Hochschild homology, Frobenius homomorphism and Mac Lane homology

Teimuraz Pirashvili

Abstract

We prove that $\mathrm{H}_{i}(A, \Phi(A))=0, i>0$. Here A is a commutative algebra over the prime field \mathbb{F}_{p} of characteristic $p>0$ and $\Phi(A)$ is A considered as a bimodule, where the left multiplication is the usual one, while the right multiplication is given via Frobenius endomorphism and H_{\bullet} denotes the Hochschild homology over \mathbb{F}_{p}. This result has implications in Mac Lane homology theory. Among other results, we prove that HML॰ $(A, T)=0$, provided A is an algebra over a field K of characteristic $p>0$ and T is a strict homogeneous polynomial functor of degree d with $1<d<\operatorname{Card}(K)$.

55P43, 16E40; 19D55, 55U10

1 Introduction

In this short note we study Hochschild and Mac Lane homology of commutative algebras over the prime field \mathbb{F}_{p} of characteristic $p>0$. Let us recall that Mac Lane homology is isomorphic to the topological Hochschild homology (Pirashvili-Waldhausen [13]) and to the stable K-theory as well (Franjou et al [4]).

Let A be a commutative algebra over the prime field \mathbb{F}_{p} of characteristic $p>0$ and let $\Phi(A)$ be an $A-A$-bimodule, which is A as a left A-module, while the right multiplication is given via Frobenius endomorphism. We prove that the Hochschild homology vanishes $\mathrm{H}_{i}(A, \Phi(A))=0, i>0$. The proof makes use a simple result on homotopy groups of simplicial rings, which says that if R_{\bullet} is a simplicial ring such that all rings involved in R_{\bullet} satisfy $x^{m}=x, m \geq 2$ identity then $\pi_{i}\left(R_{\bullet}\right)=0$ for all $i>0$. These results has implications in Mac Lane homology theory. We extend the computation of Franjou-Lannes and Schwartz [6] of Mac Lane (co)homology of finite fields with coefficients in symmetric S^{d} and divided Γ^{d} powers to arbitrary commutative \mathbb{F}_{p}-algebras, provided that $d>1$. As a consequence of our computations we show that $\operatorname{HML} \bullet(A, T)=0$, provided T is a strict homogeneous polynomial functor of degree $d>1$ and A is an algebra over a field K of characteristic $p>0$ with $\operatorname{Card}(K)>d$.

Many thanks to referee for his valuable comments and to Petter Andreas Bergh for his remarks. The author was partially supported by the grant from MEC, MTM2006-15338-C02-02 (European FEDER support included).

2 When it is too easy to compute homotopy groups

It is well known that the homotopy groups of a simplicial abelian group $\left(A_{\bullet}, \partial_{\bullet}, s_{\bullet}\right)$ can be computed as the homology of the normalized chain complex $\left(N_{\bullet}\left(A_{\bullet}\right), d\right)$, where

$$
N_{n}\left(A_{\bullet}\right)=\left\{x \in A_{n} \mid \partial_{i}(x)=0, i>0\right\}
$$

and the boundary map $N_{n}\left(A_{\bullet}\right) \rightarrow N_{n-1}\left(A_{\bullet}\right)$ is induced by ∂_{0}. Our first result shows that if A_{\bullet} has a simplicial ring structure and the rings involved in A_{\bullet} satisfy extra conditions then homotopy groups are zero in positive dimensions. This fact is an easy consequence of the following result which is probably well known.

Lemma 1 Let R_{\bullet} be a simplicial object in the category of not necessarily associative rings and let $x, y \in N_{n}\left(R_{\bullet}\right)$ be two elements. Assume $n>0$ and x is a cycle. Then the cycle $x y \in N_{n}\left(R_{\bullet}\right)$ is a boundary.

