhood of ˛ to isotope back to
S the portion of S 0 which forms part of the boundary of a regular neighborhood of ˛
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Figure 8: Compressing along �i

(the “trough”). The result is the same as if we had compressed along �i . This proves
statement (a). The isotopy described is the identity off a neighborhood of D1[˛[D2

and so is a proper isotopy.

If the handle-slide was relative to a closed set X , then by choosing the neighborhoods
of D1 , D2 , and ˛ to be disjoint from X , the isotopy described is relative to X . This
proves statement (b).

To prove conclusion (c), we examine the possibilities. Suppose that R is a subsurface
of S as in the statement and suppose that R0 is obtained from R by the handle-slide.
Recall that B is the ball which is a regular neighborhood of ˛ and D2 . The important
observation is that the isotopy takes @B �D1 into D1 .

� Suppose that @D1 � @R and that ˛ �R. In this case, R0 equals R� @B . The
isotopy fixes R0� �.@D1

Õ

˛
D2[D2/. And so the isotopy takes �.R0I�i/ into

�.RI�i/

� Suppose that @D1 � @R and that ˛ is not contained in R. Then �.R0I�i/

equals �.RI�i/[ @B . The isotopy described takes @B �D1 into �.RI�i/.

� Suppose that @D1 is not contained in R. The previous case shows that �.cl.S�
R0/I�i/ is taken into �.cl.S � R/I�i/ and by part (a) we must have that
�.R0I�i/ is taken into �.RI�i/.

� Suppose that @D1 � int R. In this case, @B�D1 is contained in �.R0I�i/ and
.@B �D1/\S in �.RI�i/. The isotopy clearly satisfies (c).

We now turn to the proof of Proposition 3.6.
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Proof of Proposition 3.6 Suppose that the 2–sided disc family � is obtained from
the 2–sided disc family � by a finite sequence f�1; : : : ; �ng of slide-moves. Each
�i is a slide-move of type (M1), (M2), (M3), or (M4). We prove the proposition by
induction on the length of the sequence. If the sequence is of length 0 the result is
immediate so suppose that n� 1 and that the proposition is true for all sequences with
n� 1 elements.

Let ı be the 2–sided disc family obtained from � by the sequence �Df�1; : : : ; �n�1g.
Using the notation from the statement of the proposition: let r be the subsurface of S

obtained from the subsurface R by the sequence � .

By the induction hypothesis, there is a collection of disjoint discs E with boundary
on �.S I�/ and there is an ambient isotopy f , fixed off a compact set, which takes
�.S I ı/ to �.S I�[E/ and which takes the surface �.r I ı/ into the surface �.RI�[E/.
(Recall that this means R compressed along those discs of �[ E with boundary on
R.) We assume that f also satisfies conclusions (i), (ii), and (iii).

The 2–sided disc family � is obtained from the 2–sided disc family ı by a single
slide-move �n of type (M1), (M2), (M3), or (M4). We divide the proof into the case
when �n is of type (M2) or (M4) and the case when the slide-move is of type (M1) or
(M3).

Case 1: �n is of type (M2) or (M4) If �n is a slide-move of type (M2) or (M4), �
is obtained from ı by adding a single disc D0 to ı . In this case, R0 D r . The ambient
isotopy f takes the disc D0 to a disc D with boundary on �.S I�[ E/. By a further
isotopy, if necessary, we may arrange that the disc D has boundary disjoint from the
remnants of E and so has boundary on �.S I�/ and that D is disjoint from the discs
of E , though it may intersect S in a neighborhood of E . Let D equal E [D . We need
to show that we have satisfied the conclusions of the proposition.

To prove (i), recall that the discs E are numbered. The disc D should be given the next
number. Since int D0 is disjoint from �.S I ı/ and the isotopy is an ambient isotopy
the disc D has interior disjoint from �.S I�[ E/. Thus, D intersects �.S I�[ E/
only on @D .

Conclusion (ii) is clear, since the isotopy f took �.S I�0�D0/ to �.S I�[ E/ and
also took D0 to D which is a disc with boundary on the surface obtained from �.S I�/

by compressing along E .

To prove (iii), recall that since �n is the slide-move consisting of adding the disc D0

to ı , the surface R0 equals the surface r . The induction hypothesis says that f takes
�.r I ı/ to the surface �.RI�[E/. Conclusion (ii) shows that the isotopy f takes the
surface �.R0I�D ı[D0/ to �.RI�[D/.
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Case 2: �n is of type (M1) or (M3) If the slide-move �n is of type (M1) or (M3)
we have obtained � from ı by a single handle-slide of ı1 in U or ı2 in V . Without
loss of generality, assume that �n is a slide-move of type (M3), so that � is obtained
from ı by the slide-move �n of ı2 . By Lemma 3.7, there is an ambient isotopy g of
M , fixed off a compact set, which satisfies properties (a), (b), and (c). In particular,
g takes �.S I�/ to �.S I ı/ because it takes �.S I�2/ to �.S I ı2/ and is performed
relative to @ı1 (property (b)). Let h be the ambient isotopy formed by performing g

and then performing f . Let D D E . We show that h satisfies conclusions (i), (ii), and
(iii).

Conclusions (i) and (ii) follow immediately from the induction hypothesis on f and
property (a) of Lemma 3.7.

To prove conclusion (iii), recall that r denotes the surface obtained from R by the
sequence of slide-moves f�1; : : : ; �n�1g. The surface R0 is obtained from r by the
handle-slide �n . Property (c) from Lemma 3.7 shows that g takes �.R0I�2/ to
�.r I ı2/. The isotopy g is an ambient isotopy which was performed relative to @ı1 ,
so g also takes �.R0I�/ to �.r I ı/. By induction, the isotopy f takes �.r I ı/ to
�.RI�[D/. And so h satisfies (iii).

4 Relative Heegaard splittings

4.1 The outer collar property

Recall from Section 3.1 that a compact relative compressionbody A is correctly em-
bedded in a compressionbody B if the frontier of A in B consists only of components
of @�A which have boundary. Corollary 3.5 states that, in this case, cl.B �A/ is a
relative compressionbody with some preferred surface. However, cl.B �A/ may not
be correctly embedded in B as we may not be able to choose cl.@CB � @CA/ to be
the preferred surface of cl.B �A/.

In this section we explore situations in which we can “come close” to having @C cl.B�
A/ equal cl.@CB � @CA/. These situations will arise when we have exhaustions of
noncompact absolute compressionbodies.

Definition Suppose that fK0ig is an exhaustion for a noncompact absolute compres-
sionbody U . If each K0i is a relative compressionbody correctly embedded in U and
each K0i is correctly embedded in K0

iC1
then fK0ig is a correctly embedded exhaustion

for U .
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The following definition is somewhat technical, but will be useful for statements of
results in Section 5. Recall that a collaring set of discs for a compressionbody H is a
set of discs which cuts off a copy of @�H � I .

Definition Suppose that fK0ig is a correctly embedded exhaustion for U . Suppose
also that for each i � 2 there is an embedding of .fr K0i � I; .@ fr K0i/ � I/ into
.cl.K0i�K0

i�1
/; @CU\cl.K0i�K0

i�1
// so that fr K0iD fr K0i�f0g and so that fr K0i�f1g

is a subsurface of @CU except at a finite number of open discs. Then fK0ig is said to
have the outer collar property.

Remark The open discs of fr K0i � f1g which are not contained in @CU are the
interiors of a set of collaring discs for K0i .

Definition Suppose that fK0ig is a correctly embedded exhaustion for U . Additionally,
suppose that for each i � 2 there is an embedding of .fr K0

i�1
�I; .@ fr K0

i�1
/�I/ into

.cl.K0i �K0
i�1
/; @CU \ cl.K0i �K0

i�1
// so that fr K0

i�1
D fr K0

i�1
� f0g and so that

fr K0
i�1
� f1g is a subsurface of @CU except at a finite number of open discs. Then

fK0ig is said to have the inner collar property.

In this paper, it is the outer collar property which is most used. The inner collar property
makes an appearance in the appendix. It may, therefore, be helpful to give an example
of an exhaustion of a handlebody with the outer collar property. Our example is, in
fact, an exhaustion of a one-ended, infinite genus handlebody which has both the inner
and outer collar properties.

Example For each natural number i , let Fi be a compact, connected surface with
non-empty boundary. Let Pi D Fi �I . Recall that Pi is a handlebody. For each i � 2

join Fi � f0g to Fi�1 � f1g by a one-handle Hi . Denote the union of all the product
regions and all the one-handles by H . See Figure 9 for a schematic depiction of H .
Let Di be a disc which is a cocore of the one-handle Hi . Let

K0i D P1[H2[P2[ : : :[P2i�1[H2i [ .F2i � Œ0; 1=2�/:

The construction makes clear that fK0ig is a correctly embedded exhaustion of the
handlebody H . The frontier of K0i is F2i �f

1
2
g which is an incompressible surface in

H . For i � 2, compressing K0i along D2i leaves two components, one of which is
F2i� Œ0;

1
2
�D fr K0i�I . This component is disjoint from K0

i�1
. From the construction,

it is clear that fK0ig has the outer collar property. For i � 2, boundary-reducing
cl.K0i �K0

i�1
/ along the disc D2i�1 leaves two components, one of which is F2i�2�

Œ1
2
; 1�D fr K0

i�1
� I . Again, from the construction it is clear that fK0ig has the inner

collar property.
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H2

H3

H4

H5

K0
1

K0
2

F1 � I F2 � I F3 � I F4 � I

Figure 9: Example of an exhaustion with the inner and outer collar properties

Certainly not every correctly embedded sequence has the outer collar property. If, for
example, for some i , @�K0

i�1
was not a disc and bounded a product region with @�K0i ,

the sequence would not have the outer collar property. If a sequence has both the inner
and outer collar properties we can take cl.@CK0

iC1
�@CK0i/ to be the preferred surface

for the relative compressionbody cl.K0
iC1
�K0i/. It is in this sense that a sequence with

the outer collar property “comes close” to having cl.@CK0
iC1
� @CK0i/ the preferred

surface for the relative compressionbody cl.K0
iC1
�K0i/.

Exhaustions with the outer collar property are fairly common:

Lemma 4.1 Suppose that fK0ig is a correctly embedded exhaustion of the absolute
compressionbody U . Then there is a subsequence with the outer collar property.

Proof Let fLig be an exhaustion of U by subcompressionbodies. Recall that the
frontier of a subcompressionbody consists of properly embedded discs. Take subse-
quences of fK0ig and fLig so that for all i , Li �K0i �LiC1 . Each inclusion should
be into the interior of the succeeding submanifold. Fix some i 2 N.

By Corollary 3.3, we may choose a defining collection of discs � for K0i which
includes the discs fr Li . Boundary-reducing K0i along � leaves us with 3–balls and
products @�K0i�I . Since K0

i�1
�Li and fr Li separates U we have that the remnants

of K0
i�1

are completely contained in the 3–balls. Thus the product regions @�K0i � I

are contained completely in cl.K0i �K0
i�1
/. Label @�K0i with @�K0i � f1g. The discs

of � which show up on @�K0i �f0g can be taken to be our collaring set of discs. This
collaring set of discs and the product region @�K0i � I are contained in K0i �K0

i�1
so

the sequence fK0ig now has the outer collar property.
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4.2 Relative Heegaard splittings

Suppose that M D U [S V is an absolute Heegaard splitting of a non-compact 3–
manifold with compact boundary, containing no S2 components. If N � M is a
compact submanifold, the surface S \N cannot possibly give an absolute Heegaard
splitting of N as S is non-compact and N is compact. It can, however, give a relative
Heegaard splitting of N .

We will eventually look at the relationship between relative Heegaard splittings and
absolute Heegaard splittings, but first we show how exhaustions of M by compact
submanifolds which inherit relative Heegaard splittings from S give rise to correctly
embedded exhaustions of U .

Definition A submanifold N contained in M is adapted to S if
.U \ N / [S\N .V \ N / is a relative Heegaard splitting of N and .U \ N / is
correctly embedded in U and .V \N / is correctly embedded in V . An exhaustion
fKig is adapted to S if each Ki is adapted to S . It is perfectly adapted to S if it is
adapted to S and, additionally, each cl.KiC1�Ki/ is adapted to S .

Remark The requirement that .U \N / and .V \N / are correctly embedded in
U and V respectively means that fr N can have no closed components which are
contained entirely in U or V : such a component would have to be a component of
@�.U \N / or @�.V \N / as it would not be a subsurface of S . This, however, means
that U \N or V \N is not correctly embedded in U .

In constructing an exhaustion that is adapted to S , the requirement that U \N and
V \N are correctly embedded in U and V is a minor one. To see this, suppose that a
compact submanifold N �M containing @M has the property that N \U and N \V

are relative compressionbodies with preferred surfaces S \N . It is easy to adjust N

so that U \N and V \N are correctly embedded. If U \N , say, is not correctly
embedded there must be a component F of @�.U \N /�@M which is a closed surface.
Since U is an absolute compressionbody, H2.U; @�U / D 0. Thus either F , or F

and components of @�U \ @M , bound(s) a compact submanifold L of U . L cannot
be interior to N as N \U is a relative compressionbody with non-empty preferred
surface and F [ @�U is contained in @�.U \N /. Thus L is exterior to N . Since
@�U � @M �N , we have that @LD F . In fact, .N \U /[L must still be a relative
compressionbody: Note that F must be compressible in L as F is incompressible
in N \ U . (@� of a compressionbody is incompressible in the compressionbody).
Every closed incompressible surface in U is parallel to @�U . Boundary-reducing
L is the same as adding a 2–handle to N \ U along a curve in F � @�.N [L/.
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Adding a 2–handle to @� of a compressionbody preserves the fact that we have a
relative compressionbody (up to the introduction of spherical boundary components).
Eventually, our surface is a collection of spheres, which, since U is irreducible, bound
balls in U . Including these balls into N (with the 2–handles attached) also preserves
the fact that we have a relative compressionbody.

