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Matching theorems for systems of a finitely generated
Coxeter group

MICHAEL L MIHALIK

JOHN G RATCLIFFE

STEVEN T TSCHANTZ

We study the relationship between two sets S and S 0 of Coxeter generators of a
finitely generated Coxeter group W by proving a series of theorems that identify
common features of S and S 0 . We describe an algorithm for constructing from any
set of Coxeter generators S of W a set of Coxeter generators R of maximum rank
for W .

A subset C of S is called complete if any two elements of C generate a finite group.
We prove that if S and S 0 have maximum rank, then there is a bijection between the
complete subsets of S and the complete subsets of S 0 so that corresponding subsets
generate isomorphic Coxeter systems. In particular, the Coxeter matrices of .W;S/

and .W;S 0/ have the same multiset of entries.

1 Introduction

The isomorphism problem for finitely generated Coxeter groups is the problem of
deciding if two finite Coxeter matrices define isomorphic Coxeter groups. Coxeter
[5] solved this problem for finite irreducible Coxeter groups. Recently there has been
considerable interest and activity on the isomorphism problem for arbitrary finitely
generated Coxeter groups. For a recent survey, see Mühlherr [11].

The isomorphism problem for finitely generated Coxeter groups is equivalent to the
problem of determining all the automorphism equivalence classes of sets of Coxeter
generators for an arbitrary finitely generated Coxeter group. In this paper, we study the
relationship between two sets S and S 0 of Coxeter generators of a finitely generated
Coxeter group W by proving a series of matching theorems that identify common
features of S and S 0 .

A basic subset of S is a maximal subset B of S such that B generates an irreducible,
noncyclic, finite subgroup of W . The point of departure of our paper is the following
matching theorem (Theorem 4.18).
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Basic Matching Theorem Let W be a finitely generated Coxeter group with two sets
of Coxeter generators S and S 0 . Then there is a natural bijection (matching) between
the basic subsets of S and the basic subsets of S 0 .

A basic subset B of S matches a basic subset B0 of S 0 if and only if ŒhBi; hBi� is
conjugate to ŒhB0i; hB0i� in W . Usually matching basic subsets generate isomorphic
groups, in which case, we say that the basic subsets match isomorphically; however,
there are exceptions, due to well known isomorphisms between irreducible and reducible
finite Coxeter groups (for instance the dihedral group D2.6/ of order 12 and A1�A2 ).
We show that nonisomorphic matching of basic subsets can be understood by blowing
up Coxeter generating sets. This is a procedure to replace a given Coxeter generating
set S by a Coxeter generating set R such that jRj D jS j C 1. We prove that if two
Coxeter generating sets S and S 0 for W have nonisomorphically matching basic
subsets, then either S or S 0 can be blown up.

We describe a simple algorithm to determine if S can be blown up. We prove that
every sequence S1;S2; : : : of Coxeter generators of W , such that SiC1 is obtained
from Si by blowing up Si for each i , terminates in a set of Coxeter generators R that
has maximum rank jRj over all sets of Coxeter generators of W . If R and R0 are sets
of Coxeter generators of W of maximum rank, then the basic subsets of R and R0

match isomorphically, since neither R nor R0 can be blown up.

A subset C of S is called complete if any two elements of C generate a finite group.
The main result of our paper is the following matching theorem (Theorem 7.7).

Simplex Matching Theorem Let W be a finitely generated Coxeter group with two
sets of Coxeter generators S and S 0 whose basic subsets match isomorphically. Then
there is a bijection between the complete subsets of S and the complete subsets of
S 0 so that corresponding subsets generate isomorphic Coxeter systems. In particular,
jS j D jS 0j, and the Coxeter matrices of .W;S/ and .W;S 0/ have the same multiset of
entries.
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2 Preliminaries

A Coxeter matrix is a symmetric matrix M D .m.s; t//s;t2S with m.s; t/ either a
positive integer or infinity and m.s; t/D 1 if and only if s D t . A Coxeter system with
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Coxeter matrix M D .m.s; t//s;t2S is a pair .W;S/ consisting of a group W and a
set of generators S for W such that W has the presentation

W D hS j.st/m.s;t/ W s; t 2 S and m.s; t/ <1i:

If .W;S/ is a Coxeter system with Coxeter matrix M D .m.s; t//s;t2S , then the
order of st is m.s; t/ for each s; t in S by Bourbaki [1, Proposition 4], and so a
Coxeter system .W;S/ determines its Coxeter matrix; moreover, any Coxeter matrix
M D .m.s; t//s;t2S determines a Coxeter system .W;S/ where W is defined by the
above presentation. If .W;S/ is a Coxeter system, then W is called a Coxeter group
and S is called a set of Coxeter generators for W , and the cardinality of S is called
the rank of .W;S/. A Coxeter system .W;S/ has finite rank if and only if W is
finitely generated by [1, Theorem 2(iii)].

Let .W;S/ be a Coxeter system. A visible subgroup of .W;S/ is a subgroup of W of
the form hAi for some A� S . A visible subgroup is also called a special subgroup or
a standard parabolic subgroup. If hAi is a visible subgroup of .W;S/, then .hAi;A/
is also a Coxeter system by [1, Theorem 2(i)].

When studying a Coxeter system .W;S/ with Coxeter matrix M it is helpful to have a
visual representation of .W;S/. There are two graphical ways of representing .W;S/

and we shall use both depending on our needs.

The Coxeter diagram (C–diagram) of .W;S/ is the labeled undirected graph �.W;S/

with vertices S and edges

f.s; t/ W s; t 2 S and m.s; t/ > 2g

such that an edge .s; t/ is labeled by m.s; t/. Coxeter diagrams are useful for visually
representing finite Coxeter groups. If A � S , then �.hAi;A/ is the subdiagram of
�.W;S/ induced by A.

A Coxeter system .W;S/ is said to be irreducible if its C–diagram is connected. A
visible subgroup hAi of .W;S/ is said to be irreducible if .hAi;A/ is irreducible. A
subset A of S is said to be irreducible if hAi is irreducible.

A subset A of S is said to be a component of S if A is a maximal irreducible subset of
S or equivalently if �.hAi;A/ is a connected component of �.W;S/. The connected
components of �.W;S/ represent the factors of a direct product decomposition of W .

The presentation diagram (P-diagram) of .W;S/ is the labeled undirected graph
�.W;S/ with vertices S and edges

f.s; t/ W s; t 2 S and m.s; t/ <1g
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such that an edge .s; t/ is labeled by m.s; t/. Presentation diagrams are useful for
visually representing infinite Coxeter groups. If A� S , then �.hAi;A/ is the subdia-
gram of �.W;S/ induced by A. The connected components of �.W;S/ represent
the factors of a free product decomposition of W .

Example Consider the Coxeter group W generated by the four reflections in the sides
of a rectangle in E2 . The C–diagram of .W;S/ is the disjoint union of two edges
labeled by 1. s s s s1 1

Therefore W is the direct product of two infinite dihedral groups. The P–diagram of
W is a square with edge labels 2.

s s
ss

2

2

2

2
Let .W;S/ and .W 0;S 0/ be Coxeter systems with P-diagrams � and � 0 , respectively.
An isomorphism � W .W;S/! .W 0;S 0/ of Coxeter systems is an isomorphism �W W !

W 0 such that �.S/D S 0 . An isomorphism  W �! � 0 of P–diagrams is a bijection
from S to S 0 that preserves edges and their labels. Clearly, two Coxeter systems are
isomorphic if and only if their P–diagrams are isomorphic.

A Coxeter group W is said to be rigid if for any two sets of Coxeter generators S and
S 0 for W , there is an isomorphism ˛W .W;S/! .W;S 0/ or equivalently any two sets
of Coxeter generators S and S 0 for W determine isomorphic P–diagrams for W . A
Coxeter group W is said to be strongly rigid if any two sets of Coxeter generators for
W are conjugate.

A Coxeter system .W;S/ is said to be complete if the underlying graph of the P-diagram
of .W;S/ is complete. A complete Coxeter system is also called a 2–spherical Coxeter
system. A Coxeter system .W;S/ is said to be finite (resp. infinite) if W is finite (resp.
infinite).

Theorem 2.1 Caprace, Franzsen, Howlett, and Mühlherr [4; 9] If .W;S/ is an
infinite, complete, irreducible Coxeter system of finite rank, then W is strongly rigid.

3 Coxeter systems of finite Coxeter groups

We shall use Coxeter’s notation [6, page 297] for the irreducible spherical Coxeter
simplex reflection groups except that we denote the dihedral group Dk

2
by D2.k/.
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Subscripts denote the rank of a Coxeter system in Coxeter’s notation. Coxeter’s
notation partly agrees with but differs from Bourbaki’s notation [1, page 193].

Coxeter [5] proved that every finite irreducible Coxeter system is isomorphic to exactly
one of the Coxeter systems An , n � 1, Bn , n � 4, Cn , n � 2, D2.k/, k � 5, E6 ,
E7 , E8 , F4 , G3 , G4 . Each of these Coxeter groups, of rank n, is a finite group of
orthogonal n� n matrices. The center of each of these Coxeter groups is either fIg
or f˙Ig and the groups with center fIg are An , n > 1, Bn , n odd, D2.k/, k odd,
and E6 . We denote the center of a group G by Z.G/. If G is a group of orthogonal
matrices, we denote the subgroup of determinant 1 matrices in G by GC .

The type of a finite irreducible Coxeter system .W;S/ is the isomorphism type of
.W;S/ represented by one of the systems An , Bn , Cn , D2.k/, E6 , E7 , E8 , F4 , G3 ,
G4 . The type of an irreducible subset A of S is the type of .hAi;A/.

The Coxeter group An is the group of symmetries of a regular n–simplex for each
n � 1, and so An is isomorphic to the symmetric group SnC1 for each n � 1. The
C–diagram of An is a linear diagram with n vertices and all edge labels 3. The Coxeter
generators a1; : : : ; an of An , indexed so that m.ai ; aiC1/ D 3 for i D 1; : : : ; n� 1,
correspond to the transpositions .12/; .23/; : : : ; .n nC 1/ of SnC1 .

The Coxeter group Cn is the group of symmetries of an n–cube for each n � 2,
and Cn is represented by the group of all n� n orthogonal matrices in which each
column has all zero entries except for one, which is ˙1. The C–diagram of Cn is a
linear diagram with n vertices and all edge labels 3 except for the last edge labelled
4. The Coxeter generators c1; : : : ; cn of Cn are indexed so that m.ci ; ciC1/D 3 for
i D 1; : : : ; n�2 and m.cn�1; cn/D 4. The generators c1; : : : ; cn�1 are represented by
the permutation matrices corresponding to the transpositions .12/; .23/; : : : ; .n� 1 n/

and cn is represented by the matrix diag.1; : : : ; 1;�1/.

The Coxeter group Bn , with n � 4, is a subgroup of Cn of index 2 with Coxeter
generators bi D ci , for i D 1; : : : ; n� 1, and bn D cncn�1cn . We have bn�1bn D

diag.1; : : : ; 1;�1;�1/ and m.bn�2; bn/ D 3. The C–diagram of Bn is a Y–shaped
diagram with n vertices and all edge labels 3 and two short arms of consisting of single
edges with endpoint bn�1 and bn . In order to have uniformity of notation, we define
B3 D A3 .

The group D2.k/ is the group of symmetries of a regular k –gon for each k � 5. In
order to have uniformity of notation, we define D2.3/D A2 and D2.4/D C2 . Then
D2.k/ is a dihedral group of order 2k for all k � 3. The C–diagram of D2.k/ is an
edge with label k .

The C–diagrams of E6 , E7;E8 are star shaped with three arms and all edge labels 3.
One arm has length one and another arm has length two. The C–diagram of F4 is a
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linear diagram with edge labels 3; 4; 3 in that order. The C–diagram of G3 is a linear
diagram with edge labels 3; 5. The C–diagram of G4 is a linear diagram with edge
labels 3; 3; 5 in that order.

Lemmas 3.1 through 3.4 are either elementary or well known.

Lemma 3.1 The Coxeter groups An , n � 1, Bn , n � 3, E6 , E8 , F4 , and G4 are
indecomposable with respect to direct products.

