Multiple bridge surfaces restrict knot distance

MagGy Tomova

Suppose M is a closed irreducible orientable 3-manifold, K is a knot in M, P and Q are bridge surfaces for K and K is not removable with respect to Q. We show that either Q is equivalent to P or $d(K, P) \leq 2-\chi(Q-K)$. If K is not a 2-bridge knot, then the result holds even if K is removable with respect to Q. As a corollary we show that if a knot in S^{3} has high distance with respect to some bridge sphere and low bridge number, then the knot has a unique minimal bridge position.

57M25, 57M27, 57M50

1 Introduction and preliminaries

Distance is a generalization of the concept of weak and strong compressibility for bicompressible surfaces originally due to Hempel [5]. It has been successfully applied to study Heegaard splittings of 3-manifolds. For example in [4] Hartshorn shows that the Euler characteristic of an essential surface in a manifold bounds the distance of any of its Heegaard splittings. In [12] Scharlemann and Tomova show that the Euler characteristic of any Heegaard splitting of a 3-manifold similarly bounds the distance of any non-isotopic splitting.

A knot K in a 3-manifold M is said to be in bridge position with respect to a surface P if P is a Heegaard surface for M and K intersects each of the components of $M-P$ in arcs that are simultaneously parallel to P. If K is in bridge position with respect to P, we say that P is a bridge surface for K. The definition of distance has been extended to apply to bridge surfaces. In [2], Bachman and Schleimer prove that Hartshorn's result extends to the distance of a bridge surface, namely the Euler characteristic of an essential properly embedded surface in the complement of a knot bounds the distance of any bridge surface for the knot. In this paper we extend the ideas in [12] to show that the result there also extends to the case of a knot with two different bridge surfaces.

Corollary Suppose K is a non-trivial knot in a closed, irreducible and orientable 3-manifold M and P is a bridge surface for K that is not a 4-times punctured sphere. If Q is also a bridge surface for K that is not equivalent to P, or if Q is a Heegaard surface for $M-\eta(K)$ then $d(K, P) \leq 2-\chi(Q-K)$.

In this paper two Heegaard splittings are considered to be equivalent if one is isotopic to a possibly stabilized copy of the other. For bridge surfaces there are three obvious geometric operations that correspond to stabilizations and they are described in Section 10.

A knot K is said to be removable with respect to a bridge surface Q if K can be isotoped to lie in the spine of one of the handlebodies $M-Q$. Thus after the isotopy, Q is a Heegaard surface for $M-\eta(K)$. If we restrict our attention only to bridge surfaces with respect to which the knot is not removable, we may extend the above theorem also to 2-bridge knots.

Corollary Suppose P and Q are two bridge surfaces for a knot K and K is not removable with respect to Q. Then either Q is equivalent to P or $d(P) \leq 2-\chi\left(Q_{K}\right)$.

The result proves a conjecture of Bachman and Schleimer put forth in [2].
Corollary If $K \subset S^{3}$ is in minimal bridge position with respect to a sphere P such that $d(K, P)>|P \cap K|$ then K has a unique minimal bridge position.

The basic idea of the proof of the above theorem is to consider a 2 -parameter sweep-out of $M-K$ by the two bridge surfaces. We keep track of information about compressions by introducing labels for the regions of the graphic associated to the sweep-out. We are able to conclude that if particular combinations of labels occur we can deduce the desired result. Using a quadrilateral version of Sperner's lemma, we conclude that one of the label combinations we have already considered must occur.

2 Surfaces in a handlebody intersected by the knot in unknotted arcs

Throughout this paper we will use the following definitions and notation.
Notation 2.1 Let M be a compact orientable irreducible 3-manifold. If $K \subset M$ is some properly embedded 1 -manifold, let M_{K} denote M with a regular (open) neighborhood $N(K)$ of K removed. If X is any subset of M, let $X_{K}=M_{K} \cap X$.

Definition 2.2 Suppose $(F, \partial F) \subset(M, \partial M)$ is a properly embedded surface in a compact orientable irreducible manifold M containing a 1 -manifold K such that F is transverse to K.

- We will say that F_{K} is n-times punctured if $|F \cap K|=n$. If F_{K} is 1-time punctured, we will call it punctured.
- A simple closed curve in F_{K} is inessential if it bounds a subdisk of F_{K} or it is parallel to a component of ∂F_{K}. Otherwise the curve is essential.
- A properly embedded arc $(\beta, \partial \beta) \subset\left(F_{K}, \partial F_{K}\right)$ is essential if no component of $F_{K}-\beta$ is a disk.
- A properly embedded disk $(D, \partial D) \subset\left(M_{K}, F_{K}\right)$ is a compressing disk for F_{K} in M_{K} if ∂D is an essential curve in F_{K}.
- A disk D^{c} in M is a cut-disk for F_{K} if $D^{c} \cap F_{K}=\partial D^{c}, \partial D^{c}$ is essential in F_{K} and D^{c} intersects K in a single point. Thus $D^{c} \cap M_{K}$ is an annulus with one boundary component an essential curve in F_{K} and the other one a meridional curve for the torus boundary component of M_{K}.
- A c-disk D^{*} for F_{K} is either a cut-disk or a compressing disk.
- A surface F_{K} is called incompressible if it has no compressing disks, cutincompressible if it has no cut-disks and c -incompressible if it has no c -disks.
- A surface F_{K} is called essential if it is incompressible and at least one of its components is not parallel to ∂M_{K}.

Now we restrict our attention to the case when the 3-manifold we are considering is a handlebody and the 1 -manifold K consists of "unknotted" properly embedded arcs. To make this more precise we use the following definition modeled after the definition of a K-compression body introduced by Bachman in [1].

Definition 2.3 A K-handlebody, (A, K) is a handlebody A and a 1-manifold, $(K, \partial K) \subset(A, \partial A)$, such that K is a disjoint union of properly embedded arcs and for each arc $\kappa \in K$ there is a disk, $D \subset A$ with $\partial D=\kappa \cup \alpha$, where $D \cap K=\kappa$ and $D \cap \partial A=\alpha$. These disks are called bridge disks and the arcs are called bridges.

A spine of a handlebody A is a properly embedded finite graph Σ_{A} in A (typically chosen to have no valence 1 vertices) so that $A-\Sigma_{A} \cong \partial A \times[0,1)$. Given a spine Σ_{A} and a collection K of bridges in A, K can be isotoped in A (for example by shrinking a collection E of bridge disks very close to ∂A) so that the projection (called the height) $A-\Sigma_{A} \cong \partial A \times[0,1) \rightarrow[0,1)$ has a single maximum on each bridge α_{i}. For each α_{i} connect Σ_{A} to that maximum by an arc in A which is monotonic with respect to height. The union of Σ_{A} with that collection of arcs is called a spine $\Sigma_{(A, K)}$ of (A, K). Note that there is a homeomorphism $A-\Sigma_{(A, K)} \cong \partial A \times[0,1)$ which carries $K-\Sigma_{(A, K)}$ to $(\partial A \cap K) \times[0,1)$. Put another way, there is a map $(\partial A, \partial A \cap K) \times I \rightarrow(A, K)$ which is a homeomorphism except over $\Sigma_{(A, K)}$, and the map gives a neighborhood of $\Sigma_{(A, K)}$ a mapping cylinder structure.

Notation 2.4 For the rest of this paper, unless otherwise specified, let (A, K) be a K-handlebody with $P=\partial A$ and spine $\Sigma_{(A, K)}$. We will always assume that if A is a ball, then K has at least 3 components. The surface $F \subset A$ will be properly embedded and transverse to K. We continue to denote by $N(K)$ a regular neighborhood of K.

Definition 2.5 Two embedded meridional surfaces S and T in (M, K) are called $K-$ parallel if they cobound a region homeomorphic to $S_{K} \times I$ ie the region of parallelism contains only unknotted segments of K each with one endpoint in S and one endpoint in T.

Two meridional surfaces S and T are K-isotopic if there exists an isotopy from S to T so that S remains transverse to K throughout the isotopy.

Lemma 2.6 If $(E, \partial E) \subset\left(A_{K}, P_{K}\right)$ is a possibly punctured disk such that ∂E is an inessential curve in P_{K}, then E is parallel to a possibly punctured subdisk of P_{K}.

Proof Let E^{\prime} be the possibly punctured disk ∂E bounds in P_{K}. There are three cases to consider. If E and E^{\prime} are both disks, then they cobound a ball as A_{K} is irreducible, and thus E is parallel to E^{\prime}. If one of E and E^{\prime} is a once punctured disk and the other one is a disk, then the sphere $E \cup E^{\prime}$ intersects K only once. The manifold is irreducible and $E \cup E^{\prime}$ is separating so this is not possible. Finally, if both E and E^{\prime} are once punctured disks, then by irreducibility of A and the definition of a K-handlebody, E and E^{\prime} cobound a product region in A_{K}. This product region intersects some bridge disk for K in a single arc, so the arc of K between E and E^{\prime} is a product arc. It follows that E and E^{\prime} are parallel as punctured disks.

Definition 2.7 A P-compressing disk for $F_{K} \subset A_{K}$ is a disk $D \subset A_{K}$ so that ∂D is the end-point union of two arcs, $\alpha=D \cap P_{K}$ and $\beta=D \cap F_{K}$, and β is an essential arc in F_{K}.

The operation of compressing, cut-compressing and P-compressing the surface F_{K} have natural duals that we will refer to as tubing (possibly tubing along a subset of the knot) and tunneling along an arc dual to the c-disk or the P-compressing disk. The precise definitions of these operations were given by Scharlemann in [8]. Suppose $F \subset M$ is a properly embedded surface in a manifold containing a knot K. Let $\gamma \subset$ interior (M) be an embedded arc such that $\gamma \cap F=\partial \gamma$. There is a relative tubular neighborhood $\eta(\gamma) \cong \gamma \times D^{2}$ so that $\eta(\gamma)$ intersects F precisely in the two diskfibers at the ends of γ. Then the surface obtained from F by removing these two disks and attaching the cylinder $\gamma \times \partial D^{2}$ is said to be obtained by tubing along γ. We allow for the possibility that $\gamma \subset K$. Similarly if $\gamma \subset \partial M$, there is a relative neighborhood
$\eta(\gamma) \cong \gamma \times D^{2}$ so that $\eta(\gamma)$ intersects F precisely in the two disk fibers at the ends of γ and $\eta(\gamma)$ intersects ∂M in a rectangle. Then the surface obtained from F by removing the two half disks and attaching the rectangle $\left(\gamma \times \partial D^{2}\right) \cap M$ is said to be obtained by tunnelling along γ.

We will have many occasions to use P-compressions of surfaces so we note the following lemma.

Lemma 2.8 Suppose $F_{K} \subset A_{K}$ is a properly embedded surface and F_{K}^{\prime} is the result of P-compressing F_{K} along a P-compressing disk E_{0}. Then
(1) if F_{K}^{\prime} has a c-disk, F_{K} also has a c-disk of the same kind (cut or compressing),
(2) if F_{K} intersects every spine $\Sigma_{(A, K)}$ then so does F_{K}^{\prime} and
(3) every curve of ∂F_{K} can be isotoped in P_{K} to be disjoint from any curve in ∂F_{K}^{\prime}.

Proof The original surface F_{K} can be recovered from F_{K}^{\prime} by tunneling along an arc that is dual to the P-compressing disk. This operation is performed in a small neighborhood of P_{K} so if F_{K}^{\prime} has compressing or cut-disks, they will be preserved in F_{K}. Also if F_{K}^{\prime} is disjoint from some $\Sigma_{(A, K)}$, then adding a tunnel close to P_{K} will not introduce any intersections with this spine. For the last item consider the frontier of $N\left(F_{K} \cup E_{0}\right) \cap P_{K}$ where N denotes a regular neighborhood. This set of disjoint embedded curves in P_{K} contains both $F_{K} \cap P_{K}$ and $F_{K}^{\prime} \cap P_{K}$.

In the case of a handlebody it is also known that any essential surface must have boundary. The following lemma proves the corresponding result for a K-handlebody.

Lemma 2.9 If F_{K} is an incompressible surface in A_{K}, then one of the following holds,
(1) F_{K} is a sphere,
(2) F_{K} is a twice punctured sphere, or
(3) $F_{K} \cap P_{K} \neq \varnothing$.

Proof Suppose F_{K} is an incompressible surface in A_{K} that is not a sphere or a twicepunctured sphere, such that $P_{K} \cap F_{K}=\varnothing$. Let Δ be the collection of a complete set of compressing disks for the handlebody A together with all bridge disks for K. Via an innermost disk argument, using the fact that F_{K} is incompressible, we may assume that $F_{K} \cap \Delta$ contains only arcs. Any arc of intersection between a disk $D \in \Delta$ and F_{K} must have both of its endpoints lying in $N(K)$ as $F_{K} \cap P_{K}=\varnothing$ and thus lies in
one of the bridge disks. Consider an outermost such arc in D cutting a subdisk E of D. Doubling E along K produces a compressing disk for F_{K} which was assumed to be incompressible. Thus F_{K} must be disjoint from Δ and therefore F_{K} lies in the ball $A_{K}-\Delta$ contradicting the incompressibility of F_{K}.

Finally it is well known that if F is a closed connected incompressible surface contained in $A-\Sigma_{A} \cong P \times I$, then F is isotopic to P. A similar result holds if we consider $F_{K} \subset\left(A_{K}-\Sigma_{(A, K)}\right)=P_{K} \times I$.

Lemma 2.10 Suppose P is a closed connected surface, and $K \neq \varnothing$ is a 1 -manifold properly embedded in $P \times I$ so that each component of K can be isotoped to be vertical with respect to the product structure. If $F_{K} \subset P_{K} \times I$ is a properly embedded connected incompressible surface such that $F_{K} \cap(P \times\{0\})=F_{K} \cap(P \times\{1\})=\varnothing$, then one of the following holds,
(1) F_{K} is a sphere disjoint from the knot,
(2) F_{K} is a twice punctured sphere, or
(3) F_{K} is K-isotopic to $P_{K} \times\{0\}$.

Proof Suppose F_{K} is not a sphere or a twice punctured sphere. Consider the set S consisting of properly embedded arcs in P_{K} so that $P_{K}-S$ is a disk. This collection gives rise to a collection $\Delta=S \times I$ of disks in $P_{K} \times I$ so that $\left(P_{K} \times I\right)-\Delta$ is a ball. As F_{K} is not a sphere $F_{K} \cap \Delta \neq \varnothing$. As F_{K} is incompressible, by an innermost disk argument we may assume that it does not intersect Δ in any closed curves. If $F_{K} \cap \Delta$ contains an arc that has both of its endpoints in the same component of K, doubling the subdisk of Δ bounded by an outermost such arc would give a compressing disk for F_{K}. Consider the components of F_{K} lying in the ball $\left(P_{K} \times I\right)-\Delta$. As F_{K} is incompressible all of these components must be disks. In fact, as F_{K} is connected, there is a single disk component. This disk is isotopic to $\left(P_{K}-S\right) \times 0$ and the maps that glue $\left(P_{K} \times I\right)-\Delta$ to recover $P_{K} \times I$ do not affect the isotopy.

3 The curve complex and distance of a knot

Suppose V is a compact, orientable, properly embedded surface in a 3-manifold M. The curve complex of V is a graph $\mathcal{C}(V)$, with vertices corresponding to isotopy classes of essential simple closed curves in V. Two vertices are adjacent if their corresponding isotopy classes of curves have disjoint representatives. If S and T are subsets of vertices of $\mathcal{C}(V)$, then $d(S, T)$ is the length of the shortest path in the graph connecting a vertex in S and a vertex in T.

Definition 3.1 Let $(P, \partial P) \subset(M, \partial M)$ be a properly embedded surface in an orientable irreducible 3-manifold M. The surface P will be called a splitting surface if M is the union of two manifolds A and B along P. We will say P splits M into A and B. If P splits M into A and B and is compressible in both A and B, then P is bicompressible.

If P is a closed embedded bicompressible surface with $\chi(P)<0$ splitting M into submanifolds A and B, let \mathcal{A} (resp \mathcal{B}) be the set of all simple closed curves in P that bound compressing disks for P in A (resp B). Then $d(P)=d(\mathcal{A}, \mathcal{B})$ ie, the length of the shortest path in the graph $\mathcal{C}(P)$ between a curve in \mathcal{A} and a curve in \mathcal{B}. If $d(P) \leq 1$, ie there are compressing disks on opposite sides of P with disjoint boundaries, then the surface P is called strongly compressible in M. Otherwise P is weakly incompressible.

Much like bridge number and width, the distance of a knot measures its complexity. It was first introduced by Bachman and Schleimer in [2]. The definition we use in this paper is slightly different and corresponds more closely to the definition of the distance of a surface.