Lemma 4.2 If fKig is an exhaustion of M adapted to S with @M � K1 then
fKi \U g and fKi \V g are correctly embedded exhaustions of U and V respectively.

Proof Let X denote either U or V . Since fKig is adapted to S , by definition
each Ki \ X is correctly embedded in X . Thus, @C.Ki \ X / � @C.KiC1 \ X /.
Furthermore, any closed component of @�.Ki \X / is a component of @�X which
is contained in @�.KiC1 \X /. Thus, each closed component of @�.Ki \X / is a
component of @�.KiC1\X /. Hence, Ki\X is correctly embedded in KiC1\X .

Definition If fKig is an exhaustion of M adapted to S with @M �K1 and such that
fKi \U g has the outer collar property we say that fKig has the outer collar property
with respect to U .

Corollary 4.3 If fKig is an exhaustion of M adapted to S with @M �K1 then there
is a subsequence which has the outer collar property with respect to U .

Proof By Lemma 4.2, fKi\U g is a correctly embedded exhaustion of U . By Lemma
4.1, there is an infinite subset N of N such that fKi \U gi2N has the outer collar
property. Hence, fKigi2N has the outer collar property with respect to U .

4.3 Balanced exhaustions

We’ve shown so far that if M has an exhaustion adapted to S we can find one which
has the outer collar property. We’ve not yet addressed the question of the existence of
an exhaustion adapted to S . We do that now. This construction is a variation of the
construction given by Frohman and Meeks in [13].

Recall that M DU[S V is an absolute Heegaard splitting of a non-compact 3–manifold
with compact boundary. Let A and B be compact subcompressionbodies of U and V

respectively with the property that @SA� int.@SB/. Let C be a regular neighborhood
of A[B .

Definition A set C constructed in such a manner will be called a balanced submanifold
of M (with respect to S ). An exhaustion fCig of M will be called a balanced
exhaustion for M (with respect to S ) if each CiD�.Ai[Bi/ is a balanced submanifold
and if, for all i , @SBi � int.@SAiC1/.
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The next lemma guarantees that balanced submanifolds are adapted to the Heegaard
surface. Consequently, we will say that such a set C is a balanced submanifold of M

(adapted to S ).

Lemma 4.4 (Frohman and Meeks [13, Proposition 2.2]) If C is a balanced submani-
fold of M with respect to S then C is adapted to S .

Proof We must show that .U \C /[S\C .V \C / is a relative Heegaard splitting
of C . In other words, we must show that U \ C and V \ C are both relative
compressionbodies with preferred surface S \C .

Assume that C is a regular neighborhood of A[B where A and B are compact
subcompressionbodies of U and V respectively and @SA� @SB . We have C \V D

�.B/ so C \V is a relative compressionbody with preferred surface S \C . To obtain
C \U we take a regular neighborhood of cl.@SB � @SA/ in U and glue it to A. An
alternative way of performing the construction is as follows.

Let D be the collection of discs which make up the frontier of A. Take a regular
neighborhood of D and let D0 be the components of the frontier of the neighborhood
which are not in A. Let F D cl.@SB � .@SA[ �.D///. Take a regular neighborhood
of F in U �A. Consider F to be F � f1g. Since D0 � F , this regular neighborhood
contains D0 � I . See Figure 10. This revised neighborhood is @�C � I . We may then
add one-handles so that one end of each one-handle is on a disc of D0 � f1g and the
other end is on the corresponding disc of D . It is clear that S \C is the preferred
surface of this compressionbody.

To obtain a balanced exhaustion of M , start by taking exhaustions fAig and fBig of
U and V by subcompressionbodies. Since each Ai and each Bi are compact we may
take subsequences of fAig and fBig so that, for all i , @SAi � @SBi � @SAiC1 . Each
of the inclusions should be into the interior of the succeeding surface.

A component of the frontier of a balanced submanifold C can be thought of as being a
compact subsurface of S with discs, each contained entirely in U or V , glued onto the
boundary components. In fact, since each component of the frontier of each balanced
submanifold intersects S , neither @�.C \U / nor @�.C \V / have components which
are closed surfaces not contained in @M . Thus, if we have a balanced exhaustion fCig

of M adapted to S with @M � C1 , it is adapted to S in the sense of the definition
given at the beginning of this section. By Corollary 4.3, we can take a subsequence of
fCig so that it has the outer collar property.
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@S A

D

D0 � f1g
D0 � f0g

@S B � @S A

Figure 10: Adding a regular neighborhood of @S B � @S A to A gives us a
relative compressionbody

Remark Even though we have a balanced exhaustion fCig of M which is adapted
to S and has the outer collar property, there is no reason to suppose that it is perfectly
adapted to S . The difficulty is in the fact that cl.CiC1�Ci/\U may not be a relative
compressionbody with preferred surface S \ cl.CiC1�Ci/.

Let fCig be a balanced exhaustion for M adapted to S . Each Ci is the neighborhood
of Ai [Bi where Ai and Bi are subcompressionbodies of U and V respectively.
As such, the collection of discs �D[i.fr Ai [ fr Bi/ is a 2–sided disc family for S

in M . (The notation means the frontier of Ai in U and the frontier of Bi in V .)
We can perform a finite sequence of slide-moves (Section 3.2) on � to obtain a new
2–sided disc family �. This sequence also gives us, for each i , subcompressionbodies
A0i and B0i obtained from Ai and Bi respectively by slide-moves. The important
observation is that since the slide-moves are done relative to [i.@ fr Ai [ @ fr Bi/ we
still have, for each i , that @SA0i � @SB0i � @SA0

iC1
. Thus, C 0i D �.A

0
i [B0i/ is a

balanced submanifold of M adapted to S . And so, fC 0i g is a balanced exhaustion of
M adapted to S . These observations provide the key to the proof of Theorem 5.1.

Definition The balanced submanifold C 0D �.A0[B0/ is obtained from the balanced
submanifold C D �.A[B/ by slide-moves if there is a finite sequence of slide-moves
by which A0 is obtained from A and B0 is obtained from B .
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4.4 Comparing absolute and relative Heegaard splittings

In the remainder of this section, we look at the relationship between absolute and
relative Heegaard splittings of a compact manifold. These results will help us to
translate facts about absolute Heegaard splittings to relative Heegaard splittings. Let
N denote a 3–manifold, compact or non-compact, with non-empty compact boundary.

Suppose that N DU [S V is a relative Heegaard splitting. Let B denote the boundary
components of N which intersect S . Define yU to be U together with a regular
neighborhood of B . Define yV to be the closure of the complement of yU in N and let
yS D yU \ yV .

Lemma 4.5 N D yU [ yS
yV is an absolute Heegaard splitting of N .

Proof If B D ¿ there is nothing to prove, so assume that B is non-empty. U is
a relative compressionbody and so is obtained from F � I by adding 1–handles to
F � f1g and countably many 3–balls. F is a compact surface with boundary. Let
B be a component of B and let BU D B \U and BV D B \ V . In the process of
obtaining yU we glue BV � I to BU � I along  � I where  D @BV D @BU . So yU
is B � I attached by 1–handles to the preferred surface of a compressionbody. Hence,
performing this operation for each boundary component of N which intersects S ,
leaves us with yU , an absolute compressionbody. On the other hand, to form yV we
have removed a collar neighborhood of each component of @�V which intersected
@CV . Let D be a collaring set of discs for V . The discs D are also discs in yV .
Let E be the collection of components of �.V ID/ which contain @�V \ B . Each
of these components is a (surface with boundary)� I . As such, each component is a
handlebody. Removing a collar neighborhood of @�V \B from these components
does not change the homeomorphism type. The space yV is formed by attaching these
handlebodies to the preferred surface of the absolute compressionbody �.V ID/� E
by 1–handles dual to the discs D . Thus, yV is an absolute compressionbody.

If we know that V intersects @N in discs, the relationship is stronger.

Lemma 4.6 (The Marionette Lemma) Suppose that US [S VS and UT [T VT

are two relative Heegaard splittings of a 3–manifold N . Suppose also that for each
component of @N which intersects S , VS and VT intersect that component in discs.
If, for each such boundary component of N , VS and VT intersect that boundary
component in the same number of discs, then S and T are properly ambient isotopic if
and only if yS and yT are properly ambient isotopic.
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We form yUS and yUT by including a regular neighborhood of VS \ @N and VT \ @N

into US and UT . If we want to undo this operation we can remember the cocores of
the discs VS \ @N and VT \ @N . These give us finite collections of arcs in yUS and
yUT joining @N to yS and yT respectively. To prove the lemma, we need to understand
how these arcs can be isotoped within the compressionbodies yUS and yUT . We will
show that if yS and yT are isotopic, we can isotope yS and yT to coincide and then
isotope the arcs to coincide.

Definition Let  be a finite collection of arcs in an absolute compressionbody H

with at least one endpoint of each arc on @CH . If H is a 3–ball then  is standard if
it is isotopic to a collection of arcs which lie in @CH D @H . If H DF �I where F is
a closed connected surface, then  is standard if there is an isotopy of  so that each
spanning arc is vertical in the product structure and each non-spanning arc is contained
in F �f1g D @CH . For a generic absolute compressionbody,  is standard if there is
a defining collection of discs � for H which is disjoint from  and such that  is
standard in each component of �.H I�/.

We need the following two results which are slightly rephrased from [23]. We are
allowing our compressionbody to be non-compact, but since the number of arcs is finite
the results are still true, as we may restrict attention to a compact subcompressionbody.

Lemma 4.7 (Scharlemann and Thompson [23, Lemma 6.4]) If � and � are standard
collections of arcs in an absolute compressionbody H , then for any defining collection
of discs � for H there is an isotopy of � and an isotopy of � so that � and � are
standard in �.H I�/.

Lemma 4.8 (Scharlemann and Thompson [23, Corollary 6.7]) Let  be a collection
of arcs properly embedded in a compressionbody H such that for every subcollection
 0 �  , the complement of  0 is a compressionbody. Then  is standard.

Proof of the Marionette Lemma If S and T are ambient isotopic, it is clear that yS
and yT are. So suppose that yS and yT are ambient isotopic.

As mentioned earlier, we can recover S and T from yS and yT by remembering the
cocores of the 2–handles that were added to US and UT . Let � be the collection of
arcs coming from VS \ @N and let � be the collection of arcs coming from VT \ @N .

Isotope yS onto yT . Now we have yUS D
yUT . This isotopy takes � to some collection

of arcs which we continue to call � . If we can show that there is an isotopy of � onto
� which keeps yS mapped onto yT for all time, we will be done. The isotopy is allowed
to move the endpoints of the arcs, but it must keep them on @N [ yS .
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We claim, first, that for each subcollection � 0 of arcs in � the complement of � 0 in
yUS D

yUT is a compressionbody. Let � 0 be a subcollection of arcs from � . Let s0

denote the arcs of ��� 0 . Let Ds0 be the 2–handles of �.VT \@N / which have cocores
s0 . Consider the relative compressionbody US . US is formed by taking a surface F

with boundary, forming F � I and adding 1–handles to F �f1g. The surface F has
one boundary component for each component of S \ @N . Let  denote the boundary
components of F � f0g which correspond to s0 . Adding the 2–handles D� 0 to US is
achieved by attaching copies of D2 � I to F along  � I . It’s clear that the result is
still a compressionbody. But this is exactly cl. yUS � �.�

0//. Thus, the complement of
every subcollection of � in yUS is a compressionbody. The same result holds for � .

By Lemma 4.8, both � and � are standard. By Lemma 4.7, there is a proper isotopy
of � and a proper isotopy of � so that both � and � are disjoint from a defining disc
set � for yUS D

yUT and both are standard in �.US I�/. Since each arc of � [ � has
an endpoint on a component of @N , we may assume that the isotopy has made each
arc of � and each arc of � vertical in the product structure of .@N � I/\ yUS . Since
for each component of @N the arcs of � and � with an endpoint on that component
are in one-to-one correspondence, there is the required isotopy taking � onto � .

The following is a version of Haken’s Lemma for relative Heegaard splittings. It is,
perhaps, well-known. It appears in similar versions as Lemma 5.2 in [1] and as a
remark following Definition 2.1 in [13].

Lemma 4.9 (Haken’s Lemma) Suppose that U [S V is a relative Heegaard splitting
of N with the property that each component of V \ @N is a disc. Then if @N is
compressible in N there is a compressing disc for @N whose intersection with S is a
single simple closed curve. Furthermore, boundary reducing N along this disc leaves
us with a relative Heegaard splitting cl.U � �.D//[cl.S��.D// cl.V � �.D// of the
resulting manifold.

Proof Let yU [ yS
yV be the absolute Heegaard splitting for N obtained by including

�.V \ B/ into U for each component B � @N which intersects S . Since @N is
compressible, by Casson and Gordon’s version of Haken’s Lemma [9], there is a
compressing disc D for @N which intersects yS in a single simple closed curve.

