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Saddle tangencies and the distance of Heegaard splittings

TAO LI

We give another proof of a theorem of Scharlemann and Tomova and of a theorem
of Hartshorn. The two theorems together say the following. Let M be a compact
orientable irreducible 3–manifold and P a Heegaard surface of M . Suppose Q is
either an incompressible surface or a strongly irreducible Heegaard surface in M .
Then either the Hempel distance d.P / � 2genus.Q/ or P is isotopic to Q . This
theorem can be naturally extended to bicompressible but weakly incompressible
surfaces.

57N10; 57M50

1 Introduction

Let P be a closed orientable surface of genus at least 2. The curve complex of P ,
introduced by Harvey [6], is the complex whose vertices are the isotopy classes of
essential simple closed curves in P , and kC 1 vertices determine a k –simplex if they
are represented by pairwise disjoint curves. We denote the curve complex of P by
C.P /. For any two vertices in C.P /, the distance d.x;y/ is the minimal number of
1–simplices in a simplicial path jointing x to y . To simplify notation, unless necessary,
we do not distinguish a vertex in C.P / from a simple closed curve in P representing
this vertex.

Let M be a compact orientable irreducible 3–manifold and P an embedded connected
separating surface in M with genus.P /� 2. Let U and V be the closure of the two
components of M �P . We may view @U D @V D P . As in Scharlemann–Tomova
[14], we say P is bicompressible if P is compressible in both U and V . Let U and
V be the set of vertices in C.P / represented by curves bounding compressing disks in
U and V respectively. The distance d.P / is defined to be the distance between U and
V in the curve complex C.P /. If P is a Heegaard surface, then d.P / is the distance
defined by Hempel [7]. We say P is strongly irreducible or following the definition
in [14], say P is weakly incompressible if d.P /� 2, ie every compressing disk in U

intersects every compressing disk in V .

Let Q be another closed orientable surface embedded in M . Let g.Q/ be the genus
of Q. A theorem of Hartshorn [5] says that if Q is incompressible and P is a strongly
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irreducible Heegaard surface, then d.P /� 2g.Q/. In [14], Scharlemann and Tomova
showed that if both P and Q are connected, separating, bicompressible and strongly
irreducible, then either d.P / � 2g.Q/ or P and Q are well-separated or P and Q

are isotopic. In particular, if both P and Q are strongly irreducible Heegaard surfaces,
either P and Q are isotopic or d.P /� 2g.Q/.

Combining Hartshorn’s theorem and the theorem of Scharlemann and Tomova, we
have the following Theorem.

Theorem 1.1 Suppose M is a compact orientable irreducible 3–manifold and P is a
separating bicompressible and strongly irreducible (or weakly incompressible) surface
in M . Let Q be an embedded closed orientable surface in M and suppose Q is either
incompressible or separating, bicompressible but strongly irreducible. Then either

(1) d.P /� 2g.Q/, or

(2) after isotopy, Pt \QD∅ for all t , where Pt (t 2 Œ0; 1�) is a level surface in a
sweep-out for P , see Section 2 for definition, or

(3) P and Q are isotopic.

Remark The statement of Theorem 1.1 is basically the same as the main theorem of
[14]. If Q is separating, bicompressible but strongly irreducible and Pt \QD∅ for
all t 2 Œ0; 1�, then it is easy to see that P and Q are well-separated. Note that part (3)
of the theorem never happens if Q is incompressible.

In this paper, we give another proof of Theorem 1.1. Some arguments were originally
used in a different proof of the main theorem by the author [9]. The motivation for this
paper is a conjecture in [9] which generalizes both the main theorem of [9] and the
theorem of Scharlemann and Tomova. We hope this proof and the techniques in [9;
10] can lead to a solution of this conjecture. Some arguments in the proof are similar
to those in [1; 14].

I would like to thank Marty Scharlemann for pointing out a mistake in an earlier version
of the paper. The research was partially supported by NSF grant DMS-0406038.

2 Saddle tangencies

Notation Throughout this paper, we denote the interior of X by int.X / for any space
X .
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Let P be a bicompressible surface and let U and V be the closure of the two
components of M � P as above. Let PU and PV be the possibly disconnected
surfaces obtained by maximally compressing P in U and V respectively. Since M is
irreducible, after capping off 2–sphere components by 3–balls, we may assume PU and
PV do not contain 2–sphere components. Moreover, we may also assume PU � int.U /
and PV � int.V /. Since P is strongly irreducible, as in Casson–Gordon [3], PU and
PV are incompressible in M . Furthermore, PU [PV bounds a submanifold MP

of M and P is a strongly irreducible Heegaard surface of MP . Note that if U is
a handlebody, then PU D ∅. If P is a Heegaard surface of M , then we may view
MP DM .