Definition 3.2 Suppose M is a closed, orientable irreducible 3-manifold containing a knot K and suppose P is a bridge surface for K splitting M into handlebodies A and B. The curve complex $\mathcal{C}\left(P_{K}\right)$ is a graph with vertices corresponding to isotopy classes of essential simple closed curves in P_{K}. Two vertices are adjacent in $\mathcal{C}\left(P_{K}\right)$ if their corresponding classes of curves have disjoint representatives. Let \mathcal{A} (resp \mathcal{B}) be the set of all essential simple closed curves in P_{K} that bound disks in $A_{K}\left(\right.$ resp $\left.B_{K}\right)$. Then $d(P, K)=d(\mathcal{A}, \mathcal{B})$ measured in $\mathcal{C}\left(P_{K}\right)$.

The curve complex for a non-punctured torus and a 4 punctured sphere are not connected. However 2 bridge knots in S^{3} cannot have multiple bridge surfaces, Scharlemann and Tomova [11], so these cases don't arise in our context.

4 Bounds on distance given by an incompressible surface

We will continue to assume that (A, K) is a K-handlebody, $P=\partial A$ and if A is a ball, then K has at least 3 components. For clarity we will refer to a properly embedded surface $E_{K} \subset A_{K}$ with zero Euler characteristic as an annulus only if it has 2 boundary components both lying in P_{K} and distinguish it from a punctured disk, a surface with one boundary component lying in P_{K} that intersects $c l(N(K))$ in a single meridional circle. Consider the curve complex $\mathcal{C}\left(P_{K}\right)$ of P_{K} and let \mathcal{A} be the set of all essential curves in P_{K} that bound disks in A_{K}.

Proposition 4.1 Suppose D^{c} is a cut-disk for P_{K} in A_{K}. Then there is a compressing disk D for P_{K} such that $d\left(\partial D^{c}, \partial D\right) \leq 1$.

Proof Let κ be the arc of K that punctures D^{c} and B be its bridge disk. After perhaps an isotopy of $B, B \cap D^{c}$ is a single arc α that separates B into two subdisks B_{1} and B_{2}. Consider a regular neighborhood of $D^{c} \cup B_{1}$ say. Its boundary contains a disk that intersects P_{K} in an essential curve and does not intersect ∂D^{c} as required.

Proposition 4.2 Consider $(F, \partial F) \subset(A, P)$, a properly embedded surface transverse to K.

- If the surface F_{K} contains a disk component whose boundary is essential in P_{K}, then $d(\mathcal{A}, f) \leq 1$ for every $f \in F_{K} \cap P_{K}$ that is essential in P_{K}.
- If F_{K} has a punctured disk component D^{c} whose boundary is essential in P_{K}, then $d\left(\partial D^{c}, \mathcal{A}\right) \leq 1$.

Proof If F_{K} contains such a disk component D, then D is necessarily a compressing disk for P_{K} so $\partial D \in \mathcal{A}$ and $\partial D \cap f=\varnothing$ for every $f \in F_{K} \cap P_{K}$ as F_{K} is embedded thus $d(\mathcal{A}, f) \leq 1$.

The second claim follows immediately from Proposition 4.1.
Proposition 4.3 Consider $(F, \partial F) \subset(A, P)$, a properly embedded surface transverse to K and suppose it satisfies all of the following conditions:
(1) F_{K} has no disk components,
(2) F_{K} is c-incompressible,
(3) F_{K} intersects every spine $\Sigma_{(A, K)}$ and
(4) all curves of $F_{K} \cap P_{K}$ are either essential in P_{K} or bound punctured disks on both surfaces.

Then there is at least one curve $f \in F_{K} \cap P_{K}$ that is essential in P_{K} and such that $d(\mathcal{A}, f) \leq 1-\chi\left(F_{K}\right)$. Every $f \in F_{K} \cap P_{K}$ that is essential in P_{K} for which the inequality does not hold lies in the boundary of a P_{K}-parallel annulus component of F_{K}.

Proof If F_{K} is a counterexample to the proposition, the surface F_{K}^{-}obtained from F_{K} by deleting all P_{K}-parallel annuli and P_{K}-parallel punctured disk components would also be a counterexample with the same euler characteristic. Note that F_{K}^{-}is nonempty as otherwise F_{K} would be disjoint from a spine $\Sigma_{(A, K)}$ and is c-incompressible as
any c-disk would also be a c-disk for F_{K}. Thus we assume F_{K} does no have any P_{K}-parallel annuli or punctured disk components.

Let E be a compressing disk for P_{K} in A_{K} (not punctured by the knot) so that $\left|E \cap F_{K}\right|$ is minimal among all such disks. If in fact $E \cap F_{K}=\varnothing$, then $d(\partial E, f) \leq 1$ for every $f \in \partial F_{K}$ as required so we may assume $E \cap F_{K} \neq \varnothing$. Circles of intersection between F_{K} and E and arcs that are inessential in F_{K} can be removed by innermost disk and outermost arc arguments. Thus we can assume F_{K} and E only intersect in arcs that are essential in F_{K}.

The proof now is by induction on $1-\chi\left(F_{K}\right)$. As F_{K} has no disk components for the base case of the induction assume $1-\chi\left(F_{K}\right)=1$, ie all components of F_{K} are annuli or once punctured disks and no component is P_{K}-parallel. If E intersects a punctured disk component of F_{K} the arc of intersection would necessarily be inessential in F_{K} contradicting the minimality of $\left|F_{K} \cap E\right|$ so we may assume that if $F_{K} \cap E \neq \varnothing$, E only intersects annulus components of F_{K}. An outermost arc of intersection in E bounds a P-compressing disk E_{0} for F_{K}. After the P-compression, the new surface F_{K}^{\prime} contains a compressing disk D for P_{K}, the result of a P-compression of an essential annulus, and ∂D is disjoint from all $f \in \partial F_{K}$ by Lemma 2.8. As $\partial D \in \mathcal{A}, d(f, \mathcal{A}) \leq 1=1-\chi\left(F_{K}\right)$ for every $f \in F_{K} \cap P_{K}$ as desired.

Now suppose $1-\chi\left(F_{K}\right)>1$. Again let E_{0} be a subdisk of E cut off by an outermost arc of $E \cap F_{K}$ and F_{K}^{\prime} be the surface obtained after the P-compression. By Lemma $2.8 F_{K}^{\prime}$ also intersect every spine $\Sigma_{(A, K)}$ and is c-incompressible. By the definition of P-compression, F_{K}^{\prime} cannot have any disk components as F_{K} did not have any. Thus F_{K}^{\prime} satisfies the first 3 conditions of the proposition. There are two cases to consider.
Case 1 Any simple closed curves in $F_{K}^{\prime} \cap P_{K}$ that are inessential in P_{K} bound punctured disks in both surface.

In this case F_{K}^{\prime} satisfies all the hypothesis of the proposition so we can apply the induction hypothesis. Thus there exists a curve $f^{\prime} \in F_{K}^{\prime} \cap P_{K}$ that satisfies the distance inequality. Since, by Lemma 2.8 , for every component f of $F_{K} \cap P_{K}, d\left(f, f^{\prime}\right) \leq 1$, we have the inequality $d(f, \mathcal{A}) \leq d\left(f^{\prime}, \mathcal{A}\right)+d\left(f, f^{\prime}\right) \leq 1-\chi\left(F_{K}^{\prime}\right)+1=1-\chi\left(F_{K}\right)$, as desired.

Case 2 Some curve of $F_{K}^{\prime} \cap P_{K}$ is inessential in P_{K} but does not bound a punctured disk in F_{K}^{\prime}.
Let c be this curve and let E^{*} be the possibly punctured disk c bounds in P_{K}. By our hypothesis, the tunnel dual to the P-compression must be adjacent to c as otherwise c would persist in $F_{K} \cap P_{K}$. Push a copy of E^{*} slightly into A_{K}. After the tunneling, E^{*} is no longer parallel to P_{K}. As F_{K} was assumed to be c-incompressible, $c=\partial E^{*}$
must be parallel to some component of ∂F_{K}. As c didn't bound a punctured disk in $F_{K}^{\prime}, \partial E^{*}$ must be parallel to some component $\tilde{c} \in F_{K} \cap P_{K}$ that is essential in P_{K} by hypothesis. Use this parallelism to extend E^{*} to a c-disk for P_{K} with boundary \tilde{c}, see Figure 1 . Now for every $f \in F_{K} \cap P_{K}$, by Proposition 4.2 we have that $d(f, \mathcal{A}) \leq d\left(f, \partial E^{*}\right)+d\left(\partial E^{*}, \mathcal{A}\right) \leq 1+1=2 \leq 1-\chi\left(F_{K}\right)$.

Figure 1

5 The genus of an essential surface bounds the distance of a knot

Notation 5.1 For the rest of the paper we will assume that M is a closed irreducible orientable 3-manifold containing a knot K and P is a bridge surface for K such that $M=A \cup_{P} B$. Furthermore we assume that if P is a sphere, then P_{K} has at least 6 punctures.

Let $Q \subset M$ be a properly embedded surface that is transverse to K. We will consider how the surfaces P_{K} and Q_{K} can intersect in M_{K} to obtain bounds on $d(P, K)$.

We import the next lemma directly from [12].

Lemma 5.2 Let $Q \subset M$ be a properly embedded surface that is transverse to K and let $Q_{K}^{A}=Q_{K} \cap A_{K}, Q_{K}^{B}=Q_{K} \cap B_{K}$. Suppose Q_{K} satisfies the following conditions.

- All curves of $P_{K} \cap Q_{K}$ are essential in P_{K} and don't bound disks in Q_{K}.
- There is at least one curve $a \in Q_{K}^{A} \cap P_{K}$ such that $d(a, \mathcal{A}) \leq 1-\chi\left(Q_{K}^{A}\right)$ and any curve in $Q_{K}^{A} \cap P_{K}$ for which the inequality does not hold is the boundary of an annulus component of Q_{K}^{A} that is parallel into P_{K}.
- There is at least one curve $b \in Q_{K}^{B} \cap P_{K}$ such that $d(b, \mathcal{B}) \leq 1-\chi\left(Q_{K}^{B}\right)$ and any curve in $Q_{K}^{B} \cap P_{K}$ for which the inequality does not hold is the boundary of an annulus component of Q_{K}^{B} that is parallel into P_{K}.

Then $d(K, P) \leq 2-\chi\left(Q_{K}\right)$.
Proof Call a component c of $P_{K} \cap Q_{K} A$-conforming (resp B-conforming) if $d(c, \mathcal{A}) \leq 1-\chi\left(Q_{K}^{A}\right)\left(\operatorname{resp} d(c, \mathcal{B}) \leq 1-\chi\left(Q_{K}^{B}\right)\right)$. By hypothesis there are both A-conforming components of $Q_{K} \cap P_{K}$ and B-conforming components. If there is a component c that is both A -conforming and B -conforming, then

$$
d(K, P)=d(\mathcal{A}, \mathcal{B}) \leq d(\mathcal{A}, c)+d(c, \mathcal{B}) \leq 2-\chi\left(Q_{K}^{A}\right)-\chi\left(Q_{K}^{B}\right)=2-\chi\left(Q_{K}\right)
$$

as required.
If there is no such component, let γ be a path in Q_{K} from an A-conforming component to a B-conforming component, chosen to intersect P_{K} as few times as possible. In particular, any component of $P_{K} \cap Q_{K}$ incident to the interior of γ is neither Aconforming nor B-conforming, so each of these components of Q_{K}^{A} and Q_{K}^{B} is an annulus, parallel to an annulus in P_{K}. It follows that the components of $P_{K} \cap Q_{K}$ at the ends of γ are isotopic in P_{K}. Letting c be a simple closed curve in that isotopy class in P_{K} we have as above

$$
d(K, P)=d(\mathcal{A}, \mathcal{B}) \leq d(\mathcal{A}, c)+d(c, \mathcal{B}) \leq 2-\chi\left(Q_{K}^{A}\right)-\chi\left(Q_{K}^{B}\right)=2-\chi\left(Q_{K}\right)
$$

as required.
Corollary 5.3 Suppose $Q_{K} \subset M_{K}$ is a properly embedded connected surface transverse to P_{K} so that all curves of $P_{K} \cap Q_{K}$ are essential in both surfaces. If Q_{K}^{A} and Q_{K}^{B} are c-incompressible and intersect every spine $\Sigma_{(A, K)}$ and $\Sigma_{(B, K)}$ respectively, then $d(K, P) \leq 2-\chi\left(Q_{K}\right)$.

Proof Proposition 4.3 shows that Q_{K}^{A} and Q_{K}^{B} satisfy respectively the second and third conditions of Lemma 5.2.

The following definition was first used by Scharlemann and Tomova in [12].
Definition 5.4 Suppose S and T are two properly embedded surfaces in a 3-manifold M containing a knot K and assume S and T intersect the knot transversely. Let $c \in S_{K} \cap T_{K}$ be a simple closed curve bounding possibly punctured disks $D \subset S_{K}$ and $E \subset T_{K}$. If D intersects T_{K} only in curves that are inessential in T_{K} and E intersects S_{K} only in curves that are inessential in S_{K} we say that c is removable.

The term reflects the fact that all such curves can be removed by isotopies of S_{K} whose support lies away from any curves of intersection that are essential either in S_{K} or in T_{K}. Indeed, if c is removable, then any component of $D \cap E$ is clearly also removable.

The following definition was introduced by Bachman and Schleimer in [2].

Definition 5.5 Suppose S and T are two properly embedded surfaces in a 3-manifold M. A simple closed curve $\alpha \in S \cap T$ is mutually essential if it is essential in both surfaces, it is mutually inessential if it is inessential in both surfaces and it is mutual if it is either mutually essential or mutually inessential.

The following remark follows directly from the above two definitions.

Remark 5.6 If every curve of intersection between S_{K} and T_{K} is mutual, then all inessential curves of $S_{K} \cap T_{K}$ are removable.

Now we can recover the bound on distance obtained in [2] but using our definition of distance. Note that we only require the surface Q_{K} to have no compressing disks but allow it to have cut-disks.

Theorem 5.7 Let M be a closed irreducible orientable manifold containing a knot K and let P be a bridge surface for K such that if P is a sphere, P_{K} has at least 6 punctures. Suppose $Q \subset M$ is a properly embedded essential (in M_{K}) meridional surface such that Q_{K} is neither a sphere nor an annulus. Then $d(K, P) \leq 2-\chi\left(Q_{K}\right)$. If Q_{K} is an essential annulus, then $d(K, P) \leq 3$.

Proof If Q_{K} has any cut-disks, cut-compress along them, ie if D^{c} is a cut-disk for Q_{K}, remove a neighborhood of ∂D^{c} from Q_{K} and then add two copies of D^{c} along the two newly created boundary components. Repeat this process until the resulting surface has no c-disks. Let Q_{K}^{\prime} be the resulting surface and notice that $\chi\left(Q_{K}\right)=\chi\left(Q_{K}^{\prime}\right)$. Suppose Q_{K}^{\prime} has a compressing disk D. The original surface Q_{K} can be recovered from Q_{K}^{\prime} by tubing along a collection of subarcs of K. Note that as $D \cap K=\varnothing$ none of these tubes can intersect D. Thus D is also a compressing disk for Q_{K} contrary to the hypothesis so Q_{K}^{\prime} is also incompressible. Finally note that in this process no sphere, annulus or torus components are produced so at least one of the resulting components is not a sphere, annulus or torus, in particular Q_{K}^{\prime} has at least one component that is not parallel to ∂M_{K}. By possibly replacing Q_{K} by Q_{K}^{\prime} we may assume that Q_{K} is also cut-incompressible.

Recall that $\Sigma_{(A, K)}$ and $\Sigma_{(B, K)}$ are the spines for the K-handlebodies (A, K) and (B, K). Consider $H: P_{K} \times(I, \partial I) \rightarrow\left(M_{K}, \Sigma_{(A, K)} \cup \Sigma_{(B, K)}\right)$, a sweep-out of P_{K}
between the two spines. For a fixed generic value of $t, H\left(P_{K}, t\right)$ will be denoted by P_{K}^{t}. By slightly abusing notation we will continue to denote by A_{K} and B_{K} the two components of $M_{K}-P_{K}^{t}$ and let $Q_{K}^{A}=Q_{K} \cap A_{K}$ and $Q_{K}^{B}=Q_{K} \cap B_{K}$. During the sweep-out, P_{K}^{t} and Q_{K} intersect generically except in a finite collection of values of t. Let t_{1}, \ldots, t_{n-1} be these critical values separating the unit interval into regions where P_{K}^{t} and Q_{K} intersect transversely. For a generic value t of H, the surfaces Q_{K} and P_{K}^{t} intersect in a collection of simple closed curves. After removing all removable curves, label a region $\left(t_{i}, t_{i+1}\right) \subset I$ with the letter $A^{*}\left(\operatorname{resp} B^{*}\right)$ if $Q_{K}^{A}\left(\operatorname{resp} Q_{K}^{B}\right)$ has a disk or punctured disk component in the region whose boundary is essential in P_{K}.