Lemma 3.2 The Coxeter group Cn is decomposable with respect to direct products if
and only if n is odd. If n is odd and CnDH �K with 1< jH j � jKj, then H Df˙Ig

and K D Bn or �.Bn/ where � is the automorphism of Cn defined by �.ci/D �ci ,
for i D 1; : : : ; n� 1, and �.cn/D cn .

Lemma 3.3 The Coxeter group D2.n/, with Coxeter generators a and b , is decom-
posable with respect to direct products if and only if n � 2 mod 4. If n � 2 mod 4

and D2.n/DH �K with 1< jH j � jKj, then H D h.ab/n=2i and K D ha; babi or
hb; abai, moreover K Š D2.n=2/.

Lemma 3.4 The Coxeter groups G D E7;G3 are decomposable with respect to direct
products. If GDH �K with 1< jH j � jKj, then H Df˙Ig and KDGC , moreover
GC is a nonabelian simple group.

The next lemma follows from the Krull–Remak–Schmidt Theorem (KRS Theorem),
see Suzuki [14, Theorem 4.8].

Lemma 3.5 Let G be a finite group with direct product decompositions

G DH1 �H2 � � � � �Hr and G DK1 �K2 � � � � �Ks

such that Hi and Kj are nontrivial and indecomposable with respect to direct products
for each i and j . Let �i W Hi!G be the inclusion map for each i and let �j W G!Kj

be the projection map for each j . Suppose Hp is nonabelian. Then there is a unique
q such that Hp \ Kq 6D f1g. Moreover �q�pW Hp ! Kq is an isomorphism and
Z.G/HpDZ.G/Kq . Furthermore ŒHp;Hp �D ŒKq;Kq � and �q�pW Hp!Kq restricts
to the identity on ŒHp;Hp �.

Theorem 3.6 (Matching Theorem for systems of a finite Coxeter group) Let W be a
finite Coxeter group with two sets of Coxeter generators S and S 0 . Let

.W;S/D .W1;S1/� � � � � .Wm;Sm/
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and
.W;S 0/D .W 01;S

0
1/� � � � � .W

0
n;S
0
n/

be the factorizations of .W;S/ and .W;S 0/ into irreducible factors. Let k be such that
Wk is noncyclic. Then there is a unique ` such that W 0

`
is noncyclic and ŒWk ;Wk �D

ŒW 0
`
;W 0

`
�. Moreover,

(1) Z.W /Wk DZ.W /W 0
`

,

(2) if jWk jDjW
0
`
j, then .Wk ;Sk/Š.W

0
`
;S 0
`
/ and there is an isomorphism �WWk!

W 0
`

that restricts to the identity on ŒWk ;Wk �,

(3) if jWk j < jW
0
`
j, then either .Wk ;Sk/ has type B2qC1 and .W 0

`
;S 0
`
/ has type

C2qC1 for some q � 1 or .Wk ;Sk/ has type D2.2qC1/ and .W 0
`
;S 0
`
/ has type

D2.4qC 2/ for some q � 1, and there is a monomorphism � WWk !W 0
`

that
restricts to the identity on ŒWk ;Wk �.

Proof By Lemmas 3.1–3.4, we can refine the decomposition W DW1 � � � � �Wm to
a decomposition W DH1 � � � � �Hr , with Hi nontrivial and indecomposable with
respect to direct products, by replacing each Wi that factors into a direct product
Wi DHj�1�Hj , with jHj�1j D 2, by Hj�1�Hj . Likewise refine the decomposition
W DW 0

1
� � � � �W 0

`
to a decomposition W DK1 � � � � �Ks , with Ki nontrivial and

indecomposable with respect to direct products, by replacing each W 0i that factors into
a direct product W 0i DKj�1 �Kj , with jKj�1j D 2, by Kj�1 �Kj . Then r D s by
the KRS Theorem.

Suppose that Wk is noncyclic. Then Wk is nonabelian, since .Wk ;Sk/ is irreducible.
Now Wk D Hp or Hp�1 �Hp , with jHp�1j D 2, for some p . In either case Hp

is nonabelian by Lemmas 3.1–3.4. By Lemma 3.5, there is a unique q such that
Hp \Kq ¤ f1g. Moreover ŒHp;Hp �D ŒKq;Kq � and �q�p WHp!Kq restricts to the
identity on ŒHp;Hp �. Then Kq is nonabelian. Now there is an ` such that W 0

`
DKq

or Kq�1 �Kq with jKq�1j D 2. Then W 0
`

is noncyclic and

ŒWk ;Wk �D ŒHp;Hp �D ŒKq;Kq �D ŒW
0
` ;W

0
` �:

Now suppose W 0i is noncyclic and ŒWk ;Wk � D ŒW
0

i ;W
0

i �. Then W 0i is nonabelian,
since Wk is nonabelian. Now W 0i DKj or Kj�1 �Kj , with jKj�1j D 2, for some
j . Then we have

ŒHp;Hp �D ŒWk ;Wk �D ŒW
0

i ;W
0

i �D ŒKj ;Kj �:

Hence Hp\Kj ¤f1g, and so j Dq by the uniqueness of q . Therefore Kq�W 0
`
\W 0i ,

and so i D ` and ` is unique.
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By Lemma 3.5, we have Z.W /Wk DZ.W /Hp DZ.W /Kq DZ.W /W 0
`

.

Suppose jWk j D jW
0
`
j. As Hp Š Kq , we have either Wk D Hp and W 0

`
D Kq or

Wk DHp�1�Hp , with jHp�1j D 2, and W 0
`
DKq�1�Kq , with jKq�1j D 2. Hence

Wk ŠW 0
`

and .Wk ;Sk/ Š .W
0
`
;S 0
`
/, since .Wk ;Sk/ and .W 0

`
;S 0
`
/ are irreducible.

Moreover �q�pW Hp!Kq is an isomorphism that restricts to the identity on ŒHp;Hp �.
If Wk DHp and W 0

`
DKq , let �D�q�p . If Wk DHp�1�Hp and W 0

`
DKq�1�Kq

extend �q�pW Hp!Kq to an isomorphism �W Wk!W 0
`

by mapping the generator of
Hp�1 to the generator of Hq�1 . Then �W Wk !W 0

`
is an isomorphism that restricts

to the identity on ŒWk ;Wk �D ŒHp;Hp �.

Suppose jWk j< jW
0
`
j. As Hp ŠKq , we have Wk DHp and W 0

`
DKq�1�Kq , with

jKq�1j D 2. By Lemmas 3.1–3.4, either .Wk ;Sk/Š B2qC1 and .W 0
`
;S 0
`
/Š C2qC1

for some q � 1 or .Wk ;Sk/ Š D2.2q C 1/ and .W 0
`
;S 0
`
/ Š D2.4q C 2/ for some

q � 1. Moreover �q�pW Hp!Kq is an isomorphism that restricts to the identity on
ŒHp;Hp �. Hence �q�pW Hp ! Kq extends to a monomorphism �W Wk ! W 0

`
that

restricts to the identity on ŒWk ;Wk �.

4 The Basic Matching Theorem

Let .W;S/ be a Coxeter system, and let w be in W . The length of w with respect to
S , denoted by `.w/, is the least nonnegative integer n such that w can be written as a
product s1s2 � � � sn of elements of S . A product s1s2 � � � sn of elements of S is said to
be reduced if nD `.s1s2 � � � sn/. Every Coxeter system .W;S/ satisfies the deletion
condition, which says that if a product s1s2 � � � sn of elements of S is not reduced, then
there are indices i; j , with 1� i < j � n such that

s1s2 � � � sn D s1 � � � si�1siC1 � � � sj�1sjC1 � � � sn:

The next lemma follows from the deletion condition.

Lemma 4.1 If A � S and w 2W , then there is a unique shortest element u of the
coset whAi. Moreover an element u of whAi is the shortest element of whAi if and
only if `.ua/ > `.u/ for each a in A.

The next lemma follows from Lemma 4.1 and the deletion condition.

Lemma 4.2 (Bourbaki [1, Chapter IV.1 Exercise 3]) If A;B � S and w 2W , then
there is a unique shortest representative u of the double coset hAiwhBi. Moreover
an element u of hAiwhBi is the shortest element of hAiwhBi if and only if u is the
shortest element of both hAiu and uhBi.
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Lemma 4.3 Let A;B � S and let w 2 W be such that whAiw�1 � hBi. If u

is the shortest element of hBiwhAi, then uAu�1 � B with equality if and only if
whAiw�1 D hBi.

Proof Certainly we have uhAiu�1 � hBi. Let u D u1 � � �un be reduced. For
any a in A, the word ua D u1 � � �una is reduced by Lemma 4.1 and the deletion
condition. Now uau�1 is in hBi. Write uau�1 D b1 � � � bk with b1 � � � bk reduced
in hBi. Now u is a shortest element of hBiu, and so b1 � � � bku1 � � �un is reduced
by the deletion condition. As u1 � � �una D b1 � � � bku1 � � �un , we have k D 1 and
uau�1D b1 . Thus uAu�1�B . If whAiw�1D hBi, then w�1hBiwD hAi and u�1

is the shortest element of hAiw�1hBi. Therefore u�1Bu� A, and so B � uAu�1 .
Hence uAu�1 D B .

Lemma 4.4 (Bourbaki [1, Chapter IV.1 Exercise 22]) Let w0 be an element of W .
Then the following are equivalent:

(1) l.w0s/ < l.w0/ for all s in S ,

(2) l.w0w/D l.w0/� l.w/ for all w in W .

Such an element w0 is unique and exists if and only if W is finite. If W is finite, then
w0 is the unique element of maximal length in W . Moreover w2

0
D 1 and w0Sw0DS .

Let .W;S/ be a Coxeter system. The quasi-center of .W;S/ is the subgroup

QZ.W;S/D fw 2W W wSw�1
D Sg:

Lemma 4.5 (Bourbaki [1, Chapter V.4 Exercise 3]) Let .W;S/ be an irreducible
Coxeter system with a nontrivial quasi-center. Then W is a finite group and QZ.W /D

f1; w0g with w0 the longest element of .W;S/.

Let V be a real vector space having a basis fes W s 2 Sg in one-to-one correspondence
with S . Let B be the symmetric bilinear form on V defined by

B.es; et /D

(
� cos.�=m.s; t// if m.s; t/ <1;

�1 if m.s; t/D1:

There is an action of W on V defined by

s.x/D x� 2B.x; es/es for all s 2 S and x 2 V:

The root system of .W;S/ is the set of vectors

ˆD fw.es/ W w 2W and s 2 Sg:
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The elements of ˆ are called roots. By Deodhar [7, Proposition 2.1], every root � can
be written uniquely in the form � D

P
s2S ases with as 2 R where either as � 0 for

all s or as � 0 for all s . In the former case, we say � is positive and write � > 0.
By Deodhar [7, Proposition 2.2], if w 2W and s 2 S , then w.es/ > 0 if and only if
`.ws/ > `.w/. Let ˆC be the set of positive roots.

The set of reflections of .W;S/ is the set

T D fwsw�1
W w 2W and s 2 Sg:

By Deodhar [7, Proposition 3.1], the function �W ˆC ! T defined by �.w.es// D

wsw�1 is well defined and a bijection.

If A� S , set EA D fes W s 2Ag. The next lemma follows from Lemma 4.1 and the
above discussion of roots.

Lemma 4.6 If A;B �S and w 2W , then w.EA/DEB if and only if wAw�1DB

and w is the shortest element of whAi.

Suppose A�S . If hAi is finite, we denote the longest element of hAi by wA . Suppose
s 2 S �A. Let K � S be the component of A[ fsg containing s . We say that s is
A–admissible if hKi is finite. If s is A–admissible, define

�.s;A/D wKwK�fsg:

Then �.s;A/ is the shortest element of wK hAi by Lemma 4.4. Now K � fsg is a
union of components of A, and so wK�fsgAwK�fsg DA. Hence, if t DwK swK and
B D .A[fsg/�ftg, then �.s;A/.EA/DEB by Lemma 4.6.

Proposition 4.7 (Deodhar [7, Proposition 5.5]) Let A;B � S , and let w 2W . If
w.EA/DEB and w ¤ 1, then there exists a sequence A1;A2; : : : ;AnC1 of subsets
of S , and a sequence s1; s2; : : : ; sn of elements of S such that

(1) A1 DA and AnC1 D B ,

(2) si 2 S �Ai and si is Ai –admissible for i D 1; : : : ; n,

(3) �.si ;Ai/.EAi
/DEAiC1

for i D 1; : : : ; n,

(4) w D �.sn;An/ � � � �.s2;A2/�.s1;A1/,

(5) l.w/D l.�.s1;A1//C l.�.s2;A2//C � � �C l.�.sn;An//.