The surface P cuts MP into a pair of compression bodies U \MP and V \MP .
There are a pair of properly embedded graphs GU � U \MP and GV � V \MP

which are the spines of the two compression bodies. The endpoints of the graphs GU

and GV lie in PU and PV respectively. Let †U D PU [GU and †V D PV [GV ,
then MP � .†U [†V / is homeomorphic to P � .0; 1/. Throughout this paper, †U

and †V are fixed.

We consider a sweepout H W P�.I; @I/! .MP ; †U [†V /, see [11], where I D Œ0; 1�

and H jP�.0;1/ is an embedding. We denote H.P � fxg/ by Px for any x 2 I . We
may assume P0D†U , P1D†V and each Px (i ¤ 0; 1) is isotopic to P . To simplify
notation, we will not distinguish H.P � .0; 1// from P � .0; 1/.

Let � W P � I ! P be the projection. To simplify notation, we do not distinguish
between an essential simple closed curve  in Px and the vertex represented by �. /
in the curve complex C.P /.

Definition 2.1 Let Q be a properly embedded compact surface in M . We say Q is
in regular position with respect to P � I if

(1) Q\GU and Q\GV consist of finitely many points and Q is transverse to
PU [PV and

(2) Q is transverse to each Px , x 2 .0; 1/, except for finitely many critical levels
t1; : : : ; tn 2 .0; 1/ and

(3) at each critical level ti , Q is transverse to Pti
except for a single saddle or

center tangency.

If x 2 .0; 1/ is not one of the ti ’s, then we say x or Px is a regular level. Clearly
every embedded surface Q can be isotoped into a regular position.

Definition 2.2 We say Q is irreducible with respect to P � I if
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circle (or volcano) tangency
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Figure 2.1

(1) Q is in regular position with respect to P � I and

(2) at each regular level Px , if a component  of Q\Px is trivial in Px , then 
is also trivial in Q.

In this section, we assume Q is irreducible with respect to the sweepout P � I . We
first perform some isotopy on Q to eliminate center tangencies and trivial intersection
curves. Lemma 2.1 can be viewed as a special case of a theorem of Thurston [15] and
[4, Theorem 7.1].

Lemma 2.1 Let Q be an embedded surface in M and suppose Q is irreducible with
respect to the sweepout P � I . Then, one can perform an isotopy on Q so that

(1) Q\ .GU [GV / consists of finitely many points, Q is transverse to PU [PV ,
and Q\ .PU [PV / consists of curves essential in Q;

(2) Q is transverse to each Px , x 2 .0; 1/, except for finitely many critical levels
t1; : : : ; tn 2 .0; 1/;

(3) at each critical level ti , Q is transverse to Pti
except for a saddle or circle

tangency, as shown in Figure 2.1(a);

(4) at each regular level x , every component of Q\Px is an essential curve in Px .

Proof Since PU [PV is incompressible in M and M is irreducible, after some
standard isotopy we may assume condition (1) in the lemma holds.

Note that the intersection of Q with P � I yields a (singular) foliation of Q\MP

with each leaf a component of Q\Px for some x 2 I . A singular point in the foliation
is either a point in Q\ .GU [GV / or a saddle or center tangency.

Let x be a regular level and suppose a component  of Q \ Px is trivial in Px .
Suppose  is innermost in Px , ie the disk bounded by  in Px does not contain
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any other intersection curve with Q. Since Q is irreducible with respect to P � I ,
 bounds a disk D in Q. If the induced foliation on D contains more than one
singular point, since  is trivial in Px , we can construct a disk D0�P �.x��;xC�/

for some small � such that

(1) @D0 D  ,

(2) the induced foliation of D0 \ .P � I/ consists of parallel circles except for a
singular point corresponding to a center tangency,

(3) .Q�D /[D0 is embedded in M and irreducible with respect to P � I .

Since M is irreducible, .Q �D / [D0 is isotopic to Q. Moreover, the induced
foliation on .Q�D /[D0 has fewer singular points. So after finitely many such
operations, we may assume that for any regular level x and for any component  of
Q\Px that is trivial in Px , the disk bounded by  in Q lies in MP and is transverse
to P � .0; 1/ except for a single center tangency.

Let t be a critical level and suppose Q\Pt contains a saddle tangency. Let � be a
sufficiently small number. So the component of Q\ .P � Œt � �; t C ��/ that contains
the saddle tangent point is a pair of pants F . Figure 2.1(b) is a picture of the curves
changing from F \Pt�� to F \PtC� .

We first claim that at most one component of @F is trivial in the corresponding level
surface Pt˙� . Let 1 , 2 and 3 be the 3 components of @F and suppose 1 and 2

are both trivial in the corresponding level surfaces. Then by the change of F \Px

near the saddle tangency as shown in Figure 2.1(b), 3 must also be trivial in the
corresponding level surface Pt˙� . Since Q is irreducible with respect to P � I , 1

and 2 bound disks D1 and D2 in Q respectively. By the assumption above, the disk
Di does not contain any saddle tangency and hence F \Di D i , i D 1; 2. Thus
F[D1[D2 is a disk in Q bounded by 3 and F[D1[D2 contains a saddle tangent
point. This contradicts the assumption above. Thus at most one component of @F is
trivial in Pt˙� .

