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Knots with identical Khovanov homology

LIAM WATSON

We give a recipe for constructing families of distinct knots that have identical Kho-
vanov homology and give examples of pairs of prime knots, as well as infinite families,
with this property.

57M25, 57M27

1 Introduction

Khovanov homology [7] is an invariant which associates a bi-graded abelian group
to a knot (or link) in S3 . The Jones polynomial of the knot arises as a graded Euler
characteristic of this theory, and as such questions about the Jones polynomial may
be rephrased in terms of Khovanov homology. It is unknown for example, if either of
these invariants detects the unknot. On the other hand, Khovanov homology is known
to be strictly stronger than the Jones polyniomial: Bar-Natan provided examples of
knots with the same Jones polynomial that are distinguished by Khovanov homology
[2]. There have been many techniques developed for producing pairs of knots that have
the same Jones polynomial, and it is natural to ask if these techniques also preserve
Khovanov homology. One of the simplest techniques for generating distinct knots with
the same Jones polynomial is mutation, however it is currently unknown if mutation of
knots leaves Khovanov homology invariant (see Bar-Natan [1] and Wehrli [19]).

The aim of this note is to present a construction giving rise to distinct knots that cannot
be distinguished using Khovanov homology. Our main tool is the long exact sequence
in Khovanov homology which is presented, along with a review of Khovanov homology,
in Section 2. In Section 3 we present a general construction for producing pairs of
knots with identical Khovanov homology. This construction is applied in Section 4
to obtain pairs of distinct prime knots with identical Khovanov homology (Theorem
4.1). These examples are distinguished by the HOMFLYPT polynomial, and as such
must have distinct triply-graded link homology (see Khovanov [6] and Khovanov–
Rozansky [8]). In Section 5 we give infinite families of distinct knots with identical
Khovanov homology (Theorem 5.1), and in Section 6 we construct an infinite family
of knots admitting a mutation that is not detected by Khovanov homology (Proposition
6.1). We conclude with a series of examples in Section 7.
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2 Background and notation

We briefly review Khovanov homology to solidify notation, and refer the reader to Kho-
vanov’s original paper [7], as well as the work of Bar-Natan [2; 3] and Rasmussen [13].

The Khovanov complex of a knot K is generated by first considering an n–crossing
diagram for K together with 2n states, each of which is a collection of disjoint simple
closed curves in the plane. Each state s is obtained from a choice of resolution
(the 0–resolution) or (the 1–resolution) for every crossing . By fixing an order
on the crossings, each state s may be represented by an n–tuple with entries in f0; 1g
so that the states may be arranged at the vertices of the n–cube Œ0; 1�n (the cube of
resolutions for K ). Let jsj be the sum of the entries of the n–tuple associated to s

(the height of s ).

Let V be a free, graded Z–module generated by hv�; vCi, where deg.v˙/D˙1. To
each state we associate V ˝`s where `s > 0 is the number of closed curves in the given
state. The associated grading is referred to as the Jones grading, denoted by q . Set

Cu.K/D
M
uDjsj

V ˝`sfjsjg

where f�g shifts the Jones grading via .W fj g/q D Wq�j . The chain groups of the
Khovanov complex are given by

CKhu
q.K/D .C.K/Œ�n��fnC� 2n�g/

u
q D C

uCn�
q�nCC2n�

.K/

where Œ�� shifts the homological grading u as shown. For a given orientation of K ,
nC D nC.K/ is the number of positive crossings in K and n� D n�.K/ is the
number of negative crossings in K .