The next lemma follows from Proposition 4.7.
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Lemma 4.8 Let A � S . Then there exists B � S such that A ¤ B and hAi is
conjugate to hBi in W if and only if there exists s 2 S �A such that m.s; a/ > 2 for
some a 2 A, the element s is A–admissible, and if K is the component of A[ fsg

containing s , then wK swK ¤ s .

Lemma 4.9 Let A;B � S with A irreducible and hAi conjugate to hBi in W . If A

is neither of type An , for some n, nor of type B5 , then AD B .

Proof Suppose s 2 S � A, with m.s; a/ > 2 for some a 2 A, and suppose s is
A–admissible. Then K DA[fsg is irreducible and hKi is finite. By Lemma 4.8, it
suffices to show that wK swK D s . This is clear if hwK i is the center of hKi. Suppose
that Z.hKi/D 1. Now K is not of type AnC1 , D2.k/, or E6 , since A is not of type
An or B5 . Hence K must be of type B2qC1 for some q � 2. Then A is of type B2q

and wK swK D s .

Lemma 4.10 Let A;B � S . If hAi is a maximal (irreducible) finite visible subgroup
of .W;S/ and hAi and hBi are conjugate, then AD B .

Proof Assume first that hAi is a maximal finite visible subgroup of .W;S/. If
s 2S�A, then the component of A[fsg containing s is infinite. Hence no s 2S�A

is A–admissible, and so AD B by Lemma 4.8.

Now assume that hAi is a maximal, irreducible, finite, visible subgroup of .W;S/. If
s 2 S �A and s is A–admissible, then fsg is the component of A[fsg containing s ,
and so AD B by Lemma 4.8.

Proposition 4.11 (Bourbaki [1, Chapter V.4, Exercise 2]) If H is a finite subgroup
of W , then there is a subset A of S such that hAi is finite and H is conjugate to a
subgroup of hAi.

Lemma 4.12 Every maximal finite visible subgroup of .W;S/ is a maximal finite
subgroup of W .

Proof Let M � S be such that hM i is a maximal finite visible subgroup of .W;S/.
Suppose H is a finite subgroup of W containing hM i. Then wHw�1 � hAi for
some w 2 W and some A � S such that hAi is finite by Proposition 4.11. Then
whM iw�1 � hAi. Let u be the shortest element of hAiwhM i. Then uM u�1 � A

by Lemma 4.3. Hence uM u�1DM by Lemma 4.10. Therefore M DA, since M is
a maximal finite visible subgroup. Hence whM iw�1 D hAi and so hM i DH . Thus
hM i is a maximal finite subgroup of W .

Algebraic & Geometric Topology, Volume 7 (2007)



930 Michael L Mihalik, John G Ratcliffe and Steven T Tschantz

A simplex C of .W;S/ is a complete subset C of S . A simplex C of .W;S/ is said
to be spherical if hC i is finite. The next proposition follows from Proposition 4.11,
Lemma 4.10 and Lemma 4.12.

Proposition 4.13 Let W be a finitely generated Coxeter group with two sets of
Coxeter generators S and S 0 , and let M be a maximal spherical simplex of .W;S/.
Then there is a unique maximal spherical simplex M 0 of .W;S 0/ such that hM i and
hM 0i are conjugate in W .

Proposition 4.14 (Solomon [13, Lemma 2]) Let A;B � S and w 2 W . Write
w D xuy with x 2 hAi, y 2 hBi, and u the shortest element of hAiwhBi. Then

hAi \whBiw�1
D xhA\uBu�1

ix�1:

Let .W;S/ be a Coxeter system of finite rank. A parabolic subgroup of .W;S/ is a
subgroup of W that is conjugate to a visible subgroup of .W;S/. By Proposition 4.14,
any intersection of parabolic subgroups of .W;S/ is parabolic. The parabolic closure
of a subset X of W , denoted Pc.X /, is the intersection of all the parabolic subgroups
of .W;S/ that contain X . Then Pc.X / is the smallest parabolic subgroup of .W;S/

containing X . Clearly, if w 2W , then Pc.wXw�1/D wPc.X /w�1 .

Lemma 4.15 If s; t in S do not commute, then Pc
�
fststg

�
D hs; ti.

Proof Clearly, Pc
�
fststg

�
� hs; ti. By Lemma 4.3, the rank of a parabolic subgroup

of .W;S/ is well defined to be the rank of any visible subgroup conjugate to it. We
have that rank Pc

�
fststg

�
> 0, since stst ¤ 1, and we have that rank Pc

�
fststg

�
> 1,

since stst is not a reflection. Therefore Pc
�
fstg

�
D hs; ti by Lemma 4.3.

Lemma 4.16 If A� S with no a 2A central in hAi, then

Pc
�
ŒhAi; hAi�

�
D hAi:

Proof Let a 2A. Then there exist b 2A such that a; b do not commute. By Lemma
4.15, we have

ha; bi D Pc
�
fababg

�
� Pc

�
ŒhAi; hAi�

�
� hAi:

Hence A� Pc
�
ŒhAi; hAi�

�
, and so Pc

�
ŒhAi; hAi�

�
D hAi.

Lemma 4.17 Let A;B � S with no a 2A central in hAi. Suppose

wŒhAi; hAi�w�1
� hBi for some w 2W:

Let u be the shortest element of hBiwhAi. Then uAu�1 � B .
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Proof As ŒhAi; hAi� � w�1hBiw , we have that hAi � w�1hBiw by Lemma 4.16.
Therefore uAu�1 � B by Lemma 4.3.

Let .W;S/ be a Coxeter system. A basic subset of S is a maximal irreducible subset
B of S such that hBi is a noncyclic finite group. If B is a basic subset of S , we call
B a base of .W;S/ and hBi a basic subgroup of W .

Theorem 4.18 (Basic Matching Theorem) Let W be a finitely generated Coxeter
group with two sets of Coxeter generators S and S 0 . Let B be a base of .W;S/.
Then there is a unique irreducible subset B0 of S 0 such that ŒhBi; hBi� is conjugate to
ŒhB0i; hB0i� in W . Moreover,

(1) the set B0 is a base of .W;S 0/, and we say that B and B0 match,

(2) if jhBijD jhB0ij, then B and B0 have the same type and there is an isomorphism
�W hBi ! hB0i that restricts to conjugation on ŒhBi; hBi� by an element of W ,
and we say that B and B0 match isomorphically,

(3) if jhBij < jhB0ij, then either B has type B2qC1 and B0 has type C2qC1 for
some q � 1 or B has type D2.2qC 1/ and B0 has type D2.4qC 2/ for some
q � 1. Moreover, there is a monomorphism �W hBi ! hB0i that restricts to
conjugation on ŒhBi; hBi� by an element of W .

Proof Let M � S be a maximal spherical simplex containing B . Then there is a
unique maximal spherical simplex M 0 of .W;S 0/ and an element u of W such that
hM 0i D uhM iu�1 by Proposition 4.13. By the Matching Theorem for Systems of a
Finite Coxeter Group applied to .hM 0i;uM u�1/ and .hM 0i;M 0/, there is a base B0

of .hM 0i;M 0/ such that

ŒhB0i; hB0i�D ŒhuBu�1
i; huBu�1

i�D uŒhBi; hBi�u�1:

Moreover, B0 satisfies conditions 2 and 3, and so jBj D jB0j.

Let C 0 be a base of .W;S 0/ that contains B0 . Then by the above argument, there is
a C � S and a v 2W such that hC i is a finite irreducible subgroup of .W;S/, and
jC j D jC 0j, and ŒhC i; hC i�D vŒhC 0i; hC 0i�v�1: Then we have vuŒhBi; hBi�u�1v�1 �

ŒhC i; hC i�: By Lemma 4.17, there is a w 2W such that wBw�1 �C . As B is a base
of .W;S/, we have that wBw�1 D C D B by Lemma 4.10. Therefore B0 D C 0 and
B0 is a base of .W;S 0/.

Suppose D0 � S 0 is irreducible and x 2W such that ŒhD0i; hD0i�D xŒhBi; hBi�x�1:

Then xu�1ŒhB0i; hB0i�ux�1D ŒhD0i; hD0i�: By Lemma 4.17, there is a y2W such that
yB0y�1 �D0 . As B0 is a base of .W;S 0/ and D0 is irreducible, yB0y�1 DD0 DB0

by Lemma 4.10. Thus B0 is unique.
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A group G has property FA if for every tree on which G acts without inversions, the
set of fixed points of G in the tree is nonempty. Let .W;S/ be a Coxeter system. If A

is a complete subset of S , we say that hAi is a complete visible subgroup of .W;S/.

Proposition 4.19 (Mihalik and Tschantz [10]) Let .W;S/ be a Coxeter system of
finite rank. The maximal FA subgroups of W are the conjugates of the maximal
complete visible subgroups of .W;S/.

Lemma 4.20 Let A;B�S . If hAi is a maximal complete visible subgroup of .W;S/

and hAi and hBi are conjugate, then AD B .

Proof If s 2 S �A, then the component K of A[ fsg containing s is incomplete,
and so hKi is infinite and s is not A–admissible. Hence AD B by Lemma 4.8.

The next proposition follows from Proposition 4.19 and Lemma 4.20.

Proposition 4.21 Let W be a finitely generated Coxeter group with two sets of
Coxeter generators S and S 0 , and let M be a maximal simplex of .W;S/. Then there
is a unique maximal simplex M 0 of .W;S 0/ such that hM i and hM 0i are conjugate
in W .

5 Visual graph of groups decompositions

Let .W;S/ be a Coxeter system of finite rank. Suppose that S1;S2 � S , with
S D S1[S2 and S0 D S1\S2 , are such that m.a; b/D1 for all a 2 S1�S0 and
b 2 S2�S0 . Then we can write W as a visual amalgamated product

W D hS1i �hS0i
hS2i:

We say that S0 separates S if S1 � S0 ¤ ∅ and S2 � S0 ¤ ∅. The amalgamated
product decomposition of W will be nontrivial if and only if S0 separates S . If S0

separates S , we call the triple .S1;S0;S2/ a separation of S . Note that S0 separates
S if and only if S0 separates �.W;S/, that is, there are a; b in S�S0 such that every
path in �.W;S/ from a to b must pass through S0 .

Let ` 2 hS0i such that `S0`
�1 D S0 . By Lemma 4.5, we have S0 D S�[ .S0�S�/

where S� generates a finite group, each element of S� commutes with each element of
S0 �S� , and ` is the longest element of hS�i. The triple .S1; `;S2/ determines an
elementary twist of .W;S/ (or of its P-diagram) giving a new Coxeter generating set
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S� D S1[ `S2`
�1 of W . Elementary twists of Coxeter systems were introduced by

Brady et al [2].

In application, it is simpler to consider a more general kind of twisting. Suppose S0

and xS0 � S2 generate conjugate subgroups of hS2i. Suppose d 2 hS2i is such that
d xS0d�1 D S0 . Then S1\ dS2d�1 D S0 , since

S0 � S1\ dS2d�1
� S1\ hS2i D S0:

A generalized twist (or simply twist) of .W;S/ in this situation gives a new Coxeter
generating set S� D S1 [ dS2d�1 of W and a new visual amalgamated product
decomposition W D hS1i �hS0i

hdS2d�1i.

Elementary and generalized twists can be easily understood in terms of their effects on
P–diagrams. The P–diagram of .W;S/ is the union of the P–diagrams for hS1i and
hS2i overlapping in the P–diagram for hS0i. The P–diagram for .W;S�/ is obtained
from the P–diagram of .W;S/ by twisting the P–diagram of hS2i, that is, removing
the P–diagram for hS2i, replacing it by the isomorphic P–diagram of hdS2d�1i, and
attaching it to the P–diagram for hS1i along S0 D d xS0d�1 . If S0 D S1 or S0 D S2 ,
we call the twist degenerate. A degenerate twist does not change the isomorphism
type of the P–diagram. This includes the case where S0 D S1 D∅, S2 D S , giving
S� D dSd�1 the conjugation of S by an arbitrary d 2W .