Let F and i be as above. Suppose 1 and 2 lie in Pt�� and 3 lies in PtC� . If 1

is trivial in Pt�� and let D1 be the disk in Q bounded by 1 , then F \D1 D 1 as
above and F [D1 is an annulus in Q bounded by 2[ 3 . Since D1 is isotopic to
a disk in Pt�� , we can first push D1 into P � Œt � �; t C ��, then as shown in Figure
2.2(a), we may perform another isotopy on Q canceling the center tangency in D1

and the saddle tangency in F . If 3 is trivial in PtC� , by the assumption above, both
1 and 2 are essential in Pt�� . Hence 1 and 2 must be parallel in Pt�� . Let D3

be the disk in Q bounded by 3 . As above, F \D3 D 3 and F [D3 is an annulus
in Q bounded by 1[ 2 . Since D3 is isotopic to the disk in PtC� bounded by 3 ,
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(b)

Figure 2.2

we can first push the annulus F [D3 into a @–parallel annulus in P � Œt � �; t C ��.
Then an isotopy as shown in Figure 2.2(b) can cancel the center tangency in D3 and
the saddle tangency in F , changing F [D3 into an annulus with a circle (or volcano)
tangency. Note that the circle tangency is an essential curve in the corresponding level
surface Px .

Note that condition (1) of the lemma implies that for a small � , Q\P� and Q\P1��

consist of essential curves in P� and P1�� respectively. Since Q is not a 2–sphere, a
curve of Q\Px that is trivial in Px will eventually meet and cancel with a saddle
tangency. Thus after a finite number of isotopies as above, we can eliminate all the
curves of Q\Px that are trivial in Px , and get a surface Q satisfying all the conditions
in the lemma.

Note that a circle tangency does not create any singularity in the foliation of Q\MP

induced from P � I . Thus, if Q satisfies the conditions in Lemma 2.1, a singular
point in the foliation of Q\MP corresponds to either a saddle tangency or a point in
Q\ .GU [GV /. It is possible that Q does not intersect MP DP �I , ie Pt �QD∅
for all t , after isotopy.

Lemma 2.2 Let P and Q be as above and assume Q satisfies the conditions in
Lemma 2.1. Suppose Q\†U ¤ ∅ and Q\†V ¤ ∅. Then the distance d.P / D

d.U ;V/� 2g.Q/.

Proof Since Q is connected and P is separating, Q\†U ¤ ∅ and Q\†V ¤ ∅
imply Q\Pt ¤∅ for every t .
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Claim 1 Let t be a critical level and � a sufficiently small number. Let � and w be
any components of Q\Pt�� and Q\PtC� respectively. Then d.�; w/� 1.

Proof of Claim 1 The claim is obvious if Pt contains a circle tangency. So we suppose
Pt contains a saddle tangency. Let F be the component of Q\ .P � Œt � �; t C ��/

that contains the saddle tangency. Then F is a pair of pants and all other components
of Q\ .P � Œt � �; t C ��/ are essential vertical annuli in P � Œt � �; t C ��. If � is a
boundary curve of a vertical annulus, then � is isotopic to a component of Q\PtC�

and hence d.�; w/� 1 for any curve w in Q\PtC� . If neither � nor w is a boundary
curve of a vertical annulus, then � and w are components of @F and d.�; w/D 1 as
shown in Figure 2.1(b).

Let s0 < � � � < sn be a collection of regular levels such that s0 D ı , sn D 1� ı for a
small ı and there is exactly one saddle or circle tangency in each P � .si ; siC1/. Let
�i DQ\Psi

for each i .

Recall that P0D†U DPU [GU and P1D†V DPV [GV . Since s0D ı for a small
ı , we may assume d.U ; �0/ is either 0 or 1, and if d.U ; �0/D 1 then d.U ; �/D 1

for any component � of �0 . Similarly, d.V; �n/ is either 0 or 1, and if d.V; �n/D 1

then d.V; w/D 1 for any component w of �n .

Suppose d.U ;V/ > 2g.Q/ and hence d.U ;V/ > 2. Let k be the smallest integer such
that d.U ; �k/¤ 0 and l the largest integer such that d.�l ;V/¤ 0. Since d.U ; �0/� 1

and d.V; �n/ � 1, by Claim 1 above, d.U ; �k/D d.�l ;V/D 1 and k � l . Without
loss of generality, we assume k < l . Next we show that every curve in �k is essential
in Q. Suppose a curve  in �k is trivial in Q and let D be the disk bounded by  in
Q. Since PU and PV are incompressible, we may assume D �MP . Since P is a
strongly irreducible Heegaard surface of MP , by the no-nesting lemma of Scharlemann
[12, Lemma 2.2],  must bound a disk in one of the two compression bodies, ie either
 2 U or  2 V . However,  2 U contradicts d.U ; �k/¤ 0, and  2 V contradicts
d.U ;V/ > 2. Thus every curve in �k must be essential in Q. Similarly every curve in
�l is also essential in Q.