Suppose Q_{K}^{A} say, can be isotoped off some spine $\Sigma_{(A, K)}$. Then, using the product structure between the spines and the fact that all boundary components of Q_{K} lying on the knot are meridional, we can push Q_{K} to lie entirely in B_{K} contradicting Lemma 2.9. Therefore Q_{K} must intersect both spines $\Sigma_{(A, K)}$ and $\Sigma_{(B, K)}$ in meridional circles and so the subintervals adjacent to the two endpoints of the interval are labeled A^{*} and B^{*} respectively.

Case 1 Suppose there is an unlabeled region. If some curve of $Q_{K} \cap P_{K}$ is inessential in P_{K} in that region, it must also be inessential in Q_{K} as otherwise it would bound a c-disk for Q_{K}. Suppose some curve is essential in P_{K} but inessential in Q_{K}. This curve would give rise to one of the labels A^{*} or B^{*} contradicting our assumption. We conclude that all curves of $P_{K} \cap Q_{K}$ are mutual. In fact this implies that all curves $P_{K} \cap Q_{K}$ are essential in Q_{K} and in P_{K} as otherwise they would be removable by Lemma 2.6 and all removable curves have already been removed. Suppose Q_{K}^{A} say has a c-disk. The boundary of this c-disk would also be essential in Q_{K} contradicting the hypothesis thus we conclude that in this region Q_{K}^{A} and Q_{K}^{B} satisfy the hypothesis of Corollary 5.3 and thus $d(K, P) \leq 2-\chi\left(Q_{K}\right)$.

Case 2 Suppose there are two adjacent regions labeled A^{*} and B^{*}. (This includes the case when one or both of these regions actually have both labels)

The labels are coming from possibly punctured disk components of $Q_{K}-P_{K}$ that we will denote by D_{A}^{*} and D_{B}^{*} respectively. Using the triangle inequality we obtain

$$
\begin{equation*}
d(K, P) \leq d\left(\mathcal{A}, \partial D_{A}^{*}\right)+d\left(\partial D_{A}^{*}, \partial D_{B}^{*}\right)+d\left(\partial D_{B}^{*}, \mathcal{B}\right) . \tag{1}
\end{equation*}
$$

The curves of intersection before and after going through the critical point separating the two regions can be made disjoint so $d\left(\partial D_{A}^{*}, \partial D_{B}^{*}\right) \leq 1$ (the proof of this fact is similar to the proof of the last item of Lemma 2.8). By Proposition 4.2 $d\left(\mathcal{A}, \partial D_{A}^{*}\right), d\left(\mathcal{B}, \partial D_{B}^{*}\right) \leq 1$ so the equation above gives us that $d(K, P) \leq 3 \leq$ $2-\chi\left(Q_{K}\right)$ as long as $\chi\left(Q_{K}\right)<0$.

If $\chi\left(Q_{K}\right)=0$ and Q_{K} is a torus, D_{A}^{*} and D_{B}^{*} must be disks, so $d\left(\mathcal{A}, \partial D_{A}^{*}\right)=$ $d\left(\mathcal{B}, \partial D_{B}^{*}\right)=0$. Thus (1) gives us that $d(K, P) \leq d\left(\partial D_{A}^{*}, \partial D_{B}^{*}\right) \leq 1 \leq 2-\chi\left(Q_{K}\right)$. If Q_{K} is an essential annulus, we conclude that $d(K, P) \leq 3$

Corollary 5.8 Suppose $K=K_{1} \# K_{2}$, then any bridge surface for K has distance at most 3.

Proof The sphere that decomposes K into its factors suggests an essential annulus in M_{K}.

6 Edgeslides

This section is meant to provide a brief overview of edgeslides as described by Rubinstein and Scharlemann in [6]. Here we only give sketches of the relevant proofs and references for the complete proofs.

Suppose $(Q, \partial Q) \subset(M, P)$ is a bicompressible splitting surface in an irreducible 3-manifold with $P \subset \partial M$ a compact sub-surface, (in our context M will be a $K-$ handlebody and P its punctured boundary). Let X, Y be the two components of $M-Q$ and let Q_{X} be the result of maximally compressing Q into X. The compressions can be undone by tubing along the edges of a graph Γ dual to the compressing disks, ie Q is contained in the boundary of a regular neighborhood of $Q_{X} \cup \Gamma$. We will denote by X^{-}and Y^{+}the components of $M-Q_{X}$ with $X \supset X^{-}$and $Y \subset Y^{+}$, in particular $\Gamma \subset Y^{+}$. Let $\Delta \subset Y$ be a set of compressing disks for Q. Using the fact that Q retracts to $Q_{X} \cup \Gamma$ we can extend these disks so that $\partial \Delta \subset Q_{X} \cup \Gamma$. Finally T will be a disk in Y^{+}with $\partial T \subset\left(Q_{X} \cup P\right)$ that is not parallel to a subdisk of $Q_{X} \cup P$ and Λ will be the graph in T defined by the intersection of $\Delta \cup \Gamma$ and T. In other words Γ has vertices given by the points $T \cap \Gamma$ and edges given by the $\operatorname{arcs} T \cap \Delta$.

The graph Γ described above is not unique; choosing a different graph is equivalent to an isotopy of Q. All graphs that are dual to the same set of compressing disks are related by edge slides, ie sliding the endpoint of some edge along other edges of Γ. The precise definition can be found in Saito et al [7] or Scharlemann and Thompson [10].

The following lemma is quite technical, a detailed proof of a very similar result can be found in [7, Proposition 3.2.2] or [10, Proposition 2.2]. We will only briefly sketch the proof here but we will provide detailed references to the corresponding results in [7] and note that there the letter P is used for the disk we call T but all other notation is identical.

Lemma 6.1 Suppose T, Δ and Γ are as above. Suppose $T^{\prime}, \Delta^{\prime}$ and Γ^{\prime} is a second set of choices for a disk, a set of compressing disks and a graph as described above such that T^{\prime} isotopic to T, rel. $\partial T,\left|\Delta^{\prime}\right|=|\Delta|$ and Γ^{\prime} is obtained from Γ via edge slides. Then either we can choose $T^{\prime}, \Delta^{\prime}$ and Γ^{\prime} so that the corresponding graph Λ^{\prime} has an isolated vertex, or, we can choose them so that $\Gamma^{\prime} \cup \Delta^{\prime}$ is disjoint from T^{\prime}.

Proof Suppose every choice of $T^{\prime}, \Delta^{\prime}$ and Γ^{\prime} results in a graph Λ^{\prime} with no isolated vertices. Pick an isotopy class of T rel. ∂T, an isotopy class of Δ and a representation of Γ such that $(|T \cap \Gamma|,|T \cap \Delta|)$ is minimal in the lexicographic order.

Claim 1 Each component of $T \cap \Delta$ is an arc [7, Lemma 3.2.3].
Suppose $T \cap \Delta$ contains a closed curve component. The innermost such in Δ, ω bounds a disk D_{0} in Δ disjoint from T. Via an isotopy of the interior of T, using the fact that M is irreducible, the disk ω bounds in T can be replaced with D_{0} thus eliminating at least ω from $T \cap \Delta$ contradicting minimality. As there are no simple closed curves, in this context a loop will mean an edge with both of its endpoints on the same vertex of Λ.

Claim 2Λ has no inessential loops, that is edges with both endpoints on the same vertex of Λ that bound disks in $T-\Gamma$ [7, Lemma 3.2.4].

Suppose μ is a loop in Λ and let $D \in \Delta$ be such that $\mu \subset D$. The loop μ cuts off a disk $E \subset T$. As a subset of D, μ is an arc dividing D into two subdisks D_{1} and D_{2}. (The disk E resembles a boundary compressing disk for D if we think of $\eta(\Gamma)$ as a boundary component.) At least one of $D_{1} \cup E$ and $D_{2} \cup E$ must be a compressing disk. Replace D with this disk reducing $|T \cap \Delta|$.

Claim 3Λ has no isolated vertices [7, Lemma 3.2.5].
This is true by hypothesis.
Claim 4 Every vertex of Λ is a base of a loop [7, Lemma 3.2.6].
Suppose w a vertex of Λ is not a base of any loop, we will show we can reduce $(|T \cap \Gamma|,|T \cap \Delta|)$.

Let σ be the edge of Γ such that $w \in \sigma \cap T$. As w is not isolated, there is a disk $D \in \Delta$ such that $w \in \partial D$. The collection of arcs $D \cap T$ is a subset of the edges of Λ. Let γ be an outermost arc in D of all arcs that have w as one endpoint. Let w^{\prime} be the other end point of γ. Then γ cuts a subdisk D_{γ} from D the interior of which may intersect T but ∂D_{γ} only contains one copy of $w \in \partial \gamma$. Thus there cannot be an entire copy of the edge σ in ∂D_{γ} and so there are three possibilities.

Case $1\left(\partial D_{\gamma}-\gamma\right) \subset \sigma$. Then we can perform an edge slide of σ which removes γ from Λ, [7, Figure 23].
Case $2\left(\partial D_{\gamma}-\gamma\right)$ contains some subset of σ with only one copy of one of the endpoints of σ. By sliding σ along D_{γ} we can reduce this case to the first case, [7, Figure 24].

Case $3\left(\partial D_{\gamma}-\gamma\right)$ contains some subset of σ but it contains two copies of the same endpoint of σ. This is the most complicated case requiring broken edge slides and [7, Figure 25] has an excellent discussion on the topic.
By the above four claims we can conclude that $\Lambda=\varnothing$ as desired, for by claim 4 some loop must be inessential contradicting claim 2.

Remark 6.2 If Q is weakly incompressible, the hypothesis of the lemma are satisfied as a meridional circle of an isolated vertex of Λ will be a compressing disk for Q in X that is disjoint from the set of compressing disks $\Delta \in Y$.

Corollary 6.3 Let $(Q, \partial Q) \subset(M, \partial M)$ be a bicompressible weakly incompressible surface splitting M into component X and Y. Let Q_{X} be the result of maximally compressing Q into X. Then Q_{X} is incompressible in M.

Proof The argument is virtually identical to the argument in Scharlemann [8]. Suppose Q_{X} is compressible with compressing disk D that necessarily lies in Y^{+}. Let E be a compressing disk for Q in Y. As Q is weakly incompressible, by the above remark we can apply Lemma 6.1 , with D playing the role of T, and $\Delta=E$. By Lemma 6.1 we can arrange that $(E \cup \Gamma) \cap D=\varnothing$ so D is also a compressing disk for Q in Y and is disjoint from Γ and thus from all compressing disks for Q in X contradicting weak incompressibility of Q.

Corollary 6.4 Suppose (A, K) is a K-handlebody with $\partial A=P$ and F is a bicompressible surface splitting A into submanifolds X and Y. Let F_{K}^{X} be the result of maximally compressing F_{K} into X_{K}. Then there exists a compressing disk D for P_{K} that is disjoint from a complete collection of compressing disks for F_{K} in X_{K} and intersects F_{K} only in arcs that are essential in F_{K}^{X}.

Proof Select a disk D and isotope F_{K}^{X} to minimize $\left|D \cap F_{K}^{X}\right|$ and then choose a representation of Γ that minimizes $|D \cap \Gamma|$. As $A-N(K)$ is irreducible, by an innermost disk and outermost arc arguments, D intersect F_{K}^{X} in essential arcs only. Applying Lemma 6.1 with the disk T playing the role of D, we conclude that Γ is disjoint from D. As the edges of Γ are dual to a complete collection of compressing disks for F_{K} in X_{K}, it follows that D is disjoint from this collection.

7 Bounds on distance given by a c-weakly incompressible surface

Our ultimate goal in this paper is to extend Theorem 5.7 to allow for both P and Q to be bridge surfaces for the same knot. To do this, we need a theorem similar to Proposition 4.3 but allowing for F_{K} to have certain kinds of c-disks.

Notation 7.1 In this section let (A, K) be a K-handlebody with boundary P such that if A is a ball, K has at least 3 components and let $F \subset A$ be a properly embedded surface transverse to K splitting A into submanifolds X and Y.

Definition 7.2 The surface F_{K} associated to F is called bicompressible if F_{K} has some compressing disks in both X_{K} and Y_{K}. The surface is called cut-bicompressible if it has cut-disks in both X_{K} and Y_{K}. Finally, the surface is called c-bicompressible if it has c-disks in both X_{K} and Y_{K}.

The next definition is an adaptation of the idea of a weakly incompressible surface but taking into consideration not only compressing disks but also cut-disks.

Definition 7.3 The surface F_{K} is called c-weakly incompressible if it is c-bicompressible and any pair D_{X}^{*}, D_{Y}^{*} of c-disks contained in X_{K} and Y_{K} respectively intersect along their boundary.

Proposition 7.4 If a splitting surface $F_{K} \subset A_{K}$ has a pair of two compressing disks or a compressing disk and a cut-disk that are on opposite sides of F_{K} and intersect in exactly one point, then F_{K} is c-strongly compressible.

Proof Suppose $F \subset A$ splits A into manifolds X and Y and let $D_{X} \subset X$ and $D_{Y} \subset Y$ be a pair of disks that intersect in exactly one point. Then a neighborhood of $D_{X} \cup D_{Y}$ contains a pair of compressing disks on opposite sides of F_{K} with disjoint boundaries (in fact their boundaries are isotopic). If D_{X} say is a compressing disk and D_{Y} is a cut-disk, banding two copies D_{X} together along ∂D_{Y} produces a compressing disk disjoint from D_{Y}, see Figure 2.

Proposition 7.5 Let $F_{K} \subset A_{K}$ be a c-weakly incompressible splitting surface such that every component of $F_{K} \cap P_{K}$ is mutual and let F_{K}^{\prime} be the surface obtained from F_{K} via a P-compression. If F_{K}^{\prime} is also c-bicompressible, then every component of $F_{K}^{\prime} \cap P_{K}$ is essential in P_{K} or is mutually inessential.

Figure 2
Proof Let X and Y be the two components of $A-F$. Without loss of generality, let $E_{0} \subset X_{K}$ be the P-compressing disk for F_{K}. Suppose that there is some $f^{\prime} \subset \partial F_{K}^{\prime}$ that bounds a possibly punctured disk $D_{f^{\prime}}$ in P_{K} but not in F_{K}^{\prime}. The original surface F_{K} can be recovered by tunneling F_{K}^{\prime} along an arc $e_{0} \subset P_{K}$. As all curves of $F_{K} \cap P_{K}$ are mutual, $e_{0} \cap f^{\prime} \neq \varnothing$.

Case $1 e_{0}$ has one boundary component in f^{\prime} and the other in some other curve $c \in P_{K} \cap F_{K}$ (c may or may not be essential in P_{K}). If $c \subset D_{f}^{\prime}$, then $F_{K} \cap P_{K}$ also has a curve that is inessential in P_{K} but essential in F_{K} contrary to the hypothesis. If c does not lie in D_{f}^{\prime} then by slightly pushing the disk $D=D_{f}^{\prime} \cup E_{0}$ away from P_{K} we obtain a c-disk for F_{K} contained in X_{K}, see Figure 3. By hypothesis F_{K}^{\prime} is c-bicompressible, in particular there is a c-disk D^{\prime} for F_{K}^{\prime} that lies on the other side of F_{K}^{\prime} than the side D_{f}^{\prime} lies on. The c-disk D^{\prime} is also a c-disk for F_{K} lying in Y that is disjoint from $D \subset X$ contradicting the c-weak incompressability of F_{K}.
Case $2 e_{0}$ has both boundary components in f^{\prime}. If $e_{0} \subset D_{f}^{\prime}$ then again $F_{K} \cap P_{K}$ has a curve that is inessential in P_{K} but essential in F_{K} contrary to the hypothesis so assume $e_{0} \cap D_{f}^{\prime}=\partial e_{0}$, see Figure 4. Consider the possibly punctured disk D obtained by taking the union of $D_{f^{\prime}}$ together with two copies of E_{0}. As in the previous case this is a c-disk for F_{K} lying in X_{K} that is disjoint from at least one c-disk for F_{K} lying in Y_{K} contradicting c-weak incompressibility of F_{K}.

Proposition 7.6 Suppose F_{K}^{\prime} splitting A_{K} into X_{K}^{\prime} and Y_{K}^{\prime} satisfies one of the following two conditions:

Figure 3

Figure 4

- there is a spine $\Sigma_{(A, K)}$ entirely contained in X_{K}^{\prime} say and F_{K}^{\prime} has a c-disk in X_{K}^{\prime} disjoint from that spine or
- there is at least one curve $f^{\prime} \subset F_{K}^{\prime} \cap P_{K}$ that is essential in P_{K} and $d\left(f^{\prime}, \mathcal{A}\right) \leq$ $1-\chi\left(F_{K}^{\prime}\right)$.

If F_{K} is obtained from F_{K}^{\prime} by tunneling or tubing (possibly along subarcs of K) with all tubes lying in Y_{K}^{\prime}, then F_{K} satisfies one of the following conditions:

- there is a spine $\Sigma_{(A, K)}$ entirely contained in X_{K}, and F_{K} has a c-disk in X_{K} disjoint from that spine or
- for every curve f in $F_{K} \cap P_{K}$ that is essential in P_{K} the inequality $d(f, \mathcal{A}) \leq$ $1-\chi\left(F_{K}\right)$ holds.

