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A skein relation for the HOMFLYPT polynomials of
two-cable links

TAIZO KANENOBU

We give a skein relation for the HOMFLYPT polynomials of 2–cable links. We have
constructed arbitrarily many 2–bridge knots sharing the same HOMFLYPT, Kauffman,
and Links–Gould polynomials, and arbitrarily many 2–bridge links sharing the same
HOMFLYPT, Kauffman, Links–Gould, and 2–variable Alexander polynomials. Using
the skein relation, we show their 2–cable links also share the same HOMFLYPT
polynomials.

57M25, 57M27

1 Introduction

Soon after the discovery of the HOMFLYPT polynomials (Freyd et al [5] and Przytycki
and Traczyk [24]), Morton and Short [22] and Yamada [28] gave examples of a pair of
knots with the same HOMFLYPT polynomial that are distinguished by the HOMFLYPT
polynomials of their 2–cable links. Moreover, Przytyzki [23], and Lickorish and Lipson
[19] showed that if two knots are mutant knots, their 2–cable links share the same
HOMFLYPT polynomial; this is false if they are links of more than one component.
Recently, Stoimenow [26] found the first examples of four pairs of non-mutant 12–
crossing knots whose 2–cable links share the same HOMFLYPT polynomials. They
are

(1) f12341; 12627g; f121305; 121872!g; f121378; 121704g; f121423; 121704g

from the table of Hoste, Thistlethwaite, and Weeks [6], where 121872! is the mirror
image of 121872 and f121378; 121423g is a mutant pair.

On the other hand, in 1992, J R Links and M D Gould [21] discovered a 2–variable
polynomial invariant for an oriented link, which we call the LG polynomial. It is known
that mutant links share the same LG polynomial (De Wit–Links–Kauffman [4]) and all
prime knots with less than or equal to 10 crossings are completely classified by the LG
polynomial (De Wit [2]). By using skein relations given by De Wit et al [4] and Ishii
[7], Ishii and the author [8] gave several examples of different knots and links sharing
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the same LG polynomials; the smallest such example is a pair of 2–bridge knots with
14 crossings; see Example 5.4. Then De Wit and Links [3] searched for non-mutant
pair of prime knots with 11 and 12 crossings sharing the same LG polynomial, and they
discovered such pairs. Surprisingly, they agree with the above knot pairs (1) found by
Stoimenow, that is, the four pairs (1) are the smallest ones of non-mutant knots whose
2–cable links share the same HOMFLYPT polynomials. This suggests some relation
between the HOMFLYPT polynomial of a 2–cable link and the LG polynomial. This
motivated the author to discover a skein relation for the HOMFLYPT polynomial of
2–cable links (Theorem 2.1, Corollary 3.3 and Corollary 3.4), which is similar to one
for the LG polynomial.

In [8], we have constructed examples of arbitrarily many 2–bridge knots or links sharing
the same LG polynomial as well as the HOMFLYPT and Kauffman polynomials [17;
18]; cf Kanenobu [10; 11; 12; 13; 14] and Kanenobu and Sumi [15; 16]. Our skein
relation enables us to prove that their 2–cable links share the same HOMFLYPT
polynomials (Theorem 5.1 and Theorem 5.2). Also, we can construct some other
examples with the same 2–cable HOMFLYPT polynomials, which are special case
considered in Ishii and Kanenobu [8].

This paper consists of five sections. In Section 2, we prove the skein relation for
the 2–cable HOMFLYPT polynomial (Theorem 2.1). In Section 3, we define the
2–cable links, give some properties on the HOMFLYPT polynomial (Proposition 3.1
and Proposition 3.2), and give two corollaries for Theorem 2.1 (Corollary 3.3 and
Corollary 3.4). In Section 4, we consider the 2–cable HOMFLYPT polynomials of the
link KŒˇIR1;R2; : : : ;Rn�, which had been given in [8]. In Section 5, we prove the
above-mentioned Theorem 5.1 and Theorem 5.2.

2 Skein relation

The HOMFLYPT polynomial P .LI v; z/ 2 Z Œv˙1; z˙1� (Freyd et al [5], Jones [9] and
Przytycki and Traczyk [24]) is an invariant of the isotopy type of an oriented link L,
which is defined by the following formulas:

P .U I v; z/D 1I(2)

v�1P .LCI v; z/� vP .L�I v; z/D zP .L0I v; z/:(3)

where U is the unknot and LC , L� , L0 are three links that are identical except near
one point where they are as in Figure 1. Equation (3) implies the following, which we
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will use often.