Let Q0 D Q \ .P � Œsk ; sl �/, and let U 0 and V 0 be the two components of M �

P � .sk ; sl/ containing GU and GV respectively, FU DQ\U 0 and FV DQ\V 0 .
Since �k and �l are essential in Q, FU , Q0 and FV are essential subsurfaces of
QD FU [Q0[FV .

Claim 2 Let �k be any component of �k , then d.�k ;U/� 1.
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Proof of Claim 2 By the definition of k and the argument above, Claim 2 holds if
k D 0. If k > 0, then d.U ; �k�1/ D 0 and d.U ; �k/ D 1. Let w be a component
of �k�1 that represents a vertex in U . By Claim 1, for any component �k of �k ,
d.�k ;U/� d.�k ; w/� 1.

Claim 3 There is a component �k of �k and a component �l of �l such that
d.�k ; �l/� ��.Q

0/.

Proof of Claim 3 Let t1 < � � � < tN be the levels in .sk ; sl/ that contain the saddle
tangencies. For a sufficiently small � , P � ŒtiC�; tiC1��� contains no saddle tangency
for each i (to simplify notation we set t0 C � D sk and tNC1 � � D sl ). So by
the conditions in Lemma 2.1, Q \ .P � Œti C �; tiC1 � ��/ consists of annuli for
each i D 0; : : : ;N . If Q\ .P � Œti C �; tiC1� ��/ consists of @–parallel annuli, then
Q\Pt D∅ for some t after isotopy, a contradiction to our assumption at the beginning.
Thus an annulus component Ai of Q\ .P � Œti C �; tiC1� ��/ is vertical. We choose
i to be a meridian circle in Ai for each i and assume �k D 0DA0\Psk

� �k and
�l D N DAN \Psl

� �l . Since each Ai is vertical, i is parallel to a component of
Q\PtiC1�� . Similarly iC1 is parallel to a component of Q\PtiC1C� . By Claim
1, d.i ; iC1/ � 1 and hence d.�k ; �l/D d.0; N / �N . Moreover, since the only
singular points in the induced foliation of Q0 are the saddle tangencies, by a standard
index argument, ��.Q0/DN and hence d.�k ; �l/� ��.Q

0/.

Since Q0 , FU and FV are essential subsurfaces of Q, �.Q0/ � �.Q/. By Claim 2,
d.�k ;U/�1 and similarly d.�l ;V/�1. Therefore, d.U ;V/�d.U ; �k/Cd.�k ; �l/C

d.�l ;V/� 1��.Q0/C 1� 2��.Q/D 2g.Q/.

Lemma 2.2 implies that if d.U ;V/ is large, then not every Q can be put into a position
satisfying all the hypotheses of Lemma 2.2.

Corollary 2.1 Let P and Q be as in Theorem 1.1. Then Theorem 1.1 holds if Q is
incompressible.

Proof If Q is incompressible, then Q can be isotoped to be irreducible with respect to
P �I . Moreover, if Q\†U D∅, then since Q is incompressible, Q can be isotoped
out of the compression body MP �N.†U /. Hence Q\MP D∅ after isotopy and
part (2) of Theorem 1.1 holds. Now Corollary 2.1 follows from Lemma 2.1 and Lemma
2.2.
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3 The graphics of sweepouts

In this section, we suppose Q is separating, bicompressible and strongly irreducible.

Let X and Y be the closure of the 2 components of M �Q. Let QX and QY

be the possibly disconnected surfaces obtained by maximal compressing Q in X

and Y respectively and capping off 2–sphere components by 3–balls. Similar to the
argument on PU and PV above, we may assume QX � int.X / and QY � int.Y /
are incompressible in M . Furthermore, QX [QY bounds a submanifold MQ of M

and Q is a strongly irreducible Heegaard surface of MQ . If X is a handlebody, then
QX D∅. If Q is a Heegaard surface of M , we may view MQ DM .

As in Section 2, the surface Q cuts MQ into a pair of compression bodies X \MQ

and Y \MQ . Let graphs GX � X \MQ and GY � Y \MQ be the spines of
the two compression bodies and let †X D QX [GX and †Y D QY [GY . Then
MQ� .†X [†Y / is homeomorphic to Q� .0; 1/.

Now we consider the two sweepouts H W P �.I; @I/! .MP ; †U [†V / and H 0W Q�

.I; @I/! .MQ; †X [†Y /. Let Pt DH.P �ftg/ and Qt DH 0.Q�ftg/, t 2 I . We
may assume Q0 D†X , Q1 D†Y and Qx is isotopic to Q for each x 2 .0; 1/.