Proof Suppose first that F_{K} is obtained from F_{K}^{\prime} via tunneling. If F_{K}^{\prime} satisfies the first condition, then tunneling does not interfere with the c -disk and does not introduce intersections with the spine $\Sigma_{(A, K)}$. If F_{K}^{\prime} satisfies the second condition, note that
$d\left(f, f^{\prime}\right) \leq 1$ for every $f \in F_{K} \cap P_{K}$ that is essential in P_{K} and $\chi\left(F_{K}^{\prime}\right) \geq \chi\left(F_{K}\right)+1$. The result follows by the triangle inequality.
If F_{K} is obtained from F_{K}^{\prime} via tubing with all tubes contained in Y_{K}^{\prime}, these tubes do not affect a c-disk for F_{K}^{\prime} contained in X_{K}^{\prime} and are disjoint from any spine $\Sigma_{(A, K)}$. Thus if F_{K}^{\prime} satisfies the first condition, so does F_{K}. If F_{K}^{\prime} satisfies the second condition, the curves of $P_{K} \cap F_{K}^{\prime}$ are not altered by the tubing and $1-\chi\left(F_{K}\right) \geq 1-\chi\left(F_{K}^{\prime}\right)$ so for any curve essential curve $f \in F_{K} \cap P_{K}, d(f, \mathcal{A}) \leq 1-\chi\left(F_{K}^{\prime}\right) \leq 1-\chi\left(F_{K}\right)$ as desired.

The rest of this section will be dedicated to the proof of the following theorem.
Theorem 7.7 Let A_{K} be a K-handlebody with $\partial A=P$ such that if P is a sphere, then P_{K} has at least six punctures. Suppose $F_{K} \subset A_{K}$ satisfies the following conditions:

- F_{K} has no closed components,
- F_{K} is c-bicompressible and c-weakly incompressible,
- F_{K} has no disk components and
- all curves of $P_{K} \cap F_{K}$ are mutually essential unless they bound punctured disks in both surfaces.

Then at least one of the following holds:

- There is a spine $\Sigma_{(A, K)}$ entirely contained on one side of F_{K} and F_{K} has a c-disk on the same side disjoint from the spine or
- $d(f, \mathcal{A}) \leq 1-\chi\left(F_{K}\right)$ for every $f \in F_{K} \cap P_{K}$ that is essential in P_{K} unless f is the boundary of a P_{K}-parallel annulus component of F_{K}.

Proof If c-disks for F_{K} were incident to two different components of F_{K}, then there would be a pair of such disks on opposite sides of F_{K} with disjoint boundaries violating c-weak incompressibility. So we deduce that all c-disks for F_{K} are incident to at most one component S_{K} of F_{K}. The surface S_{K} cannot be an annulus, else the boundaries of c-disks in X_{K} and Y_{K} would be parallel and so could be made disjoint. In particular S_{K}, and thus F_{K}, must have a strictly negative Euler characteristic. Suppose F_{K} is a counterexample to the theorem such that $1-\chi\left(F_{K}\right)$ is minimal amongst all such counterexamples. As in Proposition 4.3 we may assume that F_{K} has no components that are P_{K}-parallel annuli or P_{K}-parallel punctured disk components. In particular this implies that all curves of $F_{K} \cap P_{K}$ are mutually essential. We will prove the theorem in a sequence of lemmas. We will use the following definition modelled after the definition of a strongly ∂-compressible surface first introduced by Scharlemann in [8].

Definition 7.8 A splitting surface $F_{K} \subset A_{K}$ splitting A into submanifolds X and Y is called strongly P-compressible if there exist P-compressing disks $E_{X} \subset X_{K}$ and $E_{Y} \subset Y_{K}$ for F_{K} such that $\partial E_{X} \cap \partial E_{Y}=\varnothing$.

Lemma 7.9 Suppose F_{K} is the surface that provides a counterexample to Theorem 7.7 with maximal Euler characteristic. In other words F_{K} is the maximal Euler characteristic surface satisfying all of the following conditions:

- F_{K} has no closed components,
- F_{K} is c-bicompressible and c-weakly incompressible,
- F_{K} has no disk components,
- all curves of $P_{K} \cap F_{K}$ are mutually essential unless they bound punctured disks in both surfaces,
- if some spine $\Sigma_{(A, K)}$ is entirely contained in X_{K} say, then every c-disk for F_{K} contained in X_{K} intersects this spine and
- there is some curve $f \in F_{K} \cap P_{K}$ that is essential in P_{K} and not the boundary of a P_{K}-parallel annulus component of F_{K} such that $d(f, \mathcal{A})>1-\chi\left(F_{K}\right)$.

Then F_{K} is not strongly P-compressible.

Proof By way of contradiction suppose $E_{X} \subset X_{K}$ and $E_{Y} \subset Y_{K}$ is a pair of disjoint P-compressing disks for F_{K}. Let F_{K}^{x}, F_{K}^{y} denote the surfaces obtained from F_{K} by P-compressing F_{K} along E_{X} and E_{Y} respectively, and let F_{K}^{-}denote the surface obtained by P-compressing along both disks simultaneously. A standard innermost disk, outermost arc argument between E_{X} and a c-disk for F_{K} in X_{K} shows that F_{K}^{x} has a c-disk lying in X_{K}. Similarly, F_{K}^{y} has a c-disk lying in Y_{K}. If one of F_{K}^{x} or F_{K}^{y} has c-disks on both sides, say F_{K}^{x}, then all curves of $P_{K} \cap F_{K}^{x}$ must be mutually essential unless they bound punctured disks in both surfaces by Proposition 7.5. The surface F_{K}^{x} cannot be the union of punctured disks as it is bicompressible so at least one component of $F_{K}^{x} \cap P_{K}$ is essential in P_{K}. As $1-\chi\left(F_{K}^{x}\right)<1-\chi\left(F_{K}\right)$ the surface F_{K}^{x} satisfies one of the conclusions of the theorem. By Proposition 7.6 tunneling to recover F_{K} from F_{K}^{χ} preserves either of these properties so F_{K} is not a counterexample as we assumed.

If F_{K}^{-}has any c-disk, then one of F_{K}^{x} or F_{K}^{y} has c-disks on both sides as c-disks are preserved under tunneling and we are done as above. Suppose some curve of $F_{K}^{-} \cap P_{K}$ is inessential in P_{K} but essential in F_{K}^{-}. This curve must be adjacent to the dual arc to one of the P-compressing disks, say the dual arc to E_{X}. In this case, by an argument similar to the proof of Proposition $7.5, F_{K}^{y}$ is c-compressible in X_{K}. As we saw that
F_{K}^{y} is c-compressible in Y_{K}, it follows that F_{K}^{y} is c-bicompressible, a case we have already considered. Thus all curves essential in F_{K}^{-}are also essential in P_{K}, therefore if F_{K}^{-}has a component that is not P_{K}-parallel, the result follows from Proposition 4.3.

We have reduced the proof to the case that F_{K}^{-}is c-incompressible, each component of F_{K}^{-}is P_{K}-parallel and all curves of $P_{K} \cap F_{K}^{-}$are essential in P_{K} or mutually inessential. It is clear that in this case we can isotope F_{K}^{-}to be disjoint from any spine $\Sigma_{(A, K)}$. The original surface F_{K} can be recovered from F_{K}^{-}by tunneling along two arcs on opposite sides of F_{K}^{-}. The tunnels can be made disjoint from $\Sigma_{(A, K)}$ and thus F_{K} can also be isotoped to be disjoint from $\Sigma_{(A, K)}$. Without loss of generality we will assume $\Sigma_{(A, K)} \subset X_{K}$, thus it suffices to show that F_{K} has a c-disk in X_{K} that is disjoint from $\Sigma_{(A, K)}$.

Consider how F_{K}^{x} can be recovered from F_{K}^{-}; the P-compression into Y_{K} must be undone via a tunnelling along an arc γ where the interior of γ is disjoint from F_{K}^{-}. Let γ connect components F_{K}^{0} and F_{K}^{1} (possibly $F_{K}^{0}=F_{K}^{1}$) of F_{K}^{-}where F_{K}^{i} is parallel to a subsurface $\widetilde{F}_{K}^{i} \subset P_{K}$. There are three cases to consider. First assume that $F_{K}^{0} \neq F_{K}^{1}$ and they are nested, ie $\widetilde{F}_{K}^{0} \subset \widetilde{F}_{K}^{1}$. Consider the eyeglass curve $e=\eta(\gamma \cup \omega)$ where $\omega \subset F_{K}^{0}$ is parallel to the boundary component of F_{K}^{0} that is adjacent to γ. Using the product structure between F_{K}^{0} and F_{K}^{1}, a neighborhood of $e \times I$ contains the desired compressing disk for F_{K} that is disjoint from some spine $\Sigma_{(A, K)}$.

Next suppose $F_{K}^{0} \neq F_{K}^{1}$ and they are not nested. Then each component of F_{K}^{x} is $P_{K}-$ parallel. As we have already seen, F_{K}^{x} has a c-disk in X_{K}. The c-disk is either disjoint from some $\Sigma_{(A, K)}$, in which case we are done, or, via the parallelism to P_{K}, the c-disk represents a c-disk D^{*} for P_{K} in A_{K} whose boundary is disjoint from at least one curve in ∂F_{K}^{x}; the curve that is in the boundary of the c-compressible component of F_{K}^{x}. Call this particular curve f^{x}. If $\chi\left(F_{K}\right)<-1$ then $d\left(f^{x}, \partial D^{*}\right) \leq 1$ so $d(f, \mathcal{A}) \leq 3 \leq 1-\chi\left(F_{K}\right)$. If $\chi\left(F_{K}\right)=-1$, then F_{K}^{x} consists only of P_{K}-parallel annuli and punctured disks components. Let N be the annulus component of F_{K}^{x} with boundary f^{x} parallel to a subannulus $\tilde{N} \subset P_{K}$. Then f^{x} and ∂D^{*} both lie in \tilde{N} so $d\left(f^{x}, \partial D^{*}\right)=0$. By Proposition $4.1 d\left(\partial D^{*}, \mathcal{A}\right) \leq 1$. Thus for f any essential component of $\partial F_{K}, d(f, \mathcal{A}) \leq d\left(f, f^{x}\right)+d\left(f^{x}, \partial D^{*}\right)+d\left(\partial D^{*}, \mathcal{A}\right) \leq 1+1=$ $1-\chi\left(F_{K}\right)$.
The last case to consider is the case $F_{K}^{0}=F_{K}^{1}$. If $\gamma \subset \widetilde{F}_{K}^{0}$ then $\gamma \times I$ is the desired compressing disk. If γ is disjoint from \widetilde{F}_{K}^{0}, then each component of F_{K}^{x} is $P_{K}-$ parallel. Proceed as in the previous case to show that either F_{K}^{x}, and thus F_{K}, has a c-disk disjoint from $\Sigma_{(A, K)}$ or $d(f, \mathcal{A}) \leq 1-\chi\left(F_{K}\right)$.

Lemma 7.10 If the surface F_{K} that provides a counterexample to Theorem 7.7 with maximal Euler characteristic is bicompressible, then the surfaces F_{K}^{X} and F_{K}^{Y} obtained from F_{K} by maximally compressing F_{K} into X_{K} and Y_{K} respectively have cut-disks.

Remark 7.11 Note that the hypothesis of this lemma holds when F_{K} does not have any cut-disks.

Proof Suppose F_{K}^{X} say has no cut-disks. By Corollary 6.3 the surfaces F_{K}^{X} and F_{K}^{Y} are incompressible in A_{K}. If some component of F_{K}^{X} is not P_{K}-parallel, then the second conclusion of the theorem follows from Proposition 4.3. We may therefore assume that there is some spine $\Sigma_{(A, K)}$ that is disjoint from F_{K}^{X}.

Let X_{K}^{-}and Y_{K}^{+}be the two sides of F_{K}^{X} and let $\Gamma \subset Y_{K}^{+}$be the graph dual to the compressions we performed, ie F_{K} can be recovered from F_{K}^{X} by tunneling along the edges of Γ. Note that by general position we can always arrange that Γ is disjoint from any spine so in particular after an isotopy, $F_{K} \cap \Sigma_{(A, K)}=\varnothing$.

Claim Recall that S_{K} is the component of F_{K} to which all c-disks for F_{K} are incident. To prove the lemma at hand it suffices to show that

- S_{K} has a c-disk D^{*} on the same side of S_{K} as the spine $\Sigma_{(A, K)}$ and disjoint from that spine or
- there is a compressing disk for P_{K} whose boundary is disjoint from at least one curve in ∂S_{K} or
- S_{K} is strongly P-compressible.

Proof By an innermost disk argument we may isotope any c-disk for S_{K} to be disjoint from F_{K}.

In the first case we assume S_{K} has c-disk D^{*} on the same side of S_{K} as the spine $\Sigma_{(A, K)}$ and disjoint from that spine. Recall that $F_{K} \cap \Sigma_{(A, K)}=\varnothing$ so it is sufficient to show that F_{K} also has a c-disk on the same side as $\Sigma_{(A, K)}$ but disjoint from it. Note that D^{*} is not necessarily on the same side of F_{K} as the spine.

If there is a component of F_{K} that separates D^{*} and $\Sigma_{(A, K)}$ than this component also separates S_{K} and all its c-disks from the spine. As S_{K} is bicompressible, we can always find a c-disk for S_{K} on the same side as $\Sigma_{(A, K)}$ and all these c-disks will be disjoint from the spine. If there is no such separating component, then D^{*} is a c-disk for F_{K} on the same side as $\Sigma_{(A, K)}$ but disjoint from $\Sigma_{(A, K)}$.

In the second case, $d(s, \mathcal{A}) \leq 1$ where $s \in \partial S_{K}$ so $d(f, \mathcal{A}) \leq 2 \leq 1-\chi\left(F_{K}\right)$.

In the third case, suppose first that all components of $F_{K}-S_{K}$ are annuli, necessarily not P_{K}-parallel. If one of these annuli is P-compressible, P-compressing it results in a compressing disk for P_{K} that is disjoint from F_{K} so $d(f, \mathcal{A}) \leq 1$. Thus we may assume that all other components of F_{K} are P-incompressible. By an innermost disk and outermost arc arguments, the pair of strongly P-compressing disks for S_{K} can be isotoped to be disjoint from all other components of F_{K} so F_{K} is also strongly P-compressible and by Lemma 7.9, F_{K} cannot be a counterexample to the theorem.

If some component of F_{K} other than S_{K} has a strictly negative Euler characteristic, then $1-\chi\left(S_{K}\right)<1-\chi\left(F_{K}\right)$. This shows that S_{K} is not a counterexample to the theorem, so either $d(s, \mathcal{A}) \leq 1-\chi\left(S_{K}\right)$ in which case $d(f, \mathcal{A}) \leq d(f, s)+d(s, \mathcal{A}) \leq 1-\chi\left(F_{K}\right)$ or S_{K} has a c-disk on the same side of S_{K} as the spine $\Sigma_{(A, K)}$ but is disjoint from it. By repeating the argument from the first case, we conclude that F_{K} must also satisfy the second conclusion of the theorem. This concludes the proof of the claim.

Note that S_{K} is itself a c-weakly incompressible surface as every c-disk for the surface S_{K} is also a c-disk for F_{K}. We will prove the lemma by showing that S_{K} satisfies one of the items in the claim above. Let S split A into submanifolds U and V and S_{K}^{U} be the surface obtained by maximally compressing S_{K} in U_{K}, S_{K}^{U} splits A_{K} into submanifolds U_{K}^{-}and V_{K}^{+}and Γ is the graph dual to the compressing disk. We have already shown that for some spine $\Sigma_{(A, K)}, \Sigma_{(A, K)} \cap F_{K}=\varnothing$ so in particular $\Sigma_{(A, K)} \cap S_{K}=\varnothing$. As S_{K}^{U} is c-incompressible, we may assume each component is P_{K}-parallel as otherwise the result will follow by Proposition 4.3. We will show that S_{K} satisfies one of the conditions in the claim.

If $\Sigma_{(A, K)} \subset U_{K}^{-}$, then $\Sigma_{(A, K)}$ is also disjoint from every compressing disk for S_{K} lying in U_{K} as it is disjoint from the meridional circles for the edges of Γ and we have the desired result. Thus we may assume $\Sigma_{(A, K)} \subset V_{K}^{+}$. Let S_{K}^{0} be an outermost component of S_{K}^{U}, ie a component cobounding a product region $R_{K} \cong S_{K}^{0} \times I$ with P_{K} such that $R_{K} \cap S_{K}^{U}=\varnothing$.
Case 1 Suppose for some outermost component, $R_{K} \subset V_{K}^{+}$. As $\Gamma \subset V_{K}^{+}$and S_{K} is connected, S_{K}^{0} is the only component of S_{K}^{U}. This implies that $\Sigma_{(A, K)} \subset R_{K}$ so we can use the product structure to push $\Sigma_{(A, K)}$ into U_{K}^{-}and by the previous paragraph S_{K} satisfies the hypothesis of the claim.
Case 2 Suppose the components of S_{K}^{U} are nested and let S_{K}^{1} be a second outermost component. The region between S_{K}^{1} and the outermost components of S_{K}^{U} is a product region that must be contained in V_{K}^{+}or we can apply Case 1. Again as S_{K} is connected, V_{K}^{+}is also connected so in fact V_{K}^{+}is a product region and $\Sigma_{(A, K)} \subset V_{K}^{+}$. Again we can push $\Sigma_{(A, K)}$ into U_{K}^{-}and complete the argument as in the previous case.