To obtain U [S V from yU [ yS
yV we include into yV the neighborhood of a certain

collection of arcs � . The arcs � are the cocores of the 2–handles which we added to
U in order to obtain yU .

If @D is on a component of @N contained in yV , then by Lemma 4.7 we may isotope
� to be disjoint from the disc D\ yU . Thus, there is a compressing disc for @N which
intersects S in a single simple closed curve.
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If @D is on a component of @N contained in yU then D \ yU is an annulus. By
performing handle-slides, we may obtain a defining collection of discs � for yU which
are disjoint from that annulus. We may assume that the annulus D \ yU is vertical
in the product structure of the component of �. yU I�/ containing it. By Lemma 4.7,
there is an isotopy of the arcs � so that � is disjoint from � and is vertical in the
product structure of the components of �. yU I�/ containing it. It is then easy to isotope
� to be disjoint from the annulus D \ yU . Hence, when we remove an open regular
neighborhood of � from yU to obtain U we have the disc D intersecting S in a single
simple closed curve. Thus S divides D into a disc and an annulus.

Boundary-reducing N along D leaves us with a 3–manifold N D �.N ID/. We have
boundary-reduced the relative compressionbody (U or V ) containing the disc part
of D along a disc with boundary in the preferred surface. Thus, by Corollary 3.2
it is still a relative compressionbody. In the other compressionbody X (equal to V

or U ), there is a defining set of discs � disjoint from D and the annulus D \X

is vertical in the product structure of the component of �.X I�/ containing it. That
component is homeomorphic to F � I where F is a compact surface, possibly with
boundary. Removing the open neighborhood of a vertical annulus in such a component
leaves us with a manifold homeomorphic to G � I where G is a compact surface
obtained from F by removing an open annulus. Thus, X � int.�.D \X // is still
a relative compressionbody with preferred surface S � int.�.D//. This implies that
N D cl.U � �.D//[cl.S��.D// cl.V � �.D// is a relative Heegaard splitting.

5 Heegaard splittings of eventually end-irreducible
3–manifolds

5.1 Introduction

Recall that a non-compact 3–manifold M is end-irreducible rel C for a compact set
C �M if there is an exhaustion fKigN for M such that C �K1 and, for all i , fr Ki

is incompressible in M �C . Inessential spheres count as incompressible surfaces, so,
for example, R3 is end-irreducible rel ¿. Other examples of eventually end-irreducible
3–manifolds are deleted boundary 3–manifolds. A deleted boundary 3–manifold M

contains a compact set C so that cl.M �C / is homeomorphic to F �RC for some
closed surface F .

For the remainder of this section, assume that M is an orientable non-compact 3–
manifold which is end-irreducible rel C and that @M � C . Let M D U [S V be an
absolute Heegaard splitting of M .
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Since we will be dealing with a variety of exhaustions for M we collect the following
definitions here:

Definition Let fKig be an exhaustion for M with C �K1 . We say that:

� fKig is frontier-incompressible rel C if, for each i , fr Ki is incompressible in
M �C .

� fKig is adapted to S if, for all i , .U \Ki/[.S\Ki / .V \Ki/ is a relative
Heegaard splitting of Ki and if .X \Ki/ is correctly embedded in X for
X D U;V . If fKig is adapted to S there is a subsequence which has the outer
collar property (Lemma 4.1).

� fKig is perfectly adapted to S if it is adapted to S and, in addition, each
cl.KiC1�Ki/ is adapted to S . That is, each cl.KiC1�Ki/ inherits a relative
Heegaard splitting with Heegaard surface S \ cl.KiC1�Ki/.

� fKi D �.Ai[Bi/g is a balanced exhaustion for M (adapted to S ) if each Ki is
a regular neighborhood of Ai [Bi where Ai and Bi are subcompressionbodies
of U and V respectively with @SAi � @SBi � @SAiC1 .

� fKig is well-placed on S rel C if it is a frontier-incompressible (rel C ) ex-
haustion for M which is adapted to S and, in addition, has the following
properties:

(WP1) For each i , V intersects each component of fr Ki in a single disc.
(WP2) For each i , fr Ki \U is incompressible in U .
(WP3) fKig has the outer collar property with respect to U .
(WP4) For each i , no component of cl.M �Ki/ is compact.

The main result of this section is:

Theorem 5.1 Suppose that M is a non-compact orientable 3–manifold with compact
boundary which is end-irreducible (rel C ) where C is a compact set containing @M .
Suppose also that U [S V is an absolute Heegaard splitting of M . Then there is an
exhaustion of M which is well-placed on S rel C .

The most difficult part of the proof is in showing that there is a frontier-incompressible
(rel C ) exhaustion which is adapted to S .
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5.2 Balanced sequences and the weakly reducible theorem

We begin by showing that there is a balanced exhaustion of M adapted to S so that the
compressing discs for the frontiers of the exhausting elements are in a “good position”
relative to the Heegaard surface.

Proposition 5.2 There is a balanced exhaustion fCi D �.A
0
i [B0i/g for M adapted to

S and a 2–sided disc family ‰ for S which contains [i.fr A0i [ fr B0i/ such that, for
each i , �.cl.@SB0i � @SA0i/I‰/ is incompressible in M �C .

Remark In [9] Casson and Gordon prove that if a Heegaard splitting of a compact 3–
manifold is weakly reducible then there is a 2–sided disc family for the Heegaard surface
such that when the surface is compressed along that family, the result is a collection of
incompressible surfaces (possibly inessential spheres)3. Since the frontiers of balanced
submanifolds consist of surfaces which are obtained from the Heegaard surface by
compressions along disjoint discs, it is natural to try to harness the power of the Casson
and Gordon theorem.

It is unclear, however, if the Casson and Gordon theorem can be extended to non-
compact 3–manifolds in a way that is directly useful in this situation. Nonetheless,
the proof of our theorem is based on the outline of a proof of Casson and Gordon’s
theorem given in [21]. We will also need to use Casson and Gordon’s version of
Haken’s Lemma.

The proof is rather long so we begin with an outline of the proof:

Step 1 Take a balanced exhaustion fKi D �.Ai [Bi/g. For each Kn show how to
replace Kn�2;Kn�1; and Kn with “better” balanced submanifolds KL

k
D

�.AL
k
[BL

k
/ for kDn�2; n�1; n. Each of these better balanced submanifolds

is still contained in KnC1 and still contains Kn�3 . Let Cn DKL
n . The new

manifolds will be obtained from the old ones by a finite sequence of slide-
moves L. The process of obtaining Cn will also leave us with a 2–sided disc
family � for S \KnC1 .

Step 2 Suppose that there is a compressing disc D for �.cl.@SBL
n � @SAL

n /I�/.

Step 3 Show that we can assume that D is contained in KnC1�KL
n�2

. This step is
where we use the eventual end-irreducibility of M .

Step 4 Replace D by a compressing disc of �.S\KnC1I�/ which intersects �.S\
KnC1I�/ only on @D . We continue calling the disc D .

3This is not how the result is usually stated, but see the proof given in [21].
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Step 5 Use Haken’s Lemma to replace D by a disc which intersects a certain Heegaard
surface exactly once and is contained in KnC1�Kn�3 . We continue calling
the disc D .

Step 6 Follow the arguments of Casson and Gordon’s Weakly Reducible theorem to
obtain from Cn by slide-moves a balanced submanifold which is even better
than Cn . This will contradict the construction of Cn .

Step 7 Use this replacement technique on each element of a subsequence of fKig

to obtain the desired fCig. Construct the 2–sided disc family ‰ from the
2–sided disc families � which were created in each replacement operation.

Proof of Proposition 5.2 Let fKi D �.Ai[Bi/gi�0 be a balanced exhaustion for M

adapted to S and let fPig be a frontier incompressible exhaustion (rel C ). Choose the
exhaustions so that C �K0 � Pi�1 �Ki � Pi for all i � 1. Each of the inclusions
should be into the interior of the succeeding submanifold. Figure 11 is a schematic of
the exhaustions. The frontiers of the submanifolds in fPig may have a very complicated
intersection with the Heegaard surface. The frontier of each submanifold in the balanced
exhaustion consists of discs and compact surfaces parallel to subsurfaces of S .

U

V

S

fr Pi�1

fr Ki

fr Pi

fr KiC1

fr PiC1

Figure 11: A schematic of the exhaustions

We will show that given a q 2 N and n � qC 3, Kn can be replaced by a compact
submanifold Cn D �.A

0
n[B0n/ with the following properties:

(1) Cn is obtained from Kn by slide moves.

(2) There is a 2–sided disc family � for S in KnC1 containing fr A0n[ fr B0n such
that �.cl.@SB0n� @SA0n/I�/ is incompressible in M �C .

(3) We still have Kq � Cn and the discs fr Aq [ fr Bq are contained in �.
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Choose some n� qC 3.

Let �D
S

q�i�nC1.fr Ai [ fr Bi/. Recall from Section 3.2 that a slide-move of this
2–sided disc family consists of either adding a compressing disc for S to � which
is disjoint from all other discs of � or performing a 2–handle slide of one disc of �
over another disc of �. The arc over which a 2–handle slide is performed must have
its interior disjoint from all discs of �.

Recall from just after Lemma 4.4 that each slide-move performed on � leaves us
with new balanced submanifolds obtained from the submanifolds fKigi�nC1 by slide-
moves. After performing a slide-move, we still have Ki �KiC1 for all i , since all the
slides are performed relative to �.

Let L denote the set of all finite sequences of slide-moves of � subject to the following
restrictions:

(1) Every time a disc is added to �, the disc has boundary lying on S \KnC1 .

(2) No disc of fr KnC1[ fr Kq is ever slid over another disc.

These restrictions mean that performing a sequence of slide-moves in L preserves the
ordering of submanifolds Ki for q � i � nC 1. Furthermore, the manifolds KnC1

and Kq are left unchanged.

Step 1 Each sequence L 2 L leaves us with new balanced submanifolds KL
i for

q < i < nC 1. The submanifolds Kq and KnC1 are left unchanged. For ease of
notation, let KL

q DKq and KL
nC1
DKnC1 . Let AL

i be the subcompressionbody of
U obtained from Ai by the slide-moves L and let BL

i be the subcompressionbody of
V obtained from Bi by the slide-moves L so that KL

i D �.A
L
i [BL

i /.

Recall from [9] that the complexity of a closed, connected surface F is defined to
be 1� �.F /, unless F is a two-sphere, in which case, it is 0. The complexity of a
disconnected closed surface is the sum of the complexities of the components.

Performing L on � leaves us with a disc family �L which contains the discs fr AL
i [

fr BL
i for q � i � nC 1. Define the complexity of �L to be the complexity of

�.S \KnC1I�L/. Since complexity is invariant under handle-slides (Lemma 3.7),
the complexity of a 2–sided disc family cannot increase under slide-moves.

Choose an L 2 L so that �L has minimal complexity. Let �D�L and Cn DKL
n .

Let �1 be those discs of � which lie in U and �2 those discs which lie in V .

Recall that if R�S is a compact subsurface of S with @R� @�, the notation �.RI�/
signifies the surface obtained from R by compressing along those discs of � which
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have boundary on R. Let Ri D cl.@SBi�@SAi/ and let R0i D cl.@SBL
i �@SAL

i / for
q � i � nC 1. Note that R0i is obtained from Ri by the sequence of slide-moves L.
We claim that �.R0nI�/ is incompressible in M �C . The surface R0i is a subsurface
of S which is parallel in KL

i to cl.fr KL
i � .fr AL

i [ fr BL
i //.

U

V

S

fr KL
i

fr KL
j

fr KL
i fr KL

j

other discs in �1

other discs in �2

Figure 12: A schematic of �1 and �2

Step 2 Let Sk D �.S\KnC1I�k/ for kD 1; 2. Let W1 be U \KnC1 together with
the 2–handles coming from �2 minus the 2–handles coming from �1 . Let W2 be the
closure of the complement of W1 in KnC1 . Let S D �.S \KnC1I�/. We are trying
to show that �.R0nI�/ is incompressible in M �C . We assume the contradiction:
suppose that a component B of �.R0nI�/ is compressible in M �C .

Step 3 Our next task is to show that there is a compressing disc for B which lies
entirely in KnC1 �KL

n�2
. Recall that fPig is the frontier-incompressible (rel C )

exhaustion for M which is interlaced with fKig. Let †D fr Pn�1[ fr Pn . The key
technique is an application of Proposition 3.6 and the incompressibility in M �C of
†.

By Proposition 3.6, there is a proper ambient isotopy f taking �.S I�/ to the surface
obtained from �.S I�/ by compressing along a certain collection of discs. In particular,
there are disjoint collections of disjoint ordered discs E and G so that the discs of E
have boundary on �.RnI�/ and the discs of G have boundary on �.Rn�1I�/ and the
isotopy f takes �.R0nI�/ to �.RnI�[E/ and �.R0

n�1
I�/ to �.Rn�1I�[G/. The

notation �.RnI�[ E/ means the surface obtained from �.RnI�/ by compressing
along the discs of E in the order given. Similarly, we write �.Rn�1I�[G/ for the
surface obtained from �.Rn�1I�/ by compressing along G . The surfaces �.RnI�[

E/ and �.Rn�1I�[G/ are disjoint.
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The discs E have boundary on �.RnI�/� .Pn�Pn�1/. As † is incompressible in
M �C the intersections of E with † are inessential on †. Similarly, the discs of
G have boundary on �.Rn�1I�/� Pn�1 and so G intersects † in loops which are
inessential on †. The surface B is taken by the isotopy f to a surface K which is a
component of �.RnI�[ E/. Since B is compressible in M �C so is K .