The differentials @uW CKhu.K/! CKhuC1.K/ come from the collection of edges in
the cube of resolutions moving from height u to height uC 1. Each of these edges
corresponds to exactly one of two operations (mW V ˝V ! V and �W V ! V ˝V )
of a Frobenius algebra defined over V , since each edge can be identified with exactly
one change of the form ! or ! . Fixing a convention so that the faces
of the cube anti-commute, @u is the sum of all the maps at the prescribed height. The
Khovanov homology Kh.K/, defined as the homology of the complex .CKhu.K/; @u/,
is an invariant of the knot K ; the (unnormalized) Jones polynomial of K arises asX

j

X
u

.�1/uqj dim.Khu
j .K/˝Q/:
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Given a knot K. / with a distinguished positive crossing, there is a short exact
sequence

0 �! C
�
K. /

�
Œ1�f1g �! C

�
K. /

�
�! C

�
K. /

�
�! 0:

Since K. / inherits the orientation of K. /, we set c D n�
�
K. /

�
� n�

�
K. /

�
for some choice of orientation on K. / to obtain

0 �! CKhu�c�1
q�3c�2

�
K. /

�
�! CKhu

q

�
K. /

�
�! CKhu

q�1

�
K. /

�
�! 0:

This short exact sequence gives rise to a long exact sequence

! Khu�c�1
q�3c�2

�
K. /

�
! Khu

q

�
K. /

�
! Khu

q�1

�
K. /

� ı�
! Khu�c

q�3c�2

�
K. /

�
!

where ı� is the map induced on homology from (the component of) the differential
ıW CKhu

q�1

�
K. /

�
! CKhu�c�1

q�3c�2

�
K. /

�
.

Similarly, for a knot K. / with a distinguished negative crossing there is a long exact
sequence:

! Khu
qC1

�
K. /

�
! Khu

q

�
K. /

�
! Khu�c

q�3c�1

�
K. /

� ı�
! KhuC1

qC1

�
K. /

�
! :

We will make use of one further piece of structure on Kh.K/ introduced by Lee [9]
and Rasmussen [12]. The bigraded abelian group E

u;q
1
D Khu

q.K/˝Q associated to
a knot K may be viewed as the first sheet of a spectral sequence (the Lee spectral
sequence) with differential on the Ei sheet of bidegree .1; 4i/. In particular, each of
the sums X

q�1.mod 4/

X
u

.�1/u dim.Eu;q
i /

X
q��1.mod 4/

X
u

.�1/u dim.Eu;q
i /and

must be constant for all i . Further, the spectral sequence converges to E
u;q
1 ŠQ˚Q

with E
u;s˙1
1 ŠQ, where the even integer s is Rasmussen’s invariant. As a result the

above constant is 1 in both cases, giving rise to:X
q�1.mod 4/

X
u

.�1/u dim.Khu
q.K/˝Q/D 1(1)

X
q��1.mod 4/

X
u

.�1/u dim.Khu
q.K/˝Q/D 1:(2)
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3 Construction

Consider the knot K D Kˇ.T;U / shown in Figure 1 where ˇ is an element of the
three strand braid group B3 with inverse ˇ�1 . T and U are tangles (or Conway
tangles), that is T D .B3

T
; �/ and U D .B3

U
; �/ where B3

T
(respectively B3

U
) is a

3–ball containing a collection of arcs � (respectively �) that intersect the boundary of
the 3–ball transversally in exactly 4 points (see Lickorish [10] and Rolfsen [15]).

ˇ
�1

ˇ

T U

Figure 1: The knot Kˇ.T;U / .

There is a well defined Z–action (a half-twist action) on the set of isotopy classes
(fixing endpoints) of tangles that comes from the two strand braid group. For a given
tangle T , write T � D T and T x� D T where h�i D ZŠB2 and �x� D e

(that is, � D is the standard braid generator). Let K� DKˇ

�
T � ;U x�

�
.

The sum TCU of two tangles is defined by side-by-side concatenation. This generalizes
the half-twist-action: T � may be denoted T C (� adds a twist). A tangle T is

called simple if T C is isotopic (fixing endpoints) to . Note that T � is simple
if and only if T is simple. Also, if T and U are simple, then so is the tangle T CU .