Case 3 Finally suppose that the components of S_{K}^{U} are all outermost and all outermost regions are contained in U_{K}^{-}. By Corollary 6.4, there is a compressing disk for P_{K} that is disjoint from a complete collection of compressing disks for S_{K} in U_{K} and intersects S_{K} only in arcs that are essential in S_{K}^{U}. Take such a disk D that intersects S_{K} minimally. Consider an outermost arc of $S_{K}^{U} \cap D$ cutting off a subdisk D_{0} from D. If $D_{0} \subset V_{K}, P$-compressing S_{K} along D_{0} preserves the compressing disks of S_{K} lying in U_{K} (because D is disjoint from all compressing disks for S_{K} in U_{K} by hypothesis) and also preserves the c-disks lying in V_{K} (by an innermost disk argument) so the result follows by induction. If every outermost disks is contained in U_{K}^{-}, the argument of [8, Theorem 5.4, Case 3] now carries over to show that either S_{K} is strongly P-compressible or there is a compressing disk for P_{K} that is disjoint from S_{K}. We repeat the argument here for completeness.

If there is nesting among the $\operatorname{arcs} D \cap S_{K}$ in D, consider a second outermost arc λ_{0} in D and let D^{\prime} be the disk this arc cuts from D, see Figure 5. If every arc of $S_{K}^{U} \cap D$ is outermost of D let $D=D^{\prime}$. Let $\Lambda \subset D^{\prime}$ denote the collection of arcs $D^{\prime} \cap S_{K}$; one of these arcs (namely λ_{0}) will be in ∂D^{\prime}. Consider how a c-disk E^{*} for S_{K} in V_{K} intersects D^{\prime}. All closed curves in $D^{\prime} \cap E^{*}$ can be removed by a standard innermost disk argument redefining E^{*}. Any arc in $D^{\prime} \cap E^{*}$ must have its ends in Λ; a standard outermost arc argument can be used to remove any that have both ends in the same component of Λ. If any component of $\Lambda-\lambda_{0}$ is disjoint from all the $\operatorname{arcs} D^{\prime} \cap E^{*}$, then S_{K} could be P-compressed without affecting E^{*}. This reduces $1-\chi\left(S_{K}\right)$ without affecting bicompressibility, so we would be done by induction. Hence we restrict to the case in which each arc component of $\Lambda-\lambda_{0}$ is incident to some arc components of $D^{\prime} \cap E^{*}$.

Figure 5

It follows that there is at least one component $\lambda_{1} \neq \lambda_{0}$ of Λ with this property: any arc of $D^{\prime} \cap E^{*}$ that has one end incident to λ_{1} has its other end incident to one of the (at most two) neighboring components $\lambda_{ \pm}$of Λ along ∂D^{\prime}. (Possibly one or both of $\lambda_{ \pm}$are λ_{0}.) Let β be the outermost arc in E^{*} among all arcs of $D^{\prime} \cap E^{*}$ that are incidental to the special arc λ_{1}. We then know that the other end of β is incident to (say) λ_{+}and that the disk $E_{0} \subset E^{*}$ cut off by β from E^{*}, although it may be incident to D^{\prime} in its interior, at least no arc of intersection $D^{\prime} \cap$ interior $\left(E_{0}\right)$ is incident to λ_{1}. Notice that even if E^{*} is a cut-disk, we can always choose E_{0} so that it does not contain a puncture.

Let D_{0} be the rectangle in D^{\prime} whose sides consist of subarcs of $\lambda_{1}, \lambda_{+}, \partial D^{\prime}$ and all of β. Although E^{*} may intersect this rectangle, our choice of β as outermost among arcs of $D \cap E^{*}$ incident to λ_{1} guarantees that E_{0} is disjoint from the interior of D_{0} and so is incident to it only in the arc β. The union of E_{0} and D_{0} along β is a disk $D_{1} \subset V_{K}$ whose boundary consists of the arc $\alpha=P \cap \partial D_{0}$ and an arc $\beta^{\prime} \subset S_{K}$. The latter arc is the union of the two arcs $D_{0} \cap S_{K}$ and the arc $E_{0} \cap S_{K}$. If β^{\prime} is essential in F_{K}, then D_{1} is a P-compressing disk for S_{K} in V_{K} that is disjoint from the P-compressing disk in U_{K} cut off by λ_{1}. So if β^{\prime} is essential then S_{K} is strongly P-compressible. Suppose finally that β^{\prime} is inessential in S_{K} so β^{\prime} is parallel to an arc in ∂S_{K}. Let $D_{2} \subset S_{K}$ be the disk of parallelism and consider the disk $D^{\prime}=D_{1} \cup D_{2}$. Note that $\partial D^{\prime} \subset P_{K}$ and D^{\prime} can be isotoped to be disjoint from S_{K}. Either D^{\prime} is P_{K}-parallel or is itself a compressing disk for P_{K}. In the latter case $\partial D^{\prime} \in \mathcal{A}, d(f, \mathcal{A}) \leq 1$ for every $f \in \partial S_{K}$ and we are done. On the other hand if D^{\prime} cobounds a ball with P_{K}, then D_{1} and D_{2} are parallel and so we can isotope S_{K} replacing D_{2} with D_{1}. The result of this isotopy is the curves λ_{1} and λ_{+}are replaced by a single curve containing β as a subarc lowering $\left|D \cap S_{K}\right|$. This contradicts our original assumption that S_{K} and D intersect minimally. We conclude that S_{K} satisfies the second or the third condition of the Claim completing the proof of Lemma 7.10.

We return now to the proof of the theorem. By the above lemmas we may assume F_{K} is not strongly P-compressible, and if it is bicompressibleboth of F_{K}^{X} and F_{K}^{Y} have cut-disks.

Remark 7.12 Some of the argument to follow here parallels the argument in [8, Theorem 5.4]. In fact it seems likely that the stronger result proven there still holds.

If F_{K} has no compressing disks on some side (and necessarily has a cut-disk), pick that side to be X_{K}. If both sides have compressing disks, pick X_{K} to be the side that has a cut-disk if there is such. Thus if F_{K} has a cut-disk, then it has a cut-disk
$D^{c} \subset X_{K}$ and if F_{K} has a compressing disk lying in X_{K}, it also has a compressing disk lying in Y_{K}.

Suppose F_{K} has a cut-disk $D^{c} \subset X_{K}$. Let κ be the component of $K-P$ that pierces through D^{c} and B be a bridge disk of κ. We want to consider how F_{K} intersects B. After a standard innermost disk argument, we may assume that the cut-disk D^{c} intersects B in a single arc μ with one endpoint lying in κ and the other endpoint lying in a component of $F_{K} \cap B$. Label this component b (see Figure 6). The curve b is either a simple closed curve, has both of its endpoints in P_{K} or has at least one endpoint in κ.

Figure 6
Assume $\left|B \cap F_{K}\right|$ is minimal. We will first show that if there are any simple closed curves of intersection, they cannot be nested in B. The argument is similar to the No Nesting Lemma in Scharlemann [9].

Suppose such nesting occurs and let δ be a second innermost curve cutting off a disk D_{δ} from B. The innermost curve of intersection contained in D_{δ} bound compressing disks for F_{K} disjoint from D^{c} and thus must lie in X_{K}, call these disks D_{1}, \ldots, D_{n}. By our choice of labels this implies that F_{K} is in fact bicompressible, let E be a compressing disks for F_{K} lying in Y. By c-weak incompressability of $F_{K}, E \cap D_{i} \neq \varnothing$. By using edgeslides guided by E as in the proof of Lemma $6.1\left|B \cap F_{K}\right|$ can be reduced contradicting minimality.

We can in fact assume that there are no simple closed curves of intersection between F_{K} and the interior of B. Suppose $\sigma \neq b$ is an innermost simple closed curve of intersection bounding a subdisk $D_{\sigma} \subset B$. This disk is a compressing disk for F_{K}
disjoint from D^{c} so must lie in X_{K} by c-weak incompressibility of F_{K}. Thus F_{K} must also have a compressing disk in Y_{K}. Use this compressing disk and apply Lemma 6.1 with the subdisk of B bounded by b playing the role of T to isotope F_{K} so as to remove all such closed curves.

Suppose b is a simple closed curve. Let $D_{b} \subset B$ be the disk b bounds in B. Then by the above $D_{b} \cap F_{K}=b$ and thus D_{b} is a compressing disk for F_{K} lying in Y_{K} intersecting D^{c} in only one point contradicting Proposition 7.4. Thus we may assume b is an arc.

Case 1 There exists a cut-disk $D^{c} \subset X_{K}$ such that the arc b associated to it has both of its endpoints in P_{K}.

Again let $D_{b} \subset B$ be the disk b bounds in B. By the above discussion $D_{b} \cap F_{K}$ has no simple closed curves. Let σ now be an outermost in B arc of intersection between F_{K} and B cutting from B a subdisk E_{0} that is a P-compressing disk for F_{K}.

Subcase 1A $\quad b=\sigma$ and so necessarily $E_{0} \subset Y_{K}$. This in fact implies that $F_{K} \cap B=b$. For suppose there is an arc in $F_{K} \cap\left(B-D_{b}\right)$. An outermost such arc γ bounds a P-compressing disk for F_{K}. If this disk is in X_{K}, then F_{K} would be strongly $P-$ compressible, a possibility we have already eliminated. If the disk is in Y_{K}, note that we can P-compress F_{K} along this disk preserving all c-disks for F_{K} lying in Y_{K} and also preserving the disk D^{c}. The theorem then follows by Proposition 7.6.

Consider the surface F_{K}^{\prime} obtained from F_{K} via P-compression along D_{b} and the disk D_{B} obtained by doubling B along κ, a compressing disk for P_{K}. In this case $F_{K}^{\prime} \cap D_{B}=\varnothing$ so we can obtain the inequality $d(f, \mathcal{A}) \leq d\left(f, \partial D_{B}\right) \leq d\left(f, f^{\prime}\right)+$ $d\left(f^{\prime}, \partial D_{B}\right) \leq 2$ for every curve $f \in P_{K} \cap F_{K}$ as long as we can find at least one $f^{\prime} \in P_{K} \cap F_{K}^{\prime}$ that is essential in P_{K}.

If all curves in $P_{K} \cap F_{K}^{\prime}$ are inessential in P_{K}, there are at most two of them. Suppose F_{K}^{\prime} has two boundary components f_{1}^{\prime} and f_{2}^{\prime} bounding possibly punctured disks $D_{f_{1}^{\prime}}, D_{f_{2}^{\prime}} \subset P_{K}$ and $F_{K} \cap P_{K}$ can be recovered by tunneling between these two curves. As all curves of $F_{K} \cap P_{K}$ are essential in P_{K}, each of $D_{f_{1}^{\prime}}$ and $D_{f_{2}^{\prime}}$ must in fact be punctured and they cannot be nested. Consider the curve f_{*} that bounds a disk in P and this disk contains $D_{f_{1}^{\prime}}, D_{f_{2}^{\prime}}$ and the two points of $\kappa \cap P$, (see Figure 7). This curve is essential in P_{K} as it bounds a disk with four punctures on one side the other side either does not bound a disk in P if P is not a sphere, or contains at least two punctures of P_{K} if P is a sphere. As f_{*} is disjoint from both the curve $F_{K} \cap P_{K}$ and from at least one curve of \mathcal{A}, it follows that the unique curve $f \in F_{K} \cap P_{K}$ satisfies the equality $d\left(F_{K} \cap P_{K}, \mathcal{A}\right) \leq 2 \leq 1-\chi\left(F_{K}\right)$.

Figure 7
If F_{K}^{\prime} has a unique boundary curve f^{\prime} then F_{K} is recovered by tunneling along an arc e_{0} with both of its endpoints in f^{\prime}. Therefore F_{K} has exactly two boundary curves f_{0}, f_{1} that cobound a possibly once punctured annulus in P_{K} (see Figure 8).

Figure 8
Let f_{*} and f_{*}^{\prime} be the curves in P_{K} that cobound once punctured annuli with f_{1} and f_{0} respectively as in Figure 8. If both f_{*} and f_{*}^{\prime} are inessential in P_{K}, then P_{K} is a sphere with at most four punctures contrary to the hypothesis. Thus we may assume that f_{*} say is essential in P_{K}. In this case $d\left(f_{i}, \mathcal{A}\right) \leq d\left(f_{i}, f_{*}\right)+d\left(f_{*}, \mathcal{A}\right) \leq 2 \leq 1-\chi\left(F_{K}\right)$ for $i=1,2$ as desired.

Subcase 1B $\quad b \neq \sigma$ and some disk $E_{0} \subset D_{b}$ bound by an outermost arc of $F_{K} \cap D_{b}$ is contained in Y_{K}. (It can be shown that as in subcase $1 \mathrm{~A}, F_{K} \cap\left(B-D_{b}\right)=\varnothing$ but we won't need this observation). P-compressing via E_{0} results in a surface F_{K}^{\prime} with
c-disks on both sides as E_{0} is disjoint from D^{c}. By Proposition $7.5 F_{K}^{\prime}$ satisfies the hypothesis and thus the conclusion of the theorem at hand and by Proposition 7.6 so does F_{K} contradicting our assumption that F_{K} is a counterexample.

Subcase 1C All outermost arcs of $F_{K} \cap D_{b}$ bound P-compressing disks contained in X_{K}. Consider a second outermost arc λ_{0} in B (possibly b) and let D^{\prime} be the disk this arc cuts from B. Let $\Lambda \subset D^{\prime}$ denote the collection of arcs $D^{\prime} \cap F_{K}$; one of these arcs (namely λ_{0}) will be in ∂D^{\prime}. The argument is now identical to Case 3 of Lemma 7.10, and shows that F_{K} is strongly P-compressible, a possibility we have already eliminated, or $d(f, \mathcal{A}) \leq 1$. See Figure 9 for the pair of strongly P-compressing disks in this case.

Figure 9
Case 2 No cut-disk for F_{K} has the property that the arc associated to it has both of its endpoints in P_{K}. In other words, every arc b associated to a cut-disk $D^{c} \subset X_{K}$ has at least one of its endpoints in κ. This also includes the case when F_{K} has no cut-disks at all.

First we will show that F_{K} actually has compressing disks on both sides. This is trivial if F_{K} has no cut-disks so suppose F_{K} has a cut-disk. Consider the triangle $R \subset B$ cobounded by μ, κ and b (See Figure 10). If R is disjoint from F_{K}, a neighborhood of $D^{c} \cup R$ contains a compressing disk D for F_{K}, necessarily contained in X_{K}. If $R \cap F_{K} \neq \varnothing$, there are only arcs of intersection as all simple closed curves have been removed. An outermost in R arc of intersection has both of its endpoint lying in κ and doubling the subdisk of R it cuts off results in a compressing disk D for F_{K} that also has to lie in X_{K} as its boundary is disjoint from D^{c}. These two types of disks will be called compressing disks associated to D^{c}. As F_{K} has a compressing disk in Y_{K} by our initial choice of labeling, F_{K} is bicompressible.

Compress F_{K} maximally in X_{K} to obtain a surface F_{K}^{X}. The original surface F_{K} can be recovered from F_{K}^{X} by tubing along a graph Γ whose edges are the cocores of
the compressing disks for F_{K} on the X_{K} side. By Corollary $6.3 F_{K}^{X}$ does not have any compressing disks and by Lemma 7.10 it has cut-disks.
We will use X_{K}^{-}and Y_{K}^{+}to denote the two sides of F_{K}^{X} and will show that in this case F_{K}^{X} doesn't have any cut-disks lying in X_{K}^{-}. Suppose $D^{\prime c} \subset X_{K}^{-}$is a cut disk for F_{K}^{X} and B^{\prime}, b^{\prime} are respectively the disk and the arc of $F_{K}^{X} \cap B^{\prime}$ associated to it. Note that b^{\prime} must have both of its endpoints in P_{K} as otherwise we can construct a compressing disk associated to $D^{\prime c}$ and we have shown that F_{K}^{X} is incompressible. The original surface F_{K} can be recovered from F_{K}^{X} by tubing along the edges of a graph $\Gamma \subset Y_{K}^{+}$. This operation preserves the disk $D^{\prime c}$ and b^{\prime} so F_{K} also has a cut-disk whose associated arc has both of its endpoints of P_{K} contradicting the hypothesis of this case.