Since the intersections of K with the incompressible (in M �C ) † come from the
intersections of E with K , the loops K \† are inessential on both surfaces. There
is, therefore, a surface K0 � .Pn�Pn�1/ which is obtained from K by cutting and
pasting along the intersections K\†. (Start with innermost discs of intersection on
† and replace the corresponding discs of K with copies of the discs on † which have
been pushed slightly into .Pn�Pn�1/.) As K is compressible in M �C , K0 is also
compressible in M �C . Since † is incompressible in M �C there is a compressing
disc F for K0 which is contained in Pn�Pn�1 . Our goal is to use F to construct a
compressing disc for K which is disjoint from �.Rn�1I�[G/.

Since @E consists of inessential loops on K0 we may assume that @F \ @E D¿. The
disc F may intersect the discs E . It may also intersect the discs of G in simple closed
curves. Since each loop of F \ E is inessential on both F and E we may, by cutting
and pasting F along the intersections, obtain a compressing disc F 0 for K . Since both
K0 and E were disjoint from �.Rn�1I�[G/, any intersections of the disc F 0 with
the surface �.Rn�1I�[G/ occur because F 0 intersects G in simple closed curves.
These intersections are inessential on both F 0 and on �.Rn�1I�[G/. We may cut
and paste F 0 along these intersections to produce a compressing disc E for K which is
disjoint from �.Rn�1I�[G/. The disc E may intersect †, but that is not of concern.

Reversing the isotopy f takes E to a compressing disc D for B . D is contained
in KnC1 . The disc D is disjoint from �.R0

n�1
I�/ since E was disjoint from

�.Rn�1I�[G/.

Recall that we are trying to construct a compressing disc for B which is contained
in KnC1 �KL

n�2
. Each disc of � which had boundary on R0

n�1
was disjoint from

R0
n�2

since no disc of � intersects S except at its boundary and the discs of � are
pairwise disjoint. Thus KL

n�2
is contained inside some component of �.KL

n�1
I�/.

But since D is disjoint from �.R0
n�1
I�/ which is parallel to .fr �.KL

n�1
I�//, D can

be isotoped so as to not intersect KL
n�2

. Hence, there is a compressing disc D for B

which is contained in KnC1�KL
n�2

.

Step 4 The compressing disc D may intersect the surface S \ .KnC1�KL
n�2

/. By
revising the disc D we may assume that no loops of D \ S are inessential on S .
Replace D by an innermost disc, which we will continue to call D , that intersects S
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only on @D . By our construction D is now a compressing disc for S . The boundary
of D may no longer be on B . D lies in either W1 or W2 and is completely contained
in .KnC1 � KL

n�2
/. Recall that W1 D Œ.U \ KnC1/ � �.�1/ [ �.�2/� and that

W2 D Œ.V \KnC1/� �.�2/[ �.�1/�.

Step 5 Our goal is to use the disc D to construct a sequence L0 2 L such that �L0

has lower complexity than �D�L . This will contradict our original choice of L. As
mentioned in the remark preceding this proof, the strategy is to follow the outline of
the proof of Casson and Gordon’s Weakly Reducible theorem given in [21]. We will
view S1 as a Heegaard surface for W1 or S2 as a Heegaard surface for W2 depending
on which side the disc D lies. In the Casson and Gordon theorem the two cases had
identical arguments. Here, however, the relationship of W1 and W2 to KnC1�Kq is
not symmetric due to the asymmetry in the construction of balanced submanifolds. We
will briefly need to consider the two cases separately. We will eventually be able to
combine arguments.

Remark Some care is needed when we consider S1 or S2 as a Heegaard surface, as
S may contain spheres. This means that the compressionbodies we are considering
may not be irreducible. This does not really affect the proofs as the only times we
would want to use the irreducibility of a compressionbody is when we isotope (in a
compressionbody) one disc past another which shares its boundary. If S contains
spherical components which get in the way of the isotopy, we may first perform a
surgery on the disc we want to isotope so that the two discs with common boundary
bound a 3–ball and then perform the isotopy. We will refer to this process as revising
and isotoping the disc which, if S were irreducible, we would have merely isotoped.

Suppose, first, that D lies in W1 . By pushing S slightly into W2 we can view
S1 as a Heegaard surface for the disconnected 3–manifold W1 . S1 divides W1

into (disconnected) absolute compressionbodies U 0 and V 0 . Let V 0 be the absolute
compressionbody containing S . See Figure 13. The disc D is a compressing disc for
@W1 .

We can apply Haken’s Lemma to obtain a compressing disc D0 , a compressing disc for
S in W1 , which intersects S1 in a single loop and is such that @D0D @D . W1�KnC1

by the definition of W1 , so D0 does not intersect fr KnC1 . The discs fr AL
n�2

are
in �1 and separate U . Thus no component of W1 intersects both fr KL

n�2
and

fr KL
n�3

. Hence, since @D is in W1\.KnC1�KL
n�2

/ the disc D0 is in KnC1�KL
n�3

.
Summarizing: D0 is a compressing disc for S which intersects S1 in a single loop
and is contained in KnC1�KL

n�3
.
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U 0

V 0

S1

S

�2 �2

fr KL
i

fr KL
j

Figure 13: S1 as a Heegaard surface for W1

We now turn to the case when D � W2 . Push S slightly into W1 and view S2 as
a Heegaard surface for the 3–manifold W2 . The disc D is a compressing disc for
@W2 . Let U 0 and V 0 be the submanifolds of W2 into which S2 divides W2 . U 0 is
the submanifold which has S as its boundary. See Figure 14.

U 0

V 0

S2

S
�1

fr KL
i fr KL

j

Figure 14: S2 as a Heegaard surface for W2

The discs of fr BL
n�2

are contained in �2 and separate V . Thus no component of W2

intersects both .KnC1�KL
n�2

/ and int KL
n�2

. The disc D is a compressing disc for
S � @W2 which is contained in a component of W2 disjoint from int KL

n�2
. Applying

Haken’s Lemma, we can replace D with a disc D0 such that @D0 D @D and D0

intersects S2 in a single loop. Since D and D0 are in the same component of W2 ,
D0 \ int KL

n�2
D ¿. Summarizing: The disc D0 is a compressing disc for S which

intersects S2 in a single loop and is contained in KnC1�KL
n�2

.
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Step 6 Recall that 2< q � .n�3/. We may now combine arguments. In the previous
step, we showed that there was a compressing disc for S which is located in either
W1\ cl.KnC1�Kq/ or W2\ cl.KnC1�Kq/ and intersects S1 or S2 (respectively)
in a single loop  . We will now produce a sequence of slide-moves l such that the
sequence of slide-moves L followed by l is in L and the such that the sequence L

followed by l has lower complexity than L. This will contradict our choice of L. The
difficult part of this step is nearly identical to Bonahon’s proof of Proposition 3.1. This
is Proposition B.1 of [3]. We include the proof here because we need to pay careful
attention to the type of slide-moves which are required.

Without loss of generality, suppose that D is a compressing disc for S which is located
in W1\ cl.KnC1�Kq/ and intersects S1 in a single loop  . (We were calling this
disc D0 in the previous step.) We continue to view S1 as a Heegaard surface for W1 .
Recall that V 0 denotes the compressionbody which is the region between S and S1

and that U 0 is the closure of the complement of V 0 in W1 . See Figure 13.

We may assume that D is disjoint from the discs of �1 ; it may, however, intersect the
discs �2 (including the frontiers of some BL

i (for q < i < nC 1). Let A denote the
annulus D\V 0 and D0 the disc D\U 0 . Consider how A intersects �2 .

By an innermost disc argument we may assume that the annulus A intersects the
discs of �2 entirely in arcs with both endpoints on  . Let a be an outermost arc of
intersection on A. Let b be the arc of  with endpoints @a which intersects no disc of
�2 . Let G be the disc of �2 such that a�G \A. Let c be an arc of @G which has
endpoints @a. The arc c , of course, may have other intersections with  .

Combining the subdiscs of A and G with boundaries a[b and a[ c respectively and
pushing off �2 a little, we obtain a compressing disc for S1 in V 0 which is disjoint
from the complete collection of discs �2 for V 0 . Thus b[ c is a loop bounding a disc
Q in �.S1I�2/. (We are not calling this surface S since we have pushed S into W2 .)

We now adapt Bonahon’s proof of Proposition 3.1 to show that we can perform 2–
handle slides of G over the discs of �2 which have boundary in Q and then revise
and isotope D to remove all intersections of D with G (see the remark in Step 5 about
the term “revise and isotope”). When we compress S1 along �2 , the remnants of �2

show up as spots, some of which are in the interior of the disc Q. Each disc of �2

contributes two spots to �.S1I�2/. For each spot Fi from �2 which shows up in Q,
excluding a possible spot coming from G , choose oriented arcs ˛i contained in Q

joining G to the discs of �2 giving rise to those spots. If a disc of �2 produces two
spots contained in Q then we have two oriented arcs joining G to that disc. Choose
the arcs ˛i so that ˛i \�2 D @˛i and so that the f˛ig are pairwise disjoint. The arcs
˛i lie on S1 and for each arc ˛i we may perform a handle-slide of G over the the
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disc to which it is joined by ˛i . Continue calling this disc G . By performing these
slides, we may have increased the number of intersections between @G and  . These
handle-slides convert Q into a new disc as the arc c is changed by the handle-slides.
We continue calling the disc Q. After these handle-slides Q contains no spots from
�2 , except perhaps one coming from G . Revise and isotope D (rel b ) so that  has
minimal intersection with @G . Suppose, now, that the disc Q contains a spot arising
from G . Let G1 and G2 denote the two spots. Since they both arise from G we
have that j \ @G1j D j \ @G2j. Since any arc of  with both endpoints on @G2

would bound a disc in S1 and could, therefore, be removed by revising and isotoping
D , each arc of  with an endpoint on @G2 also has an endpoint on @G1 . However
@b � @G1 and thus j \ @G1j D j \ @G2jC 2. This, however, contradicts the earlier
equation and so the spot G2 cannot exist in Q. The disc Q, therefore, is now a disc
in S1 and we can revise and isotope D to remove the intersection a from D \�2 .
Since we have previously removed all other intersections, including the intersections
introduced earlier, of c with @�2 we have decreased jD\�2j by at least one. Hence,
by induction, we can remove all intersections of D with �2 by revising and isotoping
D (rel @D ) and handle-sliding �2 .

This produces a new disc set �0
2

which is disjoint from �1[fD
0g. At the beginning of

the process the curve  does not intersect any disc of fr KnC1[ fr Kq . The set of discs
with boundary in R may contain discs that are associated to discs of fr KnC1[ fr Kq ,
but we were able to choose our sliding arcs so that they only intersected the discs of
fr KnC1[fr Kq in at most one endpoint. The only slides we performed were of the disc
G over other discs, and since  intersected G , G was not a disc of fr KnC1[ fr Kq .
Furthermore, since the discs of �1 show up as spots on S1 it is easy to arrange
these slides to be relative to �1 . Thus, these handle-slides are of the sort allowed
in sequences in L. Let l denote the sequence of these handle-slides followed by the
slide-move (M2) where we add the disc D0 to �1 . The sequence of slide-moves
consisting of L followed by l does, therefore, give us a sequence of slide-moves in
the collection L. As D was a compressing disc for S this sequence of slide-moves
has lower complexity than our original choice from L. This, however, contradicts
our initial choice L to be such that the complexity of �.S \KnC1I�/ was minimal.
The contradiction arises from our assumption that B is compressible: therefore, B is
incompressible in M �C .

Step 7 Recall that fKig is our balanced exhaustion adapted to S which is interspersed
with a frontier-incompressible (rel C ) exhaustion. Let qn D 5n for n � 2. We have
shown how to replace Kqn

with a balanced submanifold Cn D �.A
0
n [B0n/ which

contains Kqn�3 . The sequence fCng is a balanced exhaustion adapted to S . In
the construction of each Cn we also constructed a 2–sided disc family � so that
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�.cl.@SB0n�@SA0n/I�/ is incompressible in M �C . Let �n denote those discs of �
with boundary on cl.@SB0n� @SA0n/. Note that �n is disjoint from �i for all i < n.
Let ‰D[n�n . ‰ is a 2–sided disc family for S where each disc of ‰ has boundary
on the frontier of some Cn . When we compress [ cl.@SB0n � @SA0n/ along ‰ we
obtain surfaces which are incompressible (rel C ).

5.3 The proof of Theorem 5.1

Recall that M is end-irreducible rel C � @M and that U [S V is an absolute Heegaard
splitting for M .

Proposition 5.3 M has a frontier-incompressible (rel C ) exhaustion which is adapted
to S . Furthermore, V intersects the frontier of each element of the exhaustion in discs.