Proposition 5.1 (Brink and Howlett [3, Proposition 2.1]) If .W;S/ is a Coxeter
system and A� S , then the normalizer of hAi in W is the semidirect product of hAi
by fw 2W W w.EA/DEAg.

Proposition 5.2 Any generalized twist of a Coxeter system .W;S/ can be realized
by a sequence of elementary twists.

Proof Suppose S1;S2 � S , with S D S1[S2 and S0D S1\S2 , and m.a; b/D1

for all a 2 S1�S0 and b 2 S2�S0 . Suppose xS0 � S2 and there is an d 2 hS2i such
that d xS0d�1DS0 . Let xd be the shortest element of hS0idh xS0i. Then xd xS0

xd�1DS0

by Lemma 4.3 and xd.E xS0
/ D ES0

by Lemma 4.6. Hence d xd�1S0
xdd�1 D S0 .

By Proposition 5.1, there is a u 2 hS0i and a v 2 hS2i such that d xd�1 D uv and
v.ES0

/ D ES0
. Then vS0v

�1 D S0 by Lemma 4.6. Now u D d xd�1v�1 , and so
uS0u�1 D S0 . We have xd�1v�1.ES0

/ D E xS0
. If xd�1v�1 D 1, then d D u and

.S1; d;S2/ determines an elementary twist. Suppose xd�1v�1 ¤ 1. By Proposition
4.7, there is a sequence A1; : : : ;AnC1 of subsets of S2 and a sequence s1; : : : ; sn

of elements of S2 such that A1 D S0 , AnC1 D
xS0 , si 2 S2 � Ai and si is Ai –

admissible for each i , and if �i D �.si ;Ai/ for each i , then �iAi�
�1
i DAiC1 for each

i D 1; : : : ; n, and xd�1v�1 D �n � � � �1 . Then d D uv xd D u��1
1
� � � ��1

n .
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Let Ki be the component of Ai [ fsig containing si . Then �i D wKi
wKi�fsi g

and
wKi�fsi g

AiwKi�fsi g
DAi for each i . Now

.S1[fs1g/\S2 D S0[fs1g and wK1
.S0[fs1g/wK1

D S0[fs1g:

Therefore the triple .S1 [ fs1g; wK1
;S2/ determines an elementary twist of .W;S/

that yields the Coxeter generating set S1[wK1
S2wK1

. Now

.S1[fs1g/\wK1
S2wK1

D S0[fs1g;

and so S1 \wK1
S2wK1

D S0 , since s1 2 S2 � S0 . Now wK1�fs1g
S0wK1�fs1g

D

S0 , and so the triple .S1; wK1�fs1g
; wK1

S2wK1
/ determines an elementary twist of

.W;S1 [ wK1
S2wK1

/ that yields the Coxeter generating set S1 [ �
�1
1

S2�1 with
S1\ �

�1
1

S2�1 D S0 .

Let s0
2
D ��1

1
s2�1 . Then .S1 [ fs

0
2
g/ \ .��1

1
S2�1/ D S0 [ fs

0
2
g. Observe that

��1
1
wK2

�1 2 hS0[fs
0
2
gi and

��1
1 wK2

�1.S0[fs
0
2g/�

�1
1 wK2

�1 D S0[fs
0
2g;

and so the triple .S1[fs
0
2
g; ��1

1
wK2

�1; �
�1
1

S2�1/ determines an elementary twist of
.W;S1[ �

�1
1

S2�1/ that yields the Coxeter generating set

S1[ .�
�1
1 wK2

S2wK2
�1/ with .S1[fs

0
2g/\ .�

�1
1 wK2

S2wK2
�1/D S0[fs

0
2g:

Now S1\ .�
�1
1
wK2

S2wK2
�1/D S0 , since s0

2
2 ��1

1
S2�1�S0 .

Next observe that ��1
1
wK2�fs2g

�1 2 hS0i and

��1
1 wK2�fs2g

�1S0�
�1
1 wK2�fs2g

�1 D S0:

Hence the triple
.S1; �

�1
1 wK2�fs2g

�1; �
�1
1 wK2

S2wK2
�1/

determines an elementary twist of .W;S1[�
�1
1
wK2

S2wK2
�1/ that yields the Coxeter

generating set

S1[ .�
�1
1 ��1

2 S2�1�2/ with S1\ .�
�1
1 ��1

2 S2�1�2/D S0:

Continuing in this way, we will arrive at the Coxeter generating set

S1[ .�
�1
1 � � � �

�1
n S2�n � � � �1/ with S1\ .�

�1
1 � � � �

�1
n S2�n � � � �1/D S0:

Finally, the triple
.S1;u; �

�1
1 � � � �

�1
n S2�n � � � �1/
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determines an elementary twist of .W;S1 [ �
�1
1
� � � ��1

n S2�n � � � �1/ that yields the
Coxeter generating set S1[dS2d�1 . Thus the generalized twist of .W;S/ determined
by .S1; d;S2/ is a composition of elementary twists.

Let ƒ be a visual graph of groups decomposition of .W;S/. Then the graph of ƒ is a
tree, since the abelianization of W is finite. The graph of groups decomposition ƒ
can be understood as a visual amalgamated product in many ways, eg by taking some
of the vertex and edge groups to be generated by S1 , others to be generated by S2 ,
with the overlap being a single edge group of ƒ. Hence we will also speak of twisting
a visual graph of groups decomposition with respect to some such partitioning of the
graph of groups and some conjugating element.

A graph of groups decomposition is said to be reduced if no edge group is equal to an
incident vertex group. Suppose ƒ is a reduced visual graph of groups decomposition of
a Coxeter system .W;S/ of finite rank. Suppose (for simplicity in this application) that
no edge group of ƒ is a proper subgroup of another edge group of ƒ. Construct another
visual graph of groups decomposition (though not reduced) zƒ as follows. The vertices
of zƒ are of two distinct types, v–vertices and e–vertices. The v–vertices correspond to
the vertices of ƒ, and the e-vertices correspond to the distinct edge groups of ƒ. An
edge of zƒ will connect vertices p and q if p is a v–vertex and q is an e–vertex, and
p corresponds to an endpoint of an edge of ƒ with edge group corresponding to q .
The vertex group of a v–vertex p of zƒ will be the vertex group for p in ƒ. The vertex
group of an e–vertex q of zƒ is the edge group of ƒ corresponding to q . Each edge of
zƒ, say from p to q , will have edge group equal to the edge group of ƒ corresponding
to the e–vertex q of that edge. The maps of edge groups into vertex groups in zƒ will
be inclusion maps (as in visual decompositions generally, determined by which of the
Coxeter generators lie in each vertex and edge groups). Then by a series of reductions
and expansions (inverse reductions) we can get from zƒ to ƒ and we see that they
are both visual graph of group decompositions of W (or by comparing the relations
defining the fundamental groups of ƒ and zƒ). On the other hand, different reduced
visual graphs of groups ƒ and ƒ2 will correspond to the same zƒD zƒ2 provided they
have the same vertex groups and edge groups, since the inclusion of edge groups into
vertex groups determine the edges of zƒ when no edge group is a proper subgroup of
another edge group. The point here is that zƒ provides a way of keeping track of which
edge groups of ƒ are equal and in which vertex groups without specifying what the
subtree of edges of ƒ with the same given edge group must look like, (in essence,
without specifying the order of the vertex groups containing this edge group). We think
of zƒ as a flattened form of ƒ making uniform the relationship between vertex groups
and different edge groups of ƒ.
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A particularly simple case is when the edge groups of ƒ are all equal. Then zƒ has
one v–vertex for each vertex p of ƒ and one e-vertex q for the common edge group
E with edges from q to p for each v–vertex p and with edge groups equal to E and
inclusion maps into the vertex groups. The fundamental group of ƒ is an amalgamated
product of all the vertex groups of ƒ identifying the copies of the edge group in each
vertex group.

6 The Decomposition Matching Theorem

If U is a subgroup of W , write U � D fwUw�1 Ww 2W g for the set of all subgroups
conjugate to U in W . Write U ��V � if for some w 2W , U �wVw�1 (independent
of the representatives for the conjugacy classes). Clearly � is transitive and reflexive.
Consider the conjugacy classes of a visible subgroup U and any subgroup V of
a Coxeter system .W;S/. If U � � V � and V � � U � then U � D V � , since if
U �wVw�1 �wzUz�1w�1 then, since U is a visible subgroup, wzUz�1w�1DU

and U and V are conjugate by Lemma 4.3. Hence for the conjugacy classes of visible
subgroups, � is a partial order. We say that J � S is a c-minimal separating subset of
S if J separates S and hJ i� is a �–minimal element of the set of conjugacy classes
of subgroups generated by separating subsets of S . Assuming there are separating
subsets of S , there are finitely many since S is finite, and so there are c-minimal
separating subsets of S .

Theorem 6.1 Let W be a finitely generated Coxeter group with two sets of Coxeter
generators S and S 0 . If .W;S/ is complete, then .W;S 0/ is complete; otherwise, for
any given nontrivial splitting A�C B of W , there exist S0 � S , S 0

0
� S 0 , a reduced

visual graph of groups decomposition ƒ for .W;S/, and a reduced visual graph of
groups decomposition ƒ0 for .W;S 0/ such that

(1) the set S0 is a c-minimal separating subset of S , and S 0
0

is a c–minimal separat-
ing subset of S 0 , with hS0i

� D hS 0
0
i� � C � ,

(2) the edge groups of ƒ are conjugate to hS0i, the edge groups of ƒ0 are conjugate
to hS 0

0
i (and hence are conjugate and conjugate to a subgroup of C ) and

(3) there is a 1–1 correspondence between the vertices of ƒ and the vertices of ƒ0

such that each vertex group of ƒ is conjugate to the corresponding vertex group
of ƒ0 .

Proof If .W;S/ is complete, then .W;S 0/ is complete by Proposition 4.21. Suppose
.W;S/ is incomplete. Given a nontrivial splitting W DA�C B , there is some visual
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splitting W D A1 �C1
B1 , with respect to S , with C1 a subgroup of a conjugate

of C by the visual decomposition theorem and [10, Remark 1]. Consider the finite
collection of conjugacy classes hJ i� , partially ordered by �, for subsets J � S such
that hJ i� �C � and there is a visual splitting W DA2�hJ iB2 . Then there exists such
a J with hJ i� minimal in this partial order.

Now starting with a splitting W D A2 �hJ i B2 and working with respect to S 0 , as
above, there is a J 0 � S 0 with hJ 0i� � hJ i� and a visual splitting W DA3 �hJ 0iB3 ,
with hJ 0i� �–minimal for such splitting S 0–visible subgroups.

Working back again from W D A3 �hJ 0i B3 and splitting visually with respect to
S , there is a J 00 � S with hJ 00i� � hJ 0i� and an S –visual splitting over hJ 00i with
hJ 00i� �–minimal. Now hJ 00i� � hJ 0i� � hJ i� � C � but J was taken so hJ i� was
�–minimal below C � having an S –visual splitting over hJ i, hence hJ 00i� D hJ i�

(but not necessarily hJ 00i D hJ i), and so in fact hJ i� D hJ 0i� and (1) holds with
S0 D J and S 0

0
D J 0 .

Since S is finite and each vertex group of a reduced visual graph of groups decom-
position of W is generated by a different subset of S , there is an obvious limit to
the number of vertices in a reduced visual graph of groups decomposition of W , and
in some sense, the more vertices, the finer the graph of groups decomposition. Take
a reduced S –visual graph of groups decomposition ƒ of W such that every edge
group is conjugate to hJ i and, among such, having a maximum number of vertices.
By the visual decomposition theorem, take ƒ0 a reduced S 0–visual graph of groups
decomposition refining ƒ, ie such that each vertex (edge) group of ƒ0 is a subgroup
of a conjugate of a vertex (edge) group of ƒ. Similarly, take ƒ00 a reduced S –visual
graph of groups decomposition of W refining ƒ0 . The edge groups of ƒ00 are equal to
conjugates of the edge groups of ƒ by the c–minimality of S0 , and so are conjugate
to the edge groups of ƒ0 , and so (2) holds. We postpone the proof of (3) until after the
proof of Lemma 6.3.

The following lemma characterizes the visual decomposition ƒ.