The graphic ƒ of the sweepouts, defined in [11], is the set of points .s; t/2 .0; 1/�.0; 1/
such that Ps is not transverse to Qt . We briefly describe the graphic below and refer to
[11] for more details. As in [11], Cerf theory implies that after some isotopy, we may
assume that ƒ is a graph in .0; 1/� .0; 1/ whose edges are the set of points .s; t/ for
which Ps is transverse to Qt except for a single saddle or center tangency. There are
two types of vertices in ƒ, birth-and-death vertices and crossing vertices, as shown in
Figure 3.1(a). Moreover, each arc .0; 1/�fxg contains at most one vertex, x 2 .0; 1/.
The complement of ƒ, .0; 1/� .0; 1/�ƒ, is a finite collection of regions. Note that
for every .s; t/ in .0; 1/� .0; 1/�ƒ, Ps is transverse to Qt , and for any two points
.s; t/ and .s0; t 0/ in the same region, Ps\Qt and Ps0\Qt 0 have the same intersection
pattern.

Let .s; t/ 2 .0; 1/ � .0; 1/ � ƒ. Suppose there are disks or annuli DP � Ps and
DQ �Qt with DP \DQ D @DP D @DQ �Ps \Qt . Suppose DP is parallel to DQ

(fixing @DP D @DQ ) in M and suppose DP [DQ bounds a 3–ball or solid torus E .
Moreover, suppose Qt \EDDQ . Then we can perform an isotopy on Qt by pushing
DQ across E and remove the intersection @DP D @DQ . This isotopy is the same as
the operation that changes Qt to .Qt �DQ/[DP and then perturbs the resulting
surface. We call such an isotopy a trivial isotopy on Qt at Ps . We may view a trivial
isotopy on Qt as associated with the disk or annulus DQ �Qt . Suppose we are to
perform another trivial isotopy on Qt at Ps0 and let D0

Q
�Qt be the disk or annulus
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Figure 3.1

in the isotopy as above. Then DQ and D0
Q

are either disjoint or nested in Qt . Thus
either the two trivial isotopies are disjoint or we can view one isotopy as a middle step
of the other.

Labelling For any Qt , we use Xt (resp. Yt ) to denote the component of M �Qt

that contains †X (resp. †Y ). We label a region, ie a component of .0; 1/� .0; 1/�ƒ,
X (resp. Y ) if for a point .s; t/ in the region, either (1) there is a component of
Ps \Qt that is trivial in Ps but bounds an essential disk in Xt (resp. Yt ), or (2)
†U or †V lies in Yt (resp. Xt ) after some trivial isotopies on Qt at finitely many
regular levels Px . We label t 2 .0; 1/ X (resp. Y ) if the horizontal line segment
.0; 1/�ftg intersects a region labelled X (resp. Y ). Note that since a trivial isotopy
does not increase j†U \Qt j orj†V \Qt j, if t is not labelled, Qt \†U ¤ ∅ and
Qt \†V ¤∅ after any trivial isotopies.

Lemma 3.1 Either Theorem 1.1 holds or for a sufficiently small ı > 0, ı is labelled
X and 1� ı is labelled Y .

Proof For a sufficiently small ı > 0, H 0.Q � Œ0; ı�/ is a small neighborhood of
†X DQX [GX . If Ps \GX ¤ ∅ for some s , then by definition, ı is labelled X

for a sufficiently small ı . Suppose ı is not labelled X , then the graph GX must
be disjoint from MP D H.P � I/. Moreover, if QX \ Pt D ∅ for some t after
isotopy, since QX is incompressible, we can isotope QX out of the two compression
bodies MP �Pt . Hence, Qı \MP D ∅ after isotopy and part (2) of Theorem 1.1
holds. If QX \ Pt ¤ ∅ for all t , since QX is incompressible, by Corollary 2.1,
d.P /� 2g.QX /� 2g.Q/ and Theorem 1.1 follows. The proof for 1�ı is similar.

Lemma 3.2 Either Theorem 1.1 holds or no t 2 .0; 1/ is labelled both X and Y .

Proof We first remark that if †U � Yt then one cannot move †U to Xt by a trivial
isotopy, since if this happens, then †U must lie in E , where E is the 3–ball or solid
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torus in the trivial isotopy described above. However, since g.P /� 2 and P is strongly
irreducible, †U cannot lie in a 3–ball or solid torus by [3]. So by our labelling, if t is
labelled both X and Y , then one can always find s1 ¤ s2 such that Ps1

and Ps2
are

transverse to Qt and one of the following three cases occurs.

Case 1 A component of Ps1
\Qt contains a curve bounding an essential disk DX

in Xt and a component of Ps2
\Qt contains a curve bounding an essential disk DY

in Yt . In this case, since s1 ¤ s2 , @DX \ @DY D ∅ in Qt , which contradicts the
assumption that Q is strongly irreducible.