P .LCI v; z/D v
2P .L�I v; z/C vzP .L0I v; z/;(4)

P .L�I v; z/D v
�2P .LCI v; z/� v

�1zP .L0I v; z/:(5)

LC L� L0

Figure 1

Let L.tC/, L.t�/, L.eC/, L.e�/, L.f C/, L.f 0/, L.f �/ be oriented links
identical outside a ball and inside are 8–end tangles tC , t� , eC , e� , f C , f 0 ,
f � as shown in Figure 2, respectively. We denote the HOMFLYPT polynomial of the
link L.s / by P .s /, where s is one of these tangles.

Theorem 2.1

(6) v�5P .tC/C v
5P .t�/

D v�3P .eC/C v
3P .e�/C

�
v�3P .f C/C

�
v�1
C v

�
P .f 0/C v

3P .f �/
�

z2:

tC t� eC e�

f C f 0 f �

Figure 2

Remark 2.2 We denote the LG polynomial of an oriented link by LG.L/, which is a
2–variable polynomial in variables t0 and t1 . The formula (6) is similar to the skein
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relation for the LG polynomial [8, Equation (3)]:

LG.LC2/C t0t1LG.L�2/D .t0t1C 1/LG.L0/� 2.t0� 1/.t1� 1/LG.L1/;

which is obtained from the relations [8, Equations (1) and (2)] given by De Wit et al
[4] and Ishii [7], respectively. Here, LC2 , L�2 , L0 , L1 are four oriented links that
are identical except near one point where they are as in Figure 12.

Except for the 8–end tangles given in Figure 2, we use tangles as shown in Figure 3.
Note that these tangle diagrams have only positive crossings.

e0 f 1 f 2 f 3

g1 g2 g3 g4

h1 h2

h3 h4 h5

Figure 3

Lemma 2.3 Let t 1 be the 8–end tangle as shown in Figure 4. Then we have:

P .t1/Dv
8P .e0/C

�
v7P .g1/C v

5P .g2/C v
5P .g3/C v

3P .g4/
�

z(7)

C

�
v4P .f C/C v

2P .f 3/
�

z2:
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c1

c2

c3

c4

Figure 4

Proof First, we consider the right-hand side of (7). Applying (4) two times, we have

(8) P .f 3/D v
4P .f 0/C v

3zP .f 1/C v
3zP .f 2/C v

2z2P .f C/;

Thus the right-hand side of (7) is equal to

v8P .e0/C
�
v4z2

C v4z4
�

P .f C/C v
6z2P .f 0/C v

5z3P .f 1/C v
5z3P .f 2/

(9)

C

�
v7P .g1/C v

5P .g2/C v
5P .g3/C v

3P .g4/
�

z:

Next, we consider the left-hand side of (7), P .t 1/. For ı D .ı1; ı2; ı3; ı4/, where
each ıi is either a minus sign or zero, we denote by t ı the 8–end tangle obtained from
t by changing the positive crossing ci to a negative crossing or smoothing according
as ıi is a minus sign or zero. Then applying (4), we have

(10) P .t 1/D
X
ı

v2mı .vz/nı P .t ı/;

where mı and nı are the numbers of minus signs and zeros in ı , respectively. Applying
(4) and (5), we obtain the following:

P .t0000/D P

0@

t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1AD v2P .f 0/C vzP .f 1/I(11)

P .t�000/D P .t00�0/D P .h3/I(12)

P .t0�00/D P .f 1/I(13)

P .t000�/D P

0@

t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1A
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D v�2P

0@

t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0 1A(14)

� v�1zP

0@

t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1A
D v�2

�
v2P .f 2/C vzP .f C/

�
� v�1zP

�
v2P .f 0/C vzP .f 1/

�
D v�1zP .f C/� vzP .f 0/� z2P .f 1/CP .f 2/I

P .t��00/D P .h1/I(15)

P .t�0�0/D P

0@
t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1A(16)

D v�2P

0@

t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1A� v�1zP .h3/:

D v�2
�
v2P .f 0/C vzP .f 1/

�
� v�1zP .h3/

D P .f 0/C v
�1zP .f 1/� v

�1zP .h3/I

P .t�00�/D P

0@
t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1AD v�2P .h4/� v
�1zP .h3/I(17)

P .t0��0/D P .h2/I(18)

P .t0�0�/D P

0@
t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1AD v�2P .f C/� v
�1zP .f 1/I(19)

P .t00��/D P

0@

t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1AD v�2P .h5/� v
�1zP .h3/I(20)

P .t���0/D P .g1/I(21)

P .t��0�/D P

0@
t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1AD v�2P .g2/� v
�1zP .h1/I(22)

P .t�0��/D P

0@
t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1A(23)
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D v�4P .g4/� v
�3zP .h4/� v

�3zP .h5/C v
�2z2P .h3/I

P .t0���/D P

0@
t– – 0 –                                              t– 0– –                                              t0 – – –

t– 0 – 0                                              t– 0 0 –                                             t0 – 0 –

t0 0 – –                                              t0 0 0 –                                             t0 0 0 0

1AD v�2P .g3/� v
�1zP .h2/I(24)

P .t����/D P .e0/:

(25)

Substituting (11)–(25) into (10), we obtain (9). This completes the proof.