Lemma 6.2 Let .W;S/ be a Coxeter system of finite rank, and let J be a c–minimal
separating subset of S . Let E be the set of separating subsets of S that are conjugate
to J in W , and let V be the set of all maximal subsets of S that are not separated by a
set in E . Let ƒ be a reduced visual graph of groups decomposition of .W;S/ having
edge groups generated by conjugates of J (and hence elements of E ) and among such
has a maximum number of vertices. Then all of the subgroups generated by sets in V
are the vertex groups of ƒ, and all of the subgroups generated by sets in E are the edge
groups of ƒ.
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Proof By Lemma 4.9, all the visible conjugates of hJ i are visual direct products
F �G with conjugate finite factors F and the same factor G in common with all the
visible conjugates of hJ i. If we split W by a separating visible conjugate of J , each
of the other visible conjugates of J lies entirely in one of the factors of the free product
with amalgamation, since the corresponding finite group F lies in one factor and the
group G lies in each factor.

Assume ƒ is a reduced visual graph of groups with edge groups conjugate to hJ i and
among such having a maximal number of vertices. Note that each edge group, and
hence each vertex group, contains the common subgroup G . The graph of ƒ is a tree,
since the abelianization of W is finite.

Suppose L is the set of generators of a vertex group V of ƒ. We claim that L is
not separated by a set in E . On the contrary, suppose L is separated by a set K in
E , say x and y are in different components of the P–diagram of hL�Ki. We claim
that K �L. On the contrary, suppose K 6�L. Then L\K does not separate S , by
c-minimality of J , and so there is a path in the P–diagram of .W;S/ from x to y that
avoids L\K . Take a path from x to y which is in a union of as few vertex groups of
ƒ as possible. Let V 0 be a vertex group of ƒ containing a generator in this path not in
V . Then the path passes through some edge group E of V at some first point before
V 0 and must pass back through E at some last point, since the graph of ƒ is a tree.
Neither of these points is a generator of G since these all lie in L\K . Hence these
points are generators in the finite factor F of E . But the P-diagram of F is complete,
and so there is a short circuit of the path going from the first to the last point in F

avoiding V 0 . We conclude instead that the path hitting the fewest vertex groups of ƒ is
a path in L�K , contradicting the assumption that K separates L. Hence K �L and
there is a separation .L1;K;L2/ of L. Each edge group of ƒ incident to the vertex
group V D hLi is contained in either the subgroup generated by L1 or by L2 , and
so we can split V into two vertices generated by L1 and L2 , respectively, and joined
by an edge group generated by K , with each component of the rest of ƒ attached
to one or the other of the new vertex groups by an edge group of ƒ. Neither of the
new vertex groups equals an incident edge group E , since the finite Coxeter groups
E=G and hKi=G have the same rank. This gives a reduced visual graph of groups
decomposition over separating conjugates of J with more vertex groups, contradicting
the maximality of the number of vertices in ƒ. Hence L cannot be separated by a set
in E as claimed. Clearly, every subset of S that contains L properly is separated by
the set of generators of some edge group of ƒ that is incident to V . Therefore L is a
maximal subset of S that is not separated by a set in E , and so L 2 V .

Now suppose L 2 V . We claim that hLi is a vertex group of ƒ. Every element of
L is a generator of some vertex group of ƒ. Suppose L0 � L is a maximal subset

Algebraic & Geometric Topology, Volume 7 (2007)



Matching theorems for systems of a finitely generated Coxeter group 939

of L contained in some vertex group of ƒ. If L�L0 ¤∅, say x 2L�L0 , then L0

and x are not both contained in a vertex group of ƒ. Take vertex groups V and V 0

of ƒ, with x 2 V and L0 � V 0 , which are closest together in the graph of ƒ. Let E

be an edge group of the path between V and V 0 . Then E is generated by a visible
conjugate K of J which separates the generators in V �E from those in V 0 �E ,
and so K 2 E . Now x …E otherwise x would also be in a vertex group closer to V 0

on the path between V and V 0 . Likewise, L0 6�E or else L0 would be contained in
a vertex group closer to V on a path between V and V 0 . But then the P–diagram of
hL�Ki would have at least two components, one containing x and one containing
some element of L0�K . This contradicts the assumption that L 2 V . Instead all of L

must be contained in a vertex group V of ƒ. As the set of generators in V is in V ,
we have that hLi D V .

Finally, suppose K 2 E . Then there is a separation .S1;K;S2/ of S . Each L 2 V
generates a vertex group of ƒ but is not separated by K by our previous argument,
and so each L 2 V is contained in either S1 or S2 . Pick vertex groups V1 and V2 as
close together in ƒ as possible such that V1 is generated by a subset of S1 and V2 is
generated by a subset of S2 . Then V1 , and V2 are adjacent since every vertex group
in a path between these is generated by a subset of either S1 or S2 . Now V1\V2 is
an edge group E of ƒ which is generated by a subset of K but not by a proper subset
of K by the c–minimality of J , and so E D hKi.

The next lemma explains the relationship between the visual decompositions ƒ and
ƒ00 of .W;S/.

Lemma 6.3 Let ƒ and ƒ00 be reduced visual graph of groups decompositions of a
Coxeter system .W;S/ of finite rank. Suppose the edge groups of ƒ are generated by
conjugates of a c-minimal separating subset J of S , and among visual decompositions
with this same conjugacy class of edge groups, ƒ has a maximum number of vertex
groups. Suppose each vertex and edge group of ƒ00 is a subgroup of a conjugate of a
vertex or edge group of ƒ, respectively. Then the vertex and edge groups of ƒ are
equal to the vertex and edge groups of ƒ00 , respectively, that is, zƒD zƒ00 .

Proof By the last lemma, the vertex groups of ƒ are determined from the set of all
separating sets of S that are conjugate to J . Each edge group of ƒ00 is generated
by a separating subset of S and is contained in a conjugate of hJ i, and so, by the
c–minimality of J , must be a conjugate of hJ i and an edge group also of ƒ.

Let T be the Bass–Serre tree with standard transversal T� , corresponding to the graph
of groups ƒ, ie, the vertices of T are the cosets of each vertex group of ƒ and T�
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consists of the cosets of each vertex group that contain the identity. A vertex group G

of ƒ00 stabilizes a vertex V of T , since G is a subgroup of a conjugate of a vertex
group of ƒ. But each generator of G also stabilizes a vertex of T� and the geodesic
path from that vertex of T� to V . Hence G also stabilizes the vertex of T� nearest to
V . Thus each vertex group of ƒ00 is actually a subgroup of a vertex group of ƒ.

As the vertex groups of ƒ are proper subgroups, ƒ00 has at least two vertices, and each
vertex group of ƒ00 contains an edge group of ƒ00 , which is a conjugate of hJ i, as a
proper subgroup. Hence no vertex group of ƒ00 is contained in an edge group of ƒ,
since all the visible conjugates of hJ i have the same rank. Consequently, each vertex
group of ƒ00 can be contained in only one vertex group of ƒ, otherwise a vertex group
of ƒ00 would be contained in the intersection of vertex groups for two different vertices
of ƒ and so would be contained in each edge group for edges of ƒ in the geodesic
path between these vertices, which is not the case.

Summarizing, for each vertex U of ƒ00 , there exists a unique vertex f .U / of ƒ such
that the vertex group ƒ00.U / of ƒ00 at U is a subgroup of the vertex group ƒ.f .U //
of ƒ at f .U /. We claim that for each vertex V of ƒ, the vertex group ƒ.V / is
generated by the vertex groups of ƒ00 for vertices in f �1.V /. In particular, there will
be at least one vertex of ƒ00 in f �1.V /, and so at least as many vertices in ƒ00 as
in ƒ. But ƒ has a maximal number of vertices for visual reduced graph of groups
decompositions of .W;S/ with edge groups that are conjugates of hJ i, so ƒ00 , which
also satisfies these conditions, has no more vertices than ƒ. Hence ƒ and ƒ00 have
the same number of vertices; moreover, for each vertex V of ƒ, we conclude that
f �1.V / is a unique vertex of ƒ00 , and the vertex groups of these vertices in ƒ and
ƒ00 must be equal. Hence the vertex and edge groups of ƒ are the same as the vertex
and edge groups of ƒ00 , respectively, and so zƒD zƒ00 .

To establish the claim that each vertex group ƒ.V / of ƒ is generated by the vertex
groups of ƒ00 that it contains, we will show that each edge group of ƒ for edges
incident to V is contained in a vertex group of ƒ00 which is contained in ƒ.V /. A
generator of ƒ.V / which is not contained in any edge group incident to V is an
element of only that vertex group of ƒ, but is also an element of some vertex group of
ƒ00 and that vertex group of ƒ00 can only be contained in ƒ.V /. Thus we will get that
each generator of ƒ.V / is in a vertex group of ƒ00 which is contained in ƒ.V /.

Consider then an edge group C of an edge incident to V in ƒ. Delete the edges
E1; : : :En of the underlying tree of ƒ that are incident to V with the edge group
C , leaving a connected component T0 containing V , and connected components
T1; : : : ;Tn with Ti containing the vertex Vi of Ei opposite V for each i . Then
W DA�C B where A is the group generated by the vertex groups of the tree T0 and
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B is the group generated by the vertex groups of the forest T1; : : : ;Tn . Neither A nor
B equals C as ƒ is reduced. Each vertex group of ƒ00 is contained in a unique vertex
group of ƒ and so is contained in either A or B but not in both, since the intersection
of A and B is the edge group C . There is at least one vertex group of ƒ00 in each
of A and B . Hence there are adjacent vertices of ƒ00 having vertex groups one in
A and one in B , whose intersection is the edge group of ƒ00 for the edge between
these vertices. But the intersection of these vertex groups of ƒ00 is also contained in
C . Since the edge groups of ƒ and ƒ00 are visible subgroups conjugate to hJ i, we
have that C is the edge group of ƒ00 for the edge between these vertices of ƒ00 . Hence
C is contained in a vertex group of ƒ00 contained in A. If this vertex group of ƒ00

is contained in a vertex group in A other than V , then C would be contained in the
edge groups in a geodesic path between between V and this other vertex in T0 . But
the edge groups for edges incident to V in T0 are different conjugates of hJ i than
C , since we deleted all edges incident to V having C as edge group. As C cannot
be contained in a different conjugate of hJ i, instead the vertex group of ƒ00 that is in
A and contains C is actually contained in the vertex group ƒ.V / of V in ƒ. This
completes the analysis of the claim and so completes the proof of the lemma.

We now finish the proof of Theorem 6.1. By Lemma 6.3, the vertex groups of ƒ00 are
in fact equal to the vertex groups of ƒ. Finally we compare ƒ and ƒ00 with ƒ0 . Each
vertex group G of ƒ00 is a subgroup of a conjugate of a vertex group G0 of ƒ0 which
is in turn a subgroup of a conjugate of a vertex group H of ƒ. But G is a vertex
group of ƒ and cannot be contained in a conjugate of another vertex group of ƒ (since
again ƒ is reduced). Hence G DH , G� �G0

�
�G� so G� DG0

� , and each vertex
group of ƒ is conjugate to a vertex group of ƒ0 . On the other hand, if H 0 is a vertex
group of ƒ0 then H 0 is a subgroup of a conjugate of a vertex group H of ƒ. But H

is also a vertex group of ƒ00 , is contained in a conjugate of a vertex group G0 of ƒ0 , so
G0 DH 0 is conjugate to H . Hence the vertex groups of ƒ0 correspond to conjugate
vertex groups of ƒ, as required for (3). This completes the proof of Theorem 6.1.

Lemma 6.4 If ƒ is a reduced visual graph of groups decomposition for a Coxeter
system .W;S/ of finite rank such that the edge groups of ƒ are conjugates, then ƒ
can be twisted resulting in a new generating set S� for W and a reduced visual graph
of groups decomposition ‰ such that the edge groups of ‰ are all equal.

Proof If not, take an example of a ƒ for .W;S/ and an edge group E1 , having a
minimum number of edges labelled by groups different from E1 , which cannot be
twisted to a ‰ with equal edge groups. Then some vertex group V contains incident
edge groups E1 and E2 with E1 ¤E2 . Let W1 be the group generated by the vertex
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groups of ƒ that are joined to V by a geodesic path in the underlying tree of ƒ
terminating in an edge incident to V labelled by E1 and let W2 be the group generated
by the rest of the vertex groups of ƒ. Then we have a free product decomposition
W DW1 �E1

W2 with E2 � V �W2 . Let d 2W be of minimal length, with respect
to S , such that E1 D dE2d�1 . By considering the normal form for d with respect to
the amalgamated product W1 �E1

W2 , we deduce that d 2W2 .

