Some results on vector bundle monomorphisms

Daciberg L Gonçalves
Alice K M Libardi
Oziride Manzoli Neto

Abstract

In this paper we use the singularity method of Koschorke [2] to study the question of how many different nonstable homotopy classes of monomorphisms of vector bundles lie in a stable class and the percentage of stable monomorphisms which are not homotopic to stabilized nonstable monomorphisms. Particular attention is paid to tangent vector fields. This work complements some results of Koschorke [3; 4], Libardi-Rossini [7] and Libardi-do Nascimento-Rossini [6].

57R90; 57R25

1 Introduction

For $a<n$ let α^{a} and β^{n} be vector bundles of dimension a and n, respectively, over a closed smooth connected n-dimensional manifold M. For simplicity they are denoted by α and β, respectively. The following two related problems have been considered by several authors. The first one is to know if there is a stable (resp. nonstable) monomorphism between the vector bundles α and β. This is a quite general problem, which has been extensively studied. In particular it includes the problem of the span of a manifold (the maximal number of vector fields over a manifold which are linearly independent over every point). Although we are not particularly concerned with this problem here, we would like to point out the following relevant result by Koschorke [4, Theorem 1] for the problem above. He gives a complete answer to the question of existence of a stable (nonstable) monomorphism from α to $\beta\left(\alpha \oplus \varepsilon^{l}\right.$ to $\left.\beta \oplus \varepsilon^{l}, l>0\right)$ in the so-called metastable range $n>2 a$, in spite of the fact that it is not an easy task to verify the conditions on which the answer is based, even for $a=1,2$. The second problem is: whenever there is a stable (resp. nonstable) vector bundle monomorphism from α to β, find how many stable (resp. nonstable) monomorphisms there are, and the relation between them. In order to study this problem, we recall Koschorke [2, Theorem 4.14], that there is a bijection between the set of homotopy classes of monomorphisms and the normal bordism group $\Omega_{a}\left(M \times P^{\infty} ; \Phi\right)$ in the stable case (resp. $\Omega_{a}\left(P(\alpha) ; \Phi_{1}\right)$ in the nonstable case), for $n>2 a+1$. Here $P(\alpha)$ is the projectification of the vector
bundle α, and $\Phi=\lambda \otimes p_{1}^{*}(\beta-\alpha)-p_{1}^{*} \tau_{M}, \Phi_{1}=\lambda \otimes p^{*}(\beta-\alpha)-p^{*} \tau_{M}$, which we denote simply by $\lambda \otimes(\beta-\alpha)-\tau_{M}$, are virtual vector bundles over $M \times P^{\infty}$ and $P(\alpha)$, respectively, where $p_{1}: M \times P^{\infty} \rightarrow M$ and $p: P(\alpha) \rightarrow M$ are the projections. The line bundle λ in the case of Φ is the pullback by p_{2} of the canonical line bundle over P^{∞} and in the case of Φ_{1} denotes the canonical line bundle over $P(\alpha)$.

Then we have the stabilizing homomorphism

$$
\mathrm{st}_{a}: \Omega_{a}\left(P(\alpha) ; \Phi_{1}\right) \longrightarrow \Omega_{a}\left(M \times P^{\infty} ; \Phi\right)
$$

where the cardinalities of the kernel and cokernel of this homomorphism measure, respectively, the number of different homotopy classes of nonstable monomorphisms, which stabilize to the same homotopy class of stable monomorphisms, and the percentage of stable monomorphisms which are not homotopic to (stabilized) nonstable monomorphisms. The second problem has been studied by Koschorke [4] for the case $a=2, n$ odd, by Libardi and Rossini [7], for the nonstable case $a=2, n$ even and $H_{1}(M ; \mathbb{Z})=0$ and by Libardi, Nascimento and Rossini [6], for the stable case, $a=2$ and n odd.

In this paper we study the kernel and the cokernel of st_{a} in the cases $a=1, n>3$ and $a=2, n>5$ and even, which complements some results of $[4 ; 7]$ and [6].

Throughout this paper we will make use of the auxiliary virtual vector bundle $\Phi_{0}=$ $\lambda \otimes p_{1}^{*} \beta-p_{1}^{*} \tau_{M}$, which we denote simply by $\lambda \otimes \beta-\tau_{M}$, over $M \times P^{\infty}, \eta=\beta-\alpha-\tau_{M}$ and of its orientation line bundle ξ_{η} over M.
We denote $\rho: H_{*}(X ; \widetilde{\mathbb{Z}}) \rightarrow H_{*}\left(X ; \mathbb{Z}_{2}\right)$ the modulo two reduction homomorphism of the integral local coefficient $\widetilde{\mathbb{Z}}$ and we point out that for $a=1, P(\alpha)=M$ and the virtual vector bundle Φ_{1} over $P(\alpha)=M$ becomes $\alpha \otimes \beta-\tau_{M}$.

We state our main results.
Theorem 1.1 Let $a=1, n>3$ odd and suppose there is a monomorphism $u_{0}: \alpha \hookrightarrow \beta$ over M. Then the cokernel coker st ${ }_{1}$ is isomorphic to \mathbb{Z}_{2} and the kernel kerst ${ }_{1}$ is either zero or isomorphic to \mathbb{Z}_{2}.

The kerst ${ }_{1}$ is zero if one of the conditions below holds.
$\left(\mathrm{a}_{1}\right) \quad w_{2}\left(\Phi_{1}\right)\left[\rho\left(H_{2}\left(M ; \tilde{\mathbb{Z}}_{\eta}\right)\right)\right] \neq 0$,
(a_{2}) $\quad w_{2}\left(\Phi_{1}\right)=0$ and $n \equiv 1(4)$ and $w_{1}(\alpha)=w_{1}(\beta)$,
(a_{3}) $w_{2}\left(\Phi_{1}\right)=0$ and $n \equiv 3(4), w_{1}(M)=0$ and $\left(w_{1}(\alpha)=0\right.$ or $\left.w_{1}(\beta)=0\right)$.

The kerst ${ }_{1} \simeq \mathbb{Z}_{2}$ if one of the conditions below holds.
$\left(\mathrm{b}_{1}\right) \quad w_{2}\left(\Phi_{1}\right)=0$ and $n \equiv 1(4)$ and $w_{1}(\alpha) \neq w_{1}(\beta)$,
$\left(\mathrm{b}_{2}\right) \quad w_{2}\left(\Phi_{1}\right)=0$ and $n \equiv 3(4)$ and $w_{1}(M) \neq 0$.
Denote by $|X|$ the cardinality of the set X and $\eta_{0}=\beta-\tau_{M}$ a virtual vector bundle over M. For $\left|H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right)\right|$ finite, we define $k=k(\alpha, \beta)$, such that $\left|H_{1}\left(M ; \mathbb{Z}_{2}\right)\right|$. \mid ker st ${ }_{1}|=k \cdot| H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right) \mid$. Therefore \mid ker st $_{1} \mid$ is determined by the number k. We state the next result in terms of k.

Theorem 1.2 Let $a=1, n>3$ be even and suppose there is a monomorphism $u_{0}: \alpha \hookrightarrow \beta$ over M.