Proof Consider the element

$$
z=s_{0}(x y)-s_{1}(x) s_{0}(y) .
$$

Then we have

$$
\partial_{0}(z)=x y-\left(s_{0} \partial_{0}(x)\right) y=x y .
$$

Moreover,

$$
\partial_{1}(z)=x y-x y=0 .
$$

We also have

$$
\partial_{2}(z)=\left(s_{0} \partial_{1}(x)\right)\left(s_{0} \partial_{1}(y)\right)-x\left(s_{0} \partial_{1}(y)\right)=0 .
$$

Similarly for all $i>2$ we have

$$
\partial_{i}(z)=\left(s_{0} \partial_{i-1}(x)\right)\left(s_{0} \partial_{i-1}(y)\right)-\left(s_{1} \partial_{i-1}(x)\right)\left(s_{0} \partial_{i-1}(y)\right)=0 .
$$

Hence z is an element of $N_{n+1}\left(R_{\bullet}\right)$ with $\partial(z)=x y$.
Corollary 2 Let R_{\bullet} be a simplicial ring. If the rings involved in R_{\bullet} satisfy $x^{m}=x$ identity for $m \geq 2$, then

$$
\pi_{n}\left(R_{\bullet}\right)=0, \quad n>0 .
$$

Proof Take a cycle $x \in N_{n}\left(R_{\bullet}\right), n>0$. Then the class of $x=x x^{m-1}$ in $\pi_{n}\left(R_{\bullet}\right)$ is zero.

Remark A more general fact is true. Let \mathbf{T} be a pointed algebraic theory (Schwede [15]) and let X_{\bullet} be a simplicial object in the category of \mathbf{T}-models [15]. Then $\pi_{1}\left(X_{\bullet}\right)$ is a group object in the category of \mathbf{T}-models, while $\pi_{i}\left(X_{\bullet}\right)$ are abelian group objects in the category of \mathbf{T}-models for all $i>1$. Thus $\pi_{i}\left(X_{\bullet}\right)=0, i \geq 1$ provided all group objects are trivial. This is what happens for the category of rings satisfying the identity $x^{m}=x, m \geq 2$. Another interesting case is the category of Heyting algebras (Esakia [3]).

3 Hochschild homology with twisted coefficients

In what follows the ground field is the prime field \mathbb{F}_{p} of characteristic $p>0$. All algebras are taken over \mathbb{F}_{p} and they are assumed to be associative. For an algebra R and an $R-R$-bimodule B we let $H_{\bullet}(R, B)$ and $H^{\bullet}(R, B)$ be the Hochschild homology and cohomology of R with coefficients in B. Let us recall that

$$
\mathrm{H}_{\bullet}(R, B)=\operatorname{Tor}_{\bullet}^{R \otimes R^{o p}}(R, B)
$$

and

$$
\mathrm{H}^{\bullet}(R, B)=\mathrm{Ext}_{R \otimes R^{o p}}^{\bullet}(R, B)
$$

Moreover, let $C_{\bullet}(R, B)$ be the standard simplicial vector space computing Hochschild homology

$$
\pi_{\bullet}\left(C_{\bullet}(R, B)\right) \cong H_{\bullet}(R, B)
$$

Recall that $C_{n}(R, B)=B \otimes R^{\otimes n}$, while

$$
\begin{aligned}
\partial_{0}\left(b, r_{1}, \ldots, r_{n}\right) & =\left(b r_{1}, \ldots, r_{n}\right), \\
\partial_{i}\left(b, r_{1}, \ldots, r_{n}\right) & =\left(b, r_{1}, \ldots, r_{i} r_{i+1}, \ldots, r_{n}\right), \quad 0<i<n
\end{aligned}
$$

and

$$
\partial_{n}\left(b, r_{1}, \ldots, r_{n}\right)=\left(r_{n} b, r_{1}, \ldots, r_{n-1}\right)
$$

Here $b \in B$ and $r_{1}, \ldots, r_{n} \in R$.
Let $n \geq 1$ be a natural number and let A be a commutative \mathbb{F}_{p}-algebra. The Frobenius homomorphism gives rise to the functors Φ^{n} from the category of A-modules to the category of $A-A$-bimodules, which are defined as follows. For an A-module M the bimodule $\Phi^{n}(M)$ coincides with M as a left A-module, while the right A-module structure on $\Phi^{n}(M)$ is given by

$$
m a=a^{p^{n}} m, \quad a \in A, \quad m \in M .
$$

Having $A-A$-bimodule $\Phi^{n}(M)$ we can consider the Hochschild homology H. $(A$, $\left.\Phi^{n}(M)\right)$. In this section we study these homologies. In order to state our results we need some notation. We let $\psi^{n}(A)$ be the quotient ring $A /\left(a-a^{p^{n}}\right), n \geq 1$ which is considered as an A-module via the quotient map $A \rightarrow \psi^{n}(A)$. Thus ψ^{n} is the left adjoint of the inclusion of the category of commutative \mathbb{F}_{p}-algebras with identity $x^{m}=x, m=p^{n}$ to the category of all commutative \mathbb{F}_{p}-algebras.