Suppose E1 D hS0i, E2 D h
xS0i, W1 D hS1i, and W2 D hS2i for S0 , xS0 , S1 ,

S2 � S . By Lemma 4.3, we have d xS0d�1D S0 . Then twist the visual decomposition
hS1i�hS0i

hS2i by conjugating S2 by d , giving S�DS1[dS2d�1 , and corresponding
ƒ� which is obtained from ƒ by conjugating by d each vertex group of ƒ that is
contained in W2 and by conjugating by d each edge group of ƒ whose incident vertex
groups are contained in W2 . An edge labelled E1 cannot have both incident vertex
groups contained in W2 , since S0 would have to be contained in each vertex and edge
group in a geodesic path, in the underlying tree of ƒ, between such an edge and an
edge with label E1 incident at V . Hence all the edges having label E1 originally
still have label E1 in ƒ� . The edge incident to V labelled E2 in the original ƒ is
conjugated to dE2d�1 DE1 and so we have at least one more edge labelled by E1 ,
and hence at least one fewer edge labelled by a group different from E1 . Thus ƒ�
contradicts the minimality of the number of edges labelled by groups different from a
particular edge group assumed for ƒ. Instead, twisting to reduce the number of edges
labelled by a group different from a chosen edge group must eventually transform a
given ƒ to a graph of groups ‰ having all the same edge groups.

Lemma 6.5 Let ‰ be a reduced graph of groups decomposition for a Coxeter system
.W;S/ of finite rank such that all of the edge groups of ‰ are equal, and let ‰0

0
be a

similar decomposition for .W;S 0/ such that each vertex group is conjugate to a vertex
group of ‰ and the equal edge groups of ‰0

0
are conjugate to the edge groups of ‰ .

Then by a sequence of twists applied to ‰0
0

there results a new set of Coxeter generators
S 0� and corresponding visual graph of groups ‰0 such that the vertex groups of ‰0

are equal to those of ‰ and the edge groups of ‰0 are all equal and equal to the edge
groups of ‰ , and hence z‰ D z‰0 .

Proof Let zT be the Bass–Serre tree for z‰ . Then each vertex group V 0 of ‰0
0

stabilizes a v–vertex of zT , but stabilizes at most one v–vertex since V 0 cannot be a
subgroup of a conjugate of an edge group of ‰0

0
, and the same is true for any ‰0�

resulting by twists conjugating vertex groups and preserving the same edge groups
from ‰0

0
. Let T0 be the spanning tree for the v–vertices of zT that are stabilized by a

vertex group of such a ‰0� and take ‰0� so that T0 has a minimal number of vertices.
The smallest T0 can be is one v–vertex for each vertex group of ‰0� plus one e–vertex,
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corresponding to the common edge group of z‰ , connected to each of the v–vertices of
T0 . In this case, conjugating ‰0� carries T0 to the standard transversal T1 of zT and
so takes ‰0� to a ‰0 having the same vertex and edge groups as ‰ .

Suppose instead that T0 has more than one e–vertex. Suppose further that some v–vertex
wV of T0 , for V a vertex group of ‰ , stabilized by a vertex group V 0 D wVw�1 of
‰0� has more than one edge of T0 incident at that vertex. Let E be the common edge
group of ‰ so there are e–vertices uE and vE adjacent to wV , the edge group E0

of ‰0� is uEu�1 D vEv�1 , and uv�1 2 V 0 . Twist ‰0� to ‰0�� by conjugating each
vertex group of ‰0� stabilizing a v–vertex of T0 on the vE side of wV by the element
uv�1 . Then uv�1E0vu�1 D uEu�1 DE0 , and so edge groups have not changed.

If V 0
2

is a vertex group of ‰0� stabilizing a v–vertex w2V2 on the vE side of wV , then
uv�1V 0

2
vu�1 stabilizes uv�1w2V2 . If p is a geodesic path from wV to w2V2 in

T0 , then translating p by uv�1 results in a path from uv�1wV DwV to uv�1w2V2 .
Since the first edge in p is vE , the first edge in the translated path is uE . We conclude
that the spanning tree for the v–vertices stabilized by ‰0�� consists of the part of T0 on
the vE side of wV translated by uv�1 together with the rest of T0 . Since the e-vertex
vE is carried to the e–vertex uE in the new spanning tree, there are fewer vertices in
the new spanning tree, contradicting the minimality of T0 for ‰0� .

Finally suppose that all the v–vertices of T0 that are stabilized by a vertex group of
‰0� are the leaves of T0 (the end points of T0 ), and that T0 has at least two e–vertices.
Then T0 has a v-vertex that is not stabilized by a vertex group of ‰0� . Let zT 0 be the
Bass–Serre tree of z‰0� . Let zT 0� be the result of replacing, equivariantly with respect to
the action of W , each translate of the standard transversal T 0

1
of zT 0 by a copy of T0

so that T0 is attached by identifying each vertex of T0 stabilized by a vertex group
V 0 of ‰0� with the vertex V 0 of T 0

1
(this vertex remains labelled V 0 ). In particular,

the e–vertices of zT 0 (those that are labelled by cosets of the edge group of ‰0� ) are
replaced by copies of the level one core of T0 (the tree T0 minus its leaves and their
adjoining edges). Then W acts on the tree zT 0� translating the vertices labelled by
cosets of vertex groups of ‰0� in the same way as in z‰0� .

Define a map � W zT 0�! zT by mapping the vertex V 0 of the attached T0 to the vertex
wV of T0 when a vertex group V 0 of ‰0� stabilizes the vertex wV in T0 , and by
mapping the translates of T0 in zT 0� isomorphically to corresponding translates of T0

in zT so as to make � respect the action of W . Then � is locally injective, since the
cosets uv0E0 of the edge group E0 in a given v–vertex uV 0 of zT 0 , which is also a
vertex of zT 0� , correspond to the cosets uwvE of the edge group E in the v–vertex
�.uV 0/ D uwV of zT under the correspondence v0 D wvw�1 , since E0 D wEw�1

and V 0 D wVw�1 . Hence � is injective, since � is a map of trees. But T0 has an
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interior v–vertex U D tV , corresponding to a vertex group V of ‰ , which is not
stabilized by a vertex group of ‰0� . Now U D �.U 0/ where U 0 is an interior v–vertex
of the attached T0 in zT 0� . Let w�1V 0 be the v–vertex of zT 0 stabilized by V . Then
w�1V 0w D V , and so V 0 D wVw�1 . Hence the vertex group V 0 of ‰0� stabilizes
the vertex wV in T0 , and so �.tw�1V 0/D tw�1wV D tV D U . As tw�1V 0 ¤ U 0

in zT 0� , we have a contradiction to � being injective.

Theorem 6.6 (Decomposition Matching Theorem) Let W be a finitely generated
Coxeter group with two sets of Coxeter generators S and S 0 , and suppose W has a
nontrivial splitting as A�C B . Then there are sequences of twists applied to .W;S/ and
.W;S 0/ giving rise to Coxeter systems .W;S�/ and .W;S 0�/, respectively, such that
there exists a nontrivial reduced visual graph of groups decomposition ‰ of .W;S�/

and a nontrivial reduced visual graph of groups decomposition ‰0 of .W;S 0�/ having
the same graphs and the same vertex and edge groups and all edge groups equal and a
subgroup of a conjugate of C .

Proof Let ƒ and ƒ0 be visual graph of groups decompositions of .W;S/ and .W;S 0/,
respectively, as in Theorem 6.1. By Lemma 6.4, we can twist ƒ to get a visual
decomposition ‰ of .W;S�/ with one edge group, and we can twist ƒ0 to get a
visual decomposition ‰0

0
with one edge group. By Lemma 6.5, we can twist ‰0

0
to a

visual decomposition ‰0
1

of .W;S 0�/ having the same vertex and edge groups as ‰ ,
so z‰ D z‰0 . Now ‰ and ‰0

1
only differ by expansions and contractions rearranging

the edge group attachments to vertex groups. So there is a visual decomposition ‰0 of
.W;S 0�/ with the same graph of groups structure as ‰ .

7 The Simplex Matching Theorem

In this section, we apply Theorem 2.1 and the Decomposition Matching Theorem to
prove the Simplex Matching Theorem.

Lemma 7.1 Let .W;S/ be a finite irreducible Coxeter system whose type is different
from A5 , and let ˛ be an automorphism of W . Then ˛ can be written as a composition
of two automorphisms, ˛ D ˇ , such that ˇ is reflection preserving and  induces the
identity on ŒW;W �.

Proof If .W;S/ has type An , for n¤ 5, then it is well know that every automorphism
of An is inner, and so ˇ D ˛ and  is the identity. The remaining cases follow from
Franzsen and Howlett [8, Theorem 31], since the automorphisms ˛� ; ˛� ; ˛� in Theorem
31 induce the identity on ŒW;W � (since ŒW;W � is the kernel of �; � and �), and the
remaining automorphisms described in the generating sets are reflection preserving.
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Proposition 7.2 (Franzsen and Howlett [8, Proposition 32]) Let .W;S/ be a finite
Coxeter system, and let ˛ be an automorphism of W that preserves reflections. Then
˛ maps each visible subgroup of .W;S/ to a conjugate of a visible subgroup of the
same type.

Lemma 7.3 Let .W;S/ be a finite irreducible Coxeter system whose type is different
from A5 , and let ˛ be an automorphism of W . Let A� S be irreducible with jAj> 1.
Then A and Pc

�
˛.ŒhAi; hAi�/

�
have the same type.

Proof By Lemma 7.1, we can write ˛ is a composition of two automorphisms,
˛ D ˇ , such that ˇ is reflection preserving and  induces the identity on ŒW;W �.
By Proposition 7.2, the exists w 2W and B � S of the same type as A such that
ˇ.hAi/D whBiw�1 . Then by Lemma 4.16, we have

Pc
�
˛.ŒhAi; hAi�/

�
D Pc

�
ˇ.ŒhAi; hAi�/

�
D Pc

�
wŒhBi; hBi�w�1

�
D wPc

�
ŒhBi; hBi�

�
w�1
D whBiw�1:

Thus A and Pc
�
˛.ŒhAi; hAi�/

�
have the same type.

The next lemma follows from Lemma 7.3.

Lemma 7.4 Let .W;S/ and .W 0;S 0/ be finite irreducible Coxeter systems whose
type is different from A5 , and let �W W ! W 0 be an isomorphism. Let A � S be
irreducible with jAj> 1. Then A and Pc

�
�.ŒhAi; hAi�/

�
have the same type.

Lemma 7.5 Let W be a finitely generated Coxeter group with two sets of Coxeter
generators S and S 0 . Let S1 � S and S 0

1
� S 0 , and suppose that W1 D hS1i D hS

0
1
i.

If the basic subsets of S and S 0 match isomorphically, then the basic subsets of S1

and S 0
1

match isomorphically.

Proof On the contrary, suppose B1 is a base of .W1;S1/ that matches nonisomor-
phically a base B0

1
of .W1;S

0
1
/. Without loss of generality, we may assume that

jhB1ij> jhB
0
1
ij. Then either B1 is of type C2qC1 and B0

1
is of type B2qC1 for some

q � 1 or B1 is of type D2.4qC2/ and B0
1

is of type D2.2qC1/ for some q � 1. Let
B be the base of .W;S/ containing B1 and let B0 be the base of .W;S 0/ matching
B . Then B is not of type A5 .

By the Basic Matching Theorem, there is an isomorphism �W hBi! hB0i that restricts
to conjugation on ŒhBi; hBi� by an element w of W . By Lemma 7.4, we have
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that B1 and Pc
�
�.ŒhB1i; hB1i�/

�
have the same type. Let B00

1
� B0 be such that

Pc
�
�.ŒhB1i; hB1i�/

�
is conjugate to hB00

1
i in hB0i. Then B1 and B00

1
have the same

type.