Proof Let fCi D �.A
0
i [B0i/g be the balanced exhaustion guaranteed by Proposition

5.2. By the construction of balanced submanifolds, V intersects each fr Ci in discs.

Proposition 5.2 guarantees the existence of a 2–sided disc family ‰ for S such
that [i.fr A0i [ fr B0i/ � ‰ and each �.cl.@SB0i � @SA0i/I‰/ is incompressible in
M �C . Let ‰1 D‰\U and ‰2 D‰\V . We may use the product region between
.fr Ci � .fr Ai [ fr Bi// and @SB0i �@SA0i to extend the discs in ‰2 with boundary on
.@SB0i � @SA0i/ to have boundary on fr Ci .

If we boundary-reduce Ci along ‰2 and add the 2–handles �.‰1/ to fr Ci we end up
with a new submanifold C i of M . By construction, the discs of ‰ with boundary on
fr Ci are disjoint from fr Ci�1[ fr CiC1 . Hence, Ci is contained in a single component
of C iC1 and so M D[C i . Let K1 be the component of C 2 containing C and, for
each n > 1, let Kn be the component of C nC1 containing Cn . Since Cn �Kn the
sequence fKng is an exhaustion for M . Since the frontier of each Ki is incompressible
in M �C , the sequence fKig is frontier-incompressible rel C .

When we boundary-reduce Ci along ‰2 we are boundary-reducing Ci along disjoint
discs which each intersect the relative Heegaard surface S \ Ci in a single simple
closed curve. By Haken’s Lemma (Lemma 4.9), the resulting submanifold still has its
intersection with S a relative Heegaard surface. When we add the 2–handles ‰1 to
fr Ci we are adding 2–handles to @�.U \Ci/. Hence, the resulting submanifold still
has a relative Heegaard splitting coming from its intersection with S , apart from the
introduction of 2–sphere components to @�.U \Ci/. If there are any, we may add
to U \Ki the 3–balls bounded by those 2–spheres in U . After we have added these
3–balls, fKig is a correctly embedded exhaustion. Therefore, fKig is adapted to S .
Since the sequence is also frontier-incompressible (rel C ) the proposition is proved.
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We now embark on proving that there is a frontier-incompressible (rel C ) exhaustion
for M which is adapted to S and has properties (WP1), (WP2), (WP3), and (WP4) in
the definition of “well placed exhaustion”.

Lemma 5.4 Let fKig be a frontier-incompressible (rel C ) exhaustion for M which
is adapted to S . Suppose that V intersects fr Ki in discs for each i . Then after taking
a subsequence of fKig and performing a proper ambient isotopy of [i fr Ki we may
arrange that V intersects each component of each fr Ki in a single disc. Additionally,
fKig has the outer collar property.

Proof Begin by taking a subsequence of fKig such that fKig has the outer collar
property. Let K DKj (for j � 2) be an element of this revised exhaustion. Suppose
that B is a component of fr K such that jV \Bj � 2. We will describe an ambient
isotopy of fr K which is the identity outside of cl.KjC1�Kj�1/ to reduce the number
of components of jB \V j by one. We may then perform this ambient isotopy on each
element of fK2ig as needed in order to arrange that V intersects each component of
fr K2i in a single disc. The union of these isotopies is a proper ambient isotopy of
fK2ig. After performing this isotopy, it will be clear that fK2ig still has the outer
collar property.

Let B0 D U \B . Since V \B consists of discs, B0 is connected and has at least two
boundary components. B0 makes up part of the frontier of the relative compressionbody
K\U . B0 is a component of @�.K\U / since fKig is a correctly embedded exhaustion.
Since fKig has the outer collar property, there is a product region P DB0�I which is
embedded in cl..K�.Kj�1/\U // such that B0DB0�f0g and B0�f1g is a subsurface
of S\K except at a finite number of open discs ı . Choose an arc ˛�B0�f1g so that
˛\ @.B0 � f1g/D @˛ , ˛ joins different components of @.B0 � f1g/, and ˛ is disjoint
from the discs ı . Let D D ˛ � I � P so that ˛ D ˛ � f1g. D is an embedded disc
in P such that @D is composed of two arcs, one on B0 and one on S \K . Isotope
B \ �.D/ across the disc D . After this isotopy, the number of intersections B \S

has been reduced by one.

We now inspect the effect of this isotopy on V \K and U \K . In V \K we
have changed @�V by banding together two discs. Since V \ K was a relative
compressionbody with @�.V \ K/ consisting of discs, we have not changed the
homeomorphism type of V \K , we have changed only the preferred surface.

The effect of the isotopy on U \K is to replace B0 � I with C 0 � I where C 0 is
the surface obtained from B0 by removing a neighborhood of an arc joining two
components of @B0 . Clearly, U \K is still a relative compressionbody with preferred
surface S \K . Furthermore, the presence of the product region C 0� I shows that the
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sequence fKig still has the outer collar property. The isotopy we have described is the
identity outside of KjC1�Kj�1 .

Proof of Theorem 5.1 Take the exhaustion fKig given by Lemma 5.4. The only
properties we have left to achieve are (WP2) and (WP4). We now prove that we have,
in fact, already achieved (WP2) and that we can achieve (WP4) without ruining the
others.

Suppose that B is some component of fr Ki such that B \ U has a compressing
disc D which is contained in U . Since Ki \U is a relative compressionbody and
.B \U /� @�.Ki \U /, the compressing disc D must be on the outside of Ki . The
curve @D bounds a disc E � B since B is incompressible in M �C and C � K .
Since D is a compressing disc for B\U , the disc E is not contained in B\U . Thus
.V \B/�E . Forming K0i by adding �.D/ to Ki cuts B into two surfaces: B0 which
is homeomorphic to B and B00 which is a 2–sphere. Note that both B0 and B00 are
components of @K0i . The surface B0 is contained in U and the sphere B00 intersects
V in a single disc.

Since B was incompressible in M �C and B0 was obtained from B by cutting off
a 2–sphere, B0 is also incompressible in M �C . The surface B0 � U is closed and
incompressible in U . Hence, B0 is parallel to a component of @�U �@M . This product
region has boundary consisting of two components both of which are components of
@K0i . Thus the product region is actually K0i . But B00 is also a component of @K0i , so
this is a contradiction. Hence, B \U is incompressible in U . Thus fKig satisfies
(WP2).

Finally, we need to achieve (WP4). Suppose that cl.M�K1/ has a compact component
L. There is some Kn so that every compact component of cl.M �K1/ is contained in
Kn . By Corollary 3.5, U \L and V \L are relative compressionbodies. Since there
are no closed components of @�.U \L/ or @�.V \L/, both are also handlebodies.
Let Q D L\K1 . Q\U is an incompressible surface in U which makes up part
of @�.U \K1/. Choose a collaring set of discs ı for U \K1 . Boundary-reducing
K1 \ U along ı leaves us with components homeomorphic to .Q \ U / � I . Let
L0 D .L\U /[ ..Q\U /� I/. This does not change the homeomorphism type of
L\U , so L0 is a handlebody. We may now reassemble K1\U by attaching 1–handles
corresponding to the discs ı . When we do this, we are attaching the handlebody L0 to
the @C of a relative compressionbody and so the result is a relative compressionbody
with preferred surface S \ ..K1 \U /[L0/. Since V intersected each component
of B in a single disc, V \L is a handlebody and so V \ .K1[L/ is also a relative
compressionbody with preferred surface S \ .K1[L/.
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Thus, if we include each compact component of cl.M �K1/ into K1 to form K0
1

we
still have a relative Heegaard splitting K0

1
D .U \K0

1
/[S\K 0

1
.V \K0

1
/. Assume that

we have defined K0j for j � 1. There exists an nj so that K0j �Knj
. Let K0

jC1
be

the union of Knj
and all of the compact components of cl.M �Knj

/. By the previous
argument, S gives a relative Heegaard splitting of KjC1 . In such a way we obtain an
exhaustion fK0ng for M with property (WP4). It is clear from the construction that
fK0ng is, in fact, an exhaustion well-placed on S .

Remark Theorem 5.1 tells us that there is a frontier-incompressible (rel C ) exhaustion
fKig for M such that each Ki inherits a relative Heegaard splitting from U [S V .
An examination of the structure of the absolute Heegaard splitting of KjC1 induced
by the relative Heegaard splitting coming from S , shows that this absolute Heegaard
splitting is obtained by amalgamating Heegaard splittings of Kj and each component
of cl.KjC1�Kj /.

6 Heegaard splittings of deleted boundary 3–manifolds

6.1 Introduction

Definition A 3–manifold M is almost compact if there is a compact 3–manifold
M with non-empty boundary and a non-empty closed set J � @M such that M is
homeomorphic to M �J . If J is the union of components of @M then M is a deleted
boundary manifold.

Let M be a deleted boundary manifold obtained from the compact manifold M

by removing the union J of boundary components. By removing an open collar
neighborhood of J from M we obtain a compact manifold C which resides in M .
The closure of M�C is homeomorphic to J�RC . Since J is the union of components
of @M , J is a closed, possibly disconnected, surface. M is obviously end-irreducible
(rel C ) and @M �C . We will also assume that @M contains no spherical components,
but, except where noted, J may have spherical components. If jJ j � 2 and if at
least one component is a sphere, M has Heegaard splittings which have infinitely
many properly embedded stabilizing balls but are not end-stabilized. The following
definitions (which make sense even when M is not a deleted boundary 3–manifold)
assist the classification in this case.

Definition Let e be an end of M represented by submanifolds fWig such that cl.Wi/

is non-compact, WiC1 �Wi for all i , and M D[.M �Wi/. A Heegaard splitting
M D U [S V is e -stabilized if for each i there is a stabilizing ball for S contained
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in Wi . Recall that M is infinitely-stabilized if it is e -stabilized for some end e and
end-stabilized if it is e -stabilized for every end e .

The notion of being e -stabilized is a proper ambient isotopy invariant, as the next
lemma shows.

Lemma 6.1 Suppose that S and T are Heegaard surfaces for M . If there is an end e

of M such that S is e -stabilized but T is not then S and T are not properly ambient
isotopic.

Proof This follows directly from the fact that including a Heegaard surface into M

induces a homeomorphism on ends (Proposition 2.2) and that proper ambient isotopies
fix each end of a manifold.

Definition Suppose that US [S VS and UT [T VT are two absolute Heegaard
splittings of M . Then they are approximately isotopic if for any compact set C

there are proper ambient isotopies of S and T so that S \C D T \C .

The goal of this section is to completely classify Heegaard splittings of M up to proper
ambient isotopy and up to approximate isotopy. In particular, if J contains no spherical
components, M has, up to proper ambient isotopy, exactly one Heegaard splitting and
that splitting is end-stabilized.

The following three theorems provide key ingredients in the classification.

Theorem 6.2 (Reidemeister-Singer) After finitely many stabilizations, any two ab-
solute Heegaard splittings of a compact 3–manifold which have the same partition of
boundary are ambient isotopic.

The next is a version of Theorem 2.1 of [13]. A proof is provided in the Appendix
(Theorem A.1).

Theorem 6.3 (Frohman–Meeks) Any two end-stabilized absolute Heegaard splittings
with the same partition of @M are properly ambient isotopic. Any two infinitely-
stabilized Heegaard splittings with the same partition of @M are approximately isotopic.

The following is the most involved result of this section. Its proof uses Scharlemann
and Thompson’s classification of splittings of (closed surface)� I .

Let W1; : : : ;Wn denote the components of cl.M �C / and let X1; : : : ;Xn denote the
components of J so that Wi is homeomorphic to Xi �RC . Let e1; : : : ; en denote the
ends of M corresponding to W1; : : : ;Wn respectively.
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Theorem 6.4 Let S be any Heegaard surface for M . If S \Wi is of infinite genus
then S is ei -stabilized. Furthermore, if Xi is not a sphere S \Wi is of infinite genus
and, therefore, S is ei -stabilized.

The promised classification is contained in the following propositions. The proofs of
these propositions use Theorem 6.4 to give information about stabilizations and then
appeal to Frohman and Meeks’ theorem for the existence of the desired isotopies.

In Section 2, it was explained how to obtain finite genus splittings of non-compact
3–manifolds: remove some finite number of closed balls from a compact 3–manifold.
All such 3–manifolds are deleted boundary 3–manifolds. One consequence of Theorem
6.4 is that these are the only deleted boundary 3–manifolds with finite genus Heegaard
splittings. All others have only infinite genus splittings and we can classify them up to
approximate isotopy and up to proper ambient isotopy.

The following propositions provide the classification. Recall that M DM � J is a
deleted boundary 3–manifold:

Proposition 6.5 (2–sphere boundary) Suppose that J consists of 2–spheres and that
M 0 is obtained from M by attaching 3–balls to J . Then, up to proper ambient isotopy
of M , any finite genus Heegaard surface in M is the intersection of a Heegaard surface
for M 0 with M . The Heegaard surface in M 0 intersects each attached 3–ball in a
properly embedded disc. If two such splittings of M 0 are isotopic then the resulting
splittings of M are properly ambient isotopic.

Proposition 6.6 (Approximate isotopy) Suppose that S and T are infinite genus
Heegaard surfaces for M whose splittings have the same partition of @M . Then S and
T are approximately isotopic.

Proposition 6.7 (Proper ambient isotopy) Suppose that S and T are infinite genus
Heegaard surfaces for M with the same partition of @M . Consider the following
condition:
.�/ For each i , S \Wi has infinite genus if and only if T \Wi is of infinite genus.

Then .�/ holds if and only if S and T are properly ambient isotopic.

