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A combinatorial description of the Heegaard Floer contact
invariant

OLGA PLAMENEVSKAYA

We observe that the Heegaard Floer contact invariant is combinatorial by applying
the algorithm of Sarkar–Wang to the description of the contact invariant due to
Honda–Kazez–Matić. We include an example of this combinatorial calculation.

57R17; 57R58

1 Introduction

Recent months have seen a significant advance in Heegaard Floer theory: it turned out
that certain Heegaard Floer homologies admit a purely combinatorial description. In
particular, it was shown by Manolescu, Ozsváth and Sarkar [8] that the Heegaard Floer
homologies of a knot can be computed from a grid diagram of the knot by a simple
combinatorial procedure. Heegaard Floer homology bHF.Y / of a 3–manifold Y also
admits a combinatorial description (see Sarkar and Wang [11]) but this description is
less straightforward. Starting from an arbitrary admissible Heegaard diagram of Y ,
one has to change the ˇ curves by isotopies and handleslides so that in the resulting
Heegaard diagram almost all the domains of holomorphic disks are squares or bigons.
It is then easy to understand the moduli spaces of the holomorphic disks needed to
compute the differential, since squares and bigons with Maslov index =1 admit a unique
(up to an R–action) holomorphic representative. (We assume that the reader is familiar
with the basic setup of the Heegaard Floer theory; see Ozsváth and Szabó [10] for a
survey.)

For a contact 3–manifold .Y; �/, Ozsváth and Szabó introduce in [9] an invariant c.�/

which is a distinguished element of bHF.�Y / (defined up to sign for the theory with Z

coefficients). Since non-vanishing of c.�/ implies that � is tight, this invariant gives
a powerful tool for establishing the tightness of a contact structure (see Lisca and
Stipsicz [5; 6; 7]).

The invariant c.�/ is defined in [9] via an open book decomposition of .Y; �/, as follows.
If the genus of the page of the open book is g > 1 (and the binding is connected),
we consider a certain Heegaard diagram for Y of genus 2g C 1, compatible with
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the open book. The generators of the group bCF .�Y / are given by .2gC1/–tuples
of the intersection points of ˛– and ˇ–curves in the diagram, and a distinguished
.2gC1/–tuple gives a cycle c which descends to the invariant c.�/ in homology.

Our goal is to show that c.�/ can be computed in a combinatorial fashion. We would
like to apply the Sarkar–Wang algorithm [11] to obtain a Heegaard diagram where the
holomorphic disks can be easily identified. However, we are concerned with a specific
cycle, not the homology group as a whole, and the isotopies and/or handleslides of
the ˇ–curves performed on the Heegaard surface would possibly affect the generator
c. Indeed, the homology class of a geometric generator c can change even if all the
isotopies are supported away from the intersection points forming c; c might even
no longer be a cycle after the isotopy. Consider for example the genus 1 Heegaard
diagram for S1 given by an ˛– and a ˇ–curve on the torus intersecting at one point.
This intersection point x is a cycle which generates bHF.S3/ D Z. We isotope the
ˇ–curve to introduce two extra intersection points, y and z, as shown on Figure 1.
Now, we have @xD y, @zD y in the chain complex bCF .S3/ for the new Heegaard
diagram; so x is no longer a cycle, and bHF.S3/ is generated by x� z.

x

˛

ˇ

x

y

z

Figure 1: The Heegaard surface here is a torus obtained by identifying the
opposite sides of the square. After the isotopy of the ˇ–curve, x is no longer
a cycle in the Heegaard Floer complex.

This shows that we need to be more careful. Fortunately, there is an alternate geometric
description of c.�/ due to Honda–Kazez–Matić: in [3] they show that c.�/ can be
found from a Heegaard diagram which is different from and somewhat simpler than the
one in Ozsváth and Szabó [9]. This alternative Heegaard diagram is easier to handle,
and fits well with the Sarkar–Wang algorithm.

We combine the arguments from [3] and [11] to establish our main result in the next
section.

Remark One could in principle extract information about c.�/ in a combinatorial
way from knot Floer homology. When the binding K of the open book for .Y; �/
is connected, c.�/ is the image in bHF.�Y / of the generator of the knot homology
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bHFK .�Y;K;S;�g/. (Here S stands for the page of the open book; since K is
fibered, bHFK .�Y;K;S;�g/D Z by Ozsváth and Szabó [9]. We consider the image
of the generator under the spectral sequence from bHFK .�Y;K/ to bHF.�Y /.) Using
the Sarkar–Wang algorithm for knots, we could find a Heegaard diagram for .�Y;K/

yielding a combinatorial description of the knot chain complex. Pinpointing the cycle
corresponding to the generator of bHFK .�Y;K;S;�g/, we could then determine c.�/.
However, this procedure is not very explicit, and would be hard to perform in practice.