By Proposition 4.14, the parabolic closure of �.ŒhB1i; hB1i�/ in .hB0i;B0/ is the
same as the parabolic closure of �.ŒhB1i; hB1i�/ in .W;S 0/. By the Basic Matching
Theorem, there is an w1 2W1 such that

ŒhB1i; hB1i�D w1ŒhB
0
1i; hB

0
1i�w

�1
1 :

By Lemma 4.16 at the last step, we have

Pc
�
�.ŒhB1i; hB1i�/

�
D Pc

�
wŒhB1i; hB1i�w

�1
�

D wPc
�
ŒhB1i; hB1i�

�
w�1

D wPc
�
w1ŒhB

0
1i; hB

0
1i�w

�1
1

�
w�1

D ww1Pc
�
ŒhB01i; hB

0
1i�
�
w�1

1 w�1

D ww1hB
0
1i.ww1/

�1:

Hence hB00
1
i and hB0

1
i are conjugate in W , and so B00

1
and B0

1
have the same type.

Therefore B1 and B0
1

have the same type, which is a contradiction.

The next lemma is known to experts; for a proof, see Paris [12].

Lemma 7.6 Let W be a finitely generated Coxeter group with two complete Coxeter
systems .W;S/ and .W;S 0/. Let

.W;S/D .W0;S0/� .W1;S1/� � � � � .Wk ;Sk/

with .W0;S0/ finite and .Wi ;Si/ infinite and irreducible for each i D 1; : : : ; k . Sup-
pose

.W;S 0/D .W 00;S
0
0/� .W

0
1;S
0
1/� � � � � .W

0
` ;S
0
`/

with .W 0
0
;S 0

0
/ finite and .W 0j ;S

0
j / infinite and irreducible for each j D 1; : : : ; `. Then

W0 DW 0
0

. Let Z DZ.W0/. Then k D ` and after reindexing we have ZWi DZW 0i
for each i D 1; : : : ; k .

Theorem 7.7 (Simplex Matching Theorem) If W is a finitely generated Coxeter
group with two sets of Coxeter generators S and S 0 whose basic subsets match
isomorphically, then .W;S/ and .W;S 0/ have the same number of visible subgroups of
each complete system isomorphism type. In particular, jS j D jS 0j, and the presentation
diagrams of .W;S/ and .W;S 0/ have the same multiset of edge labels.
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Proof The proof is by induction on jS j. This is clear if jS j D 1, so assume jS j> 1

and the theorem is true for all Coxeter systems with fewer generators than jS j. Assume
first that .W;S/ is complete. Then .W;S 0/ is complete by Proposition 4.21. Let

.W;S/D .W1;S1/� � � � � .Wn;Sn/

be the factorization of .W;S/ into irreducible factors and suppose .Wi ;Si/ is finite if
and only if i � k . Let

.W;S 0/D .W 01;S
0
1/� � � � � .W

0
m;S

0
m/

be the factorization of .W;S 0/ into irreducible factors and suppose .Wi ;S
0
i/ is finite

if and only if i � `. By Lemma 7.6, we have

.W1;S1/� � � � � .Wk ;Sk/D .W
0

1;S
0
1/� � � � � .W

0
` ;S
0
`/:

By the Matching Theorem for systems of a finite Coxeter group, we can reindex
so that Wi is noncyclic if and only if i � p and W 0j is noncyclic if and only if
j � p and ŒWi ;Wi �D ŒW

0
i ;W

0
i � for each i � p . By hypothesis, .Wi ;Si/Š .W

0
i ;S
0
i/

for each i � p . As the remaining finite factors have order 2, we have k D ` and
.Wi ;Si/Š .Wi ;S

0
i/ for p < i � k .

By quotienting out the finite normal subgroup .W1;S1/ � � � � � .Wk ;Sk/, we may
assume that Wi and W 0j are infinite for each i and j . By Lemma 7.6, we have that
m D n and after reindexing Wi D W 0i for each i . Hence we may assume that W

is infinite and .W;S/ and .W;S 0/ are irreducible. By Theorem 2.1, we have that
.W;S/Š .W;S 0/. Thus in general .W;S/Š .W;S 0/ when .W;S/ is complete.

Now assume .W;S/ is incomplete. Then there are a; b in S such that m.a; b/D1.
Hence

W D hS �fagi �hS�fa;bgi hS �fbgi

is a nontrivial visual amalgamated decomposition. By the Decomposition Matching
Theorem, there exist four nontrivial reduced visual graph of group decomposition of
W , visual with respect to different sets of generators, a ƒ with respect to S , a ƒ0

with respect to S 0 , a ‰ with respect to another set of Coxeter generators R of W , and
a ‰0 with respect to another set of Coxeter generators R0 of W such that

(1) the edge groups of ƒ and ƒ0 are all conjugate and conjugate to a subgroup of
hS �fa; bgi;

(2) there is a 1–1 correspondence between the vertices of ƒ and the vertices of ƒ0

such that each vertex group of ƒ is conjugate to the corresponding vertex group
of ƒ0 ;
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(3) ‰ is a twisted form of ƒ having all edge groups equal and conjugate to the
edge groups of ƒ, and having vertices in a 1–1 correspondence with those of ƒ
such that each vertex group of ‰ is conjugate to the corresponding vertex group
of ƒ, and ‰0 is similarly a twisted form of ƒ0 ; and

(4) ‰0 is the same graph of groups as ‰ and differs from ‰ only in being a visual
graph of groups decomposition of W with respect to a different set of Coxeter
generators.

The Coxeter systems .W;R/ and .W;S/ are twist equivalent and so have the same
number of visible subgroups of each complete system isomorphism type. Moreover
R and S have isomorphically matching basic subsets. Likewise the Coxeter systems
.W;R0/ and .W;S 0/ have the same number of visible subgroups of each complete
system isomorphism type, and R0 and S 0 have isomorphically matching basic subsets.

Let f.Wi ;Ri/g
k
iD1

be the Coxeter systems of the vertex groups of ‰ , and let .W0;R0/

be the Coxeter system of the edge group of ‰ . Then k � 2, R D [k
iD1

Ri , and
\k

iD1
Ri DR0 , and R0¤Ri for each i > 0, and m.a; b/D1 for each a in Ri�R0

and b in Rj �R0 with i ¤ j . Let f.W 0i ;R
0
i/g

k
iD1

be the Coxeter systems of the vertex
groups of ‰0 indexed so that W 0i DWi for each i , and let .W 0

0
;R0

0
/ be the Coxeter

system of the edge group of ‰0 . Then W 0
0
DW0 , R0 D[k

iD1
R0i , and \k

iD1
R0i DR0

0
,

and R0
0
¤ R0i for each i > 0, and m.a0; b0/ D 1 for each a0 in R0i �R0

0
and b0

in R0j �R0
0

with i ¤ j . Moreover Ri and R0i have isomorphically matching basic
subsets for each i by Lemma 7.5.

Let C be a complete system isomorphism type and let C.S/ be the number of visible
subgroups of .W;S/ of isomorphism type C . By the induction hypothesis, C.Ri/D

C.R0i/ for each i . Observe that

C.S/D C.R/D
kX

iD1

C.Ri/� .k � 1/C.R0/

D

kX
iD1

C.R0i/� .k � 1/C.R00/D C.R
0/D C.S 0/;

which completes the induction.

8 Blowing up Coxeter systems

Let .W;S/ be a Coxeter system of finite rank. In this section, we determine necessary
and sufficient conditions on .W;S/ for a base B of .W;S/ to match a base B0 of
.W;S 0/ with jhBij> jhB0ij.
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Lemma 8.1 Suppose B is a base of .W;S/ of type C2qC1 that matches a base B0

of .W;S 0/ of type B2qC1 for some q � 1. Let a; b; c be the elements of B such that
m.a; b/D 4 and m.b; c/D 3, and let A� S such that a 2 A. If hAi is conjugate to
hA0i for some A0 � S 0 , then B �A.

Proof Let M � S be a maximal spherical simplex containing B . Then there is a
unique maximal spherical simplex M 0 � S 0 such that hM i is conjugate to hM 0i by
Proposition 4.13. By conjugating S 0 , we may assume that hM i D hM 0i. Then M 0

contains B0 by the Basic Matching Theorem. Let w be an element of W such that
hAi D whA0iw�1 . By Proposition 4.14, there is an element x of hM 0i and a subset
C of M 0 such that

hM \Ai D hM i \ hAi D hM 0
i \whA0iw�1

D xhC ix�1:

Hence, we may assume that W is finite by restricting to hM i. Furthermore, by
conjugating S 0 , we may assume that hAi D hA0i.

Let D be a base of .W;S/ other than B . Then each element of D commutes with
each element of B , and so hBi injects into the quotient of W by the commutator
subgroup of hDi. Hence, by Theorem 3.6, we may assume that W is the direct product
of hBi and copies of A1 . The center Z of W is generated by S �B and the longest
element z of hBi. The center Z is also generated by S 0�B0 . Let K be the kernel
of the homomorphism of Z to hzi that maps S �B to 1 and z to z . Then W =K is
a Coxeter group. P-diagrams for W =K are obtained from the P–diagram of .W;S/

by removing the vertices S �B and from the P–diagram of .W;S 0/ by removing
the vertices in .S 0 �B0/\K and identifying the remaining vertices of S 0 �B0 to
a single vertex z0 . By passing to the quotient W =K , we may assume that S D B

and S 0 D B0 [ fz0g and z0 commutes with each element of B0 . Then z D z0 , since
hzi DZ.W /D hz0i.

Now as a 2A and hAi D hA0i, we have that a 2 hA0i. The element a is represented
by the matrix diag.1; : : : ; 1;�1/ in C2qC1 . Observe that

diag.1; : : : ; 1;�1/D diag.�1; : : : ;�1;�1/diag.�1; : : : ;�1; 1/:

The matrix �I represents z . The matrix diag.�1; : : : ;�1; 1/ is the longest element of
B2qC1 which is in ŒC2qC1;C2qC1�. Hence diag.�1; : : : ;�1; 1/ represents an element
` of ŒhBi; hBi�, with aD `z . As ŒhBi; hBi�D ŒhB0i; hB0i�, we have ` 2 hB0i. Hence
every reduced word in the generators S 0 D B0[fzg representing aD `z involves z

by Bourbaki [1, Proposition 7]. Therefore z 2A0 , since A0 �B0[fzg and a 2 hA0i.
Hence z 2 hAi. As z involves all the elements of B , we deduce that B �A.
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If a 2 S , the neighborhood of a in P–diagram of .W;S/ is defined to be the set
N.a/D fs 2 S Wm.s; a/ <1g.

If A� S , define A? D fs 2 S Wm.s; a/D 2 for all a 2Ag.

Theorem 8.2 Suppose B is a base of .W;S/ of type C2qC1 that matches a base B0

of .W;S 0/ of type B2qC1 for some q � 1. Let a; b; c be the elements of B such that
m.a; b/D 4 and m.b; c/D 3. Then N.a/D B [B? .

Proof Let s 2N.a/�B , and let A� S be a maximal spherical simplex containing
fa; sg. Then there is a maximal spherical simplex A0 � S 0 such that hAi is conjugate
to hA0i. Hence B � A by Lemma 8.1. As B is a base of .hAi;A/, we deduce that
s 2 B? .

Lemma 8.3 Let w D s1 � � � sn be a reduced word in .W;S/ and let s 2 S such that
s ¤ si for each i D 1; : : : ; n. If sw has finite order in W , then m.s; si/ <1 for each
i D 1; : : : ; n.

Proof On the contrary, suppose m.s; si/ D 1 for some i . We may assume S D

fs; s1; : : : ; sng. Then

W D hs; s1; : : : ; ysi ; : : : ; sni �hs1; : : : ; ysi ; : : : ; sni
hs1; : : : ; sni

is a free product with amalgamation decomposition. Observe that .sw/kD swsw � � � sw

is a normal form for .sw/k for each k � 1 with respect to the amalgamated product,
and so .sw/k ¤ 1 for each k � 1.