Proposition 6.8 (No 2–sphere boundary components) If no Xi is a 2–sphere then
any two Heegaard splittings of M with the same partition of @M are equivalent up to
proper ambient isotopy.

Before we prove the theorem and the classifications, we review a technique developed
by Scharlemann and Thompson [24] which was inspired by work of Otal. We also
need to review the classification of Heegaard splittings of G � I where G is a closed
surface.
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6.2 Edge-slides of reduced spines

Definition Suppose that Q is a compact 3–manifold and that † is a finite graph in
Q such that † intersects @Q in valence one vertices. Let B denote the components of
@Q which intersect †. If cl.Q��.B[†// is a compressionbody then † is a reduced
spine.

Choose an edge e �† and a path  � @Q[† with  beginning at an endpoint of e

but otherwise disjoint from e . An edge-slide of e over  replaces e with the union
of e and a copy of int. / pushed slightly away from †[B . See [20; 23; 24] for
more detail. Edge slides give isotopies of the surface S D .B � int.�.†///[ @�.†/.
Conversely, an isotopy of a Heegaard surface can be converted into a sequence of
edge-slides and isotopies of a reduced spine for one of the compressionbodies. The
correspondence between edge-slides of reduced spines and isotopies of the Heegaard
surface will be useful for the proof of Theorem 6.4. The reason that this viewpoint
is helpful is that if Q is a compact submanifold of a non-compact manifold and if
.@Q� int.�.†///[ @�.†/ is part of a Heegaard surface S for M then the isotopies
described by edge-slides in Q of † are fixed off a regular neighborhood of Q and so
describe a proper isotopy of S .

To increase the genus of the Heegaard surface obtained from the reduced spine, we may
stabilize a reduced spine by choosing an edge e �†. The edge e is homeomorphic to
Œ0; 1� and, choosing some homeomorphism, let e0 denote the subarc Œ1

4
; 3

4
�. Introduce

new vertices on e at 1
4

and 3
4

and push the interior of e0 slightly off of e to form a
new edge e00 with endpoints on e at the vertices 1

4
and 3

4
. The new edges e00 and e0 of

† bound a disc D whose interior is disjoint from †. The induced Heegaard splitting
is stabilized in the usual sense as the boundary of the disc D intersects a meridian disc
of �.†/ exactly once.

The final lemma of this section produces a reduced spine for (surface) � I with
particular properties. The spine gives rise to a relative version of a standard splitting of
(surface)� I .

Lemma 6.9 Let G be a closed surface of positive genus. Let G0 and G00 be the
surfaces G �f1

4
g and G �f3

4
g in G � I . Let n be an fixed integer bigger than or equal

to twice the genus of G . Let P0 DG � Œ0; 1
4
�. Then there is a connected reduced spine

† D †.G; n/ in G � I such that † intersects both boundary components of G � I ,
† intersects P0 in a vertical arc, the rank of H1.†/ D n, and @�.†/ is a relative
Heegaard surface for G � Œ1

4
; 1�.

Algebraic & Geometric Topology, Volume 7 (2007)



On non-compact Heegaard splittings 657

Proof Consider Q0 D .G � Œ 7
16
; 9

16
�/� .�.� � Œ 7

16
; 9

16
�// where � is a point on G .

Then Q0 is a handlebody of genus twice the genus of G . Choose genus.G/ loops L

based at a point b 2 int Q0 which represent generators of �1.Q
0; b/. Let a be the arc

b � I in G � I and assume, by general position, that the interior of each loop of L is
disjoint from a. Since @Q0 is a Heegaard surface for G� I , @.Q0[�.a// is a relative
Heegaard surface for G � I . Stabilize the reduced spine † enough times so that the
rank of its first homology is n. Be sure that the stabilizations take place in the interval
Œ1
4
; 1�. Then a[L is a reduced spine for G � I satisfying the desired properties.

6.3 Heegaard splittings of (closed surface)�I

Scharlemann and Thompson classified Heegaard splittings of G � I , where G is a
closed connected surface. In Theorem 6.1 of [23] they give a way of interpreting their
classification in terms of edge slides of spines (reduced or non-reduced). The following
are the versions of their results which we will need.

Theorem 6.10 (Scharlemann–Thompson [23]) Suppose that † and ‰ are connected
reduced spines for G � I which intersect both boundary components of G � I and
whose first homology groups have the same rank. Then there is a finite sequence of
edge-slides and isotopies taking † to ‰ .

Theorem 6.11 (Scharlemann–Thompson [23]) If a Heegaard splitting of G � I has
both boundary components of G � I contained in the same compressionbody and if
the splitting surfaces has genus greater than twice the genus of G then the splitting is
stabilized.

6.4 The proofs

Before beginning each proof, the theorem or proposition has been repeated for the
convenience of the reader.

Theorem 6.4 If S \Wi is of infinite genus then S is ei -stabilized. Furthermore, if
Xi is not a sphere S \Wi is of infinite genus and, therefore, S is ei -stabilized.

Proof of Theorem 6.4 Since M is end-irreducible (rel C ) and @M �C , Theorem 5.1
guarantees that there is an exhaustion fKng which is well-placed on S . In particular,
fr Kn is incompressible in M�C and no component of cl.M�Kn/ is compact. Recall
that Wi is a component of cl.M �C / and is homeomorphic to Xi �RC where Xi is
a closed connected surface. For each n, the surface fr Kn\Wi is an incompressible
surface in Wi . Furthermore, as H2.Wi ; @Wi/D 0 and cl.M �Kn/ has no compact
components, fr Kn\Wi is connected and is not a 2–sphere which is inessential in Wi .
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Lemma 6.12 For each i and for each n the submanifold cl.KnC1 �Kn/ \Wi is
homeomorphic to Xi � I .

Proof The proof is well-known, but we include it for completeness. Let FD fr KnC1\

Wi . F is incompressible in Wi . Let Nn D cl.KnC1 �Kn/\Wi . Suppose first that
Xi D S2 . In this case, F is also homeomorphic to S2 . As F is essential it does not
bound a ball in Wi . By [6, Theorem 3.1], Nn is homeomorphic to S2 � I .

Now suppose that Xi ¤ S2 . As Wi is irreducible, F ¤ S2 . The inclusion map of F

into Nn induces an injective map on fundamental groups. Since Wi is homeomorphic
to Xi �RC , each loop in Nn with basepoint on F is homotopic (rel basepoint) to a
loop outside of Nn . Hence, each loop is homotopic into F . Thus, the inclusion of F

into Nn induces an isomorphism of fundamental groups and, so by the h-cobordism
theorem [15, Theorem 10.2], Nn is homeomorphic to F � I . A similar argument
shows that the submanifold bounded by Xi and F is homeomorphic to F � I and so
F is homeomorphic to Xi .

Fix some i . Let W D cl.Wi �K2/. We will show that there is a subsequence of
fKng and a proper ambient isotopy of S which is fixed off cl.Wi �K1/ so that either
W \ cl.KnC1�Kn/ is homeomorphic to S2 � I and S \W \ cl.KnC1�Kn/ is a
genus 0 relative Heegaard surface or S \W \ cl.KnC1�Kn/ is a stabilized relative
Heegaard surface of W \ cl.KnC1�Kn/.

We deal first with the case when Xi D S2 . Let Nn DW \ cl.KnC1 �Kn/ for each
n� 2.

Lemma 6.13 If Xi D S2 then S \Nn is a relative Heegaard surface for Nn .

Proof Recall that for each n, fr Kn \W is an essential 2–sphere and, by property
(WP1) of well-placed exhaustions, V \ .fr Kn \W / is a single disc. This implies
that U \ .fr Kn \W / is a single disc. Thus, for each n � 2, U \Nn is a relative
compressionbody with preferred surface S \Nn . Similarly, for each n� 2, V \Nn is
a relative compressionbody with preferred surface S \Nn . Thus S \Nn is a relative
Heegaard surface for Nn .

By Lemma 6.12, Nn is homeomorphic to S2� I . By the classification of Heegaard
splittings of S2�I , if S\Nn has positive genus, there is a stabilizing ball for S\Nn

which is contained in Nn . If S \Wi is of infinite genus, there are infinitely many n so
that S \Nn is of positive genus, and hence S is ei -stabilized. If S \Wi is of finite
genus, we can take a subsequence of fKig so that S \Nn has genus 0. This concludes
the case when Xi D S2 .
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Suppose, for the remainder, that Xi is a closed orientable surface of positive genus g .
We do not begin by supposing that S \Wi is of infinite genus but, rather, draw that as
our first conclusion.

Recall that since fKng is well-placed on S , V intersects each fr Kn\W is a single
disc. Let NnDW \cl.KnC1�Kn/ for each n�1. Since fKng is well-placed on S the
sequence fKng has the outer collar property with respect to U . This means that in each
U \Nn there is a collection of discs ın with boundary on S\Nn so that �.U \NnI ın/

has a component which is .fr KnC1\U \Nn/�I . The frontier of KnC1\U \Nn is
.fr KnC1\U \Nn/�f0g. On the other hand, .fr KnC1\U \Nn/�f1g is a subsurface
of S except at the remnants of ın . Since V \Nn\ fr KnC1 is a single disc and since
fr KnC1\Nn is homeomorphic to Xi , the surface fr KnC1\Nn\U is homeomorphic
to Xi with a single puncture. As Xi has positive genus g , the surface �.S \NnI ın/

has positive genus, and, therefore, S \Nn has positive genus for all n � 1. This
implies that S \W has infinite genus.

Take a subsequence of fKng so that the first two terms of the new exhaustion are still
K1 and K2 but so that the genus of S \ cl.KnC1�Kn/\W is at least 3g for n� 1.
We continue referring to cl.KnC1�Kn/\W as Nn .

Fix some n � 2 and let N D Nn . By Lemma 6.12, N is homeomorphic to Xi � I .
Let F0 D fr Kn \N and F1 D fr KnC1 \N . V intersects Fi in a single disc Di

for i 2 f0; 1g. Since fKig has the outer collar property with respect to U , there is a
collection of boundary-reducing discs ı0 for U \Kn\W with boundary on S and
such that �.U \Kn \W I ı0/ contains a component PU

0
with boundary containing

F0\U and which is homeomorphic to .F0\U /�I . Since S is the preferred surface
of U \Kn , there is a copy of D2 � I embedded in V so that D2 � f0g D V \F0

and @D2 � I D S \PU
0

. Let P0 be the union of PU
0

and this D2 � I . Note that P0

is homeomorphic to F0 � I , has F0 as a boundary component, and has V running
through P0 as the neighborhood of an arc which is vertical in the product structure.
Let F 0

0
D @P0�F0 .

We can perform a similar construction on KnC1 to obtain, embedded in Nn , a subman-
ifold P1 homeomorphic to F1 � I , with @P1 D F1[F 0

1
and V \P1 a neighborhood

of a vertical arc. Let N 0 D N [P0 and N 00 D cl.N 0 �P1/. Note that N 0 and N 00

are homeomorphic to Xi � I , since F0;F1;F
0
0
; and F 0

1
are all homeomorphic to Xi .

See Figure 15.

Let †V be a spine for V in M which intersects each surface F 0
0
;F0;F

0
1
;F1 exactly

once and which is a vertical arc in P0 and P1 . Let †S D†V \N 0 . Note that †S is a
reduced spine for a Heegaard splitting of N 00 . To see this, recall that U \.KnC1�Kn/

is a handlebody (Corollary 3.5) and notice that N 00� �.†S [ @N
0/ is homeomorphic
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Figure 15: A schematic representing N

to U \ .KnC1�Kn/. We wish to show that after a proper ambient isotopy of S which
is the identity off �.N 0/, S \N is a Heegaard surface for N .

Choose a connected reduced spine †T for a Heegaard splitting of N 00 such that †T

intersects P0 in a vertical arc, the rank of H1.†T / is the same as the rank of H1.†S /,
†T \F 0

1
¤¿, †T \F 0

0
¤¿, and @�.†T / is a hollow Heegaard surface for N . Such

a spine exists by Lemma 6.9. We call †T the model spine.

By the Scharlemann–Thompson classification of Heegaard splittings of (surface)� I

(Theorem 6.10) since †S and †T are both reduced spines with first homologies of
the same rank and since they have the same partition of @N 00 there is a sequence of
edge-slides and isotopies which takes †S to †T . It is easy to arrange these slides to
be away from ı0 [ ı1 . The sequence of edge slides thus describes an isotopy of the
surface S \ �.N 00/. By the choice †T , we have that after the isotopy, S \N is a
relative Heegaard surface of genus at least 3g for N 0 .

The next corollary follows from our work so far; it is a technical result which will be
useful for the classifications.

Corollary 6.14 If Xi is a closed surface of positive genus then after a proper ambient
isotopy of S which is supported on a neighborhood of W 0i D cl.M �K1/\Wi we
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have that S \K1 is the same before and after the isotopy and afterwards S \W 0i is a
relative Heegaard surface for W 0i .

Proof Perform the isotopy just described so that N2D cl.K2�K1/ inherits a relative
Heegaard splitting from S . This isotopy is fixed off a neighborhood of W 0i D cl.M �
K1/\Wi and S \K1 is the same before and after the isotopy. Since N2 �W 0i , there
are now discs in U \W 0i with boundary on S so that boundary reducing U \W 0i along
those discs leaves a component homeomorphic to .fr W 0i \U /� I . Since V \W 0i is a
disc we have that U \W 0i and V \W 0i are relative compressionbodies with preferred
surface S \W 0i . Thus, S \W 0i is a relative Heegaard surface for W 0i .