Proof of Theorem 2.1 By adding two negative crossings to an 8–end tangle as in
Figure 5(a), t 1 , e 0 , g 1 , g 2 , g 3 , g 4 , f C , f 3 become tC , e� , k1 , k2 , k3 ,
k4 , f 0 , f C , respectively, where k1; : : : ; k4 are tangles as shown in Figure 6. Thus
(7) becomes

P .tC/Dv
8P .e�/C

�
v7P .k1/C v

5P .k2/C v
5P .k3/C v

3P .k4/
�

z(26)

C

�
v4P .f 0/C v

2P .f C/
�

z2:

(a) (b)

Figure 5

k1 k2 k3 k4

k5 k6 k7 k8

Figure 6
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Similarly, adding two negative crossings to an 8–end tangle as in Figure 5(b), we obtain

P .tC/Dv
8P .e�/C

�
v7P .k5/C v

5P .k6/C v
5P .k7/C v

3P .k8/
�

z(27)

C

�
v4P .f 0/C v

2P .f C/
�

z2;

where k5; : : : ; k8 are tangles as shown in Figure 6. Since k5 , k6 , k7 , k8 are
the mirror images of k4 , k3 , k2 , k1 , respectively, by taking mirror images, (27)
becomes

P .t�/Dv
�8P .eC/C

�
�v�7P .k4/� v

�5P .k3/� v
�5P .k2/� v

�3P .k1/
�

z

(28)

C

�
v�4P .f 0/C v

�2P .f �/
�

z2:

In fact, the HOMFLYPT polynomial of the mirror image L! of a link L is obtained
from that of L by the formula

(29) P .L!I v; z/D P .LI �v�1; z/:

Combining (26) and (28), we obtain (6).

3 Two-cable links

Let LDK1 [ � � � [Kn be an oriented link with n components and Ni be a tubular
neighborhood of Ki such that N1; : : : ;Nn are disjoint. For integers p1; : : : ;pn , let
T .pi/ be a torus link of type .2;pi/ on a solid torus Vi .

Let 'i W Vi !Ni be a faithful homeomorphism, that is, the homeomorphism 'i sends
the standard meridian-longitude system of Vi to a standard meridian-longitude system
of Ni . Then we call the link '1.T .p1//[ � � � ['n.T .pn// the 2–cable link about L

with framing p , p D .p1; : : : ;pn/, which we denote by zLp or zKp1

1
[ � � �[ zK

pn
n ; cf

Rolfsen [25, Section 4D]. We assume that the strands in zLp are oriented so that when
they are stuck together to make the companion link L, their directions are parallel and
agree with the orientation of L

We present a 2–cable link zKp1

1
[ � � � [ zK

pn
n by drawing a diagram of the link K1[

� � � [Kn together with the framings p1; : : : ;pn near their respective components.

We describe this construction diagrammatically. Let n, m be positive integers. In a
diagram circles labeled n, 0, �n, 1, 1=m, �1=m stand for an n tangle, a 0 tangle,
a �n tangle, an 1 tangle, a 1=m tangle, a �1=m tangle, respectively, as shown in
Figure 7.
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.....

n�crossings

.....

n�crossingsn crossings n crossings

(a) (b) (c) (d)

.....

.....
m crossings m crossings

(e) (f)

Figure 7: (a) n tangle, (b) 0 tangle, (c) �n tangle, (d) 1 tangle, (e) 1=m

tangle, (f) �1=m tangle.

Figure 8 shows a diagram of the torus link of type .2;p/, T .p/. Let K be an oriented
knot with diagram as shown in Figure 9(a), where s is a 2–end tangle. Suppose that
the writhe or algebraic crossing number of this diagram is w , that is, the number of
positive crossings minus that of negative crossings. Then the 2–cable link about K

with framing p has a diagram as in Figure 9(b), where mD 2w�p and the strands
and crossings in s are transformed in the 4-end tangle diagram zs as shown in Figure
9(c).