2 The main result

We first recall the construction from Honda, Kazez and Matić [3]. Let .S; h/ be an
open book decomposition for the contact manifold .Y; �/; here S denotes the page
of the open book, and h the monodromy. This means that Y is homeomorphic to
S � Œ0; 1�=�, where the equivalence relation � is given by

.x; 1/� .h.x/; 0/; x 2 S

.x; t/� .x; t 0/; x 2 @S; t; t 0 2 Œ0; 1�:

The open book produces a Heegaard splitting Y DH1[H2 , with H1DS�Œ0; 1=2�=�,
H2DS� Œ1=2; 1�=�. The Heegaard diagram for Y can then be given by the Heegaard
surface †D S1=2[�S0 , and the ˛– and ˇ–curves, defined as follows. Consider a
set of disjoint, properly embedded arcs fa1; a2; : : : ; ang on S such that S n

S
ai is

a single polygon. Obtain arcs bi by changing the arcs ai via a small isotopy so that
the endpoints of ai are isotopied along @S (in the direction dictated by the boundary
orientation), the arcs ai and bi intersect transversely at one point, and the sign of this
intersection is positive (the orientation of bi is induced from the orientation of ai by
the isotopy). The curves ˛i D @.ai � Œ0; 1=2�/ and ˇi D @.bi � Œ1=2; 1�/ form attaching
circles for the handlebodies H1 and H2 ; they can be thought of as the ˛– and ˇ–
curves on †. We can write

˛i D ai � f1=2g[ ai � f0g; ˇi D bi � f1=2g[ h.bi/� f0gI

thus, the intersection of ˛– and ˇ–curves with S1=2 is completely standard (and given
by ai , bi ); the picture on S0 depends on the monodromy h. For an illustration of such
Heegaard diagram, see [3], or look at the example in the next section. The basepoint
z0 is placed on S1=2 in the polygonal region (not in the thin strips between ai ’s and
bi ’s); we denote this polygonal region by D0 . Now, let ci be the intersection point
between ai and bi on S1=2 . It is shown in [3] that the element cD .c1; c2; : : : ; cn/ 2

bCF .†; ˇ; ˛; z0/ is a cycle which descends to the element c.�/ in the homology
H�.bCF .†; ˇ; ˛; z0//DbHF.�Y /.
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(Note that the roles of the ˛– and ˇ–curves are interchanged because we need the
homology of �Y instead of the homology of Y . So for a Heegaard diagram of genus
g , a Whitney disk from x to y is now a map � W D! Symg † such that �.i/ D x,
�.�i/D y, and D\fRe z> 0g is mapped into T˛D˛1�� � ��˛g , while D\fRe z< 0g

is mapped into Tˇ D ˇ1 � � � � �ˇg . This does not affect the combinatorial algorithm
that we will be using later.)

Applying the idea of Sarkar–Wang, we would like to find an open book decomposition
for Y such that all but one region in the corresponding Heegaard diagram are bigons
or squares (here and below, a region is a connected component in the complement of
˛– and ˇ–curves in †).

Theorem 2.1 There exists an open book .S; h0/ for .Y; �/, such that the Heegaard
diagram described above has only bigon and square regions (except for the polygonal
region D0 � S1=2 ). The monodromy h0 differs from the monodromy of the given open
book .S; h/ by an isotopy, i.e. h0D � ıh, where � WS!S is a diffeomorphism fixing
the boundary and isotopic to identity.

Proof The algorithm of Sarkar and Wang [11] tells us to get rid of non-disk regions
and 2n–gons with n> 2 by performing isotopies (finger moves) of ˇ–curves. First,
the non-disks are killed; then, the 2n–gons are dealt with (one after another) roughly
as follows. We look at the “distance” between a given region D and the region D0

(the minimal number of intersections between the ˇ–curves and an arc connecting z0

to an interior point of D ), and number all the regions D0 , D1 , D2 , etc, so that the
distance between Dm and D0 increases with m. Sarkar and Wang explain how to
perform finger moves that break up a given 2n–gon Dk into polygons with fewer sides,
pushing part of the boundary of 2n–gon into other regions (typically labelled with
smaller numbers). During this process, the regions Dl with l > k which are already
bigons or squares remain bigons or squares, so the process eventually terminates.

We observe that for our Heegaard diagram coming from an open book, all the finger
moves can be performed in the S0 part of †. Indeed, every boundary curve of every
region in † intersects S0 , and moreover, any two edges of a given region can be
connected by an arc contained in S0 , so we can perform finger moves along such arcs.

(Note that our Heegaard diagram is weakly admissible from the start by Honda, Kazez
and Matić [3].)

Apart from the finger moves, handleslides of the ˇ–curves are sometimes needed
in the algorithm of [11]. After such a handleslide, the Heegaard diagram would no
longer be compatible with considerations in [3]. However, it turns out that the need for
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handleslides fortunately does not arise in our case. Indeed, a handleslide in [11] is only
needed when a finger is pushed through a collection of adjacent regions, none of which
has a smaller distance from D0 (in particular, none of these regions is D0 ), and then
comes back to the region where it started. This means that the finger goes around a full
copy of some curve ˇi . Because each of the ˇ–curves forms part of the boundary of
D0 , and ai and bi intersect at one point in S1=2 , it follows that the finger has to go
through D0 , which is a contradiction.