Case 2 After trivial isotopies, †U � Yt and †V � Xt . This means that Qt �

P � .0; 1/ � MP and Qt separates †U and †V in MP . The proof for this case
is similar to that of [14, Lemma 2.3]. If Qt is incompressible in P � .0; 1/, then
Qt is isotopic to P and Theorem 1.1 holds. If Qt is compressible on both sides
in P � .0; 1/, similar to the construction of MQ earlier, by maximally compressing
Qt in P � .0; 1/ on both sides and capping off 2–sphere components, we obtain a
submanifold M 0

Q
of P �.0; 1/ such that Qt is a strongly irreducible Heegaard surface

of M 0
Q

. Moreover, by [3], @M 0
Q

is incompressible in P � .0; 1/. So each component
of @M 0

Q
is parallel to P and M 0

Q
must be a product of P and an interval. Thus we

can view Qt as a strongly irreducible Heegaard surface of a product P � Œ0; 1�. By
Scharlemann–Thompson [13], either Qt is isotopic to P or Qt cuts P � Œ0; 1� into
a handlebody and a compression body. In the later case, both †U and †V lie in Yt

(or both in Xt ), a contradiction. If Qt is compressible on only one side, say the Xt

side. Then after maximally compressing Qt in P � .0; 1/ on the Xt side, one obtains
an incompressible surface Q0 in P � .0; 1/ (note that Q0 ¤ ∅ as †V � Xt ). Thus
Q0 is incompressible in P � .0; 1/ and must be parallel to P . Moreover, since Qt is
connected and separating, Q0 is a single parallel copy of P . So Qt and Q0 bound
a compression body W in P � .0; 1/, and Qt is bicompressible in the submanifold
Yt [W of M . Since Qt is strongly irreducible, Casson-Gordon [3] implies that Q0

is incompressible in Yt [W . However, since Q0 is parallel to P , this contradicts the
assumption that P is compressible on both sides.

Case 3 After trivial isotopies, †U � Yt and a component of Ps1
\Qt contains a

curve  that is trivial in Ps1
and bounds an essential disk D in Yt . Note that if a

component of Ps1
\Qt also bounds an essential disk in Xt , then this contradicts that

Q is strongly irreducible as in case (1). Thus, after some isotopy on Qt , we may
assume that  is innermost in Ps1

and the disk D bounded by  in Ps1
is an essential

disk in Yt . Since †U � Yt and D � Yt �†U , by maximally compressing Qt in
Yt �†U and capping off 2–sphere components, we obtained a (possibly disconnected)
surface QY

t . Note that QY
t ¤∅ because †U is not contained in a 3–ball. Since Qt
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is strongly irreducible, by [3], QY
t is incompressible in M �†U . Note that if P

is a Heegaard surface of a closed manifold M , this is already a contradiction since
QY

t lies in the handlebody M �N.†U / and cannot be incompressible. QY
t cuts

Yt into H1 and H2 , where H2 is the compression body bounded by Qt and QY
t .

Since the compressions on Qt are disjoint from †U and since †U does not lie in a
3–ball, †U \H2 D∅. Hence †U �H1 . Since QY

t is incompressible in M �†U ,
we can push QY

t out of the compression body MP �N.†U / or equivalently push
MP �N.†U / into H1 . So we can isotope MP into H1 . In particular, Qt \MP D∅
after isotopy and part (2) of Theorem 1.1 holds.

Lemma 3.3 If t 2 .0; 1/ has no label and .0; 1/� ftg contains no vertex of ƒ, then
Qt is irreducible with respect to P � I and Theorem 1.1 holds.

Proof Since .0; 1/ � ftg contains no vertex of ƒ, Qt is in regular position with
respect to P � I . For any .s; t/ …ƒ, suppose a curve  in Ps \Qt is trivial in Ps . If
 is an essential curve in Qt , by assuming  to be an innermost such curve, the disk
bounded by  in Ps can be isotoped to be an essential disk in either Xt or Yt . Since
t 2 .0; 1/ has no label,  must be trivial in Qt . Thus by definition, Qt is irreducible
with respect to P � I . So after isotopy we may assume Q satisfies the conditions in
Lemma 2.1. Moreover, since t has no label, Qt \†U ¤∅ and Qt \†V ¤∅ after
the isotopy in the proof of Lemma 2.1. So Theorem 1.1 follows from Lemma 2.2.

Suppose Theorem 1.1 is not true. Then by Lemma 3.1, for a small ı , ı is labelled X

and 1� ı is labelled Y . As t changes from ı to 1� ı , the label changes from X to
Y . So by Lemma 3.2 and Lemma 3.3, there must be a number b 2 .0; 1/ such that

(1) .0; 1/� fbg contains a vertex of ƒ and

(2) b has no label and

(3) b� � is labelled X and bC � is labelled Y for sufficiently small � > 0.