Example 3 Let $n \geq 1$. If K is a finite field with $q=p^{d}$ element then $\psi^{n}(K)=K$ if $n=d t, t \in \mathbb{N}$ and $\psi^{n}(K)=0$ if $n \neq d t, t \in \mathbb{N}$.

Lemma 4 Let A is a commutative algebra over a field K of characteristic $p>0$ with $\operatorname{Card}(K)>p^{n}$. Then $\psi^{n}(A)=0, n \geq 1$.

Proof By assumption there exists $k \in K$ such that $k^{p^{n}}-k$ is an invertible element of K. It follows then that the elements of the form $a^{p^{n}}-a$ generates whole A.

Theorem 5 Let A be a commutative \mathbb{F}_{p}-algebra and $n \geq 1$. Then

$$
\mathrm{H}_{i}\left(A, \Phi^{n}(A)\right)=0
$$

for all $i>0$ and

$$
\mathrm{H}_{0}\left(A, \Phi^{n}(A)\right) \cong \psi^{n}(A)
$$

Proof The proof consists of three steps.
Step 1 The theorem holds if $A=\mathbb{F}_{p}[x]$ In this case we have the following projective resolution of A over $A \otimes A=\mathbb{F}_{p}[x, y]$:

$$
0 \rightarrow \mathbb{F}_{p}[x, y] \xrightarrow{\eta} \mathbb{F}_{p}[x, y] \xrightarrow{\epsilon} \mathbb{F}_{p}[x] \rightarrow 0 .
$$

Here $\epsilon(x)=\epsilon(y)=x$ and η is induced by multiplication by $(x-y)$. Hence for any $A-A$-bimodule B, we have $\mathrm{H}_{i}(A, B)=0$ for $i>1$ and

$$
\mathrm{H}_{0}(A, B) \cong \operatorname{Coker}(u) \text { and } H_{1}(A, B) \cong \operatorname{ker}(u),
$$

where $u: B \rightarrow B$ is given by $u(b)=x b-b x$. If $B=\Phi^{n}\left(\mathbb{F}_{p}[x]\right)$, then $u: \mathbb{F}_{p}[x] \rightarrow$ $\mathbb{F}_{p}[x]$ is the multiplication by $\left(x^{p^{n}}-x\right)$ and we obtain $\mathrm{H}_{1}\left(A, \Phi^{n}(A)\right)=0$ and $\mathrm{H}_{0}\left(A, \Phi^{n}(A)\right)=\psi^{n}(A)$

Step 2 The theorem holds if A is a polynomial algebra Since Hochschild homology commutes with filtered colimits it suffices to consider the case when $A=$ $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{d}\right]$. By the Künneth theorem for Hochschild homology (see Mac Lane
$\left[10\right.$, Theorem X.7.4]) we have $H_{\bullet}\left(A, \Phi^{n}(A)\right)=H_{\bullet}\left(\mathbb{F}[x], \Phi^{n}(\mathbb{F}[x])\right)^{\otimes d}$ and the result follows.

Step 3 The theorem holds for arbitrary A We use the same method as used in the proof by Loday [9, Theorem 3.5.8]. First we choose a simplicial commutative algebra L_{\bullet} such that each L_{n} is a polynomial algebra, $n \geq 0$ and $\pi_{i}\left(L_{\bullet}\right)=0$ for all $i>0$, $\pi_{0}\left(L_{\bullet}\right)=A$. Such a resolution exists thanks to (Quillen [14]). Now consider the bisimplicial vector space $C_{\bullet}\left(L_{\bullet}, \Phi^{n}\left(L_{\bullet}\right)\right)$. The s th horizontal simplicial vector space is the simplicial vector space $L_{\bullet}^{\otimes s+1}$. By the Eilenberg-Zilber-Cartier and Künneth theorems it has zero homotopy groups in positive dimensions and $\pi_{0}\left(L_{\bullet}^{\otimes s+1}\right)=A^{\otimes s+1}$. On the other hand the t th vertical simplicial vector space of $\left.C_{\bullet}\left(L_{\bullet}, \Phi^{n}\left(L_{\bullet}\right)\right)\right)$ is isomorphic to the Hochschild complex $C_{\bullet}\left(L_{t}, \Phi^{n}\left(L_{t}\right)\right)$) which has zero homology in positive dimensions by the previous step. Hence both spectral sequences corresponding to the bisimplicial vector space $C_{\bullet}\left(L_{\bullet}, \Phi^{n}\left(L_{\bullet}\right)\right)$ degenerate and we obtain the isomorphism

$$
\mathrm{H}_{\bullet}\left(A, \Phi^{n}(A)\right) \cong \pi_{\bullet}\left(\psi^{n}\left(L_{\bullet}\right)\right)
$$

Now we can use Corollary 2 to finish the proof.