Therefore, we can obtain a “nice” Heegaard diagram (in the terminology of [11]) by
performing a sequence of isotopies on S0 �† (away from boundary). A composition
of these isotopies gives a diffeomorphism � and the open book .S; � ıh/ equivalent
to the open book .S; h/ we started with.

Remark Using an open book decomposition as above, we can compute the Heegaard
Floer homology of an arbitrary 3–manifold combinatorially via an algorithm that
uses isotopies of ˇ–curves only, and no handleslides. (This strengthens slightly the
algorithm of [11].)

To complete the proof we refer to the following lemma.

Lemma 2.2 (Sarkar and Wang [11, Theorem 1.1]) For a nice Heegaard diagram, all
the differentials in the “hat” Heegaard Floer complex can be computed combinatorially.

We recall the structure of these differentials from [11] as we’ll need it to compute an
example. Stabilizing the open book if necessary, we can assume that the genus of our
Heegaard diagram is at least 2. Suppose we look for holomorphic representatives of a
Whitney disk � 2�2.x; y/ connecting the points x and y and missing the marked point
z . The domain of � is then a linear combination of some regions Di , DD

Pk
iD1 aiDi .

If � has holomorphic representatives, we must have ai � 0. Lipshitz’s formula [4] for
the Maslov index implies that when �.�/D 1, D must be an embedded square (tiled by
squares), or an embedded bigon (tiled by squares and a bigon). The domain D must also
be empty, in the sense that it cannot contain any x–coordinate in its interior. Assuming
that these conditions hold, the transversality condition is also satisfied (for a generic
perturbation of ˛– and ˇ–curves), and � has a unique holomorphic representative (up
to an R–action). Whitney disks that are not empty embedded squares or bigons do not
contribute to the differential.

Remark To find out whether the invariant c.�/ vanishes or not, we only need to
understand the moduli spaces for the disks contributing to the differentials possibly
killing the element c (but not other disks in the picture). However, the domain for such
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a holomorphic disk may contain more than one region, so we still need to simplify all
regions in the Heegaard diagram (not only those passing through the “thin strips” on
S1=2 �†).

3 An example

In this section we illustrate the combinatorial calculation of c.�/ by the following
example. (We consider Z=2 coefficients for simplicity, and only show that c.�/ is
non-zero without computing bHF .�Y /). Consider the contact manifold .Y; �/ given
by the open book whose page is a four-punctured sphere, and the monodromy is the
composition of two positive Dehn twists around the curves 1 and 2 shown in Figure
2. Of course, this contact manifold is easy to understand without Heegaard Floer theory:
by Giroux [2], � is Stein fillable (and therefore tight); moreover, we can perform two
positive destabilizations to see that � is in fact simply the standard tight contact structure
on S1 �S2 (given by the open book with an annular page and trivial monodromy).

1

2

Figure 2: The monodromy of the open book is given by a positive Dehn twist
around 1 followed by a Dehn twist around 2 .

Our point, however, is to illustrate how Theorem 2.1 works for this open book. First,
we look at the Honda–Kazez–Matić-style Heegaard diagram for .Y; �/ (Figure 3).
(We draw the picture by applying the two Dehn twists directly; the use of the lantern
relation – see Dehn [1] – can somewhat simplify the task.) Observe that there are two
“bad” regions, both hexagons, in the complement of ˛– and ˇ–curves on the Heegaard
surface.

We get rid of them by applying the Sarkar–Wang algorithm as described in Theorem
2.1, which in this case amounts simply to winding two of the ˇ–curves as shown in
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Figure 3: This is a Heegaard diagram for .Y; �/ . The surfaces S0 and S1=2 ,
the "bottom" and "top" parts of † , are shown separately (S1=2 is smaller
because it’s completely standard). Note that † D �S0 [S1=2 ; the picture
shows S0 , not �S0 . The thin curves are the ˛–curves, the thicker lines
(solid, dashed and dash-dotted) are the ˇ–curves. The contact element
cD .c1; c2; c3/ lies on S1=2 . The “bad” regions on † are shown.

x1

x2

y2

c1

c2

c3

z0

Figure 4: The Heegaard diagram after winding. The domain of the holomor-
phic disk connecting xD .x1;x2; c3/ and cD .c1; c2; c3/ is shaded.

Figure 4: as explained in the end of section 2, we just have to push fingers out of bad
regions into D0 .

We obtain a Heegaard diagram shown on Figure 4. Examining it, we see that there is
only one possible domain of a differential going to c from another point x; the point
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x D .x1;x2; c3/ is shown in the picture, and the domain is shaded. (Recall that the
intersection of all such domains with S1=2 should lie in the thin strips between ai

and bi , since the domain must not contain z0 .) But then we have dxD cC y, where
y D .x1;y2; c3/, since there is a bigon connecting x and y (and no other Whitney
disks from x). This shows that c is not a boundary, and so c.�/¤ 0. We can conclude
that the contact structure � is tight.

Remark It would be interesting to use the combinatorial approach to investigate
some of the contact structures from Lisca and Stipsicz [5; 6; 7], and especially contact
structures that can’t be handled by those methods. In particular, certain planar open
books arising from contact surgeries may produce diagrams that are not too hard to
analyze. We hope to return to this in a future paper.
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