�p

Figure 8: Torus link of type .2;p/ , T .p/ .

Let LDK1[K2 be an oriented 2–component link with diagram as shown in Figure
10(a), where t is a 4–end tangle and the lower strand belongs to K1 and the upper
one to K2 . Let wi be the writhe of Ki in this diagram, i D 1, 2, that is, the number
of positive self-crossings of Ki minus that of negative self-crossings of Ki . Then the
2–cable link about L with framing .p1;p2/ has an diagram as in Figure 10(b), where

Algebraic & Geometric Topology, Volume 7 (2007)
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s zs

m

)

)

(a) (b) (c)

Figure 9

mi D 2wi � pi and the strands and crossings in t are transformed as in the above.
Note that the writhe of L is w1Cw2C 2l , where l is the linking number of K1 and
K2 ; l D lk.K1;K2/.

K1

K2

t

m1

m2

zt

(a) (b)

Figure 10

Now we give some properties of the HOMFLYPT polynomials of 2–cable links. Let
LDK[M be a link, where K is a component and M is a complement of K in L.
We consider the HOMFLYPT polynomial of its 2–cable link zLp D zKp [ zM , where
zM is a 2–cable link of M .

Algebraic & Geometric Topology, Volume 7 (2007)
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For an integer k , we define a symmetric polynomial ˚k.v; z/ 2 Z Œv˙1; z˙1� as
follows:

(30) ˚k.v; z/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

'k � k

' � 
if k > 0;

0 if k D 0;

.�1/k�1v2k '
�k � �k

' � 
D .�1/k�1v2k˚�k.v; z/ if k < 0,

where ' ,  2 Z Œv˙1; z˙1� are defined by ' D�v2 and 'C D z . Then we can
prove the following by induction.

Proposition 3.1 For an integer k , we have

(31) P . zLk/D ˚kP . zL1/C v2˚k�1P . zL0/:

Thus the HOMFLYPT polynomial of a 2–cable link with framing .k1; : : : ; kn/, ki 2Z ,
is obtained from those of the 2–cable links with framings .�1; : : : ; �n/, �i D 0, 1.

Next we consider the HOMFLYPT polynomials of 2–cable links of a composite
link. Let L1 D J [M1 and L2 D K [M2 be oriented links, where J , K are
components and M1 , M2 are complements of J , K in L1 , L2 , respectively, possibly
empty. We construct a composite link by connecting the components J and K ;
L1#L2 D J#K[M1[M2 . We put

zL
j
1
D zJ j

[ zM1I(32)

zLk
2 D

zKk
[ zM2I(33)

zLl
D .AJ#K/l [ zM1[

zM2;(34)

where zM1 , zM2 are 2–cable links about M1 , M2 , respectively. Then we have the
following proposition.

Proposition 3.2 For integers j , k , l with l D j C k , we have

.�2
� 1/P . zLl/D �

�
P . zL

j
1
/P . zLk

2/CP . zL
j�1
1

/P . zLkC1
2

/
�

(35)

�

�
P . zL

j
1
/P . zLkC1

2
/CP . zL

j�1
1

/P . zLk
2/
�
;

where �D .v�1� v/z�1 is the HOMFLYPT polynomial of the trivial 2–component
link.
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Proof For the diagrams of L1 , L2 , L1#L2 given as in Figure 11(a), where s and t

are 2–end tangles, we may give the diagrams of their 2–cable links zLj
1

, zLk
2

, zLl as in
Figure 11(b), where zs and zt are 2–cable tangles about s and t , respectively. The
link zLl is isotopic to the link given in Figure 11(c), which is the sum of two 4–end
tangles. By Lickorish and Millett [20, Proposition 12] the HOMFLYPT polynomial of
the link given in Figure 11(c) is calculated from the four links zLj

1
, zLj�1

1
, zLk

2
, zLkC1

2

as shown in Figure 11(d), and we obtain (35).

(a)

s

J

L1

t

K

L2

s t

J#K

L1#L2

(b)

zs

zL
j
1

zt

zLk
2

zs zt

zLl

(c)

~
zs zt

(d)

zs zs zt zt

zL
j
1

zL
j�1
1

zLk
2

zLkC1
1

Figure 11

We apply Theorem 2.1 to 2–cable links. Let LC2 , L�2 , L0 , L1 be four oriented
links that are identical except near one point where they are as in Figure 12.

We have two cases:

Case 1: The two strands of Ls , s DC2, �2, 0, in Figure 12 belong to the same
component, and those of L1 belong to different components.