Then, coker st ${ }_{1}=0$ if $w_{1}(\beta)=w_{1}(M)$ and cokerst $\simeq \mathbb{Z}_{2}$ if $w_{1}(\beta) \neq w_{1}(M)$.
(a) If $\left|H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right)\right|$ is infinite, \mid ker st $_{1} \mid$ is infinite.
(b) If $\left|H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right)\right|$ is finite then $\left|\mathrm{kerst}_{1}\right|$ is determined by k as follows:
$\left(\mathrm{b}_{1}\right)$ For $w_{2}\left(\Phi_{1}\right)\left[\rho\left(H_{2}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right)\right)\right] \neq 0, k=1$ if $w_{1}(\beta)=w_{1}(M)$ and $k=2$ if $w_{1}(\beta) \neq w_{1}(M)$,
$\left(\mathbf{b}_{2}\right)$ For $w_{2}\left(\Phi_{1}\right)=0$ and $n \equiv 0(4), k=2$ if $w_{1}(\beta)=w_{1}(M)$ and $k=4$ if $w_{1}(\beta) \neq w_{1}(M)$,
$\left(\mathrm{b}_{3}\right)$ For $w_{2}\left(\Phi_{1}\right)=0$ and $n \equiv 2(4), k=1$ if $w_{1}(\beta)=w_{1}(M)$ and $\left(w_{1}(M)\right)^{2}=$ $0=w_{1}(\alpha), k=2$ if $w_{1}(\beta) \neq w_{1}(M)$ and $w_{1}(\beta) w_{1}(M)=0=w_{1}(\alpha)$, $k=2$ if $w_{1}(\beta)=w_{1}(M)$ and $\left(w_{1}(M)\right)^{2} \neq\left(w_{1}(\alpha)\right)^{2}, k=4$ if $w_{1}(\beta) \neq$ $w_{1}(M)$ and $\left(w_{1}(\alpha)\right)^{2} \neq w_{1}(\beta) w_{1}(M)$.

In the special case of the tangent vector fields, ie, when α is the trivial line bundle and β is the tangent bundle τ_{M} of M, the second Stiefel-Whitney class $w_{2}\left(\Phi_{1}\right)$ is zero. Then we obtain the following consequences from the two theorems above.

For n odd, we have:
(a) cokerst $\simeq_{1} \mathbb{Z}_{2}$,
$\left(\mathrm{b}_{1}\right)$ if $w_{1}(M)=0$, then ker $\mathrm{st}_{1}=0$ and
$\left(\mathrm{b}_{2}\right)$ if $w_{1}(M) \neq 0$ then $\operatorname{ker} \mathrm{st}_{1} \simeq \mathbb{Z}_{2}$.
For n even, we have:
(a) ${\text { coker } \mathrm{st}_{1}}=0$,
(b) if $\left|H_{1}\left(M ; \mathbb{Z}_{M}\right)\right|$ is infinite, where \mathbb{Z}_{M} is the \mathbb{Z}-local system given by the orientation of the manifold $M,\left|\operatorname{kerst}_{1}\right|$ is infinite, otherwise
$\left(\mathrm{b}_{1}\right) \quad k=2$ if $n \equiv 0(4)$ or $\left(n \equiv 2(4)\right.$ and $\left.\left(w_{1}(M)\right)^{2} \neq 0\right)$ and
$\left(\mathrm{b}_{2}\right) \quad k=1$ if $n \equiv 2(4)$ and $\left(w_{1}(M)\right)^{2}=0$.

Now let $a=2$ and n even. Recall that the case n odd has been studied in [4].

Theorem 1.3 Let $a=2, n>5$ be even and suppose there is a monomorphism $u_{0}: \alpha \hookrightarrow \beta$ over M^{n}. Assume that one of conditions below is valid.
$w_{2}\left(\eta_{0}\right)\left[\rho\left(H_{2}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right)\right)\right] \neq 0$ or $\left(w_{1}(\beta) \neq 0\right.$ for $n \equiv 0(4)$ and $w_{1}(M) \neq 0$ for $n \equiv$ 2(4)).

Let A be the subset of $H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right)$ given by
$\left\{z \mid \forall y \in H^{1}\left(M ; \mathbb{Z}_{2}\right), y(\rho(z))=\right.$

$$
\left.\left(y w_{2}(\alpha)\right) \rho\left(c_{3}\right)+y w_{1}\left(\beta-\tau_{M}\right)\left(c_{2}\right), c_{3} \in H_{3}\left(M ; \tilde{\mathbb{Z}}_{\eta}\right), c_{2} \in H_{2}\left(M ; \mathbb{Z}_{2}\right)\right\}
$$

then
$\left(\mathrm{a}_{1}\right) \quad$ coker $\mathrm{st}_{2} \simeq \mathbb{Z}_{2}$ if also $w_{1}(\beta) \neq w_{1}(M)$,
$\left(\mathrm{a}_{2}\right) \quad$ coker $\mathrm{st}_{2} \simeq 0$ if also $w_{1}(\beta)=w_{1}(M)$ and $w_{2}(\alpha) \rho\left(H_{2}\left(M ; \widetilde{\mathbb{Z}}_{\alpha}\right)\right)=0$,
$\left(\mathrm{a}_{3}\right)$ cokerst $\mathrm{S}_{2} \simeq \mathbb{Z}$ if also $w_{1}(\beta)=w_{1}(M)$ and $w_{2}(\alpha) \rho\left(H_{2}\left(M ; \widetilde{\mathbb{Z}}_{\alpha}\right)\right) \neq 0$ and
(b) $\operatorname{kerst}_{2} \simeq H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right) / A \oplus \mathbb{Z}_{2}$, if also $w_{2}(\Phi)=0$.

Corollary 1.4 In the special case of tangent plane fields, ie when α is the trivial bundle, β is the tangent bundle of M and $w_{1}(M) \neq 0$ then st_{2} is surjective and kerst ${ }_{2} \simeq H_{1}(M ; \mathbb{Z}) \oplus \mathbb{Z}_{2}$.

2 Preliminaries and notations

Given α^{a} and β^{n} vector bundles over M of dimension a and n, denoted by α and β, we will consider the virtual bundles $\Phi=\lambda \otimes p_{1}^{*}(\beta-\alpha)-p_{1}^{*} \tau_{M}, \Phi_{1}=$ $\lambda \otimes p^{*}(\beta-\alpha)-p^{*} \tau_{M}$, which we denote simply by $\lambda \otimes(\beta-\alpha)-\tau_{M}$, virtual vector bundles over $M \times P^{\infty}$ and $P(\alpha)$, respectively, where $p_{1}: M \times P^{\infty} \rightarrow M$, $p: P(\alpha) \rightarrow M$ are the projections. The line bundle λ in the case of Φ is the pullback by p_{2} of the canonical line bundle over P^{∞} and in the case of Φ_{1} denotes the canonical line bundle over $P(\alpha)$.

We recall that for $a=1, P(\alpha)=M$ and the virtual vector bundle Φ_{1} over $P(\alpha)=M$ becomes $\alpha \otimes \beta-\tau_{M}$. Throughout this paper we will make use of the auxiliary virtual vector bundle $\eta=\beta-\alpha-\tau_{M}$ and of its orientation line bundle ξ_{η} over M. Let
$x=w_{1}(\lambda)$ and $\Phi_{0}=\lambda \otimes p_{1}^{*} \beta-p_{1}^{*} \tau_{M}$, which we denote simply by $\lambda \otimes \beta-\tau_{M}$, over $M \times P^{\infty}$ which we many times denote simply M^{∞}.