Theorem 8.4 Let B be a base of .W;S/ of type C2qC1 for some q � 1, and let
a; b; c be the elements of B such that m.a; b/ D 4 and m.b; c/ D 3. Suppose that
N.a/ D B [ B? . Let d D aba, and let z be the longest element of hBi. Let
S 0 D .S � fag/ [ fd; zg and B0 D .B � fag/ [ fdg. Then S 0 is a set of Coxeter
generators for W such that

(1) the set B0 is a base of .W;S 0/ of type B2qC1 that matches B ,

(2) .B0/? D B?[fzg, and fzg is a component of .B0/? ,

(3) N.d/DN.z/D B0[ .B0/? and

(4) the basic subsets of S and S 0 are the same except for B and B0 .
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Proof Consider the Coxeter presentation

W D hS j .st/m.s;t/ W s; t 2 S and m.s; t/ <1i:

Now .hB0i;B0/ is a finite Coxeter system of type B2qC1 . Let ` be the longest element
of .hB0i;B0/. Regard ` as a reduced word in the elements of B0 . Add generators d

and z and relations d D aba and z D a` to the above presentation for W . Now add
the relators .st/m.s;t/ for .s; t/ in fd; zg �S 0 or in S 0 � fd; zg where m.s; t/ is the
order of st in W and m.s; t/ <1. This includes all the relators of .hB0i;B0/. As
hzi is the center of hBi, we have that m.z; t/D 2 for all t in B0 .

Next delete the generator a and the relation z D a` and replace a by z` in the
remaining relations. As z commutes with each element of B0 , we can replace the
relation d D z`bz` by the relation d D `b`.

The relators .z`b/4 and .bz`/4 can be replaced by .`b/4 and .b`/4 which in turn
can be replaced by .db/2 and .bd/2 using the relation d D `b`. The relators .db/2

and .bd/2 are redundant and so we delete them. The relation d D `b` is derivable
from the relators of .hB0i;B0/ and so we delete it. The relators .z`s/2 and .sz`/2 for
s 2B �fa; bg can be replaced by .`s/2 and .s`/2 . The relators .`s/2 and .s`/2 are
derivable from the relators of .hB0i;B0/ and so we delete them.

Suppose s 2 N.a/ � B . Then s 2 B? by hypothesis. Hence m.s; t/ D 2 for all
t 2B0[fzg. Now the relators .z`s/2 and .sz`/2 can be replaced by .`s/2 and .s`/2 .
The relators .`s/2 and .s`/2 are derivable from the relators .st/2 for t 2 B0 and the
relation `2 D 1. Hence we may delete the relators .`s/2 and .s`/2 . This leaves the
Coxeter presentation

W D hS 0 j .st/m.s;t/ W s; t 2 S 0 and m.s; t/ <1i:

Thus S 0 is a set of Coxeter generators for W .

Statements 2 and 3 follow from Lemma 8.3 and the hypothesis that N.a/D B [B? .
The set B0 is a base of .W;S 0/, since N.d/D B0[ .B0/? . The base B matches the
base B0 , since ŒhBi; hBi�D ŒhB0i; hB0i�. Statement 4 follows from Statements 1–3.

The next theorem follows from Theorem 8.2 and Theorem 8.4.

Theorem 8.5 Let .W;S/ be a Coxeter system of finite rank. Let B be a base of
.W;S/ of type C2qC1 for some q � 1, and let a; b; c be the elements of B such that
m.a; b/D 4 and m.b; c/D 3. Then W has a set of Coxeter generators S 0 such that B

matches a base B0 of .W;S 0/ of type B2qC1 if and only if N.a/D B [B? .

We now consider the dihedral case.
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Lemma 8.6 Suppose B is a base of .W;S/ of type D2.4qC 2/ that matches a base
B0 of .W;S 0/ of type D2.2qC1/. Then either vD a or vD b has the property that if
v 2A� S and hAi is conjugate to hA0i for some A0 � S 0 , then B �A.

Proof As in the proof of Lemma 8.1, we may assume that hAi D hA0i and reduce
W so that S D B and S 0 D B0 [ fzg where hzi is the center of hBi. Now a and b

are not both in hB0i. Choose v so that v is not in hB0i. Then every reduced S 0–word
representing v involves z . Now as v 2 A, we have that v 2 hA0i. Therefore z 2 A0 .
Hence z 2 hAi. Therefore B �A.

Theorem 8.7 Let .W;S/ be a Coxeter system of finite rank, and let B D fa; bg be
a base of .W;S/ of type D2.4qC 2/ for some q � 1. Then W has a set of Coxeter
generators S 0 such that B matches a base B0 of .W;S 0/ of type D2.2qC 1/ if and
only if either v D a or v D b has the property that N.v/D B [B? .

Proof Suppose that W has a set of Coxeter generators S 0 such that B matches a
base B0 of .W;S 0/ of type D2.2qC 1/. Let v D a or b as in Lemma 8.6. Suppose
s 2 N.v/�B . Let A � S be a maximal spherical simplex containing fs; vg. Then
there is a maximal spherical simplex A0 � S 0 such that hAi is conjugate to hA0i. Then
B � A by Lemma 8.6. As B is a base of .hAi;A/, we have s 2 B? . The converse
follows from the next theorem.

Theorem 8.8 Let BDfa; bg be a base of .W;S/ of type D2.4qC2/ for some q� 1.
Suppose that N.a/D B [B? . Let c D aba and let z be the longest element of hBi.
Let S 0 D .S �fag/[fc; zg and B0 D fb; cg. Then S 0 is a set of Coxeter generators of
W such that

(1) the set B0 is a base of .W;S 0/ of type D2.2qC 1/ that matches B ,

(2) .B0/? D B?[fzg, and fzg is a component of .B0/? ,

(3) N.c/DN.z/D B0[ .B0/? and

(4) the basic subsets of S and S 0 are the same except for B and B0 .

Proof Consider the Coxeter presentation

W D hS j .st/m.s;t/ W s; t 2 S and m.s; t/ <1i:

Now .hB0i;B0/ is a finite Coxeter system of type D2.2qC 1/. Let ` be the longest
element of .hB0i;B0/. Regard ` as the reduced word .bc/qb in the elements of B0 .
Add generators c and z and relations c D aba and z D a` to the above presentation
for W . Now add the relators .st/m.s;t/ for .s; t/ in fc; zg�S 0 or in S 0�fc; zg where
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m.s; t/ is the order of st in W and m.s; t/ <1. This includes all the relators of
.hB0i;B0/. As hzi is the center of hBi, we have that m.z; b/Dm.z; c/D 2.

Next delete the generator a and the relation z D a` and replace a by z` in the
remaining relations. As z commutes with each element of B0 , we can replace the
relation c D z`bz` by the relation c D `b`.

The relators .z`b/2.2qC1/ and .bz`/2.2qC1/ can be replaced by .`b/2.2qC1/ and
.b`/2.2qC1/ which in turn can be replaced by .cb/2qC1 and .bc/2qC1 using the
relation cD `b`. The relators .cb/2qC1 and .bc/2qC1 are redundant and so we delete
them. The relation c D `b` is derivable from the relators of .hB0i;B0/ and so we
delete it.

Suppose s 2N.a/�B . Then s 2B? by hypothesis. Hence m.s; t/D2 for t 2fb; c; zg.
Now the relators .z`s/2 and .sz`/2 can be replaced by .`s/2 and .s`/2 . The relators
.`s/2 and .s`/2 are derivable from the relators .st/2 for t 2B0 and the relation `2D 1.
Hence we may delete the relators .`s/2 and .s`/2 . This leaves the Coxeter presentation

W D hS 0 j .st/m.s;t/ W s; t 2 S 0 and m.s; t/ <1i:

Thus S 0 is a set of Coxeter generators for W .

Statements 2 and 3 follow from Lemma 8.3 and the hypothesis that N.a/D B [B? .
The set B0 is a base of .W;S 0/, since N.d/D B0[ .B0/? . The base B matches the
base B0 , since ŒhBi; hBi�D ŒhB0i; hB0i�. Statement 4 follows from Statements 1–3.

9 The maximum rank of a Coxeter group

Let .W;S/ be a Coxeter system of finite rank. We say that .W;S/ can be blown
up along a base B if .W;S/ and B satisfy the hypothesis of either Theorem 8.4 or
Theorem 8.8. If .W;S/ can be blown up along a base B , then we can blow up .W;S/

to a Coxeter system .W;S 0/ as in the statement of Theorem 8.4 or Theorem 8.8 such
that jS 0j D jS j C 1, the base B matches a base B0 of .W;S 0/ with jhBij > jhB0ij,
and S and S 0 have the same basic subsets except for B and B0 . We say that .W;S 0/

is obtained by blowing up .W;S/ along the base B . The system .W;S 0/ is also called
an elementary reduction of .W;S/ by Mühlherr [11].

By the process of blowing up along a base, we can effectively construct a sequence
S D S .0/;S .1/; : : : ;S .`/ of Coxeter generators of W such that S .iC1/ is obtained by
blowing up .W;S .i// along a base for each i D 0; : : : ; `� 1, and .W;S .`// cannot
be blown up along a base. The sequence terminates since the sum of the orders of
the basic subgroups decreases at each step of the sequence. By the next theorem, the
system .W;S .`// has maximum rank over all Coxeter systems for W .
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Theorem 9.1 (Maximum Rank Theorem) Let .W;S/ be a Coxeter system of finite
rank. Then the following are equivalent:

(1) we have jS j � jS 0j for every set of Coxeter generators S 0 of W ,

(2) each base of .W;S/ matches a base B0 of .W;S 0/ with jhBij � jhB0ij for every
set of Coxeter generators S 0 of W and

(3) the system .W;S/ cannot be blown up along a base.

Proof Suppose that jS j � jS 0j for every set of Coxeter generators S 0 of W and on
the contrary, a base B of .W;S/ matches a base B0 of .W;S 0/ with jhBij> jhB0ij.
By the Basic Matching Theorem either B is of type C2qC1 and B0 is of type B2qC1

for some q � 1 or B is of type D2.4qC 2/ and B0 is of type D2.2qC 1/ for some
q � 1. By Theorem 8.5 and Theorem 8.7, we have that .W;S/ and B satisfy the
hypothesis of Theorem 8.4 or Theorem 8.8. Therefore .W;S/ can be blown up along
B to obtain a system .W;S 0/ with jS 0j D jS jC 1 contrary to the maximality of jS j.
Therefore (1) implies (2).

Suppose that each base B of .W;S/ matches a base B0 of .W;S 0/ with jhBij� jhB0ij
for every set of Coxeter generators S 0 of W . If jhBij D jhB0ij for every base B of
.W;S/, then S and S 0 have isomorphically matching basic subsets by the Basic
Matching Theorem, and so jS j D jS 0j by the Simplex Matching Theorem.

Suppose a base B of .W;S/ matches a base B0 of .W;S 0/ with jhBij< jhB0ij. By
the Basic Matching Theorem either B0 is of type C2qC1 and B is of type B2qC1 for
some q � 1 or B0 is of type D2.4qC2/ and B is of type D2.2qC1/ for some q � 1.
By Theorem 8.5 and Theorem 8.7, we have that .W;S 0/ and B0 satisfy the hypothesis
of Theorem 8.4 or Theorem 8.8, and so .W;S 0/ can be blown up along B0 to obtain
a system .W;S 00/ with jS 00j D jS 0jC 1 such that B0 matches a base B00 of .W;S 00/

with jhB0ij> jhB00ij D jhBij, and S 0 and S 00 have the same basic subsets except for
B0 and B00 .

If S and S 00 do not have isomorphically matching basic subsets, we can blow up
.W;S 00/ along a base. Continuing in this way, we obtain a sequence of Coxeter
generators S 0 D S .1/; : : : ;S .`/ of W such that S .iC1/ is obtained by blowing up
.W;S .i// along a base for each i D 1; : : : ; `�1, and S and S .`/ have isomorphically
matching basic subsets. In particular, jS .iC1/j D jS .i/jC 1 for each i D 1; : : : ; `� 1.
By the Simplex Matching Theorem, jS j D jS .`/j, and so jS j> jS 0j. Thus (2) implies
(1).

Finally (2) and (3) are equivalent by the Basic Matching Theorem and Theorem 8.5
and Theorem 8.7.
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Theorem 9.2 (Simplex Matching Theorem for maximum rank systems) If W is
a finitely generated Coxeter group and S and S 0 are Coxeter generators of W of
maximum rank, then .W;S/ and .W;S 0/ have the same number of visible subgroups
of each complete system isomorphism type.

Proof By the Maximum Rank Theorem, each base B of .W;S/ matches a base B0

of .W;S 0/ with jhBij D jhB0ij. Therefore S and S 0 have isomorphically matching
basic subsets by the Basic Matching Theorem. Hence .W;S/ and .W;S 0/ have the
same number of visible subgroups of each complete system isomorphism type by the
Simplex Matching Theorem.
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