Case 2: The two strands of Ls , s DC2, �2, 0, in Figure 12 belong to different
components, and those of L1 belong to the same component.
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LC2 L�2 L0 L1

Figure 12

Case 1 We put

Ls DKs [M I(36)

L1 D J1[J2[M;(37)

where M is the common sublink of Ls and L1 , possibly empty and Ks , J1 , J2 are
the visible components in Figure 12.

For integers p , q , we put their 2–cable links as follows.

zLp
s D

zKp
s [

zM I(38)

zL
.q;r/
1 D zJ

q
1
[ zJ r

2 [
zM ;(39)

where zM is a 2–cable link about M . Then from Theorem 2.1, we have:

Corollary 3.3

(40) v�5P . zL
pC2
C2

/C v5P . zL
p�2
�2

/D v�3P . zL
pC2
0

/C v3P . zL
p�2
0

/

C

�
v�3P . zL

.qC1;rC1/
1 /C

�
v�1
C v

�
P . zL

.q;r/
1 /C v3P . zL

.q�1;r�1/
1 /

�
z2;

where p D qC r C 4lk.J1;J2/.

Case 2 We put

Ls D Js [Ks [M I(41)

L1 DH [M;(42)

where M is the common sublink of Ls and L1 , possibly empty and Js , Ks , H are
the visible components in Figure 12.

For integers p , q , we put their 2–cable links as follows.

zL.p;q/s D zJ p
s [

zKq
s [
zM I(43)

zLr
1 D

zH r
[ zM ;(44)
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where zM is a 2–cable link about M . Then from Theorem 2.1, we have the following
corollary.

Corollary 3.4

(45) v�5P . zL
.p�1;q�1/
C2

/C v5P . zL
.pC1;qC1/
�2

/D v�3P . zL
.pC1;qC1/
0

/

C v3P . zL
.p�1;q�1/
0

/C
�
v�3P . zLrC2

1 /C
�
v�1
C v

�
P . zLr

1/C v
3P . zLr�2

1 /
�

z2;

where r D pC qC 4lk.J0;K0/.

4 The two-cable HOMFLYPT polynomials of the link
K ŒˇI R1;R2; : : : ;Rn�

In [8, Section 4], for a pure 3–braid ˇ and tangles R1 , R2; : : : ;Rn�1 , Rn , we defined
a class of oriented links KŒˇIR1;R2; : : : ;Rn�1;Rn� as shown in Figure 13; if nD 0,
we interpret it as the 2–bridge knot KŒˇ� as shown in Figure 13(c).

(a) ˇ ˇ�1 ˇ ˇ�1 ˇ
Rn

R1

R2

R

(b) ˇ ˇ�1 ˇ ˇ�1 ˇRnR1
R2 R

(c) ˇ

n�1

n�1

Figure 13: The link KŒˇIR1;R2; : : : ;Rn�1;Rn� with (a) n even, (b) n odd,
(c) nD 0 .

We say that a 3–braid is strongly amphicheiral if it is of the form

(46) .�
q1

2
�

q2

1
� � � /.� � � �

�q2

2
�
�q1

1
/I

the closure of such a 3–braid is strongly amphicheiral in the sense of Van Buskirk [27].
Here �1 and �2 are elementary 3–braids as shown in Figure 14. Note that if a strongly
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amphicheiral 3–braid ˇ can be oriented as in Figure 13(c), then it is easy to see that ˇ
is a pure braid.

�1 D ��1
1
D �2 D ��1

2
D

Figure 14: Elementary 3–braids.

For ri 2 Z [f1g, we denote by KŒˇI r1; r2; : : : ; rn� the link KŒˇIR1;R2; : : : ;Rn�

with each tangle Ri the ri tangle. If ˇ is a strongly amphicheiral pure 3–braid
and each ri is an even integer, then KŒˇI r1; r2; : : : ; rn� is a 2–bridge knot or link
(with 2 components) according as n is even or odd. Note that a 2–bridge link is
interchangeable, that is, there is an isotopy of the 3–sphere which interchange the two
components, and so we do not have to distinguish the components. We will prove the
following theorem on 2–cable links about the 2–bridge links KŒˇI r1; r2; : : : ; rn�.

Theorem 4.1 If ˇ is a strongly amphicheiral pure 3–braid and r1 , r2; : : : ; rn�1 , rn

are even integers, then

(47) P . zKŒˇI r1; r2; : : : ; rn�1; rn�
p /D P . zKŒˇI rn; rn�1; : : : ; r2; r1�

p /

for any framing p .

In order to prove this theorem, we need the following lemmas: Lemma 4.2 is a special
case of [8, Lemma 4.2], and for Lemma 4.3, compare [8, Lemma 4.3].