For $a=1$, we have

$$
\begin{aligned}
& w_{1}(\Phi)=(n+1) x+w_{1}(\eta) \\
& w_{2}(\Phi)= \begin{cases}x\left(w_{1}(\beta)+w_{1}(\alpha)\right)+w_{2}(\eta), & n \equiv 1(4) \\
x w_{1}(M)+w_{2}(\eta), & n \equiv 2(4) \\
x^{2}+x\left(w_{1}(\beta)+w_{1}(\alpha)\right)+w_{2}(\eta), & n \equiv 3(4) \\
x^{2}+x w_{1}(M)+w_{2}(\eta), & n \equiv 0(4)\end{cases} \\
& w_{1}\left(\Phi_{1}\right)=n w_{1}(\alpha)+w_{1}(\beta)+w_{1}(M) \\
& w_{2}\left(\Phi_{1}\right)= \begin{cases}w_{1}(\alpha) w_{1}(\beta)+\left(w_{1}(\alpha)\right)^{2}+w_{2}(\eta), & n \equiv 1(4) \\
w_{1}(\alpha) w_{1}(M)+\left(w_{1}(\alpha)\right)^{2}+w_{2}(\eta), & n \equiv 0(4) \\
w_{1}(\alpha) w_{1}(\beta)+w_{2}(\eta), & n \equiv 3(4) \\
w_{1}(\alpha) w_{1}(M)+w_{2}(\eta), & n \equiv 2(4)\end{cases} \\
& w_{1}\left(\Phi_{0}\right)=n x+w_{1}\left(\beta-\tau_{M}\right)
\end{aligned}
$$

For $a=2$ and n even, we have

$$
\begin{aligned}
w_{1}(\Phi) & =w_{1}(\eta)=w_{1}(\beta)+w_{1}(\alpha)+w_{1}(M) \\
w_{2}(\Phi) & = \begin{cases}x\left(w_{1}(M)+w_{1}(\eta)\right)+w_{2}(\eta), & \text { if } n \equiv 2(4) \\
x^{2}+x\left(w_{1}(M)+w_{1}(\eta)\right)+w_{2}(\eta) & \text { if } n \equiv 0(4)\end{cases} \\
w_{2}(\eta)= & w_{2}(\beta)+w_{2}(\alpha)+w_{1}^{2}(\alpha)+w_{1}(\beta) w_{1}(\alpha)+w_{2}(M)+w_{1}^{2}(M) \\
& +w_{1}(\beta) w_{1}(M)+w_{1}(\alpha) w_{1}(M)
\end{aligned}
$$

Given a vector bundle θ^{ℓ}, of dimension ℓ, we denote $\xi_{\theta}=\Lambda^{\ell} \theta$ the corresponding orientation line bundle. If τ_{K} is the tangent bundle of a smooth manifold K we also write ξ_{K} for $\xi_{\tau_{K}}$. If Φ is a virtual vector bundle, ξ_{Φ} denotes the orientation line bundle determined by $w_{1}\left(\xi_{\Phi}\right)=w_{1}(\Phi)$. For more details see Randall-Daccach [8, Section III.6].
Let $\mathbb{Z}_{\theta}\left(\right.$ or $\left.\mathbb{Z}_{w_{1}(\theta)}\right)$ denote the group \mathbb{Z} if $w_{1}(\theta)=0$ or \mathbb{Z}_{2} if $w_{1}(\theta) \neq 0$, and let $\widetilde{\mathbb{Z}}_{\theta}$ (or $\widetilde{\mathbb{Z}}_{w_{1}(\theta)}$) denote the twisted integer coefficient system associated to the orientation line bundle ξ_{θ}.
For a topological space X and a virtual bundle $\Phi=\Phi^{+}-\Phi^{-}$over X, let $\bar{\Omega}_{k}\left(X ; \xi_{\Phi}\right)$ be the group of bordism classes $[K, g, o r]$, where K is a smooth closed k dimensional manifold, $g: K \rightarrow X$ is a continuous map and or: $\xi_{K} \rightarrow g^{*}\left(\xi_{\Phi}\right)$ is an isomorphism.

We also consider the map $f_{k}: \Omega_{k}(X ; \Phi) \rightarrow \bar{\Omega}_{k}\left(X ; \xi_{\Phi}\right)$ which forgets the vector bundle isomorphism $\tau_{K} \oplus g^{*}\left(\Phi^{+}\right) \xrightarrow{\simeq} g^{*}\left(\Phi^{-}\right)$and retains the orientation information.

If X is connected we have that $\Omega_{0}(X ; \theta) \simeq \mathbb{Z}_{\theta} \simeq \bar{\Omega}_{0}\left(X ; \xi_{\theta}\right)$.
For each n, the homomorphism

$$
\Delta_{\theta}: \Omega_{n}(X ; \Phi) \rightarrow \Omega_{n-\ell}(X ; \Phi+\theta)
$$

is defined by considering

$$
w=\left[W^{n} \xrightarrow{g} X, h: \tau_{W} \oplus g^{*}\left(\Phi^{+}\right) \xrightarrow{\simeq} g^{*}\left(\Phi^{-}\right)\right]
$$

in $\Omega_{n}(X ; \Phi), Z^{n-\ell} \subset W^{n}$ (the zero set of a generic section of the vector bundle $g^{*}(\theta)$ over $\left.W^{n}\right)$, and the isomorphism $\left.v\left(Z^{n \ell}, W^{n}\right) \simeq g^{*}(\theta)\right|_{Z^{n-\ell}}$ by the formula

$$
\Delta_{\theta}(w)=\left[Z^{n-\ell} \xrightarrow{\left.g\right|_{Z}} X,\left.\left.\tau_{Z} \oplus g\right|^{*}\left(\Phi^{+}+\theta\right) \xrightarrow{\simeq} g\right|^{*}\left(\Phi^{-}\right)\right]
$$

The homomorphism Δ_{θ} and its weak analogue $\bar{\Delta}_{\theta}: \bar{\Omega}_{n}\left(X ; \xi_{\Phi}\right) \rightarrow \bar{\Omega}_{n-\ell}\left(X ; \xi_{\Phi+\theta}\right)$ and the homomorphism st ${ }_{a}$ and its weak analogue $\overline{\mathrm{st}}_{a}: \bar{\Omega}_{a}\left(P(\alpha) ; \xi_{\Phi_{1}}\right) \rightarrow \bar{\Omega}_{a}(M \times$ $P^{\infty} ; \xi_{\Phi}$) fit into the long exact Gysin sequences (1) and (2) below:

$$
\begin{align*}
& \cdots \longrightarrow \Omega_{j}\left(M^{\infty} ; \Phi\right) \xrightarrow{\tau_{j+1}} \Omega_{j-a}\left(M^{\infty} ; \Phi_{0}\right) \xrightarrow{\delta_{j}^{\prime}} \Omega_{j-1}\left(P(\alpha) ; \Phi_{1}\right) \tag{1}\\
& \xrightarrow{\mathrm{st}_{a}} \Omega_{j-1}\left(M^{\infty} ; \Phi\right) \longrightarrow \cdots \\
& \cdots \longrightarrow \bar{\Omega}_{j}\left(M^{\infty} ; \xi_{\Phi}\right) \xrightarrow{\bar{\tau}_{j+1}} \bar{\Omega}_{j-a}\left(M^{\infty} ; \xi_{\Phi_{0}}\right) \xrightarrow{\bar{\delta}_{j}^{\prime}} \bar{\Omega}_{j-1}\left(P(\alpha) ; \xi_{\Phi_{1}}\right) \tag{2}\\
& \xrightarrow{\overline{\mathrm{st}}_{a}} \bar{\Omega}_{j-1}\left(M^{\infty} ; \xi_{\Phi}\right) \longrightarrow \cdots
\end{align*}
$$

Here, $\bar{\tau}_{2}=\bar{\Delta}_{\lambda \otimes \alpha}, \bar{\delta}_{2}^{\prime}$ and δ_{2}^{\prime} come from Gysin sequences and $\tau_{2}=\bar{\tau}_{2} \circ f_{2}^{\infty}$, where $f_{2}^{\infty}: \Omega_{2}\left(M \times P^{\infty} ; \Phi\right) \rightarrow \bar{\Omega}_{2}\left(M \times P^{\infty} ; \xi_{\Phi}\right)$ is the forgetful map and M^{∞} denote $M \times P^{\infty}$ (see [4, Sections 1 and 2] for details).