For the purposes of this paper, assume that the tangles considered have no closed
components (that is, � and � are each a pair of arcs). Note also that since we are
considering knots, we may restrict attention to tangles T and U that have connectivity
of the form and (tangles having connectivity generally give rise to links,
moreover such tangles are never simple). Further, we assume throughout that the braid
ˇ 2 B3 is such that K DKˇ.T;U / has only one component.

Lemma 3.1 For simple tangles T;U the knots KDKˇ.T;U / and K�DKˇ

�
T � ;U x�

�
have identical Khovanov homology.

Remark We could also consider a similar action that adds twists to tangles on the
left; we make use of this in Section 6.
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Remark It follows from Lemma 3.1 that the knots K and K� have identical Jones
polynomial. This fact is proved by the author [18, Lemma 5.2] without the requirement
that the tangles be simple.

Proof of Lemma 3.1 The proof is an application of the long exact sequences intro-
duced in Section 2. The reader may find it useful to follow the general argument
through on a particular example such as that of Section 7.1.

Our strategy is to distinguish two crossings of K� DKˇ

�
T � ;U x�

�
(the two crossings

added by the action of � ) and write K. / D Kˇ

�
T � ;U x�

�
so that K. / D

Kˇ.T;U /. Since the tangles T and U are simple by hypothesis, it is easy to check
that K. / and K. / (as well as K. / and K. /) are diagrams for the
2–component trivial link (apply simplicity, and note that the braids are allowed to
cancel). Let

LD Kh. /D V ˝V Š .Z/�2˚ .Z˚Z/0˚ .Z/2

and note that Lu D 0 in all homological degrees u¤ 0.

Figure 2: An orientation for the knot K� when the permutation associated
to ˇ is .1 3 2/ .

Since it will be necessary to fix orientations, we divide into six cases according to
the various possible permutations associated to braids in B3 . First suppose that the
permutation associated to ˇ is .1 3 2/ (as is the case for ˇD��1

1
�2�
�2n
1

, for example).

Now suppose that both T � and U x� have connectivity of the form . Then it is
easy to check that T and U have connectivity of the form . Moreover, since the
permutation associated to ˇ is .1 3 2/, the permutation associated to ˇ�1 is .1 2 3/

and we can fix the orientation for K. / shown in Figure 2 (note that it is clear from
this diagram that the knot in question has one component). With this orientation in
hand, we have that the distinguished crossing of T � is negative, while the distinguished
crossing of U x� is positive: K. /. Notice that the resolution K. / (that is, the
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cD0
**TTTTcD�1 44jjjj

cD0
**TTTT

cD�1

44jjjj

Figure 3: Values of c upon resolution.

tangle T ) does not inherit this orientation. If we resolve with respect to the left-most
(distinguished) crossing, we have the exact sequence

Lu
qC1 �! Khu

q K. / �! Khu�c
q�3c�1 K. / �!LuC1

qC1

where one can check that c D n�.K. //� n�.K. //D�1.

Indeed, since the braids chosen are inverses of each other, the number of negative and
positive crossings contributed by the braids remains constant. Therefore, to compute the
values for c we need only consider the tangles T � and U x� . Upon resolution, notice
that the orientation on U x� is preserved (see Figure 3), while the new orientation for the
resolution of T � (that is, T ) has precisely one less negative crossing (the crossing we
resolved). This is because the new orientation reverses the orientation on both strands
(it can be checked that this will always preserve the number of positive and negative
crossings) so that

c D n�
�
K. /

�
� n�

�
K. /

�
D n�.T /� n�.T

� /

D n�

� �
� n�

� �
D�1:
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Therefore, the exact sequence is given by

(3) Lu
qC1 �! Khu

q K. / �! KhuC1
qC2

K. / �!LuC1
qC1

:

Now, resolving the second crossing, we make similar observations. The orientation
on the strands of the tangle T are both reversed once more (see Figure 3), so that
the number of negative crossings contributed by T is left unchanged. On the other
hand, the resolution taking U x� to U removes a positive crossing, and preserves the
orientation on the tangle U . Therefore

c D n�
�
K. /

�
� n�

�
K. /

�
D n�.U /� n�.U

x� /

D n�

� �
� n�

� �
D 0

and we have the exact sequence

Lu�1
q�1 �! Khu�1

q�2 K. / �! Khu
q K. / �!Lu

q�1

which may be rewritten as

(4) Lu
qC1 �! Khu

q K. / �! KhuC1
qC2

K. / �!LuC1
qC1

:

Combining the exact sequences (3) and (4) we obtain the the diagram of exact sequences

(5) Lu
qC1

// Khu
q K. /

%%
Lu

qC1
// Khu

q K. / // KhuC1
qC2

K. / //

//

LuC1
qC1

LuC1
qC1

from which we deduce that

Khu
q K. /Š KhuC1

qC2
K. /Š Khu

q K. /
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for all homological gradings u> 0 since Lu D 0. Moreover, when uD 0 we have

.Z/�2˚ .Z˚Z/0˚ .Z/2 // Kh0
q K. /

%%

.Z/�2˚ .Z˚Z/0˚ .Z/2 // Kh0
q K. / // Kh1

qC2 K. / //

11

0

0

so that

Kh0
q K. /Š Kh0

q K. /

for q ¤�3;�1; 1.

A slightly different diagram of exact sequences is obtained if the right-most distin-
guished crossing of K. / is resolved first; we apply a similar argument for the
(switched) values of c . This time, we first resolve the (positive) crossing of U x� to
obtain U with its orientation unchanged (see Figure 3). The induced orientation on
T � reverses the orientation of both strands (as before) so that the number of positive
and negative crossings contributed by T � are once more unchanged (of course, the
contribution from the braids is constant, as before). Therefore, we lose only a positive
crossing, and obtain

c D n�
�
K. /

�
� n�

�
K. /

�
D n�.U /� n�.U

x� /

D n�

� �
� n�

� �
D 0;

which in turn gives the exact sequence

(6) Lu�1
q�1 �! Khu�1

q�2 K. / �! Khu
q K. / �!Lu

q�1:

Resolving the distinguished crossing of T � to obtain T , we have that the orientation
on U is once more preserved (see Figure 3), so that the contribution to c comes from
comparing T and T � only. Once again, we remove the distinguished crossing (a
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negative crossing) and reverse orientation of both the strands of T . Therefore,

c D n�
�
K. /

�
� n�

�
K. /

�
D n�.T /� n�.T

� /

D n�

� �
� n�

� �
D�1

and then we obtain the sequence

(7) Lu�1
q�1 �! Khu�1

q�2 K. / �! Khu
q K. / �!Lu

q�1

where the gradings are shifted accordingly as in the case of the exact sequence (4).
This time, sequences (6) and (7) combine to give the diagram of exact sequences

(8) Lu�1
q�1

""
Lu�1

q�1
// Khu�1

q�2 K. / //

..

Khu
q K. / // Lu

q�1

Khu
q K. / // Lu

q�1

and we obtain the isomorphism

Khu
q K. /Š Khu�1

q�2 K. /Š Khu
q K. /

whenever u< 0. When uD 0, we have

0
""

0 // Kh�1
q�2 K. / //

--

Kh0
q K. / // .Z/�2˚ .Z˚Z/0˚ .Z/2

Kh0
q K. / // .Z/�2˚ .Z˚Z/0˚ .Z/2

so that

Kh0
q K. /Š Kh0

q K. /

for q ¤�1; 1; 3.

Combining the information from diagrams (5) and (8), we conclude that

Khu
q K. /Š Khu

q K. /
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except when uD 0 and q D˙1. In fact, diagram (8) tells us that the torsion parts for
uD 0 and q D˙1 are isomorphic. Indeed, since L is torsion free we have

0
$$

0 // Tor
�

Kh�1
q�2 K. /

�
//

--

Tor
�

Kh0
q K. /

�
// 0

Tor
�

Kh0
q K. /

�
// 0

hence

Tor
�

Kh0
q K. /

�
Š Tor

�
Kh0

q K. /
�

for all q .