Figure 10
The remaining possibility is that F_{K}^{X} has a cut-disk in $D^{\prime c} \subset Y_{K}^{+}$. Let B^{\prime} is its associated bridge disk, b^{\prime} the arc of $F_{K} \cap B^{\prime}$ adjacent to the cut-disk, D_{b}^{\prime} is the disk b^{\prime} cuts from B^{\prime} and κ^{\prime} the arc of the knot piercing $D^{\prime c}$. Assume $\left|F_{K}^{X} \cap B^{\prime}\right|$ is minimal. There cannot be any circles of intersection for they would either be inessential in both surfaces or give rise to compressing disks for the incompressible surface F_{K}^{X}. Also the arc b^{\prime} must have both of its endpoints in P, otherwise we can construct a compressing disk for F_{K}^{X} associated to $D^{\prime c}$, a similar situation is depicted in Figure 10. Consider an outermost arc of $D_{b}^{\prime} \cap F_{K}^{X}$ cutting from D_{b}^{\prime} a P-compressing disk E_{0}, possibly $D_{B}^{\prime}=E_{0}$. We now repeat an argument similar to the argument in Case 1 but applied to F_{K}^{X}. There are again 3 cases to consider.
Subcase 2A $\quad F_{K}^{X} \cap D_{b}^{\prime}=b^{\prime}$ so b^{\prime} bounds a P-compressing disk for F_{K}^{X} lying in X_{K}^{-}. Let $F_{K}^{\prime}{ }^{X}$ be the surface obtained from F_{K}^{X} after this P-compression. The argument of Subcase 1A now shows $d(f, \mathcal{A}) \leq 2 \leq 2-\chi\left(F_{K}\right)$ for every $f \in F_{K}^{X} \cap P_{K}=F_{K} \cap P_{K}$.

Subcase 2B Some E_{0} lies in Y_{K}^{+}(so b^{\prime} is not an outermost arc). Pick a compressing disk D for F_{K} in Y_{K} as in Corollary 6.4. P-compressing F_{K} along E_{0} does not affect c-disks lying in Y_{K}^{+}. It also preserves all compressing disks for F_{K} that lie in X_{K} as it is disjoint from the graph Γ and thus we are done by induction.

Subcase 2C All outermost arcs of $F_{K}^{X} \cap B^{\prime}$ lie in X_{K}^{-}. Consider a second outermost arc component of $\left(F_{K}^{X}\right) \cap B^{\prime}$ and let $E_{1} \in D_{b}^{\prime}-F_{K}^{X}$ be the disk it bounds, necessarily $E_{1} \subset Y^{+}$. By Lemma 6.1 we may assume that Γ is disjoint from this disk. Let E be a compressing disk for F_{K} in Y_{K}. If $E \cap E_{1}=\varnothing$ then P-compressing F_{K} along an outermost disk component preserves the compressing disk lying in Y_{K} and of course preserves all c-disks lying in X_{K} so we can finish the argument by induction. If there are arcs of intersection, we can repeat the argument of Subcase 1C to show that F_{K} is strongly boundary compressible, a case we have already eliminated.

8 Distance and intersections of Heegaard splittings

For the remainder of this paper we will be considering the case of a closed orientable irreducible 3-manifold M containing a knot K with bridge surface P such that $M=A \cup_{P} B$. In this section we also assume that if P is a sphere then P has at least six punctures. The surface Q will be either a second bridge surface for K or a Heegaard surface for M_{K}. Let X and Y be the two components of $M-Q$. Thus if Q is a Heegaard splitting for the knot exterior, then one of X_{K} or Y_{K} is a compression body and the other component is a handlebody. If Q is a bridge surface, both X_{K} and Y_{K} are K-handlebodies.
Given a positioning of P_{K} and Q_{K} in M_{K} let Q_{K}^{A} and Q_{K}^{B} stand for $Q_{K} \cap A_{K}$ and $Q_{K} \cap B_{K}$ respectively. After removing all removable (see Definition 5.4) curves of intersection, proceed to associate to the configuration given by P_{K} and Q_{K} one or more of the following labels.

- Label $A($ resp $B)$ if some component of $Q_{K} \cap P_{K}$ is the boundary of a compressing disk for P_{K} lying in A_{K} (resp B_{K}).
- Label $A^{c}\left(\operatorname{resp} B^{c}\right)$ if some component of $Q_{K} \cap P_{K}$ is the boundary of a cut-disk for P_{K} lying in A_{K} (resp B_{K}). (Notice that this labeling is slightly different from the labeling in Section 5 where the compressing disk was required to be a subdisk of Q_{K}.)
- $X($ resp $Y)$ if there is a compressing disk for Q_{K} lying in $X_{K}\left(\operatorname{resp} Y_{K}\right)$ that is disjoint from P_{K} and the configuration does not already have labels A, A^{c}, B or B^{c}.
- $X^{c}\left(\operatorname{resp} Y^{c}\right)$ if there is a cut-disk for Q_{K} lying in X_{K} (resp Y_{K}) that is disjoint from P_{K} and the configuration does not already have labels A, A^{c}, B or B^{c}.
- $x($ resp $y)$ if some spine $\Sigma_{(A, K)}$ or $\Sigma_{(B, K)}$ lies entirely in $Y_{K}\left(\operatorname{resp} X_{K}\right)$ and the configuration does not already have labels A, A^{c}, B or B^{c}.

We will use the superscript * to denote the possible presence of superscript ${ }^{c}$, for example we will use A^{*} if there is a label A, A^{c} or both.

Remark 8.1 If all curves of $P_{K} \cap Q_{K}$ are mutually essential, then a curve is essential in Q_{K}^{A} say, only if it is essential in Q_{K} so any c-disk for Q_{K}^{A} or Q_{K}^{B} that is disjoint from Q_{K} is in fact a c-disk for Q_{K}.

Lemma 8.2 If the configuration of P_{K} and Q_{K} has no labels, then $d(K, P) \leq$ $2-\chi\left(Q_{K}\right)$.

Proof If $P_{K} \cap Q_{K}=\varnothing$ then $Q_{K} \subset A_{K}$ say, so B_{K} is entirely contained in X_{K} or in Y_{K}, say in Y_{K}. But B_{K} contains all spines $\Sigma_{(B, K)}$ so there will be a label x contradicting the hypothesis. Thus $P_{K} \cap Q_{K} \neq \varnothing$.

Consider the curves $P_{K} \cap Q_{K}$ and suppose some are essential in P_{K} but inessential in Q_{K}. An innermost such curve in Q_{K} will bound a c-disk in A_{K} or B_{K}. Since there is no label, such curves can not exist. In particular, any intersection curve that is inessential in Q_{K} is inessential in P_{K}. Now suppose there is a curve of intersection that is inessential in P_{K}. An innermost such curve c bounds a possibly punctured disk $D^{*} \subset P_{K}$ that lies either in X_{K} or in Y_{K} but, because there is no label X^{*} or Y^{*}, this curve must be inessential in Q_{K} as well. Let E be the possibly punctured disk it bounds there. We have just seen that all intersections of E with P_{K} must be inessential in both surfaces, so c is removable and would have been removed at the onset. We conclude that all remaining curves of intersection are essential in both surfaces. As there are no labels X^{*} or Y^{*}, Q_{K}^{A} and Q_{K}^{B} are c-incompressible. We conclude that both surfaces satisfy the hypothesis of Proposition 4.3. The bound on the distance then follows by Corollary 5.3.

Proposition 8.3 If some configuration is labeled A^{*} and B^{*} then P_{K} is $c-s t r o n g l y$ compressible.

Proof The labels imply the presence of c-disks for P_{K} that we will denote by D_{A}^{*} and D_{B}^{*} such that $\partial D_{A}^{*}, \partial D_{B}^{*} \in Q_{K} \cap P_{K}$. As Q_{K} is embedded, either $\partial D_{A}^{*}=\partial D_{B}^{*}$ or $\partial D_{A}^{*} \cap \partial D_{B}^{*}=\varnothing$. Thus P_{K} is c-strongly compressible.

Lemma 8.4 If $P_{K} \cap Q_{K}=\varnothing$ with say $P_{K} \subset X_{K}$ (recall that X_{K} may be a handlebody, a compression body or a K-handlebody) and $Q_{K} \subset A_{K}$, then either every compressing disk D for Q_{K} lying in X_{K} intersects P_{K} or at least one of P_{K} and Q_{K} is strongly compressible.

Proof Suppose P_{K} and Q_{K} are both weakly incompressible and that there is a compressing disk for Q_{K} lying in $X_{K} \cap A_{K}$. As $Y_{K} \subset A_{K}$ this implies that Q_{K} is bicompressible in A_{K}. As Q_{K} is weakly incompressible in M_{K}, it must be weakly incompressible in A_{K}. Compress Q_{K} maximally in $A_{K} \cap X_{K}$ to obtain a surface Q_{K}^{X} incompressible in A_{K} by Corollary 6.3. Consider the compressing disks for P_{K} lying in A_{K}. Each of them can be made disjoint from Q_{K}^{X} by an innermost disk argument so the surface P_{K}^{A} obtained by maximally compressing P_{K} in A_{K} is disjoint from Q_{K}^{X} and so from Q_{K} (see Figure 11). As M has no boundary, P_{K}^{A} is a collection of spheres and of annuli parallel to $N(K)$. The surface P_{K}^{A} separates P_{K} and Q_{K} thus Q_{K} is entirely contained in a ball or in a ball punctured by the knot in one arc. This contradicts the assumption that if $M=S^{3}$, then K is at least a three bridge knot.

Figure 11

Lemma 8.5 If there is a spine $\Sigma_{(A, K)} \subset Y_{K}$ (recall that Y_{K} may be a handlebody, a compression body or a K-handlebody) then either any c-disk for Q_{K} in Y_{K} that is disjoint from P_{K} intersects $\Sigma_{(A, K)}$ or at least one of P_{K} and Q_{K} is c-strongly compressible.

Proof Suppose P_{K} and Q_{K} are both c-weakly incompressible and suppose E is a c-disk for Q_{K} in Y_{K} that is disjoint from P_{K} and from some spine $\Sigma_{(A, K)}$. Use the product structure between P_{K} and $\Sigma_{(A, K)}$ to push all of Q_{K}^{A}, as well as E, into
B_{K}. If E was a compressing disk, this gives a contradiction to Lemma 8.4 with the roles of X_{K} and Y_{K} reversed. We want to show that even if the initial disk E was a cut-disk, after the push we can find a compressing disk for Q_{K} lying in Y_{K} that is disjoint from P_{K} and contradict Lemma 8.4.

Suppose E is a cut-disk, let $\kappa \in B$ be the arc of $K-P$ that pierces E and let $D \subset B_{K}$ be its bridge disk with respect to P_{K}. Isotope Q_{K} and D so that $\left|Q_{K} \cap D\right|$ is minimal and consider $b \subset Q_{K} \cap D$, the arc of intersection adjacent to E (this situation is similar to Figure 10). If b is a closed curve, let D_{b} be the disk it bounds in D. If $D \cap Q_{K}=b$ then D_{b} is a compressing disk for Q_{K} that intersects E in exactly one point, contradicting c-weak incompressibility. Let δ be an innermost curve of intersection between D and Q_{K} bounding a subdisk $D_{\delta} \subset D$. If $D_{\delta} \subset X_{K}$, that would contradict c-weak incompressibility of Q_{K} so $D_{\delta} \subset Y_{K}$ and is the desired compressing disk. If b is not a closed curve, we can obtain a compressing disk for Q_{K} much as in Figure 10. Both endpoints of b lie in κ as $Q_{K} \cap P_{K}=\varnothing$. If b is outermost, let R be the disk b cuts from D. A neighborhood of $R \cup E$ consists of two compressing disks for Q_{K} in Y_{K} both disjoint from P_{K} as desired. If b is not outermost, let δ be an outermost arc. Doubling the disk D_{δ} that δ cuts from D gives a compressing disk for Q_{K}. If this compressing disk is in X_{K} that would contradict c-weak incompressibility of Q_{K} thus the disk must lie in Y_{K} as desired.

Of course the symmetric statements hold if $\Sigma_{(A, K)} \subset X_{K}, \Sigma_{(B, K)} \subset Y_{K}$ or $\Sigma_{(B, K)} \subset$ X_{K}.

Lemma 8.6 Suppose P_{K} and Q_{K} are both c-weakly incompressible surfaces. If there is a configuration labeled both x and Y^{*} (or symmetrically X^{*} and y) then either P_{K} and Q_{K} are K-isotopic or $d(K, P) \leq 2-\chi\left(Q_{K}\right)$.

Proof From the label x we may assume, with no loss of generality, that there exists a spine $\Sigma_{(A, K)} \subset Y_{K}$. From the label Y^{*} we know that Q_{K} has a c-disk in $Y_{K}-P_{K}$, call this disk E. By Lemma $8.5, E \cap \Sigma_{(A, K)} \neq \varnothing$ so in particular $E \subset Y_{K}$.

We first argue that we may as well assume that all components of $P_{K} \cap Q_{K}$ are essential in P_{K}. For suppose not; let c be the boundary of an innermost possibly punctured disk D^{*} in $P_{K}-Q_{K}$. If c were essential in Q_{K} then D^{*} cannot be in Y_{K} (by Lemma 8.5) and so it would have to lie in X_{K}. But then D^{*} is disjoint from E, contradicting the c-weak incompressibility of Q_{K}. We deduce that c is inessential in Q_{K} bounding a possibly punctured subdisk $D^{\prime} \subset Q_{K}$. If D^{\prime} intersects P_{K} in any curves that are essential, that would result in a label A^{*} or B^{*} contradicting our labeling scheme so c is removable and should be been removed at the onset. Suppose
now that some curve of intersection bounds a possibly punctured disk in Q_{K}. By the above it must be essential in P_{K} but then an innermost such curve would give rise to a label A^{*} or B^{*} contradicting the labeling scheme. Thus all curves of $Q_{K} \cap P_{K}$ are mutually essential.
Consider first Q_{K}^{B}. It is incompressible in B_{K} because a compression into Y_{K} would violate Lemma 8.5 and a compression into X_{K} would provide a c-weak compression of Q_{K}. If Q_{K}^{B} is not essential in B_{K} then every component of Q_{K}^{B} is parallel into P_{K} so in particular Q_{K}^{B} is disjoint from some spine $\Sigma_{(B, K)}$ and thus $Q_{K} \subset P_{K} \times I$. If Q_{K} is incompressible in $P_{K} \times I$, then it is P_{K}-parallel by Lemma 2.10 as we know that Q_{K} is not a sphere or an annulus. A compression for Q_{K} in $P_{K} \times I$ would contradict Lemma 8.5 unless both $\Sigma_{(A, K)}$ and $\Sigma_{(B, K)}$ are contained in Y_{K} and Q_{K} has a compressing disk D^{X} contained in $\left(P_{K} \times I\right) \cap X_{K}$. In this case, as each component of Q_{K}^{B} is P_{K}-parallel, we can isotope Q_{K} to lie entirely in A_{K} so that $P_{K} \subset Y_{K}$ but then the disk E provides a contradiction to Lemma 8.4. We conclude that Q_{K}^{B} is essential in B_{K} so by Proposition 4.3 for each component q of $Q_{K} \cap P_{K}$ that is not the boundary of a P_{K}-parallel annulus in B_{K}, the inequality $d(q, \mathcal{B}) \leq 1-\chi\left(Q_{K}^{B}\right)$ holds. Thus we can conclude that either P_{K} and Q_{K} are K-isotopic or Q_{K}^{B} satisfies the hypotheses of Lemma 5.2.
By Lemma $8.5 Q_{K}^{A}$ does not have c-disks in $Y_{K} \cap\left(A_{K}-\Sigma_{(A, K)}\right)$ so it either has no c-disks in $A_{K}-\Sigma_{(A, K)}$ at all or has a c-disk lying in X_{K}. The latter would imply that Q_{K}^{A} is actually c-bicompressible in A_{K}. In either case we will show that Q_{K}^{A} also satisfies the hypotheses in Lemma 5.2 and the conclusion of that lemma completes the proof.
Case $1 Q_{K}^{A}$ is incompressible in $A_{K}-\Sigma_{(A, K)} \cong P_{K} \times I$. By Lemma 2.10 each component of Q_{K}^{A} must be P_{K}-parallel. The c-disk E of Q_{K}^{A} in $Y_{K}-P_{K}$ can be extended via this parallelism to give a c-disk for P_{K} that is disjoint from all $q \in Q_{K} \cap P_{K}$. Hence $d(q, \mathcal{A}) \leq 2 \leq 1-\chi\left(Q_{K}^{A}\right)$ as long as Q_{K}^{A} is not a collection of $P_{K}-$ parallel annuli. If that is the case, then $d\left(\partial E, q_{0}\right)=0$ for at least one $q_{0} \in\left(P_{K} \cap Q_{K}\right)$ so $d\left(q_{0}, \mathcal{A}\right) \leq 1 \leq 1-\chi\left(Q_{K}^{A}\right)$ as desired.
Case $2 Q_{K}^{A}$ is c-bicompressible in A_{K}. Every c-disk for Q_{K} in Y_{K} intersects $\Sigma_{(A, K)}$, so we can deduce the desired distance bound by Theorem 7.7.