The sequences above and other two singularity sequences defined in [2, Theorem 9.3], for $a=2$, fit together into the next commutative diagram, where we have exactness in all sequences if the two "pinching conditions", below, hold:
(i) $\Omega_{1}\left(M \times P^{\infty} ; \Phi_{0}\right) \simeq \bar{\Omega}_{1}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right)$
(ii) $\mathrm{st}_{1}: \Omega_{1}(P(\alpha) \times B O(2) ; \Phi+\Gamma) \xrightarrow{\simeq} \Omega_{1}\left(M \times P^{\infty} \times B O(2) ; \Phi+\Gamma\right)$ is an isomorphism.

In the diagram, we have $\Phi_{2}=\Phi+\Gamma$ where Γ is $\gamma_{2} \otimes \xi_{\gamma_{2}}+\xi_{\gamma_{2}}-\gamma_{2}$ and γ_{2} denotes the canonical plane bundle over $B O(2)$ (see [4, Theorem 3.1]). Also forg ${ }_{2}=\overline{\mathrm{s}}_{2} \circ f_{2}=$ $f_{2}^{\infty} \circ$ st $_{2}, \mathbb{Z}_{2}$ is in place of $\Omega_{0}\left(M \times P^{\infty} \times B O(2) ; \Phi_{2}\right)$ (see [2, Section 9.2, Theorem 9.3]), $\mathbb{Z}_{\Phi_{0}}$ is in place of $\bar{\Omega}_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right)$ and M^{∞} in the place of $M \times P^{\infty}$.

Figure 1: Diagram for $(a=2)$

For more details see [2, Section 9] and [4, Section 3].
We recall from [4, Proposition 3.3], that if $a=2$ and n is even, the two pinching conditions above are equivalent to each one of the conditions:

$$
w_{2}\left(\beta-\tau_{M}\right)\left[\rho\left(H_{2}\left(M ; \tilde{Z}_{\beta-\tau_{M}}\right)\right)\right] \neq 0
$$

or

$$
\left\{\begin{array}{c}
w_{1}(\beta) \neq 0 \text { if } n \equiv 0(4) \\
w_{1}(M) \neq 0 \text { if } n \equiv 2(4)
\end{array}\right.
$$

For $\Phi=\lambda \otimes(\beta-\alpha)-\tau_{M}$ and $\eta=\beta-\alpha-\tau_{M}$, as defined before, we have from [4, Propositions 1.2 and 1.3], the following Proposition.

Proposition 2.1 For $i \in \mathbb{Z}$

$$
\bar{\Omega}_{i}\left(M \times P^{\infty} ; \xi_{\Phi}\right) \simeq \begin{cases}\mathfrak{N}_{i}(M) & \text { if } a \not \equiv n(2) \\ \bar{\Omega}_{i}\left(M ; \xi_{\eta}\right) \oplus \mathfrak{N}_{i-1}(M) & \text { if } a \equiv n(2)\end{cases}
$$

3 Proofs of the theorems

We will study the kernel and cokernel of the stabilizing homomorphism

$$
\mathrm{st}_{a}: \Omega_{a}\left(P(\alpha) ; \Phi_{1}\right) \longrightarrow \Omega_{a}\left(M \times P^{\infty} ; \Phi\right)
$$

We recall that

$$
\begin{aligned}
\Omega_{0}\left(M^{\infty} ; \Phi_{0}\right) & \simeq \bar{\Omega}_{0}\left(M^{\infty} ; \xi_{\Phi_{0}}\right) \\
& \simeq\left\{\begin{array}{l}
\mathbb{Z} \text { if } w_{1}\left(\Phi_{0}\right)=n x+w_{1}(\beta)+w_{1}(M)=0 \\
\mathbb{Z}_{2} \text { if } w_{1}\left(\Phi_{0}\right)=n x+w_{1}(\beta)+w_{1}(M) \neq 0
\end{array}\right. \\
\Omega_{0}\left(P(\alpha) ; \Phi_{1}\right) & \simeq \bar{\Omega}_{0}\left(P(\alpha) ; \xi_{\Phi_{1}}\right) \\
& \simeq\left\{\begin{array}{l}
\mathbb{Z} \text { if } w_{1}\left(\Phi_{1}\right)=n w_{1}(\alpha)+w_{1}(\beta)+w_{1}(M)=0 \\
\mathbb{Z}_{2} \text { if } w_{1}\left(\Phi_{1}\right)=n w_{1}(\alpha)+w_{1}(\beta)+w_{1}(M) \neq 0
\end{array}\right.
\end{aligned}
$$

Let us consider also the following commutative diagram, for $a=1$, where the horizontal sequences are defined in [2, Theorem 9.3] and the vertical sequences come from the Gysin sequences (1) and (2), also for $a=1$. We also recall that in this case $P(\alpha)=M$.

Figure 2: Diagram for $(a=1)$

Lemma 1 If $\sigma_{j_{2}}$ and $\sigma_{j_{2}}^{\infty}$ are surjective or both null maps then $\operatorname{kerst}{ }_{1} \simeq \operatorname{ker} \overline{\mathrm{st}}_{1}$.

If $\sigma_{j_{2}}$ is the null map and $\sigma_{j_{2}}^{\infty}$ is a surjective map then kerst_{1} is an extension of $\operatorname{ker} \overline{\mathrm{st}}_{1}$ by \mathbb{Z}_{2}.

Proof The proof is obtained by diagram chasing in Figure 2 above.
Lemma 2 Let n be odd and $w_{2}\left(\Phi_{1}\right)=0$ then for $n \equiv 1(4), \sigma_{j_{2}}^{\infty}=0$, if $w_{1}(\beta-\alpha)=0$ and $\sigma_{j_{2}}^{\infty}$ is surjective if $w_{1}(\beta-\alpha) \neq 0$.

For $n \equiv 3(4), \sigma_{j_{2}}^{\infty}=0$, if $w_{1}(M)=0$ and $\left(w_{1}(\alpha)=0\right.$ or $\left.w_{1}(\beta)=0\right)$ and $\sigma_{j_{2}}^{\infty}$ is surjective if $w_{1}(M) \neq 0$.