Let Z D .a; b/ be the vertex of ƒ in .0; 1/� fbg. If Z is a birth-and-death vertex,
then since no region that intersects .0; 1/� fbg is labelled, as shown in Figure 3.1(b)
and (c), after perturbing .0; 1/�fbg a little, we can find a line segment .0; 1/�fb˙�g
that does not intersect any labelled region, a contradiction to our assumption above.
Therefore, Z D .a; b/ must be a crossing vertex. Figure 3.1(d) is a picture of Z .

Since Z D .a; b/ is a crossing vertex, as explained in [11] (see Kobayashi–Saeki [8,
Figure 2.6]), Pa is transverse to Qb except for two saddle tangencies. Since b is
not labelled, for any s ¤ a in .0; 1/, either (1) Ps \Qb contains a single center or
saddle tangency or (2) Ps is transverse to Qb and if a component of Ps\Qb is trivial
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in Ps then it is also trivial in Qb . Moreover, after trivial isotopies, Qb \†U ¤ ∅
and Qb \†V ¤ ∅. Since P is separating and Q is connected, this implies that
Qb \Ps ¤∅ for all s 2 I .

Now we consider Qb \ .P � Œa� �; aC ��/ for a small � . Let F be the union of the
components of Qb\.P� Œa��; aC��/ that contain the two saddle tangencies. Thus F

is either the union of two disjoint pairs of pants or a connected surface with �.F /D�2.
All other components of Qb\.P � Œa��; aC��/, denoted by A1; : : : ;Am , are vertical
annuli in P � Œa� �; aC ��.

Next we consider the case that a component of Qb \Pa˙� is trivial in Pa˙� . If a
component  of @Ai , i D 1; : : : ;m, is trivial and innermost in Pa˙� , then by our
assumption,  bounds a disk D in Qb . We can perform a trivial isotopy on Qb by
pushing the disk D [Ai away from P � Œa� �; aC ��. Thus, after a finite number
of such operations, we may assume the boundary of every annular component Ai is
essential in Pa˙� .

Suppose a component  of @F is an innermost trivial curve in Pa˙� . So  bounds a
disk D in Qb . If D contains a component of F , then as in the proof of Lemma
2.1, after replacing D by a disk which is transverse to every Px except for a single
center tangency, we get a surface isotopic to Qb and has at most one saddle tangency
in P � Œa��; aC��. This means that after the isotopy, Qb is irreducible with respect to
P � I and Theorem 1.1 follows from Lemma 2.2 and Lemma 3.3. So we may assume
that D \F D  for any component  of @F that is trivial in Pa˙� .

Let yF be the union of F and all the disks D in Qb bounded by @F as above. We
may push all such disks D into P � .a � �; aC �/ and isotope yF into a surface
properly embedded in P � Œa� �; aC ��. By the construction, @ yF is essential in Pa˙� .
So yF has no disk component. If yF consists of annuli, then since @ yF is essential in
Pa˙� , each annulus is either vertical or @–parallel in P � Œa� �; aC ��. Thus, after
some isotopy, Qb becomes irreducible with respect to P �I and Theorem 1.1 follows
from Lemma 2.2 and Lemma 3.3. So we may assume �. yF / is either �2 or �1, ie at
most one component of @F is trivial in Pa˙� .

Suppose �. yF /D�1. If yF is a once-punctured torus, then yF must be incompressible
in P � Œa� �; aC ��. Otherwise a compression on yF yields a disk, contradicting that
@ yF is essential in Pa˙� . As yF is properly embedded in the product P � Œa� �; aC ��,
yF must be @–compressible. A @–compression on yF yields an incompressible annulus

with both boundary circles in Pa�� (or PaC� ). So the resulting annulus is @–parallel.
Since yF is incompressible, this implies that yF itself is @–parallel. Hence we can
perform an isotopy on yF so that Qb becomes irreducible with respect to P � I .
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Similarly, if yF is a pair of pants, then yF must be incompressible but @–compressible.
So a @–compression on yF yields one or two incompressible annuli. This implies that
either yF is @–parallel or we can perform an isotopy on yF so that yF is transverse to
each Px except for a single saddle tangency. In either case, we can isotope yF so that
Qb becomes irreducible with respect to P � I and Theorem 1.1 follows from Lemma
2.2 and Lemma 3.3.

Therefore, we may assume �. yF /D�2. Hence F D yF and every component of @F is
essential in Pa˙� .

Since b is not labelled and since every component of @F above is essential in Pa˙� , at
each regular level x2 .0; 1/, if a component of Px\Qb is trivial in Px , then it must also
be trivial in Qb . Thus, we can apply Lemma 2.1 on Qb\ .P � .Œ0; a���[ ŒaC�; 1�//.
So after some isotopies, Qb satisfies all the conditions in Lemma 2.1 except for the
level Pa where Pa \Qb contains 2 saddle tangencies. Moreover, since b is not
labelled, Qb \†U ¤∅ and Qb \†V ¤∅. Hence Qb \Ps ¤∅ for every s .

Claim A Let � and w be any components of Qb\Pa�� and Qb\PaC� respectively.
Then d.�; w/� 2D��.F /D��.Qb \ .P � Œa� �; aC ��//.