Corollary 6 Let A be a commutative \mathbb{F}_{p}-algebra, M be an A-module and $n \geq 1$. Then there exist functorial isomorphisms

$$
\mathrm{H}_{\bullet}\left(A, \Phi^{n}(M)\right) \cong \operatorname{Tor}_{\bullet}^{A}\left(\psi^{n}(A), M\right), \quad n \geq 0
$$

and

$$
\mathrm{H}^{\bullet}\left(A, \Phi^{n}(M)\right) \cong \mathrm{Ext}_{A}^{\bullet}\left(\psi^{n}(A), M\right), \quad n \geq 0
$$

In particular, if A is a commutative algebra over a field K of characteristic $p>0$ with $\operatorname{Card}(K)>p^{n}$, then

$$
\mathrm{H}_{\bullet}\left(A, \Phi^{n}(M)\right)=0=\mathrm{H}^{\bullet}\left(A, \Phi^{n}(M)\right) .
$$

Proof Observe that $C_{\bullet}\left(A, \Phi^{n}(A)\right)$ is a complex of left A-modules. By Theorem 5 it is a free resolution of $\psi^{n}(A)$ in the category of A-modules. Hence it suffices to note that

$$
\begin{aligned}
C_{\bullet}\left(A, \Phi^{n}(M)\right) & \cong M \otimes_{A} C_{\bullet}\left(A, \Phi^{n}(A)\right), \\
C^{\bullet}\left(A, \Phi^{n}(M)\right) & \cong \operatorname{hom}_{A}\left(C_{\bullet}\left(A, \Phi^{n}(A)\right), M\right),
\end{aligned}
$$

where C^{*} denotes the standard complex for Hochschild cohomology. The last assertion follows from Lemma 4.

Example 7 It follows for instance that $\mathrm{H}^{i}\left(A, \Phi^{n}(M)\right)=0, i>0$, provided M is an injective A-module and $n \geq 1$. In particular $\mathrm{H}^{i}\left(A, \Phi^{n}(A)\right)=0$ if A is a selfinjective algebra. On the other hand if $A=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{d}\right]$ then $\mathrm{H}^{i}\left(A, \Phi^{n}(A)\right)=0, i \neq d$, $n \geq 1$ and $\mathrm{H}^{d}\left(A, \Phi^{n}(A)\right)=\psi^{n}(A), n \geq 1$.

4 Application to Mac Lane cohomology

We recall the definition of Mac Lane (co)homology. For an associative ring R we let $\mathbf{F}(R)$ be the category of finitely generated free left R-modules. Moreover, we let $\mathfrak{F}(R)$ be the category of all covariant functors from the category $\mathbf{F}(R)$ to the category of all R-modules. The category $\mathfrak{F}(R)$ is an abelian category with enough projective and injective objects. By definition (Jibladze-Pirashvili [8]) the Mac Lane cohomology of R with coefficient in a functor $T \in \mathscr{F}(R)$ is given by

$$
\mathrm{HML}^{\bullet}(R, T):=\operatorname{Ext}_{\hat{\mathcal{F}}(R)}^{\bullet}(I, T),
$$

where $I \in \mathfrak{F}(R)$ is the inclusion of the category $\mathbf{F}(R)$ into the category of all left $R-$ modules. One defines Mac Lane homology in a dual manner (see Pirashvili-Waldhausen [13, Proposition 3.1]). For an R - R-bimodule B, one considers the functor $B \otimes_{R}(-)$ as an object of the category $\mathfrak{F}(R)$. For simplicity we write $\operatorname{HML}_{\bullet}(R, B)$ instead of HML. $\left(R, B \otimes_{R}(-)\right)$. There is a binatural transformation

$$
\operatorname{HML}_{\bullet}(R, B) \rightarrow \mathrm{H}_{\bullet}(R, B)
$$

which is an isomorphism in dimensions 0 and 1.
In the rest of this section we consider Mac Lane (co)homology of commutative \mathbb{F}_{p} algebras.