Lemma 8.7 Suppose P_{K} and Q_{K} are both c-weakly incompressible surfaces. If there is a configuration labeled both X^{*} and Y^{*} then either P_{K} and Q_{K} are K-isotopic or $d(K, P) \leq 2-\chi\left(Q_{K}\right)$.

Proof Since Q_{K} is c-weakly incompressible, any pair of c-disks, one in X_{K} and one in Y_{K}, must intersect in their boundaries and so cannot be separated by P_{K}. It
follows that if both labels X^{*} and Y^{*} appear, the boundaries of the associated c-disks lie in one of Q_{K}^{A} or Q_{K}^{B}, say, Q_{K}^{A}.

Again we may as well assume that all components of $P_{K} \cap Q_{K}$ are essential in P_{K}. For suppose not; let c be the boundary of an innermost possibly punctured disk D^{*} in $P_{K}-Q_{K}$. If c were essential in Q_{K} then a c-disk in B_{K} parallel to D would be a c-disk for Q_{K}^{B}. From this contradiction we deduce that c is inessential in Q_{K} and proceed as in the proof of Lemma 8.6. As no labels A^{*} or B^{*} appear, all curves are also essential in Q_{K}.

If Q_{K}^{A} or Q_{K}^{B} could be made disjoint from some spine $\Sigma_{(A, K)}$ or $\Sigma_{(B, K)}$, then the result would follow by Lemma 8.6 so we can assume that is not the case. In particular Q_{K}^{B} is essential and so via Proposition 4.3 it satisfies the hypothesis of Lemma 5.2. The surface Q_{K}^{A} is c-bicompressible, c-weakly incompressible and there is no spine $\Sigma_{(A, K)}$ disjoint from Q_{K}^{A}. By Theorem 7.7, Q_{K}^{A} also satisfies the hypothesis of Lemma 5.2 so we have the desired distance bound.

Lemma 8.8 Suppose P_{K} and Q_{K} are both c-weakly incompressible surfaces. If there is a configuration labeled both x and y, then either P_{K} and Q_{K} are K-isotopic or $d(K, P) \leq 2-\chi\left(Q_{K}\right)$.

Proof As usual, we can assume that all curves in $P_{K} \cap Q_{K}$ are essential in both surfaces. Indeed, if there is a curve of intersection that is inessential in P_{K} then an innermost one either is inessential also in Q_{K}, and can be removed as described above, or is essential in Q_{K} and so would give rise to a label X^{*} or Y^{*}, a case done in Lemma 8.6. In fact we may assume that Q_{K}^{A} or Q_{K}^{B} are incompressible and c-incompressible as otherwise the result would follow by Lemma 8.6. As no labels A^{*} or B^{*} appear, we can again assume that all curves $P_{K} \cap Q_{K}$ are also essential in Q_{K}.

Both X_{K} and Y_{K} contain entire spines of A_{K} or B_{K}, though since we are not dealing with fixed spines the labels could arise if there are two distinct spines of A_{K}, say, one in X_{K} and one in Y_{K}. Indeed that is the case to focus on, since if spines $\Sigma_{(A, K)} \subset X_{K}$ and $\Sigma_{(B, K)} \subset Y_{K}$ then Q_{K} is an incompressible surface in $P_{K} \times I$ so by Lemma $2.10 Q_{K}$ is K-isotopic to P_{K}.

So suppose that $\Sigma_{(A, K)} \subset Y_{K}$ and there is another spine $\Sigma_{(A, K)}^{\prime} \subset X_{K}$. The surface Q_{K}^{A} is incompressible in A_{K} so it is certainly incompressible in the product $A_{K}-$ $\Sigma_{(A, K)}$ and so every component of Q_{K}^{A} is parallel in $A_{K}-\Sigma_{(A, K)}$ to a subsurface of P_{K}. Similarly every component of Q_{K}^{A} is parallel in $A_{K}-\Sigma_{(A, K)}^{\prime}$ to a subsurface of P_{K}.

Let Q_{0} be a component of Q_{K}^{A} that lies between $\Sigma_{(A, K)}$ and $\Sigma_{(A, K)}^{\prime}$. This implies that Q_{0} is parallel into P_{K} on both its sides, ie that $A_{K} \cong Q_{0} \times I$.
As K is not a 2-bridge knot, then either $\chi\left(P_{K}\right)<-2$ (so in particular $\left.\chi\left(Q_{0}\right)<-1\right)$ or P_{K} a twice punctured torus. We will show that in either case $d(\mathcal{A}, q) \leq 2 \leq 1-\chi\left(Q_{K}^{A}\right)$.

If P_{K} is a twice punctured torus, then Q_{0} is a once punctured annulus so has Euler characteristic -1 and thus $\chi\left(Q_{K}^{A}\right)<0$. Note that $d\left(\partial Q_{0}, \mathcal{A}\right) \leq 2$ (see Figure 12) and thus $d(\mathcal{A}, q) \leq 2 \leq 1-\chi\left(Q_{K}^{A}\right)$.

Figure 12
If $\chi\left(P_{K}\right)<-2$ let α be an essential arc in Q_{0} with endpoints in $P_{K} \cap Q_{K}$. Then $\alpha \times I \subset Q_{0} \times I \cong A_{K}$ is a meridian disk D for A_{K} that intersects Q_{0} precisely in α. P-compressing Q_{0} along one of the two disk components of $D-\alpha$ produces at most two surfaces at least one of which, Q_{1} say, has a strictly negative Euler characteristic. In particular it is not a disk, punctured disk or an annulus. Every component of ∂Q_{1} is essential in P_{K} and disjoint from both D and $Q_{0} \cap P_{K}$. We can conclude that for every curve $q \in P_{K} \cap Q_{K}, d(\mathcal{A}, q) \leq d\left(\mathcal{A}, \partial Q_{0}\right)+d\left(\partial Q_{0}, q\right) \leq 2 \leq 1-\chi\left(Q_{K}^{A}\right)$. Thus Q_{K}^{A} always satisfied the hypothesis of Lemma 5.2.
Now consider Q_{K}^{B}. If it is essential, then by Proposition 4.3 Q_{K}^{B} also satisfies the hypothesis of Lemma 5.2 and we are done by that lemma. If Q_{K}^{B} has c-disks in B_{K}, we have labels X^{*} and y (or x and Y^{*}) and we are done via Lemma 8.6. Finally, if each component of Q_{K}^{B} is parallel to a subsurface of P_{K}, then Q_{K} is disjoint from a spine $\Sigma_{(B, K)}$ as well, a case we have already considered.

9 How labels change under isotopy

Suppose P and Q are as defined in the previous section and continue to assume that if P is a sphere, then P_{K} has at least six punctures. Consider how configurations and their labels change as P_{K} say is isotoped while keeping Q_{K} fixed. Clearly if there are no tangencies of P_{K} and Q_{K} during the isotopy then the curves $P_{K} \cap Q_{K}$ change
only by isotopies and there is no change in labels. Similarly, if there is an index 0 tangency, $P_{K} \cap Q_{K}$ changes only by the addition or deletion of a removable curve. Since all such curves are removed before labels are defined, again there is no affect on the labeling. There are two cases to consider; P_{K} passing through a saddle tangency for Q_{K} and P_{K} passing through a puncture of Q_{K}. Consider first what can happen to the labeling when passing through a saddle tangency of P_{K} with Q_{K}.

Figure 13

Lemma 9.1 Suppose P_{K} and Q_{K} are c-weakly incompressible surfaces and P_{K} is isotoped to pass through a single saddle tangency for Q_{K}. Suppose farther that the bigon C defining the saddle tangency (see Figure 13) lies in $X_{K} \cap A_{K}$. Then

- no label x or X^{*} is removed,
- no label y or Y^{*} is created,
- if there is no label x or X^{*} before the move, but one is created after and if there is a label y or Y^{*} before the move and none after, then either P_{K} and Q_{K} are isotopic or $d(K, P) \leq 2-\chi\left(Q_{K}\right)$.

Proof Much of the argument here parallels the argument in the proof of [12, Lemma 4.1]. The main difference is in Claim 2.

We first show that no label x or X^{*} is removed. If there is a c-disk for Q_{K} in $X_{K} \cap A_{K}$, a standard innermost disk, outermost arc argument on its intersection with C shows that there is a c-disk for Q_{K} in $X_{K} \cap A_{K}$ that is disjoint from C. The saddle move has no effect on such a disk. It is clear that the move doesn't have an effect on a c-disk for Q_{K} lying in $X_{K} \cap B_{K}$ so a label X^{*} will not be removed. If there is a spine of (A, K) or (B, K) lying entirely in Y_{K} then that spine too is unaffected by the saddle move.

Dually, no label y or Y^{*} is created: the inverse saddle move, restoring the original configuration, is via a bigon that lies in $B_{K} \cap Y_{K}$.

To prove the third item position Q_{K} so that it is exactly tangent to P_{K} at the saddle. A bicollar of Q_{K} then has ends that correspond to the position of Q_{K} just before the move and just after. Let Q_{K}^{a} denote $Q_{K} \cap A_{K}$ after the move and Q_{K}^{b} denote $Q_{K} \cap B_{K}$ before the move. The bicollar description shows that Q_{K}^{a} and Q_{K}^{b} have disjoint boundaries in P_{K}. Moreover the complement of $Q_{K}^{a} \cup Q_{K}^{b}$ in Q_{K} is a regular neighborhood of the singular component of $P_{K} \cap Q_{K}$, with Euler characteristic -1. It follows that $\chi\left(Q_{K}^{a}\right)+\chi\left(Q_{K}^{b}\right)=\chi\left(Q_{K}\right)+1$.

With Q_{K} positioned as described, tangent to P_{K} at the saddle point but otherwise in general position, consider the closed (non-singular) curves of intersection.

Claim 1 It suffices to consider the case in which all non-singular curves of intersection are essential in P_{K}.

To prove the claim, suppose a non-singular curve is inessential and consider an innermost one. Assume first that the possibly punctured disk D^{*} that it bounds in P_{K} does not contain the singular curve s (ie the component of $P_{K} \cap Q_{K}$, homeomorphic to a figure 8 , that contains the saddle point). If ∂D^{*} is essential in Q_{K}, then it would give rise to a label X^{*} or a label Y^{*} that persists from before the move until after the move, contradicting the hypothesis. Suppose on the other hand that ∂D^{*} is inessential in Q_{K} and so bounds a possibly punctured disk $E^{*} \subset Q_{K}$. All curves of intersection of E^{*} with P_{K} must be inessential in P_{K}, since there is no label A^{*} or B^{*}. It follows that $\partial D^{*}=\partial E^{*}$ is a removable component of intersection so the disk swap that replaces E^{*} with a copy of D^{*}, removing the curve of intersection (and perhaps more such curves) has no effect on the labeling of the configuration before or after the isotopy. So the original hypotheses are still satisfied for this new configuration of P_{K} and Q_{K}.

Suppose, on the other hand, that an innermost non-singular inessential curve in P_{K} bounds a possibly punctured disk D^{*} containing the singular component s. When the saddle is pushed through, the number of components in s switches from one s_{0} to two $s_{ \pm}$or vice versa. All three curves are inessential in P_{K} since they lie in the punctured disk D^{*}. Two of them actually bound possibly punctured subdisks of D^{*} whose interiors are disjoint from Q_{K}. Neither of these curves can be essential in Q_{K} otherwise they determine a label X^{*} or Y^{*} that persist throughout the isotopy. At least one of these curves must bound a nonpunctured disk in P_{K} (as D^{*} has at most one puncture) and thus it also bounds a nonpunctured disk in Q_{K}. We conclude that at least two of the curves are inessential in Q_{K} and at least one of them bounds a disk in Q_{K}. As the three curves cobound a pair of pants of Q_{K} the third curve is also inessential in Q_{K}. This implies that all the curves are removable so passing through the singularity has no effect on the labeling. This proves the claim.

Claim 2 We may assume that if any of the curves $s_{0}, s_{ \pm}$are inessential in P_{K} they bound punctured disks in both surfaces.

The case in which all three curves are inessential in P_{K} is covered in the proof of Claim 1. If two are inessential in P_{K} and at least one of them bounds a disk with no punctures then the third curve is also inessential. Thus if exactly two curves are inessential in P_{K}, they both bound punctured disks in P_{K} and as no capital labels are preserved during the tangency move, they also bound punctured disks in Q_{K} which are parallel into P_{K}.

We are left to consider the case in which exactly one of $s_{0}, s_{ \pm}$is inessential in P_{K}, bounds a disk there and, following Claim 1, the disk it bounds in P_{K} is disjoint from Q_{K}. If the curve were essential in Q_{K} then there would have to be a label X or Y that occurs both before and after the saddle move, a contradiction. If the curve is inessential in Q_{K} then it is removable. If this removable curve is $s_{ \pm}$then passing through the saddle can have no effect on the labeling. If this removable curve is s_{0} then the curves $s_{ \pm}$are parallel in both P_{K} and Q_{K}. In the latter case, passing through the saddle has the same effect on the labeling as passing an annulus component of $P_{K}-Q_{K}$ across a parallel annulus component Q_{K}^{0} of Q_{K}^{A}. This move can have no effect on labels x or y. A meridian, possibly punctured disk E^{*} for Y_{K} that is disjoint from P_{K} would persist after this move, unless ∂E^{*} is in fact the core curve of the annulus Q_{K}^{0}. But then the union of E^{*} and half of Q_{K}^{0} would be a possibly punctured meridian disk of A_{K} bounded by a component of $\partial Q_{K}^{0} \subset P_{K}$. In other words, there would have to have been a label A^{*} before the move, a final contradiction establishing Claim 2.

Claims 1 and 2, together with the fact that neither labels A^{*} nor B^{*} appear, reduce us to the case in which all curves of intersection are essential in both surfaces both before and after the saddle move except perhaps some curves which bounds punctured disks in Q_{K} and in P_{K}. Let $\widetilde{Q_{K}^{a}}$ and $\widetilde{Q_{K}^{b}}$ be the surfaces left over after deleting from Q_{K}^{a} and Q_{K}^{b} any P_{K}-parallel punctured disks. As $Q_{\tilde{\sigma}}^{a}$ and Q_{K}^{b} cannot be made disjoint from any spine $\Sigma_{(A, K)}$ or $\Sigma_{(B, K)}, \tilde{Q_{K}^{a}}$ and Q_{K}^{b} are not empty and, as we are removing only punctured disks, $\chi\left(Q_{K}^{a}\right)=\chi\left(\tilde{Q_{K}^{a}}\right)$ and $\chi\left(Q_{K}^{b}\right)=\chi\left(\widetilde{Q_{K}^{b}}\right)$. Note then that $\tilde{Q_{K}^{a}}$ and $\widetilde{Q_{K}^{b}}$ are c-incompressible in A_{K} and B_{K} respectively. For example, if the latter has a c-disk in B_{K}, then so does Q_{K}^{a}. Since no label X^{*} exists before the move, the c-disk must be in Y_{K} and such a c-compression would persist after the move and so then would the label Y^{*}. Similarly neither $\widetilde{Q_{K}^{a}}$ nor $\widetilde{Q_{K}^{b}}$ can consist only of P_{K} parallel components. For example, if all components of Q_{K}^{b} are parallel into P_{K} then Q_{K}^{b} is also disjoint from some spine of B_{K} and such a spine will be unaffected by the move, resulting in the same label (x or y) arising before and
after the move. We deduce that $\tilde{Q_{K}^{a}}$ and $\widetilde{Q_{K}^{b}}$ are essential surfaces in A_{K} and B_{K} respectively.

Now apply Proposition 4.3 to both sides. Let q_{a} (resp q_{b}) be a boundary component of an essential component of $\tilde{Q_{K}^{a}}\left(\operatorname{resp} Q_{K}^{b}\right)$. Then

$$
\begin{aligned}
d(K, P) & =d(\mathcal{A}, \mathcal{B}) \leq d\left(q_{a}, \mathcal{A}\right)+d\left(q_{a}, q_{b}\right)+d\left(q_{b}, \mathcal{B}\right) \\
& \leq 3-\chi\left(\tilde{Q_{K}^{a}}\right)-\chi\left(\tilde{Q_{K}^{b}}\right)=\leq 3-\chi\left(Q_{K}^{a}\right)-\chi\left(Q_{K}^{b}\right)=2-\chi\left(Q_{K}\right)
\end{aligned}
$$

as required.
It remains to consider the case when P_{K} passes through a puncture of Q_{K} as in Figure 14. This puncture defines a bigon C very similar to the tangency bigon in the previous lemma: let Q_{K}^{a} and Q_{K}^{b} be as before, then $Q_{K}-\left(Q_{K}^{a} \cup Q_{K}^{b}\right)$ is a punctured annulus. The knot strand that pierces it is parallel to this annulus, let C be the double of the parallelism rectangle so that $C \subset X_{K} \cap A_{K}$.