Proof of Claim A If � is a boundary curve of a vertical annulus component of
Qb \ .P � Œa� �; aC ��/, then � is isotopic to a component of Q\PaC� and hence
d.�; w/� 1 for any curve w in Q\PaC� . So we may assume neither � nor w is a
boundary curve of a vertical annulus. Thus � and w are both components of @F .

Let � be the union of the components of Pa\Qb that contain the 2 saddle tangent
points. So � is a possibly disconnected graph with 2 vertices of valence 4. Let N.�/

be a regular neighborhood of � in Pa and let � W P � I ! Pa be the projection, then
�.@F /�N.�/ after isotopy. Since P has genus at least 2, there must be an essential
curve ˛ in Pa disjoint from N.�/. So d.�; w/� d.�; ˛/Cd.˛; w/� 2D��.F /.

Now Theorem 1.1 follows from the argument in the proof of Lemma 2.2. As in the
proof of Lemma 2.2, let s0 < � � �< sn be a collection of regular levels such that s0D ı ,
sn D 1� ı for a small ı and there is exactly one critical level in each P � .si ; siC1/.
Let �i DQ\Psi

for each i .

Since we assume Q is bicompressible in this section and since M is irreducible, if
Q is a torus, then M must be a lens space and P and Q must be isotopic Heegaard
surfaces of the lens space (see Bonahon–Otal [2]). So we may assume g.Q/� 2.

Suppose d.U ;V/>g.Q/. Since g.Q/�2, we have d.U ;V/>4. Let k be the smallest
integer such that d.U ; �k/¤ 0 and l the largest integer such that d.�l ;V/¤ 0. By
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Claim A above and Claim 1 in the proof of Lemma 2.2, d.U ; �k/ and d.�l ;V/ are
either 1 or 2 and k � l . Without loss of generality, we assume k < l .

Similar to the proof of Lemma 2.2, �k and �l must be essential in Qb . Let Q0DQb\

.P�Œsk ; sl �/, and let U 0 and V 0 be the two components of M �P�.sk ; sl/ containing
GU and GV respectively, FU DQb \U 0 and FV DQb \V 0 . Since �k and �l are
essential in Qb , FU , Q0 and FV are essential subsurfaces of Qb D FU [Q0[FV .

Claim B Let �k be any component of �k , then d.�k ;U/� 1��.FU /.

Proof of Claim B If a component A of FU is a @–parallel annulus in U 0 , then we
may first isotope A into P � .sk ��; sk �. Then we isotope A so that A is transverse to
each Px except for a circle tangency. Since @FU is essential in Psk

, after the isotopy,
Qb still satisfies the conditions in Lemma 2.1 except at the level Pa as above. Now
we push A out of U 0 . After the isotopy, we still have d.U ; �k/¤ 0. If k is no longer
the smallest number so that d.U ; �k/¤ 0 after the isotopy, then we can find a new k

and proceed as above. Eventually FU does not contain any @–parallel annulus after
some isotopies. We can view these isotopies as trivial isotopies, so by our assumptions
above, Qb \†U ¤∅ after the isotopies.

We first show that d.�k ;U/� 2. As in the proof of Lemma 2.2, d.�k ;U/� 1 if k D 0.
So we may assume k > 0. By the definition of k , d.U ; �k�1/D 0. Thus there is a
component w of �k�1 representing a vertex in U . By Claim A above and the Claim 1
in the proof of Lemma 2.2, d.�k ; w/� 2 and hence d.�k ;U/� 2.

Since FU is an essential subsurface of Qb , �.FU / � 0. Since d.�k ;U/ � 2 and
�.FU / � 0, to prove the claim, we only need to consider the case that �.FU / D 0.
Suppose �.FU /D 0. Since d.U ; �k/¤ 0, FU consists of incompressible annuli in
U 0 . Let A be the component of FU that contains �k . If A is also @–incompressible,
then A can be isotoped away from any compressing disk of U 0 and hence d.�k ;U/�
1D 1��.FU /. If A is @–compressible, then since FU contains no @–parallel annulus,
a @–compression on A yields a compressing disk of U 0 disjoint from A. Thus,
d.�k ;U/� 1D 1��.FU / in any case.

Similar to Claim B, for any component �l of �l , d.V; �l/ � 1� �.FV /. Although
Pa\Qb contains 2 saddle tangencies, by Claim A and our assumptions on Qb , Claim
3 in the proof of Lemma 2.2 also holds in this case, ie there is a component �k of �k

and a component �l of �l such that d.�k ; �l/� ��.Q
0/.

Since Q0 , FU and FV are essential subsurfaces of Qb , d.U ;V/ � d.U ; �k/ C

d.�k ; �l/ C d.�l ;V/ � 1 � �.FU / � �.Q
0/ C 1 � �.FV / D 2 � �.Q/ D 2g.Q/.

Thus Theorem 1.1 is proved.
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