We now continue the proof of Theorem 6.4. For each even n, perform this ambient
isotopy on Nn . By construction, the union of these ambient isotopies is a proper
ambient isotopy of S \Wi . After the isotopy, for each even n, S \Nn is a relative
Heegaard surface of genus at least 3g for a space homeomorphic to Xi � I where
the genus of Xi is g . By the Scharlemann–Thompson classification of splittings of
(surface)� I (Theorem 6.11), there is a stabilizing ball for S in each Nn for n even.
Hence S is ei -stabilized. This concludes the proof of Theorem 6.4.

Proof of classification

Proposition 6.5 (2–sphere boundary) Suppose that J consists of 2–spheres and that
M 0 is obtained from M by attaching 3–balls to J . Then, up to proper ambient isotopy
of M , any finite genus Heegaard surface in M is the intersection of a Heegaard surface
for M 0 with M . The Heegaard surface in M 0 intersects each attached 3–ball in a
properly embedded disc. If two such splittings of M 0 were isotopic then the resulting
splittings of M are properly ambient isotopic.

Proof of Proposition 6.5 Suppose that US [S VS and UT [T VT are both finite
genus Heegaard splittings of M . Let M 0 be the compact 3–manifold obtained from
M by removing only the interiors of the 3–balls whose removal created M .

There is an exhaustion fKig for M which is well-placed on S and an exhaustion fLig

which is well-placed on T . We may assume that K1 and L1 are homeomorphic to
M 0 and that S \ .M �K1/ and T \ .M �L1/ have genus zero. The frontiers of the
exhausting elements are essential spheres in S2 �RC so, after taking a subsequence
of each, there is a proper ambient isotopy of M which takes fr Li to fr Ki for each i

and so that VS \ fr Ki equals VS \ fr Li .

Let NnDcl.KnC1�Kn/. By Lemma 6.13, each component of Nn inherits a genus zero
relative Heegaard splitting from S and also from T . By Waldhausen’s classification of
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splittings of S2�I , there is a proper ambient isotopy taking S \Nn to T \Nn which
is fixed on fr Nn . The union of these isotopies over all n is a proper ambient isotopy
of M taking S \ cl.M �K1/ to T \ cl.M �K1/. In particular, we may assume that
S \ cl.M �K1/ and T \ cl.M �K1/ are vertical annuli in S2 �RC .

When we compactify M to M , S \ cl.M �K1/ and T \ cl.M �K1/ compactify to
compact annuli. VS \ cl.M �K1/D VT \ cl.M �K1/ compactifies to V 0DD2�I .
Let V 0

S
and V 0

T
be the compactified versions of VS and VT respectively. Attach the

3–balls to M to create M 0 and let U 0
S
D cl.M 0�V 0

S
/ and U 0

T
D cl.M 0�V 0

T
/. It is

clear from the construction that U 0
S

, U 0
T

, V 0
S

and V 0
T

are absolute compressionbodies
and that the splittings US [S VS and UT [T VT are obtained from splittings of M 0

in the correct fashion.

Furthermore, if we remove the open 3–balls from M to create M 0 we can extend the
splittings U 0

S
[S V 0

S
and U 0

T
[T V 0

T
of M to be relative Heegaard splittings of M 0 .

By the Marionette Lemma the relative Heegaard splittings of M 0 are isotopic if and
only if the absolute splittings of M are isotopic. If the splittings of M 0 are isotopic
then since K1 is homeomorphic to M 0 , the surfaces S \K1 and T \K1 are isotopic.
Thus, since we already have S \ cl.M �K1/D T \ cl.M �K1/ we can arrange by a
proper ambient isotopy for S to be equal to T .

Proposition 6.6 (Approximate isotopy) Suppose that S and T are infinite genus
Heegaard surfaces for M whose splittings have the same partition of @M . Then S and
T are approximately isotopic.

Proof of Proposition 6.6 If S and T have infinite genus then S \Wi and T \Wj

have infinite genus for some i; j . Since each Wk is homeomorphic to Xk � I where
Xk is a closed surface, Theorem 6.4 shows that S must be ei -stabilized and T must
be ej -stabilized. Theorem 6.3 then shows that S and T are approximately isotopic.

Proposition 6.7 (Proper ambient isotopy) Suppose that S and T are infinite genus
Heegaard surfaces for M with the same partition of @M . Consider the following
condition:

.�/ For each i , S \Wi has infinite genus if and only if T \Wi is of infinite genus.

Then .�/ holds if and only if S and T are properly ambient isotopic.

Proof of Proposition 6.7 The proof of Lemma 6.1 can be adapted to show that if S

and T are properly ambient isotopic then .�/ holds.
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Suppose, then, that S and T satisfy .�/. We desire to show that S and T are properly
ambient isotopic. Using Proposition 6.6, we will be able to enlarge C to a compact
set C 0 such that (after performing proper ambient isotopies of S and T ) C 0 has the
following properties:

(1) cl.M �C 0/ is homeomorphic to [Xi �RC

(2) S \C 0 D T \C 0

(3) VS \ fr C 0 D VT \ fr C 0 and each of these consists of a single disc on each
component of fr C 0 .

(4) For each W 0i D cl.M � C / \Wi where S and T are of infinite genus, the
surfaces S \W 0i and T \W 0i are relative Heegaard surfaces for W 0i .

(5) For each W 0i where S and T are not of infinite genus, the surfaces S \W 0i and
T \W 0i are of genus zero.

The way to achieve this is to take an exhaustion fKig for M which is well-placed on S

such that in each component of cl.M �K1/ S and T are either both of infinite genus
or both of genus zero. Then use the fact that S and T are approximately isotopic to
isotope them so that S\K1DT \K1 . Let C 0DK1 . If a certain Xi is not a 2–sphere,
Corollary 6.14 guarantees that a further proper ambient isotopy of S and T can be
performed which is supported on a neighborhood of W 0i D cl.M �C 0/\Wi so that
after the isotopy S \C 0 still equals T \C 0 but we now have property (4) in addition
to property (3) for that W 0i . In the case when Xi D S2 , S and T automatically give
relative Heegaard splittings of W 0i as @�.U \W 0i / and @�.V \W 0i / can be taken to
be the discs U \Xi and V \Xi respectively.

For each W 0i in which S and T are of infinite genus, Theorem 6.4 guarantees S \W 0i
and T \W 0i are infinitely stabilized. Since W 0i is 1–ended, Theorem 6.3 guarantees
that the absolute Heegaard splittings of W 0i induced by S \W 0i and T \W 0i are
equivalent by a proper ambient isotopy in W 0i . By the Marionette Lemma, S \W 0i
and T \W 0i are properly ambient isotopic within W 0i . For each W 0i where S and T

are of genus zero, the fact that S and T are properly ambient isotopic in W 0i follows
from Proposition 6.5.

Since in each component of cl.M �C 0/ there is a proper ambient isotopy of S and T

in that component so that they coincide, and since S and T already coincide in C 0

there is a proper ambient isotopy of M taking T to S .

Proposition 6.8 (No 2–sphere boundary components) If no Xi is a 2–sphere then
any two Heegaard splittings of M with the same partition of @M are equivalent up to
proper ambient isotopy.
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Proof of Proposition 6.8 By Theorem 6.4, S and T are end-stabilized. Theorem 6.3
then implies that they are properly ambient isotopic.

Appendix A Infinitely stabilized Heegaard splittings

The goal of this section is to give a detailed proof the following theorem which is due,
essentially, to Frohman and Meeks. Our methods are the same but we elaborate in order
to fix the error mentioned in the introduction. We refer the reader to earlier sections for
the definitions of the terms used here.

Theorem A.1 Let M be a non-compact orientable 3–manifold with compact boundary
not containing any 2–sphere components. Suppose that M D US [S VS and M D

UT [T VT are two Heegaard splittings of M with the same partition of @M . If both
S and T are infinitely stablized then they are approximately isotopic. If both S and T

are end-stabilized then they are properly ambient isotopic.

In [13], Frohman and Meeks introduce a technique which they call “stealing handles
from infinity”. This method provides a proper isotopy of an infinitely stabilized splitting
so that for any compact submanifold K , S \K is stabilized an arbitrary number of
times.

Proposition A.2 (Frohman and Meeks [13, Proposition 2.1]) Suppose that M D

U [S V is an infinitely stabilized Heegaard splitting of M . Let C be a submanifold of
M which is adapted to S . Then for any given n 2 N there is a proper ambient isotopy
of S so that S \C has been stabilized at least n times.

Sketch of Proof Since S is infinitely stabilized, we can find n disjoint stabilizing
balls for S in the complement of C . We may then use paths in the surface S to isotope
these balls along S into C .

Definition An exhaustion fKig is perfectly adapted to S if it is adapted to S and,
additionally, each cl.KiC1 �Ki/ is adapted to S . (See Section 5.1.) Note that a
subsequence of a perfectly adapted sequence is perfectly adapted.

A useful corollary of Proposition A.2 is:

Corollary A.3 Suppose that US[SVS and UT[T VT are two end-stabilized splittings
of M with the same partition of @M . Suppose there is an exhaustion fKig for M

with the following properties:

Algebraic & Geometric Topology, Volume 7 (2007)



On non-compact Heegaard splittings 665

(i) @M �K1

(ii) VS \ fr Ki and VT \ fr Ki consist of discs for all i .

(iii) VS \ fr Ki D VT \ fr Ki for all i .

(iv) fKig is perfectly adapted to both S and T .

Then S and T are equivalent up to proper ambient isotopy.

Proof By the Reidemeister-Singer theorem and the Marionette Lemma, after finitely
many stabilizations of S \K1 and T \K1 there is an ambient isotopy of K1 so that
S \K1 D T \K1 . Since both S and T are end-stabilized, these stabilizations can be
achieved by stealing handles from infinity. Thus, we may assume that S\K1DT \K1 .
By the assumption that fKig is perfectly adapted to both S and T , the intersections
of US [S VS and UT [T VT with any compact component L of cl.M �K1/ give a
relative Heegaard splittings of L. By stealing more handles from infinity and passing
them through K1 we may stabilize S \ L and T \ L enough times so that after
performing an ambient isotopy of L, S and T coincide in K1 [ L. We may do
this for each compact component of cl.M �K1/. Since there are only finitely many
such components, we have constructed proper ambient isotopies of S and T so that
they coincide on K1 and each compact component of cl.M �K1/. We proceed by
induction.

Suppose that we have performed proper ambient isotopies of M so that S \Kn�1 D

T \Kn�1 and S and T coincide on each compact component of cl.M �Kn�1/. We
will show that there are proper ambient isotopies of S and T which are fixed on Kn�1

so that after the isotopies S and T coincide on Kn and each compact component of
cl.M �Kn/. This will show that the composition of the isotopies of S converges to a
proper ambient isotopy of S and the composition of the isotopies of T converges to a
proper ambient isotopy of T . Thus, we will have shown that there are proper ambient
isotopies of S and T which make them coincide with a third Heegaard surface for M .
Hence, S and T are properly ambient isotopic.

Let L be a component of cl.Kn�Kn�1/. By hypothesis, both S and T are relative
Heegaard surfaces for L. If every non-compact component of cl.M �L/ contains
Kn�1 then L is contained in a compact component of cl.M �Kn�1/ and so S \LD

T \L.

We may, thus, suppose that there is a non-compact component of cl.M �L/ which
does not contain Kn�1 . The surfaces S and T are both end-stabilized and so we may
steal handles from that non-compact component of cl.M �L/ in order to stabilize
S \L and T \L enough times so that they are ambient isotopic in L. Since, S and
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T already coincide on fr Kn�1 we may take the ambient isotopy to be the identity
on fr Kn�1\L. Thus, there is a proper ambient isotopy of S and a proper ambient
isotopy of T , each fixed on Kn�1 so that after the isotopies S \Kn D T \Kn .

Now suppose that L0 is a compact component of cl.M �Kn/. As before, S and T

both give relative Heegaard splittings of L0 . If S\L0¤T \L0 then L0 is not contained
in a compact component of cl.M �Kn�1/. As in each component of cl.Kn�Kn�1/

S and T are connected surfaces, this implies that there are paths in S and T from a
non-compact component of cl.M �Kn/ to L0 which do not intersect Kn�1 . Thus,
we may stabilize S \L0 and T \L0 as much as we wish by stealing handles from
infinity via paths that do not intersect Kn�1 . Now isotope in L0 so that the splittings
coincide. We have, therefore, constructed proper ambient isotopies of S and T which
are fixed on Kn�1 such that after performing the isotopies S \Kn equals T \Kn

and S and T also coincide on each compact component of cl.M �Kn/. Thus, S and
T are properly ambient isotopic in M .

To show that two end-stabilized splittings of M with the same partition of @M are
properly ambient isotopic, we will show that there is an exhaustion for M satisfying
the requirements of Corollary A.3. The first task is to show that if S and T have
perfectly adapted exhaustions then there is a perfectly adapted sequence of M adapted
to both S and T simultaneously.

Lemma A.4 (Frohman and Meeks [13, Proposition 2.3]) Suppose that K1 and K2

are two submanifolds of M such that K1;K2; and cl.K2 �K1/ are adapted to S .
Suppose that L1 and L2 are two submanifolds of M such that L1;L2 and cl.L2�L1/

are adapted to T . Assume also that K1 �L1 �K2 �L2 where each inclusion is into
the interior of the succeeding submanifold.