Lemma 8 For any commutative \mathbb{F}_{p}-algebra A one has an isomorphism

$$
\mathrm{HML}_{2 i}\left(A, \Phi^{n}(A)\right)=\psi^{n}(A), \quad i \geq 0, n \geq 1,
$$

and

$$
\operatorname{HML}_{2 i+1}\left(A, \Phi^{n}(A)\right)=0, \quad i \geq 0, n \geq 1 .
$$

Proof According to (Pirashvili [12, Proposition 4.1]) there exists a functorial spectral sequence

$$
E_{p q}^{2}=\mathrm{H}_{p}\left(A, \mathrm{HML}_{q}\left(\mathbb{F}_{p}, B\right)\right) \Longrightarrow \mathrm{HML}_{p+q}(A, B) .
$$

Here B is an $A-A$-bimodule. By the well-known computation of Breen [2], Bökstedt [1] (see also Franjou-Lannes-Schwartz [6]) we have

$$
\mathrm{HML}_{2 i}\left(\mathbb{F}_{p}, B\right)=B
$$

and

$$
\mathrm{HML}_{2 i+1}\left(\mathbb{F}_{p}, B\right)=0
$$

Now we put $B=\psi^{n}(A)$ and use Theorem 5 to get $E_{p q}^{2}=0$ for all $p>0$. Hence the spectral sequence degenerates and the result follows.

We now consider Mac Lane cohomology with coefficients in strict polynomial functors (Friedlander-Suslin [7]). Let us recall that the strict homogeneous polynomial functors of degree d form an abelian category $\mathfrak{B}_{d}(A)$ and there exist an exact functor $i: \mathfrak{P}_{d}(A) \rightarrow \mathfrak{F}(A)$ (Franjou et al [5]). For an object $T \in \mathfrak{B}_{d}(A)$ we write HML• (A, T) instead of HML• $(A, i(T))$. Projective generators of the category \mathfrak{P}_{d} are tensor products of the divided powers, while the injective cogenerators are symmetric powers. Let us recall that the d th divided power functor $\Gamma^{d} \in \mathfrak{F}(A)$ and d-th symmetric functors S^{n} are defined by

$$
\Gamma^{d}(M)=\left(M^{\otimes d}\right)^{\Sigma_{d}}, \quad S^{n}(M)=\left(M^{\otimes d}\right)_{\Sigma_{d}}
$$

Here tensor products are taken over A, Σ_{d} is the symmetric group on d letters, which acts on the d-th tensor power by permuting of factors, $M \in \mathbf{F}(A)$ and X^{G} (resp. X_{G}) denotes the module of invariants (resp. coinvariants) of a G-module X, where G is a group.

For a functor $T \in \mathfrak{F}(A)$ we let $\tilde{T} \in \mathscr{F}\left(\mathbb{F}_{p}\right)$ be the functor defined by

$$
\widetilde{T}(V)=T(V \otimes A)
$$

According to Pirashvili-Waldhausen [13, Theorem 4.1] the groups $\mathrm{HML}_{i}\left(\mathbb{F}_{p}, \widetilde{T}\right)$ have an $A-A$-bimodule structure. The left action comes from the fact that T has values in the category of left A-modules, while the right action comes from the fact that T is defined on $\mathbf{F}(A)$. In particular it uses the action of T on the maps $l_{a}: X \rightarrow X$, where $a \in A, X \in \mathbf{F}(A)$ and l_{a} is the multiplication on a. Since $T\left(l_{a}\right)=l_{a^{d}}$ if T is a strict homogeneous polynomial functor of degree d Friedlander-Suslin [7], the bimodule $\mathrm{HML}_{i}\left(\mathbb{F}_{p}, \widetilde{T}\right)$ is of the form $\Phi^{n}(M)$ provided $d=p^{n}$.