Lemma 4.2 Suppose ˇ is a pure 3–braid. If rk D 0, 1� k � n, then KŒˇI r1; : : : ; rn�

is isotopic to:8̂̂̂̂
<̂
ˆ̂̂:

the trivial 2–component link if nD k D 1;

KŒˇI r3; : : : ; rn� if n� 2, k D 1;

KŒˇI r1; : : : ; rk�2; rk�1C rkC1; rkC2; : : : ; rn� if 2� k � n� 1;

KŒˇI r1; : : : ; rn�2� if n� 2, k D n,

where both KŒˇI r3; : : : ; rn� and KŒˇI r1; : : : ; rn�2� with nD 2 mean KŒˇ�.

Lemma 4.3 Suppose that ˇ is a strongly amphicheiral pure 3–braid. If rk D 1,
1� k � n, then KŒˇI r1; r2; : : : ; rn� is isotopic to the connected sum

KŒˇI r1; r2; : : : ; rk�1�#KŒˇI rkC1; rkC2; : : : ; rn�;
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where both KŒˇI r1; : : : ; rk�1� with k D 1 and KŒˇI rkC1; : : : ; rn� with k D n mean
KŒˇ�.

Proof of Theorem 4.1 We prove by induction on n. The case nD 1 is trivial. Let m

be a fixed integer with m� 2. Assuming that (47) holds for n<m, we will prove (47)
with nDm.

Claim 1 If rk D 0 for some k , 1� k �m, then (47) with nDm holds for any even
integers rj , j ¤ k , any strongly amphicheiral pure 3–braid ˇ , and any framing p .

Proof This follows from Lemma 4.2 and inductive hypothesis that (47) holds for
n<m.

Claim 2 If rk D1 for some k , 1� k �m, then (47) with nDm holds for any even
integers rj , j ¤ k , any strongly amphicheiral pure 3–braid ˇ , and any framing p .

Proof There are four cases:

� Case 1. m is even and k is even.

� Case 2. m is even and k is odd.

� Case 3. m is odd and k is even.

� Case 4. m is odd and k is odd.

We prove only for Case 1, since other cases are similar. We put K1DKŒˇI r1; : : : ; rm�,
K2 DKŒˇI rm; : : : ; r1�. By Lemma 4.3, K1 is isotopic to the connected sum of the
2–bridge link KŒˇI r1; : : : ; rk�1� and the 2–bridge knot KŒˇI rkC1; : : : ; rm�, which
we denote by L1 and J1 , respectively, and K2 is isotopic to the connected sum of the
2–bridge link KŒˇI rk�1; : : : ; r1� and the 2–bridge knot KŒˇI rm; : : : ; rkC1�, which
we denote by L2 and J2 , respectively. Thus Ks DLs#Js , s D 1, 2. By Proposition
3.2, we have

.�2
� 1/P . zKk

s /D�
�
P . zL.l;l

0/
s /P . zJ j

s /CP . zL.l�1;l 0/
s /P . zJ jC1

s /
�

(48)

�

�
P . zL.l;l

0/
s /P . zJ jC1

s /CP . zL.l�1;l 0/
s /P . zJ j

s /
�
;

where kD lCj . By the inductive hypothesis, P . zL
.l;l 0/
1

/DP . zL
.l;l 0/
2

/ for any integers
l , l 0 , and P . zJ

j
s / D P . zJ

j
s / for any integer j . Thus we have P . zKk

1
/ D P . zKk

2
/,

completing the proof.
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Claim 3 Let 1� k �m. Suppose that (47) with nDm and rk D rkC1D � � �D rmD 2

holds for any even integers r1; : : : ; rk�1 , any strongly amphicheiral pure 3–braid ˇ ,
and any framing p . Then (47) with nDm and rkC1D � � �D rmD 2 holds for any even
integers r1; : : : ; rk�1; rk , any strongly amphicheiral pure 3–braid ˇ , and any framing
p .

Proof We prove by induction on rk . There are four cases:

� Case 1. m is even and k is even.

� Case 2. m is even and k is odd.

� Case 3. m is odd and k is even.

� Case 4. m is odd and k is odd.

We prove only for Case 1, since other cases are similar. In this case both of

KŒˇI r1; : : : ; rk�1; r; 2; : : : ; 2„ ƒ‚ …
m�k

�;(49)

KŒˇI 2; : : : ; 2„ ƒ‚ …
m�k

; r; rk�1; : : : ; r1�(50)

are 2–bridge knots, so we denote their 2–cable links with framing p by zH p
r , zJ p

r ,
respectively.