Proof Let $w=\left[K^{2},\left(h_{1}, h_{2}\right), \bar{h}\right] \in \bar{\Omega}_{2}\left(M \times P^{\infty} ; \xi_{\Phi}\right) \simeq \bar{\Omega}_{2}\left(M ; \xi_{\eta}\right) \oplus H_{1}\left(M ; \mathbb{Z}_{2}\right) \simeq$ $H_{2}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right) \oplus H_{1}\left(M ; \mathbb{Z}_{2}\right)$.
We observe that w corresponds to $\left(\left[K^{2}, h_{1}, h\right], h_{1_{*}}\left(\left[L^{1}\right]\right)\right)$, where $L^{1} \subset K^{2}$ is the zero set of a generic section of the pullback vector bundle $h_{2}^{*}(\lambda)$ over K^{2}, and h is equivalent to an isomorphism $h_{2}^{*}(\lambda) \simeq \xi_{L} \oplus h_{1}^{*}\left(\xi_{\eta}\right)$. Then $w_{1}(\lambda)=w_{1}(L)+w_{1}(\eta)$ (see [4, Section 1.8]), for simplicity L^{1} and K^{2} are denoted by L and K, respectively. It follows from $[4$, Section 0.18$]$ that for all $y \in H^{1}\left(M ; \mathbb{Z}_{2}\right), y([L])=y w_{1}(\lambda)([K])$.

Using [2, Theorem 9.3], we have that

$$
\begin{array}{lll}
& \sigma_{j_{2}}^{\infty}(w)=\left(w_{1}(\lambda) w_{1}(\beta-\alpha)+w_{2}(\eta)\right)([K]) & \text { if } n \equiv 1(4) \\
\text { and } & \sigma_{j_{2}}^{\infty}(w)=\left(\left(w_{1}(\lambda)\right)^{2}+w_{1}(\lambda)\left(w_{1}(\beta-\alpha)\right)+w_{2}(\eta)\right)([K]) & \text { if } \quad n \equiv 3(4)
\end{array}
$$

In the first case we have

$$
\sigma_{j_{2}}^{\infty}(w)=w_{1}(\beta-\alpha)([L])+w_{2}(\eta)([K])
$$

and in the second case,

$$
\begin{aligned}
\sigma_{j_{2}}^{\infty}(w) & =\left(w_{1}(\lambda)+w_{1}(\beta-\alpha)\right)([L])+w_{2}(\eta)([K]) \\
& =\left(w_{1}(L)+w_{1}(\eta)+w_{1}(\beta-\alpha)\right)([L])+w_{2}(\eta)([K]) \\
& =w_{1}(M)([L])+w_{2}(\eta)([K])
\end{aligned}
$$

It follows that for $s \in H_{2}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right)$ and $t \in H_{1}\left(M ; \mathbb{Z}_{2}\right)$ we have

$$
\begin{array}{lll}
& \sigma_{j_{2}}^{\infty}(w)=w_{1}(\beta-\alpha)(t)+w_{2}(\eta) \rho(s) & \text { if } n \equiv 1(4) \\
\text { and } & \sigma_{j_{2}}^{\infty}(w)=w_{1}(M)(t)+w_{2}(\eta) \rho(s) & \text { if } n \equiv 3(4)
\end{array}
$$

The result follows by observing that if $n \equiv 1(4), w_{2}\left(\Phi_{1}\right)=w_{1}(\alpha) w_{1}(\beta-\alpha)+w_{2}(\eta)$ and if $n \equiv 3(4), w_{2}\left(\Phi_{1}\right)=w_{1}(\alpha) w_{1}(\beta)+w_{2}(\eta)$.

Proof of Theorem 1.1 Let $n>3$ be odd and $a=1$.
We have that $w_{1}\left(\Phi_{0}\right)=x+w_{1}\left(\beta-\tau_{M}\right)$ and $w_{1}\left(\Phi_{1}\right)=w_{1}(\eta)$.
Note that $H_{1}\left(M \times P^{\infty}\right) \simeq H_{1}(M) \oplus H_{1}\left(P^{\infty}\right) \simeq H_{1}(M) \oplus \mathbb{Z}_{2}$ and, if we call b the generator of the \mathbb{Z}_{2} factor, we have $x(b) \neq 0, w_{1}(\beta)(b)=0=w_{1}(M)(b)$ and so we have $w_{1}\left(\Phi_{0}\right) \neq 0$, which gives us $\mathbb{Z}_{\Phi_{0}} \simeq \mathbb{Z}_{2} \simeq \bar{\Omega}_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right)$ and from [4, Proposition 2.1], $\overline{\mathrm{st}}_{1}$ and $\overline{\mathrm{st}}_{0}$ are injective. Therefore, $\bar{\tau}_{1}$ is onto $\bar{\Omega}_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right) \simeq$ \mathbb{Z}_{2}, see Figure 2.
But \bar{f}_{0}^{∞} is an isomorphism, so τ_{1} is also onto $\mathbb{Z}_{2} \simeq \Omega_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right)$. Then coker st ${ }_{1} \simeq \mathbb{Z}_{2}$. It follows also from Diagram IV and the fact that $\overline{\mathrm{st}}_{1}$ is injective that ker st ${ }_{1} \subset \operatorname{im} \delta_{1}$, the image of δ_{1}, which is zero or isomorphic to \mathbb{Z}_{2}.
If $w_{2}\left(\Phi_{1}\right)\left[\rho\left(H_{2}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right)\right)\right] \neq 0, \sigma_{j_{2}}$ is surjective. Therefore we can conclude that $\Omega_{1}\left(P(\alpha) ; \Phi_{1}\right) \simeq \bar{\Omega}_{1}\left(P(\alpha) ; \xi_{\Phi_{1}}\right) \simeq H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right)$ and recalling that $\overline{\mathrm{st}}_{1}$ is injective we obtain in Diagram IV that st ${ }_{1}$ is also injective.

If $w_{2}\left(\Phi_{1}\right)=0, \sigma_{j_{2}}$ is the null map, and then $\Omega_{1}\left(P(\alpha) ; \Phi_{1}\right)$ is an extension of $H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right)$ by \mathbb{Z}_{2}. The result follows from Lemmas 1 and 2 above.

Lemma 3 Let $n>3$ be even and $a=1$.
If $w_{1}(\beta)=w_{1}(M), \overline{\mathrm{st}}_{1}$ is surjective and $H_{1}(M ; \mathbb{Z})$ is an extension of $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ by $\operatorname{ker} \overline{\mathrm{st}}_{1}$. We have also that $\left|H_{1}(M ; \mathbb{Z})\right|=\left|\operatorname{ker} \overline{\mathrm{st}}_{1}\right| \cdot\left|H_{1}\left(M ; \mathbb{Z}_{2}\right)\right|$.

If $w_{1}(\beta) \neq w_{1}(M)$, coker $\overline{s t}_{1} \simeq \mathbb{Z}_{2}$ and $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ is an extension of \mathbb{Z}_{2} by $H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right) \operatorname{ker} \overline{\mathrm{st}}_{1}$. We have also $2 .\left|H_{1}\left(M ; \overline{\mathbb{Z}}_{\eta_{0}}\right)\right|=\left|\operatorname{ker} \overline{\mathrm{st}}_{1}\right| .\left|H_{1}\left(M ; \mathbb{Z}_{2}\right)\right|$.

Proof Let us consider the long exact Gysin sequence (2).
If $w_{1}(\beta)=w_{1}(M), w_{1}\left(\Phi_{0}\right)=0$ and so $\bar{\Omega}_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right) \simeq \mathbb{Z}$ is a free abelian group. Since n is even, $\bar{\Omega}_{1}\left(M \times P^{\infty} ; \xi_{\Phi}\right) \simeq H_{1}\left(M ; \mathbb{Z}_{2}\right)$ is a torsion group so $\bar{\tau}_{1}$ is zero and then $\overline{\mathrm{st}}_{1}$ is surjective. It follows that $H_{1}(M ; \mathbb{Z}) / \operatorname{ker} \overline{\mathrm{st}}_{1} \simeq H_{1}\left(M ; \mathbb{Z}_{2}\right)$.