Theorem 9 Let $d>1$ be an integer and let A be a commutative \mathbb{F}_{p}-algebra. Then $\operatorname{HML}_{\bullet}\left(A, \Gamma^{d}\right)=0$ if d is not a power of p. If $d=p^{n}$ and $n>0$, then

$$
\operatorname{HML}_{i}\left(A, \Gamma^{d}\right)=0 \text { if } i \neq 2 p^{n} t, t \geq 0
$$

and

$$
\operatorname{HML}_{i}\left(A, \Gamma^{d}\right)=\psi^{n}(A) \text { if } i=2 p^{n} t, t \geq 0
$$

In particular $\mathrm{HML}_{\bullet}\left(A, \Gamma^{d}\right)=0$ provided A is an algebra over a field K of characteristic $p>0$ with $\operatorname{Card}(K)>d$.

Proof According to Pirashvili-Waldhausen [13, Theorem 4.1] and Pirashvili [12] there exists a functorial spectral sequence:

$$
E_{p q}^{2}=\mathrm{H}_{p}\left(A, \mathrm{HML}_{q}\left(\mathbb{F}_{p}, \tilde{T}\right)\right) \Longrightarrow \mathrm{HML}_{p+q}(A, T)
$$

For $T=\Gamma_{A}^{n}$ one has $\tilde{T}=\Gamma_{\mathbb{F}_{p}}^{n} \otimes A$. Here we used the notation Γ_{A}^{n} in order to emphasize the dependence on the ring A. By the result of Franjou, Lannes and Schwartz [6], $\operatorname{HML}_{i}\left(\mathbb{F}_{p}, \widetilde{T}\right)$ vanishes unless $d=p^{n}$ and $i=2 p^{n} t, t \geq 0$. Moreover in these exceptional cases $\mathrm{HML}_{i}\left(\mathbb{F}_{p}, \widetilde{T}\right)$ equals to $\Phi^{n}(A)$ (as an $A-A$-module). Hence the spectral sequence together with Theorem 5 gives the result.

Corollary 10 Let A be a commutative algebra over a field K of characteristic $p>0$ with $\operatorname{Card}(K)>d>1$. If T is a strong homogeneous polynomial functor of degree d. Then

$$
\operatorname{HML}_{\bullet}(A, T)=0=\mathrm{HML}^{\bullet}(A, T)
$$

Proof We already proved that the result is true if T is a divided power. By the well-known vanishing result (Pirashvili [11]) the result is also true if $T=T_{1} \otimes T_{2}$ with $T_{1}(0)=0=T_{2}(0)$. Since any object of \mathfrak{R}_{d} has a finite resolution which consists with finite direct sums of tensor products of divided powers [7] the result follows.

References

[1] M Bökstedt, The topological Hochschild homology of \mathbb{Z} and \mathbb{Z} / p unpublished manuscript
[2] L Breen, Extensions du groupe additif, Inst. Hautes Études Sci. Publ. Math. 48 (1978) 39-125 MR516914
[3] L L Èsakia, Heyting algebras I: Duality theory (Russian), Metsniereba, Tbilisi (1985) MR847050
[4] V Franjou, E M Friedlander, T Pirashvili, L Schwartz, Rational representations, the Steenrod algebra and functor homology, Panoramas et Synthèses 16, Société Mathématique de France, Paris (2003) MR2117525
[5] V Franjou, E M Friedlander, A Scorichenko, A Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999) 663-728 MR1726705
[6] V Franjou, J Lannes, L Schwartz, Autour de la cohomologie de Mac Lane des corps finis, Invent. Math. 115 (1994) 513-538 MR1262942
[7] E M Friedlander, A Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997) 209-270 MR1427618
[8] M Jibladze, T Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991) 253-296 MR1094244
[9] J-L Loday, Cyclic homology, second edition, Grundlehren der Mathematischen Wissenschaften 301, Springer, Berlin (1998) MR1600246
[10] S Mac Lane, Homology, Grundlehren der Mathematischen Wissenschaften 114, Springer, Berlin (1963) MR0156879
[11] T I Pirashvili, Higher additivizations, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988) 44-54 MR1029006
[12] T Pirashvili, Spectral sequence for Mac Lane homology, J. Algebra 170 (1994) 422428 MR1302848
[13] T Pirashvili, F Waldhausen, Mac Lane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992) 81-98 MR1181095
[14] D Quillen, On the (co-) homology of commutative rings, from: "Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968)", Amer. Math. Soc., Providence, R.I. (1970) 65-87 MR0257068
[15] S Schwede, Stable homotopy of algebraic theories, Topology 40 (2001) 1-41 MR1791267

Department of Mathematics, University of Leicester Leicester, LE1 7RH, UK
tp59@le.ac.uk

Received: 14 March 2007