We show

P . zH p
r /D P . zJ p

r /(51)

for any integer p by induction on an even integer r . The case r D 0 follows from
Claim 1. The case r D 2 is the condition of Claim 3. By (40) in Corollary 3.3, we have

v�5P . zH
qC2
rC2

/� v�3P . zH qC2
r /� v3P . zH q�2

r /C v5P . zH
q�2
r�2

/(52)

D

�
v�3P . zH

.iC1;jC1/
1 /C

�
v�1
C v

�
P . zH

.i;j/
1 /C v3P . zH

.i�1;j�1/
1 /

�
z2
I

v�5P . zJ
qC2
rC2

/� v�3P . zJ qC2
r /� v3P . zJ q�2

r /C v5P . zJ
q�2
r�2

/(53)

D

�
v�3P . zJ

.iC1;jC1/
1 /C

�
v�1
C v

�
P . zJ

.i;j/
1 /C v3P . zJ

.i�1;j�1/
1 /

�
z2;

where q D iC j C2.r1C r3C� � �C rk�3C rk�1/. By Claim 2, the right hand side of
(52) and that of (53) are equal. Thus if (51) holds for r D l; l C 2, then (51) holds for
r D l � 2; l C 4. This completes the proof of (51).
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Since (47) with nDm and r1D r2D � � � D rmD 2 is trivial, by induction on k Claim
3 completes the proof of (47) with nDm and any even integers r1 , r2; : : : ; rm . This
completes the proof of Theorem 4.1.

For integers ri (¤ 0), we denote by KŒˇI 1=r1; 1=r2� the link KŒˇIR1;R2� with Ri

the 1=ri tangle. If each ri is even, then KŒˇI 1=r1; 1=r2� is a knot. We can prove the
following in a similar way to Theorem 4.1.

Theorem 4.4 If ˇ is a strongly amphicheiral pure 3–braid and r1 , r2 are even integers,
then the 2–cable links with the same framing of the knots

(54) KŒˇI 1=r1; 1=r2�; KŒˇI 1=r2; 1=r1�

share the same HOMFLYPT polynomial.

Corollary 4.5 The pair of knots .54/ share the same HOMFLYPT, Kauffman, LG
polynomials and their 2–cable links share the same HOMFLYPT polynomials.

Proof For the HOMFLYPT and Kauffman polynomials, we can prove in a similar
way to Kauffman [13, Propositions 1 and 3], respectively. For the LG polynomial, this
follows from [8, Theorem 4.1].

Example 4.6 According to Corollary 4.5, it is not easy to distinguish the knot pairs
(54). For a given pair, we can distinguish by applying the computer program SnapPea
of Jeffrey R Weeks. For example, the hyperbolic volumes of

(55) KŒ�2
2�
�2
1 I 1=2;�1=2�; KŒ�2

2�
�2
1 I �1=2; 1=2�

are 18:0277914698 and 18:120528841550, respectively.

Remark 4.7 For a pure 3–braid ˇ and tangles R1 , R2; : : : ;Rn , with n even, let
LŒˇIR1;R2; : : : ;Rn� be an oriented link as shown in Figure 15 [8, Figure 10]; for
an oriented knot J and an integer p , let †ŒˇIR1;R2; : : : ;RnIJ;p� be the satellite
link with companion J , pattern LŒˇIR1;R2; : : : ;Rn�, and twisting number p as
defined in [8, page 282]. If each tangle Ri is an ri tangle, where ri is an even integer,
we denote these links by LŒˇI r1; r2; : : : ; rn� and †ŒˇI r1; r2; : : : ; rnIJ;p�, which are
3-component link. We can prove that the 2–cable links of LŒˇI r1; r2; : : : ; rn� and
LŒˇI rn; : : : ; r2; r1� (resp. †ŒˇI r1; r2; : : : ; rnIJ;p� and †ŒˇI rn; : : : ; r2; r1IJ;p�) with
the same framing share the same HOMFLYPT polynomial in a similar way to [8,
Theorem 5.1] and Theorem 4.1.
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ˇ ˇ�1 ˇ ˇ�1R1

R2

R

Rn

n�1

Figure 15: The link LŒˇI r1; r2; : : : ; rn� .

5 The two-cable HOMFLYPT polynomials of 2–bridge links

In this section, we show the following theorems using Theorem 4.1. See Conway
[1] and Lickorish and Millett [20] for the skein equivalence; if two links are skein
equivalent, then they share the same HOMFLYPT polynomial.