If $w_{1}(M) \neq w_{1}(\beta), \overline{\mathrm{st}}_{0}$ is injective from [4, Proposition 2.1] and $\bar{\Omega}_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right) \simeq$ \mathbb{Z}_{2}. Therefore, $\mathbb{Z}_{2} \simeq \operatorname{coker} \overline{\mathrm{st}}_{1} \simeq H_{1}\left(M ; \mathbb{Z}_{2}\right) / \operatorname{ker} \bar{\tau}_{1}$, where $\operatorname{ker} \bar{\tau}_{1} \simeq H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right) /$ $\operatorname{ker} \overline{\mathrm{st}}_{1}$.

Proof of Theorem 1.2 Let $n>3$ be even and $a=1$. In this case we recall that $w_{1}\left(\Phi_{0}\right)=w_{1}\left(\eta_{0}\right)=w_{1}\left(\Phi_{1}\right)$. If $w_{1}(\beta)=w_{1}(M)$ it follows from Lemma 3 that $\overline{\mathrm{st}}_{1}$ is surjective. Therefore, by Figure 2 , st $_{1}$ is also surjective. If $w_{1}(\beta) \neq w_{1}(M), w_{1}\left(\Phi_{0}\right) \neq$ 0 and so $\bar{\Omega}_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right) \simeq \mathbb{Z}_{2}$. We have again that $\overline{\mathrm{st}}_{0}$ is injective and so $\bar{\tau}_{1}$ is onto $\mathbb{Z}_{2} \simeq \bar{\Omega}_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right)$.

Since f_{0}^{∞} is an isomorphism, τ_{1} is onto $\mathbb{Z}_{2} \simeq \Omega_{0}\left(M \times P^{\infty} ; \Phi_{0}\right)$ and coker st ${ }_{1} \simeq \mathbb{Z}_{2}$. If $w_{2}\left(\Phi_{1}\right)\left[\rho\left(H_{2}\left(M ; \tilde{\mathbb{Z}}_{\eta}\right)\right)\right] \neq 0, \sigma_{j_{2}}$ and $\sigma_{j_{2}}^{\infty}$ are surjective maps, then, ker st $\simeq \operatorname{ker} \overline{s t}_{1}$. We recall that if $w_{2}\left(\Phi_{1}\right)=0$, the map $\sigma_{j_{2}}=0$, and so $\Omega_{1}\left(M ; \Phi_{1}\right)$ is an extension of $H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\eta_{0}}\right)$ by \mathbb{Z}_{2}.
With the condition $w_{2}\left(\Phi_{1}\right)=0$ we have that if $n \equiv 2(4)$ and $w_{1}(\alpha)=0=w_{1}(\beta) w_{1}(M)$, $\sigma_{j_{2}}^{\infty}(s, t)=\left(w_{1}(M) w_{1}(\beta-\alpha)+w_{2}(\eta)\right)(s)=0$ and so we have $\operatorname{kerst} t_{1} \simeq \operatorname{ker} \overline{\operatorname{st}}_{1}$. If $n \equiv 0(4)$ or $n \equiv 2(4)$ and $\left(w_{1}(\alpha)\right)^{2} \neq w_{1}(M) w_{1}(\beta), \sigma_{j_{2}}^{\infty}$ is surjective and ker st ${ }_{1}$ is an extension of ker $\overline{\mathrm{st}}_{1}$ by \mathbb{Z}_{2}.

Therefore, the results follow by remarking that if $\sigma_{j_{2}}^{\infty}$ is surjective, then

$$
\Omega_{1}\left(M \times P^{\infty} ; \Phi\right) \simeq H_{1}\left(M ; \mathbb{Z}_{2}\right)
$$

and if $\sigma_{j_{2}}^{\infty}=0$, then $\Omega_{1}\left(M \times P^{\infty} ; \Phi\right)$ is an extension of $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ by \mathbb{Z}_{2}.
Lemma 4 Let $n>5$ be even, $a=2$ and $w_{1}(\beta)=w_{1}(M)$. Then $\bar{\tau}_{2}=0$ if and only if $\tau_{2}=0$.

Proof Since $\tau_{2}=\bar{\tau}_{2} \circ f_{2}^{\infty}, \bar{\tau}_{2}=0$ implies $\tau_{2}=0$.
Let $\tau_{2}=0$. In Figure $1, \Omega_{0}\left(M \times P^{\infty} \times B O(2) ; \Phi_{2}\right) \simeq \mathbb{Z}_{2}$ (see Koschorke [2, Section 9.2, Theorem 9.3]), $\bar{\Omega}_{0}\left(M \times P^{\infty} ; \xi_{\Phi_{0}}\right) \simeq \mathbb{Z}$ and $\bar{\Omega}_{2}\left(M \times P^{\infty} ; \xi_{\Phi}\right) / f_{2}^{\infty}\left(\Omega_{2}\left(M \times P^{\infty} ; \Phi\right)\right)$ is isomorphic to $\sigma_{j_{2}}^{\infty}\left(\bar{\Omega}_{2}\left(M \times P^{\infty} ; \xi_{\Phi}\right)\right)$.
Then, in case $\sigma_{j_{2}}^{\infty}=0, f_{2}^{\infty}$ is surjective and since $\tau_{2}=0$ we have $\overline{\mathrm{st}}_{2}$ also surjective and so $\bar{\tau}_{2}=0$.
If $\sigma_{j_{2}}^{\infty}\left(\bar{\Omega}_{2}\left(M \times P^{\infty} ; \xi_{\phi}\right)\right) \simeq \mathbb{Z}_{2}$, the image of f_{2}^{∞} has index 2 and the image of $\overline{s t}_{2}$ has index at most 2 , and the result follows.

Proof of Theorem 1.3 Let $n>5$ be even and $a=2$.
We have $w_{2}\left(\beta-\tau_{M}\right) \rho\left(H_{2}\left(M ; \tilde{Z}_{\beta-\tau_{M}}\right)\right) \neq 0$ or $w_{1}(\beta) \neq 0$ if $n \equiv 0(4)$ and $w_{1}(M) \neq 0$ if $n \equiv 2(4)$ so the pinching conditions are valid and we can use Figure 1.
Let $z=\left[K^{2} \xrightarrow{\left(g_{1}, g_{2}\right)} M \times P^{\infty}, \bar{g}\right] \in \bar{\Omega}_{2}\left(M \times P^{\infty} ; \xi_{\Phi}\right) \simeq H_{2}\left(M ; \tilde{Z}_{\eta}\right) \oplus H_{1}\left(M ; \mathbb{Z}_{2}\right)$. We denote this isomorphism by φ and $\varphi(z)=(s, t)$. Then

$$
\mu\left(\bar{\tau}_{2}(z)\right)=w_{2}(\alpha) \rho(s)+w_{1}\left(\beta-\tau_{M}\right)(t)
$$

Let us consider $w_{1}(\beta)=w_{1}(M)$. Then if $w_{2}(\alpha) \rho\left(H_{2}\left(M ; \tilde{Z}_{\eta}\right)\right)=0, \bar{\tau}_{2}=0$, and it follows by Lemma 4 that $\tau_{2}=0$ and then st_{2} is surjective. If $w_{2}(\alpha) \rho\left(H_{2}\left(M ; \tilde{Z}_{\eta}\right)\right) \neq 0$, $\bar{\tau}_{2} \neq 0$ and so cokerst ${ }_{2} \simeq \mathbb{Z}$.