Then after stabilizing and isotoping S in cl.K2 �K1/ and stabilizing and isotoping
T in cl.L2 �L1/ there is a submanifold J1 of M adapted to both S and T so that
VS \ fr J1 equals VT \ fr J1 and these intersections consist of discs.

Proof Push the frontier of K2 slightly into K2 to form a surface F �K2 . Let M1

be the submanifold bounded by fr K2 and F . (M1 is, of course, homeomorphic to
fr K2 � I .) Let M2 be the submanifold bounded by F and fr K1 . Let N1 be the
submanifold with boundary fr L2[F and let N2 be the submanifold with boundary
F [ fr L1 . Let J1DK1[M2 . Take Heegaard splittings of M1;M2;N1 and N2 with
Heegaard surfaces S1;S2;T1 and T2 respectively. We should choose these splittings
so that all the boundary components of each submanifold are contained in the same
compressionbody of the splitting.
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We can use the Heegaard surfaces S1 and S2 to form a Heegaard surface S for
cl.K2�K1/. To do this, note that there are surfaces S 0

1
and S 0

2
in M1 and M2 which

are subsurfaces of S1 and S2 except at a finite number of open discs which are parallel
to F DM1 \M2 . The surfaces S 0

1
and S 0

2
cobound a product region S 0

2
� I . The

surface F may be assumed to be S 0
2
� f

1
2
g. Take a disc D � S 0

2
\S2 so that in the

product region S 0
2
� I the tube D � I is disjoint from cl.S 0

1
� S1/. The Heegard

surface S for cl.K2�K1/ is formed by taking .S1[S2[D � I/� int.D � I/. We
say that S is formed by tubing together S1 and S2 . This process is different from
the amalgamation of Heegaard splittings. Similarly, we may form a Heegaard surface
T for cl.L2 �L1/ by tubing together T1 and T2 . Since in both constructions the
tube intersects F in a single disc, we may arrange that S \F D T \F and that these
intersections are a single inessential loop on F . Finally, using the product region in
the compressionbodies containing fr.K2�K1/ we may use vertical tubes to extend
S to be a relative Heegaard splitting for cl.K2 �K1/ which coincides with S on
fr.K2�K1/. Similarly, extend T to be a relative Heegaard splitting for cl.L2�L1/

which coincides with T on fr.L2�L1/. We call the Heegaard splittings given by S

and T the model splittings.

The Reidemeister-Singer theorem and the Marionette Lemma imply that by stabilizing
S and S enough in cl.K2�K1/ we may perform an ambient isotopy of cl.K2�K1/

which brings S \ cl.K2 �K1/ to S . Similarly, we may stabilize T \ cl.L2 �L1/

and T enough times so that there is an ambient isotopy of cl.L2�L1/ which brings
T \cl.L2�L�1/ to T . Since S and T coincide on fr J1DF we have now arranged
that J1 is a submanifold adapted to both S and T and that S \ fr J1 D T \ fr J1 and
these intersections consists of a single inessential loop on each component of fr J1 .

Corollary A.5 Suppose that fKig is an exhaustion perfectly adapted to S and that
fLig is an exhaustion perfectly adapted to T . Assume that, for all i , Ki �Li �KiC1 .
Then after stabilizing S and T in each component of cl.KiC1�Ki/ and cl.LiC1�Li/

respectively we may properly isotope S and T so that there is an exhaustion fJig

which is perfectly adapted to both S and T and is such that S \ fr Ji D T \ fr Ji and
the intersection consists of a single inessential loop on each component of fr Ji .

Proof Construct J1 as in the proposition. Assuming that we have constructed Jn�1

we will demonstrate how to construct Jn . Build Jn as in the proposition, letting
KnC1 , Kn , LnC1 , Ln play the roles of K2;K1;L2 and L1 . Choose model splittings
for each component of cl.KnC1�Kn/ and cl.LnC1�Ln/ which coincide with the
model splittings of cl.Kn�Kn�1/ and cl.Ln�Ln�1/ on fr Kn and fr Ln respectively.
Stabilize the model splittings enough times so that after stabilizing S \cl.KnC1�Kn/
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and T \cl.LnC1�Ln/ we may perform ambient isotopies of S\cl.KnC1�Kn/ and
T \ cl.LnC1 �Ln/ so that they coincide with the model splittings. These isotopies
are supported off Kn�1 and Ln�1 respectively. Note that, by the construction of the
model splittings, cl.Jn � Jn�1/ is adapted to both S and T (after performing the
isotopies).

We thus obtain an exhaustion fJig for M . The final remarks of the previous paragraph
show that there are proper ambient isotopies of S and T so that fJig is perfectly
adapted to both Heegaard surfaces.

Remark So far we have shown that if S and T are end-stabilized splittings and if
there are exhaustions perfectly adapted to each of them then (after stealing handles
from infinity and performing other proper ambient isotopies of S and T ) there is an
exhaustion which is perfectly adapted to both of them at the same time and furthermore
S and T coincide on the frontiers of the exhausting submanifolds. Corollary A.3 then
shows that S and T are properly ambient isotopic. It thus remains to show that there
is a perfectly adapted exhaustion adapted to any given end-stabilized splitting. The
following lemmas show how we can achieve this. The first one fixes the misstatement
in [13, Proposition 2.2] mentioned in the introduction.

Lemma A.6 Let M DU [S V be an absolute Heegaard splitting of the non-compact
3–manifold M and let fKig be an exhaustion for M adapted to S . Assume that, for
each i , V \ fr Ki consists of discs and that the sequence fKig has the outer collar
property with respect to U . Then after stabilizing S \ cl.Kn�Kn�1/, for each n� 3,
a finite number of times, there is a proper ambient isotopy of S\Kn with the following
properties:

(i) The isotopy is fixed on Kn�2[ cl.M �Kn/.

(ii) S \Kn�1 is the same before and after the isotopy.

(iii) After the isotopy, S is a relative Heegaard surface for cl.Kn�Kn�1/.

The proof is similar to the proof of Theorem 6.4. The reader is referred to Section 6.2
for the definitions and properties of edge-slides.

Proof Let N be a component of cl.Kn �Kn�1/. Let F2 D fr Kn \N and F1 D

fr Kn�1\N . Since fKig has the outer collar property, there are discs ı1� .U \Kn�1/

with boundary on S so that �.U \Kn�1I ı1/ contains a product region PU
1
D .F1\

U /�I �U \cl.Kn�1�Kn�2/ with F1\U D .F1\U /�f0g. Let .F 0
1
\U / signify

.F1\U /�f1g; it is a subsurface of S except at the remnants of the discs ı1 . Similarly,
there are discs ı2 � U \Kn with boundary on S so that �.U \KnI ı1/ contains a
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product region PU
2
D .F2\U /�I�U\cl.Kn�Kn�1/ with .F2\U /D .F2\U /�f0g.

Let .F 0
2
\U / signify .F2\U /� f1g; it is a subsurface of S except at the remnants

of the discs ı2 . The boundaries of the surfaces F 0
1
\U and F 0

2
\U are simple closed

curves on S which bound discs in V . Let F 0
1

and F 0
2

be the surfaces F 0
1
\U and

F 0
2
\U together with discs in V bound by @F 0

1
\U and @F 0

2
\U . Let P1 and P2

be the product regions bounded by F 0
1
[F1 and F 0

2
[F2 respectively. PU

1
and PU

2

are the product regions which are the intersections of P1 with U and P2 with U . Let
N 0 DN [P1 .

Choose a spine for V which intersects each disc of ı1[ı2 exactly once. We may assume
that the spine intersects P1 and P2 in vertical arcs. Let † be the intersection of this
spine with N 0 . Corollary 3.5 shows that U\cl.Kn�Kn�1/ and V \cl.Kn�Kn�1/ are
compressionbodies. Since there are not closed components of @� cl.N 0��.@N 0[†//,
cl.N 0��.@N 0[†// is a handlebody and so † is a reduced spine for N 0 . (Recall that
fKig is adapted to S and so U \Kn�1 is correctly embedded in U \Kn . This is
needed to apply Corollary 3.5.)

We now construct a model splitting of N 0 . Let X [W Y be any relative Heegaard
splitting of N with Y \ fr N D V \ fr N . Let †0 be a reduced spine for Y . We may
assume that †0 \P2 consists of vertical arcs. Using the product region P1 we may
extend †0 to be a graph in N 0 whose intersection with P1 consists of vertical arcs.
†0\ cl.N 0�P1/ is a reduced spine for cl.N 0�P2/.

The Reidemeister-Singer theorem and the Marionette Lemma imply that by stabilizing
the Heegaard splittings of N 00 D cl.N 0�P2/ induced by †\N 00 and †0\N 00 they
become isotopic. Perform the necessary stabilizations in such a way that the graphs
†\N 00 and †0\N 00 still intersect P1 in vertical arcs. Edge-slides of reduced spines
are equivalent to isotopies of the Heegaard surfaces, so there is a sequence of edge-slides
which takes (the now stabilized) †\N 00 to †0\N 00 . These edge-slides may involve
sliding edges of †\N 00 over other edges or over the surfaces F 0

1
[F 0

2
.

These edge-slides define an ambient isotopy of S \N 0 which is fixed off a regular
neighborhood of cl.N 0�P2/. In particular, the isotopy is fixed on Kn�2[cl.M �Kn/.
After the isotopy, S \Kn�1 is exactly the same as it was before. Now, however,
S \ cl.Kn �Kn�1/ is a relative Heegaard surface for N since the model surface
was.

Lemma A.7 Suppose that M D U [S V is an end-stabilized absolute Heegaard
splitting of M . Then there is an exhaustion fLig which is perfectly adapted to S .

Proof By Section 4.3 and Corollary 4.3, there is an exhaustion fKig which is adapted
to S , has the outer collar property, and is such that V \ fr Ki consists of discs for
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all i . Recall that, since S is end-stabilized, any time we need to stabilize some
S \ cl.Ki �Kj / we may do so by a proper ambient isotopy of S in such a way that
Kj is fixed throughout the isotopy. This means the isotopies needed to make each
cl.Ki �Kj / of arbitrarily high genus can be achieved by a single proper ambient
isotopy of S in M .

For each cl.K3iC1 �K3i/, steal handles from infinity and perform the isotopy of
S \ cl.K3iC1�K3i/ needed in order to make cl.K3iC1�K3i/ adapted to S . Since
each of these isotopies is fixed on K3i�2 their union is a proper ambient isotopy of S .
Let Li DK3i for each i . We claim that fLig is perfectly adapted to S .

It is, of course, adapted to S as each Ki is adapted to S before and after the isotopy.
We need to show that after this isotopy cl.K3i �K3i�3/ is adapted to S for i � 2. To
see this, note that since V intersects each fr K3i in discs V \ cl.K3i �K3i�3/ is a
relative compressionbody with preferred surface S \ cl.K3i �K3i�3/ for each i . To
see that U \ cl.K3i �K3i�3/ is a relative compressionbody with preferred surface
S\cl.K3i�K3i�3/ note first that fLig has the outer collar property. Furthermore, after
the isotopy, there are discs .ı1; @ı1/� .U\cl.K3i�2�K3i�3/;S\cl.K3i�2�K3i�3//

which cut off a product region .U \ fr K3i�3/ � I contained in U \ .cl.K3i�2 �

K3i�3// � U \ cl.K3i �K3i�3/. Hence fLig has both the inner and outer collar
properties. It is easy to see that fLig is perfectly adapted to S (cf Section 4.1).

Proof of Theorem A.1 Suppose, first, that US[S VS and UT [T VT are two absolute
infinitely stabilized Heegaard splittings of M with the same partition of @M . To show
that they are approximately isotopic we will show that given any compact set C there
are proper ambient isotopies of S and of T so that after the isotopies, S and T

coincide on C . By Section 4.3 and Corollary 4.3, there are exhaustions fKig and
fLig adapted to S and T respectively which have the outer collar property and are
such that VS \ fr Ki and VT \ fr Li consist of discs. Take subsequences so that
C � K1 � L1 � K2 � L2 . By Lemma A.6 we may steal handles from infinity for
both S and T and then perform further proper ambient isotopies so that K1;K2

and cl.K2 �K1/ are adapted to S and L1;L2; and cl.L2 �L1/ are adapted to T .
By Lemma A.4 we may steal more handles from infinity and perform more ambient
isotopies of S and T so that there is a submanifold J1 containing K1 which is adapted
to both S and T . By stealing more handles from infinity, we may stabilize S \J1 and
T \J1 enough times so that they are ambient (in J1 ) isotopic (Reidemeister-Singer
theorem and the Marionette Lemma). Isotope S and T so that they coincide on J1 .
They then also coincide on C and so they are approximately isotopic.

Now suppose that S and T are end-stabilized. By Lemma A.7 there are exhaustions
fKig and fLig perfectly adapted to S and T respectively. By Corollary A.5, we

Algebraic & Geometric Topology, Volume 7 (2007)



On non-compact Heegaard splittings 671

may perform proper ambient isotopies of S and T so that there is an exhaustion fJig

perfectly adapted to both of them and is such that, for each i , VS \ fr Ji D VT \ fr Ji

and the intersections consist of discs. By Corollary A.3, S and T are properly ambient
isotopic.
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