Figure 14

Lemma 9.2 Suppose P_{K} and Q_{K} are c-weakly incompressible bridge surfaces for a knot K and P_{K} is isotoped to pass through a single puncture for Q_{K}. Suppose further that the bigon C defined by the puncture (see Figure 14) lies in $X_{K} \cap A_{K}$.

- No label x or X^{*} is removed.
- No label y or Y^{*} is created.
- Suppose that, among the labels both before and after the move, neither A^{*} nor B^{*} occur. If there is no label x or X^{*} before the move, but one is created after and if there is a label y or Y^{*} before the move and none after, then either P_{K} and Q_{K} are K-isotopic or $d(P, K) \leq 2-\chi\left(Q_{K}\right)$.

Proof The proof is very similar to the proof of the previous lemma. It is clear that if there is a c-disk for X_{K} that lies in A_{K}, there is a c-disk that is disjoint from C and thus the label survives the move. If there is a spine of A_{K} or B_{K} lying entirely in Y_{K} then that spine, too, is unaffected by the saddle move. The proof of the third item is identical to the proof in the above lemma in the case when at least one of the curves $s_{0}, s_{ \pm}$bounds a punctured disk in Q_{K}.

We will use X (resp Y) to denote any subset of the labels $x, X, X^{c}\left(\right.$ resp $\left.y, Y, Y^{c}\right)$. The results of the last two sections then can be summarized as follows

Corollary 9.3 If two configurations are related by a single saddle move or going through a puncture and the union of all labels for both configurations contains both x and Y then either P_{K} and Q_{K} are K-isotopic or $d\left(K, P_{K}\right) \leq 2-\chi\left(Q_{K}\right)$

Proof With no loss of generality, the move is as described in Lemma 9.1 or Lemma 9.2. These lemmas show that either we have the desired bound or there is a single configuration for which both X and Y appear. The result then follows from one of Lemma 8.7, Lemma 8.8 or Lemma 8.6.

We will also need the following easy Lemma.
Lemma 9.4 If a configuration carries a label A^{*} before a saddle move or going through a puncture and a label B^{*} after then P_{K} is $c-$ strongly compressible.

Proof As already discussed the curves before and after the saddle move are distance at most one in the curve complex of P_{K}.

10 Main result

Given a bridge surface for a link K there are three ways to create new, more complex, bridge surfaces for the link: adding dual one-handles disjoint from the knot (stabilizing), adding dual one-handles where one of them has an arc of K as its core (meridionally stabilizing), and introducing a pair of a canceling minimum and maximum for K (perturbing). These are depicted in Figure 15, the precise definitions can be found in Tomova [13] .

Definition 10.1 Let P and Q be two bridge surfaces for a knot $K \subset M$. We say that Q is equivalent to P if Q is K-isotopic to a copy of P which may have been stabilized, meridionally stabilized and perturbed.

Figure 15

There is a fourth way to construct a bridge surface for a knot K. Suppose Q is a Heegaard splitting for M splitting it into handlebodies X and Y and suppose K is isotopic to a subset of the spine for X. Then by introducing a single minimum, K can be placed in bridge position with respect to Q. In this case K is said to be removable as Q is also a Heegaard surface for M_{K} after an isotopy of K. Scharlemann and Tomova discuss all four of these operations in detail in [11].

Casson and Gordon have demonstrated that if a 3-manifold has a Heegaard splitting which is irreducible but strongly compressible then the manifold contains an essential surface. In [13], Tomova extended this result to prove the following Theorem.

Theorem 10.2 Suppose M is a closed orientable irreducible 3-manifold containing a link K. If Q is a c-strongly compressible bridge surface for K then either

- Q is stabilized,
- Q is meridionally stabilized,
- Q is perturbed,
- K is removable with respect to Q or
- M_{K} contains a meridional essential surface F_{K} such that $2-\chi\left(F_{K}\right) \leq 2-$ $\chi\left(Q_{K}\right)$.

We can now prove the main result of this paper.

Theorem 10.3 Suppose K is a nontrivial knot in a closed, irreducible and orientable 3manifold M and P is a bridge surface for K. If P is a sphere assume that $|P \cap K| \geq 6$. If Q is also a bridge surface for K that is not equivalent to P, or if Q is a Heegaard surface for $M-\eta(K)$ then $d(K, P) \leq 2-\chi(Q-K)$.

Proof If Q_{K} is stabilized, meridionally stabilized or perturbed we can perform the necessary compressions to undo these operations as described by Scharlemann and Tomova in [11]. Note that these operations increase $\chi\left(Q_{K}\right)$ so we may assume that Q_{K} is not stabilized, meridionally stabilized or perturbed. If K is removable with respect to Q, we may assume that K has been isotoped to lie in the spine of one of the handlebodies $M-Q$ so Q is a Heegaard splitting for M_{K}. This operation decreases $|Q \cap K|$ and thus also increases $\chi\left(Q_{K}\right)$.

Suppose first that Q_{K} is c-strongly compressible. If K is not removable with respect to Q, by Theorem 10.2, there is an essential surface F_{K} such that $2-\chi\left(F_{K}\right)<2-\chi\left(Q_{K}\right)$. If Q is a Heegaard surface for M_{K}, the existence of such an essential surface follows by Casson and Gordon, [3]. Then the result follows from Theorem 5.7. If P_{K} is c-strongly compressible, then $d(P, K) \leq 3$ by applying Proposition 4.1 twice. Thus we may assume that both P_{K} and Q_{K} are c-weakly incompressible.

The proof now is almost identical to the proof of the main result in [12] so we will only give a brief summary.

Recall that if $\Sigma_{(A, K)}$ is a spine for the K-handlebody A_{K}, then $A-\Sigma_{(A, K)} \cong P_{K} \times I$. Thus if P is a bridge surface for K, there is a map $H:(P, P \cap K) \times I \rightarrow(M, K)$ that is a homeomorphism except over $\Sigma_{(A, K)} \cup \Sigma_{(B, K)}$ and near $P \times \partial I$ the map gives a mapping cylinder structure to $\Sigma_{(A, K)} \cup \Sigma_{(B, K)}$. If we restrict H to $P_{K} \times(I, \partial I) \rightarrow$ $\left(M, \Sigma_{(A, K)} \cup \Sigma_{(B, K)}\right), H$ is called a sweep-out associated to P.

If Q is a Heegaard surface for M_{K}, splitting M_{K} into a compression body and a handlebody, then a similar sweep-out is associated to Q between the two spines. We will denote these spines by Σ_{X} and Σ_{Y}.

Consider a square $I \times I$ that describes generic sweep-outs of P_{K} and Q_{K} from $\Sigma_{(A, K)}$ to $\Sigma_{(B, K)}$ and from $\Sigma_{(X, K)}$ to $\Sigma_{(Y, K)}$ if Q is a bridge surface for K or from Σ_{X} to Σ_{Y} if K is removable with respect to Q. See Figure 16. Each point in the square represents a positioning of P_{K} and Q_{K}. Inside the square is a graph Γ, called the graphic that represents points at which the intersection is not generic. At each point in an edge in the graphic there is a single point of tangency between P_{K} and Q_{K} or one of the surfaces is passing through a puncture of the other. At each (valence four) vertex of Γ there are two points of tangency or puncture crossings. By general position of, say, the spine $\Sigma_{(A, K)}$ with the surface Q_{K} the graphic Γ is incident to $\partial I \times I$ in only a finite number of points (corresponding to tangencies between $\Sigma_{(A, K)}$ and Q_{K}). Each such point in $\partial I \times I$ is incident to at most one edge of Γ.

Any point in the complement of Γ represents a generic intersection of P_{K} and Q_{K}. Each component of the graphic complement will be called a region; any two points
in the same region represent isotopic configurations. Label each region with labels $\mathrm{A}, \mathrm{B}, \mathrm{X}$ and Y as described previously where a region is labeled X (resp Y) if any of the labels $x, X, X^{c}\left(\operatorname{resp} y, Y, Y^{c}\right)$ appear and A (resp B) if the labels A or A^{c} (resp B or B^{*}) appear. See Figure 16. If any region is unlabeled we are done by Lemma 8.2. Also if a region is labeled X and Y we are done by one of Lemma 8.7, Lemma 8.8 or Lemma 8.6. Finally by Proposition 8.3 no region is labeled both A and B so we can assume that each region of the square has a unique label.

Figure 16

Let Λ be the dual complex of Γ in $I \times I ; \Lambda$ has one vertex in each face of Γ and one vertex in each component of $\partial I \times I-\Gamma$. Each edge of Λ not incident to $\partial I \times I$ crosses exactly one interior edge of Γ. Each face of Λ is a quadrilateral and each vertex inherits the label of the corresponding region of Γ. Consider the labeling of two adjacent vertices of Λ. Corollary 9.3 says that if they are labeled X and Y we have the desired result and Lemma 9.4 says they cannot be labeled A and B. Finally, a discussion identical to the one in [12] about labeling along the edges of $I \times I$ shows that no label B appears along the $\Sigma_{(A, K)}$ side of $I \times I$ (the left side in the figure), no label A appears along the $\Sigma_{(B, K)}$ side (the right side), no label Y appears along the $\Sigma_{(X, K)}$ side (Σ_{X} side if Q is a bridge surface for M_{K}) (the bottom) and no label X appears along the $\Sigma_{(Y, K)}$ side (Σ_{Y} side if Q is a bridge surface for M_{K}) (the top).

We now appeal to the following quadrilateral variant of Sperner's Lemma proven in the appendix of [12].

Lemma 10.4 Suppose a square $I \times I$ is tiled by quadrilaterals so that any two that are incident meet either in a corner of each or in an entire side of each. Let Λ denote the graph in $I \times I$ that is the union of all edges of the quadrilaterals. Suppose each vertex of Λ is labeled N, E, S, or W in such a way that

- no vertex on the East side of $I \times I$ is labeled W, no vertex on the West side is labeled E, no vertex on the South side is labeled N and no vertex on the North side is labeled S and
- no edge in Λ has ends labeled E and W nor ends labeled N and S,
then some quadrilateral contains all four labels.

In our context the lemma says that there are four regions in the graphic incident to the same vertex of Γ labeled A, B, X and Y. Note then that only two saddle or puncture moves are needed to move from a configuration labeled A to one labeled B . The former configuration includes a c-disk for P_{K} in A and the latter a c-disk for P_{K} in B. Note that as K is nontrivial $\chi\left(Q_{K}\right) \leq-2$. Using Proposition 4.1 it follows that $d(K, P) \leq 4 \leq 2-\chi\left(Q_{K}\right)$, as long as at least one of the regions labeled x and Y contains at least one essential curve.

Suppose all curves of $P \cap Q$ in the regions x and Y are inessential. Consider the region labeled X . Crossing the edge in the graphic from this region to the region labeled A corresponds to attaching a band b_{A} with both endpoints in an inessential curve $c \in P \cap Q$ or with endpoint in two distinct curves c_{1} and c_{2} where c_{1} and c_{2} both bound once punctured disks in P_{K}. Note that attaching this band must produce an essential curve that gives rise to the label A, call this curve c_{A}. Similarly crossing the edge from the region x into the region B corresponds to attaching a band b_{B} to give a curve c_{B}. The two bands have disjoint interiors and must have at least one endpoint in a common curve otherwise c_{A} and c_{B} would be disjoint curves giving rise to labels A and B. By our hypothesis attaching both bands simultaneously results in an inessential curve $c_{A B}$. We will show that in all cases we can construct an essential curve γ in P_{K} that is disjoint from c_{A} and c_{B}. After possibly applying Proposition 4.1, this implies that $d(K, P) \leq 4$.

Case 1 Both bands have both of their endpoints in the same curve c.
Attaching $b_{\boldsymbol{A}}$ to c produces two curves that cobound a possibly once punctured annulus, one of these curves is c_{A}. We will say that the band is essential if c_{A} is essential in the closed surface P and inessential otherwise. If b_{A} and b_{B} are both essential but $c_{A B}$ is inessential in P, then P is a torus so P_{K} is a torus with at least two punctures.

In this case $c_{A} \cup c_{B}$ doesn't separate the torus so we can consider the curve γ that bounds a disk in P containing at least two punctures of P_{K}.

If b_{A} is essential but b_{B} isn't, then $c_{A B}$ is parallel to c_{A} in P and thus must be essential also so this case cannot occur.

Finally if both b_{A} and b_{B} are inessential in P and P is not a sphere, then let γ be an essential curve in P that is disjoint from $c_{A} \cup c_{B}$. If P is a sphere, it must have at least six punctures. Note that $c \cup b_{A} \cup b_{B}$ separates P into four regions that may contain punctures. As P has at least six punctures, one of these regions contains at least two punctures. Take γ to be a curve that bounds a disk containing two punctures and that is disjoint from $c \cup b_{A} \cup b_{B}$.

Case 2 One band, say b_{A} has endpoint lying in two different curves c_{1} and c_{2} and the other band, b_{B} has both endpoints lying in c_{1}.

If b_{B} is essential in P, then adding both bands simultaneously results in a curve that is parallel to c_{B} in P and therefore is essential contradicting the hypothesis. If b_{B} is inessential in P, then $c_{1} \cup c_{2} \cup b_{A} \cup b_{B}$ separates P into four regions that may contain punctures. As in the previous case we can construct an essential curve γ in P_{K} that is disjoint from c_{A} and c_{B} either by taking a curve essential in P or, if P is a sphere, by taking a curve that lies in one of the four regions and bounds two punctures on one side.

Case 3 The band b_{A} has endpoint lying in two different curves c_{1} and c_{2} and b_{B} has endpoint lying in c_{1} and c_{2}^{\prime}, possibly $c_{2}=c_{2}^{\prime}$.

In this case c_{A} and c_{B} are both inessential in P so if P is not a sphere we can again find a curve γ disjoint from both that is essential in P. If P is a sphere, then $c_{1} \cup c_{2} \cup c_{2}^{\prime} \cup b_{A} \cup b_{B}$ separates P into four regions that may contain punctures and so we can find a curve γ that is essential in P_{K} and disjoint from c_{A} and c_{B} as above.

The curve complex for a 4-times punctured sphere is not connected so a bound on the distance of a minimal bridge surface for a 2 -bridge knot cannot be obtained. However Scharlemann and Tomova have proven the following uniqueness result.

Theorem 10.5 [11, Corollary 4.4] Suppose K is a knot in S^{3}, 2-bridge with respect to the bridge surface $P \cong S^{2}$, and K is not the unknot. Suppose Q is any other bridge surface for K. Then either

- Q is stabilized,
- Q is meridionally stabilized,
- Q is perturbed or
- Q is properly isotopic to P.

Corollary 10.6 Suppose P and Q are two bridge surfaces for a knot K and K is not removable with respect to Q. Then either Q is equivalent to P or $d(P) \leq 2-\chi\left(Q_{K}\right)$.

Proof If K is a two bridge knot with respect to a sphere P, then by Theorem 10.5, Q is equivalent to P. If P is not a four times punctured sphere, the result follows from Theorem 10.3.

Corollary 10.7 If $K \subset M^{3}$ is in bridge position with respect to a Heegaard surface P such that $d(K, P)>2-\chi\left(P_{K}\right)$ then K has a unique minimal bridge position.

Proof Suppose K can also be placed in bridge position with respect to a second Heegaard surface Q such that Q is not equivalent to P. By Theorem 10.3, $d(K, P) \leq$ $2-\chi\left(Q_{K}\right)=2-\chi\left(P_{K}\right)$ contradicting the hypothesis.

Acknowledgments

I would like to thank Martin Scharlemann for many helpful conversations. This research was partially supported by an NSF grant.

References

[1] D Bachman, Thin position with respect to a heegaard surface
[2] D Bachman, S Schleimer, Distance and bridge position, Pacific J. Math. 219 (2005) 221-235 MR2175113
[3] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275-283 MR918537
[4] K Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002) 61-75 MR1905192
[5] J Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001) 631-657 MR1838999
[6] H Rubinstein, M Scharlemann, Comparing Heegaard splittings of non-Haken 3manifolds, Topology 35 (1996) 1005-1026 MR1404921
[7] T Saito, M Scharlemann, J Schultens, Lecture notes on generalized heegaard splittings arXiv:math.GT/0504167
[8] M Scharlemann, Proximity in the curve complex arXiv:math.GT/0410278
[9] M Scharlemann, Local detection of strongly irreducible Heegaard splittings, Topology Appl. 90 (1998) 135-147 MR1648310
[10] M Scharlemann, A Thompson, Thinning genus two Heegaard spines in S^{3}, J. Knot Theory Ramifications 12 (2003) 683-708 MR1999638
[11] M Scharlemann, M Tomova, Uniqueness of bridge surfaces for 2-bridge knots arXiv:math.GT/0609567
[12] M Scharlemann, M Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006) 593-617
[13] M Tomova, Thin position for knots in a 3-manifold arXiv:math.GT/0609674

Mathematics Department, Rice University
6100 S Main Street, Houston TX 77005-1892, USA
mt2@rice.edu

Received: 5 April 2007