If $w_{1}(\beta) \neq w_{1}(M), \bar{\tau}_{2}$ is onto \mathbb{Z}_{2} by [4, Proposition 2.1$]$ and so is τ_{2}. If $w_{2}(\Phi)=0$ then f_{2}^{∞} is surjective. Therefore coker st ${ }_{2} \simeq \mathbb{Z}_{2}$. If $w_{2}(\Phi) \neq 0$, we have that $\sigma_{j_{2}}^{\infty}$ is onto \mathbb{Z}_{2}. Since forg ${ }_{2}=f_{2}^{\infty} \circ \operatorname{st}_{2}$, we have that coker forg ${ }_{2} \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. If st ${ }_{2}$ is surjective, forg 2 and f_{2}^{∞} have the same image and then the index of this image in $\bar{\Omega}_{2}\left(P^{\infty} \times M ; \xi_{\Phi}\right)$ is 2 , which is a contradiction. It follows that $\tau_{2} \neq 0$ and again coker st ${ }_{2} \simeq \mathbb{Z}_{2}$.

Let us now analyze kerst ${ }_{2}$ when $w_{2}(\Phi)=0$. We have that δ_{2} and δ_{2}^{∞} are injective (see footnote of [2, Theorem 9.3]). In the Figure 1 we see that $\sigma_{j_{3}}^{\infty}=0$, and then f_{3}^{∞} is surjective. As a consequence, $\operatorname{im} \bar{\tau}_{3}$ is equal to im τ_{3}, and then we have that $\operatorname{kerst} t_{2} \simeq H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\beta-\tau_{M}}\right) \oplus \mathbb{Z}_{2} / \bar{\tau}_{3}\left(\operatorname{ker} \sigma_{j_{3}}^{\infty}\right)$, where $\operatorname{ker} \sigma_{j_{3}}^{\infty}=\bar{\Omega}_{3}\left(M \times P^{\infty} ; \xi_{\Phi}\right)$.

We compute now the image of $\bar{\Omega}_{3}\left(M \times P^{\infty} ; \xi_{\Phi}\right)$ by $\bar{\tau}_{3}$. Let

$$
\begin{aligned}
w=\left[K^{3} \xrightarrow{\left(g_{1}, g_{2}\right)} M \times P^{\infty} ; \bar{g}\right] \in \bar{\Omega}_{3}\left(M \times P^{\infty} ; \xi_{\Phi}\right) & \simeq H_{3}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right) \oplus \mathfrak{N}_{2}(M) \\
& \simeq H_{3}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right) \oplus H_{2}\left(M ; \mathbb{Z}_{2}\right) \oplus \mathbb{Z}_{2}
\end{aligned}
$$

We remark that w corresponds to $\left(\left[K^{3} \xrightarrow{g_{1}} M, \bar{g}\right],\left[L^{2} \xrightarrow{g_{1} L_{L}} M\right]\right)$, where L^{2} is the zero set of a generic section of the vector bundle λ over K, and

$$
\left[L^{2} \xrightarrow{g_{1} L_{L}} M\right]
$$

corresponds to $\left(\left(\left.g_{1}\right|_{L^{2}}\right)_{*}\left(\mu\left(L^{2}\right)\right),\left[P^{2} \xrightarrow{c} M\right]\right)$, where c is a constant map. Notice that for all $y \in H^{1}\left(M ; \mathbb{Z}_{2}\right), y\left(\left[P^{2}\right]\right)=0$ and $y\left(\left[\mu\left(\bar{\tau}_{3}(w)\right)\right]\right)=\left(y w_{2}\left(\lambda \otimes \alpha^{2}\right)\right)([M])$ and the image of $\bar{\tau}_{3} \subset H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\beta-\tau_{M}}\right)$. Therefore, kerst ${ }_{2} \simeq H_{1}\left(M ; \widetilde{\mathbb{Z}}_{\beta-\tau_{M}}\right) / A \oplus \mathbb{Z}_{2}$, where

$$
\begin{aligned}
& A=\left\{z \mid y(\rho(z))=\left(y w_{2}(\alpha)\right) \rho\left(c_{3}\right)+y w_{1}\left(\beta-\tau_{M}\right)\left(c_{2}\right)\right. \\
& \left.\qquad c_{3} \in H_{3}\left(M ; \widetilde{\mathbb{Z}}_{\eta}\right), c_{2} \in H_{2}\left(M ; \mathbb{Z}_{2}\right), \forall y \in H^{1}\left(M ; \mathbb{Z}_{2}\right)\right\}
\end{aligned}
$$

This completes the proof.

Proof of Corollary 1.4 Since $w_{1}(\beta)=w_{1}(M) \neq 0$ and α is the trivial bundle, it follows from Theorem 1.3 that st_{2} is surjective.

Using Figure 1 we obtain that ker st ${ }_{2} \simeq H_{1}(M ; \mathbb{Z}) \oplus \mathbb{Z}_{2} / \bar{\tau}_{3}\left(f_{3}^{\infty}\left(\Omega_{3}\left(M \times P^{\infty} ; \Phi\right)\right)\right)$. But under our hypothesis $\bar{\tau}_{3}=0$, then $\operatorname{kerst}_{2} \simeq H_{1}(M ; \mathbb{Z}) \oplus \mathbb{Z}_{2}$.

4 Examples

Example 1 Let p_{1}, p_{2}, p_{3} and q_{1}, q_{2}, q_{3} be arbitrary integers and consider the vector bundles $\alpha^{2}=\gamma_{1}^{\prime} \otimes \gamma_{2}^{\prime} \otimes \gamma_{3}^{\prime}$ and $\beta^{6}=\gamma_{1} \times \gamma_{2} \times \gamma_{3}$ over $M^{6}=S_{1}^{2} \times S_{2}^{2} \times S_{3}^{2}$. Each factor S_{i}^{2} is identified with $C P(1), \gamma_{i}^{\prime}$ and γ_{i} are complex line bundles characterized respectively by $c_{1}\left(\gamma_{i}^{\prime}\right)=p_{i} \cdot g^{i}$ and by $c_{1}\left(\gamma_{i}\right)=q_{i} \cdot g^{i}$, where g^{i} denotes the generator of $H^{2}\left(S_{i}^{2} ; \mathbb{Z}\right)$ and c_{1} is the first Chern class. Therefore, we have that

$$
\begin{aligned}
w_{2}(\alpha) & =p_{1} \rho\left(g^{1}\right)+p_{2} \rho\left(g^{2}\right)+p_{3} \rho\left(g^{3}\right) \\
w_{2}(\beta) & =q_{1} \rho\left(g^{1}\right)+q_{2} \rho\left(g^{2}\right)+q_{3} \rho\left(g^{3}\right) \\
w_{2}(M) & =0
\end{aligned}
$$

From [5, Proposition 4.3] we know that there is a non-stable monomorphism $u_{0}: \alpha \hookrightarrow \beta$ in the following cases
(i) $p_{1}+p_{2}+p_{3}=0$ and at least one of the q_{i} 's is zero and
(ii) $p=p_{1}+p_{2}+p_{3} \neq 0$ and $\left(q_{1}-p\right) \cdot\left(q_{2}-p\right) \cdot\left(q_{3}-p\right)$ is divisible by $4 p$.