Theorem 5.1 For any positive integer N , there exist 2N , mutually distinct, am-
phicheiral, fibered 2–bridge knots, which are skein equivalent, share the same Kauffman
and LG polynomials, and whose 2–cable links with the same framing share the same
HOMFLYPT polynomial.

Theorem 5.2 For any positive integer N , there exist 2N , mutually distinct, am-
phicheiral, fibered 2–bridge links, which are skein equivalent, share the same Kauffman,
2–variable Alexander, LG polynomials, and whose 2–cable links with the same framing
share the same HOMFLYPT polynomial.

For a 3–braid ˛ and integers p1 , p2; : : : ;pn�1 , pn , we define 3–braids as follows:

˛hp1i D ˛.p1;�p1/D ˛s
p1

2
˛�1s

�p1

1
˛I(56)

˛hp1;p2; : : : ;pn�1;pni D ˛hp1;p2; : : : ;pn�1ihpni:(57)

Then,

(58) ˛hp1;p2; : : : ;pn�1;pni D ˛hp1;p2; : : : ;pi�1ihpi ; : : : ;pni;

where 2� i � n, and

(59) ˛hp1;p2; : : : ;pni D ˛.q1; q2; : : : ; qm�1; qm/;

where mD 3n� 1 and pi D �j qj with j � 0 .mod 3i�1/, j 6� 0 .mod 3i/, and

(60) �j D

(
1 if j=3i�1 � 1 .mod 3/;

�1 if j=3i�1 � 2 .mod 3/;

Algebraic & Geometric Topology, Volume 7 (2007)



1230 Taizo Kanenobu

cf [13, page 285]. Using Theorem 4.1, we can show the following lemma in a similar
way to the proof of [8, Lemma 6.3].

Lemma 5.3 Suppose ˇ is a strongly amphicheiral pure 3–braid and b1 , b2; : : : ; bn

are integers. Then for any framing p , we have

(61) P . zKŒˇh2b1; 2b2; : : : ; 2bni�
p /D P . zKŒˇh�2b1;�2b2; : : : ;�2bni�

p /:

For a nontrivial pure strongly amphicheiral 3–braid ˇ , we define the following sets
consisting of 2N 2–bridge knots and links:

Kˇ;N D fKŒˇh2�1; 2�2; : : : ; 2�N i�j�i D˙1gI(62)

Lˇ;N D fKŒˇh2�1; 2�2; : : : ; 2�N i.2/�j�i D˙1g:(63)

Proof of Theorem 5.1 In [8], we have shown that the 2N knots in Kˇ;N are mutually
distinct, amphicheiral, fibered 2–bridge knots, which are skein equivalent, share the
same Kauffman and LG polynomials. We then show that their 2–cable links share
the same HOMFLYPT polynomial. In fact, for each i , 1� i �N , we can show the
following in the same way as [8, Equation (40)] using (56) and Lemma 5.3.

(64) P . zKŒˇh2�1; 2�2; : : : ; 2�i�1; 2�i ; 2�iC1; : : : ; 2�N i�
p/

D P . zKŒˇh2�1; 2�2; : : : ; 2�i�1;�2�i ; 2�iC1; : : : ; 2�N i�
p/:

This completes the proof.

Proof of Theorem 5.2 The 2–bridge links in the above set Lˇ;N are the desired
ones.

Example 5.4 According to [8, page 286], there are 11 pairs of 2–bridge knots and one
pair of 2–bridge links through 20 crossings sharing the same HOMFLYPT, Kauffman,
and LG polynomials; for 2–bridge knots,n

KŒ�2
2�
�2
1 Ip; q�;KŒ�

2
2�
�2
1 I q;p�

o
;n

KŒs2
2s2

1s�2
2 s�2

1 I 2;�2�;KŒs2
2s2

1s�2
2 s�2

1 I �2; 2�
o
;

where .p; q/ D .2;�2/, .4; 2/, .4;�2/, .6; 2/, .6;�2/, .4;�4/, .8; 2/, .8;�2/,
.6; 4/, .6;�4/; and for 2–bridge linksn

KŒs2
2s�2

1 I 2; 2;�2�;KŒs2
2s�2

1 I �2; 2; 2�
o
:

By Theorem 4.1, their 2–cable links also share the same HOMFLYPT polynomials.
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The simplest pair is n
KŒ�2

2�
�2
1 I 2;�2�;KŒ�2

2�
�2
1 I �2; 2�

o
;

which are

fC.2; 1; 1; 1; 2; 2; 1; 1; 1; 2/;C.2; 2; 1; 1; 1; 1; 1; 1; 2; 2/g

in Conway’s presentation for 2–bridge knots, and thus have 14 crossings.
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