Since $w_{1}(M), w_{1}(\beta)$ and $w_{2}(M)$ are all zero, to satisfy the pinching conditions we need $w_{2}(\beta) \neq 0$, that is, at least one of the q_{i} 's is $\neq 0$.

Different choices of the parameters give rise to different examples.
(1) If $p=0, p_{i} \equiv 0(2)$, for some $k, q_{k} \equiv 1(2)$ and for some $j, q_{j}=0$, we have $w_{2}(\alpha)=0$ and $w_{2}(\beta) \neq 0$ and so st $_{2}$ is surjective.
(2) If for some $k, p_{k} \equiv 1(2), p=0$, for some $l, q_{l} \equiv 1(2)$ and for some $j, q_{j}=0$, then $w_{2}(\alpha) \neq 0$ and $w_{2}(\beta) \neq 0$ and so coker st $t_{2} \simeq \mathbb{Z}$.
Note that

$$
\begin{aligned}
w_{2}(\Phi)=w_{2}(\eta)=w_{2}(\alpha)+w_{2}(\beta) & \\
& =\left(p_{1}+q_{1}\right) \rho\left(g^{1}\right)+\left(p_{2}+q_{2}\right) \rho\left(g^{2}\right)+\left(p_{3}+q_{3}\right) \rho\left(g^{3}\right)
\end{aligned}
$$

(3) If $p_{i} \equiv q_{i}(2) i=1,2$ and $3, p=0, q_{k}=0$ for some k and for some $l, q_{l} \equiv 1(2)$, then $w_{2}(\alpha)=w_{2}(\beta)$ and so $w_{2}(\Phi)=0$ and $\operatorname{kerst} t_{2} \simeq \mathbb{Z}_{2}$.

Example 2 Let $M=P^{2} \times S^{4}$, and let α and β be trivial bundles over M. Since $w_{1}(M) \neq 0, w_{1}(M) \neq w_{1}(\beta)$. In this case

$$
\begin{aligned}
w_{2}(\Phi) & =0 \\
\operatorname{kerst}_{2} & \simeq H_{1}\left(P^{2} \times S^{4} ; \mathbb{Z}_{\beta-\tau_{M}}\right) \oplus \mathbb{Z}_{2} \simeq \mathbb{Z}_{2} \\
\text { coker st }_{2} & \simeq \mathbb{Z}_{2}
\end{aligned}
$$

Example 3 We consider some examples of the special case of tangent vector fields, that is, when α is the trivial line bundle and β is the tangent bundle τ_{M} over a n-dimensional manifold M with $n>3$.
(1) $M=S^{1} \times S^{2 k}$. We have coker st ${ }_{1} \simeq \mathbb{Z}_{2}$, that is, half of the stable vector fields over $S^{1} \times S^{2 k}$ come from nonstable vector fields. Also, ker st ${ }_{1}=0$, so we have at most one nonstable vector field stabilizing to any stable one.
(2) $M=S^{1} \times S^{4 k+3}$. In this case, we have infinitely many nonstable vector fields and two stable ones. The homomorphism st ${ }_{1}$ is surjective, so, infinitely many nonstable vector fields are associated to each of the two stable ones.
(3) $M=P^{2 k+1} \times S^{2 k+1}$. In this case st_{1} is an isomorphism, so to any stable vector field there is a unique nonstable one stabilizing to it.
(4) $M=P^{2 k+1}$. In this case, $w_{1}(M)=0$ and coker st ${ }_{1} \simeq \mathbb{Z}_{2}$. We have 4 stable and 4 nonstable vector fields. So only 2 stable ones come from nonstable ones and there are two of them for each stable one.

Example 4 We give now an example where α is a non trivial orientation line bundle $\xi_{M^{n}}$ over a manifold $M^{n}(n \geq 3)$ and β is $\tau_{M^{n}}$. We observe that if M^{n} is orientable $\xi_{M^{n}}$ is trivial, a case already considered above. So, we are taking M^{n} to be a nonorientable manifold.
$M=S^{1} \times P^{4 k}$. Then $H_{1}(M ; \mathbb{Z}) \simeq \mathbb{Z}_{2}$, (see Borsari-Gonçalves [1, Theorem 2.5]) and st_{1} and $\overline{\mathrm{st}}_{1}$ are injective. In the Diagram IV we get $\left|\Omega_{1}\left(M ; \Phi_{1}\right)\right|=\left|\Omega_{1}\left(P(\alpha) ; \Phi_{1}\right)\right|=4$ and $\left|\Omega_{1}\left(M \times P^{\infty} ; \Phi\right)\right|=8$; so coker st ${ }_{1} \simeq \mathbb{Z}_{2}$, that is, only half of the homotopy classes of stable monomorphism contains unstable ones, and if so, each class contains exactly one element.

Acknowledgement

We would like to express our thanks to Ulrich Koshorke for his careful reading and helpful suggestions, which has substantially improved the early versions of this manuscript.

This work was partially supported by FAPESP, Projecto Temático Topologia Algébrica, Geométrica e Diferencial-2004/10229-6.

References

[1] LD Borsari, D L Gonçalves, The first (co)homology group with local coefficients (2005) preprint
[2] U Koschorke, Vector fields and other vector bundle morphisms - a singularity approach, Lecture Notes in Mathematics 847, Springer, Berlin (1981) MR611333
[3] U Koschorke, The singularity method and immersions of m-manifolds into manifolds of dimensions $2 m-2,2 m-3$ and $2 m-4$, from: "Differential topology (Siegen, 1987)", Lecture Notes in Mathematics 1350, Springer, Berlin (1988) 188-212 MR979341
[4] U Koschorke, Nonstable and stable monomorphisms of vector bundles, Topology Appl. 75 (1997) 261-286 MR1430089
[5] U Koschorke, Complex and real vector bundle monomorphisms, Topology Appl. 91 (1999) 259-271 MR1666651
[6] A KM Libardi, V M do Nascimento, I C Rossini, The cardinality of some normal bordism groups and its applications, Rev. Mat. Estatíst. 21 (2003) 107-114 MR2058498
[7] A KM Libardi, I C Rossini, Enumeration of nonstable monomorphisms: the even case, from: "XI Brazilian Topology Meeting (Rio Claro, 1998)", World Sci. Publ., River Edge, NJ (2000) 80-84 MR1835691
[8] D Randall, J Daccach, Cobordismo Normal e Aplicacoes, Notas do Instituto de Ciências Matemáticas de São Carlos, ICMC-USP (1988)

Departamento de Matemática, IME - Universidade de São Paulo
Caixa Postal 66281-Agê ncia Cidade de São Paulo, 05311-970, São Paulo-SP, Brazil
Departamento de Matemática, IGCE - Universidade Estadual Paulista Júlio de Mesquita Filho Av. 24A, 1515, 13506-700, Rio Claro - SP, Brazil

Departamento de Matemática, ICMC - Universidade de São Paulo
Av. Trabalhador Sãocarlense, 400 - Caixa Postal 668, 13560-970, São Carlos - SP, Brazil
dlgoncal@ime.usp.br, alicekml@rc.unesp.br, ozimneto@icmc.usp.br

Received: 13 November 2006 Revised: 23 March 2007