We pause here to remark that the cases with different connectivity for T � and U x��
; and ; and ;

�
proceed in the same way, with only minor

adjustments to the induced orientations. In fact, the proof amounts to reordering and/or
rotating the oriented diagrams encountered in Figure 3. We leave this step to the reader.

To treat the other possible permutations associated to ˇ it suffices to check that the
same values for c are obtained upon resolution of the distinguished crossings. If this is
the case, then the rest of the argument goes through unchanged. First notice that the if
the permutation associated to ˇ is .1 2 3/ then it suffices to rotate each of the diagrams
in Figure 3 by 180 degrees and exchange the diagrams of the middle column to obtain
the same values for c . We do not need to consider the permutations .1/ or .2 3/

since it can be checked that if ˇ has either of these associated permutations, the knot
Kˇ.T;U / will have more than one component. It remains to check the permutations
.1 2/ and .1 3/. Notice that in either case, the oriented diagrams for K. / and
K. / are exactly as in Figure 3 (with obvious adjustments to the connectivity of the
braids). We leave it to the reader to check that the diagrams for K. / and K. /

in both cases admit orientations that give rise to:

K. /
cD0

**UUUUUUUUU

K. /

cD�1 44iiiiiiiii

cD0 **UUUUUUUUU K. /

K. /
cD�1

44iiiiiiiii

:

This in turn gives rise to the same diagrams of exact sequences (5) and (8) for all ˇ
such that Kˇ.T;U / has one component.
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Finally, note that acting by x� (instead of � ) on K switches the two exact sequences in
each of the diagrams (5) and (8). This is due once more to the values obtained for c:

K. /
cD�1

**UUUUUUUUU

K. /

cD0 44iiiiiiiii

cD�1 **UUUUUUUUU K. /

K. /
cD0

44iiiiiiiii

In particular, we obtain the same isomorphisms of Khovanov homology groups.

With these observations in hand, it remains now to analyze the the free part of
Kh0
˙1 K. / and Kh0

˙1. /. To this end we work over Q, and apply Equation
(1) and Equation (2).

Suppose q D 1, then from Equation (1) we have thatX
q�1.mod 4/

X
u

.�1/u dim.Khu
q K. /˝Q/

D

X
q�1.mod 4/

X
u

.�1/u dim.Khu
q K. /˝Q/

and since all groups are isomorphic away from .u; q/D .0;˙1/, this implies that

dim.Kh0
1 K. /˝Q/D dim.Kh0

1 K. /˝Q/:

In particular, Kh0
1 K. /˝QŠ Kh0

1 K. /˝Q.

Applying a similar argument to the case q D�1 using Equation (2) gives the required
isomorphism Kh0

�1 K. /˝QŠ Kh0
�1 K. /˝Q and we conclude that

Kh.K/Š Kh.K� /:

We have yet to see that the knots K and K� are distinct. This is the focus of Section
4, Section 5 and Section 6; examples are given in Section 7.

4 Distinct prime knots with identical Khovanov homology

According to Lickorish [10, Theorem 5], a tangle T D .B3
T
; �/ is prime if and only

if the two-fold branched cover of B3
T

(branched over � ) is irreducible and boundary
irreducible. Since the two-fold cover of a sphere with 4 branch points is a torus, prime
tangles are those two-fold branched covered by non-trivial knot complements. Note
that T is prime if and only if T � is prime.
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Theorem 4.1 For every simple, prime tangle T there exists a pair of distinct prime
knots (each containing T ) with identical Khovanov homology but distinct HOMFLYPT
polynomial (and hence distinct triply-graded link homology).

Proof Choose ˇ D ��1
1
�2�
�2
1

and the pair of tangles .T;T ?/ in the configuration
of Figure 1 where U D T ? is the mirror image of T (hence prime and simple). This
gives rise to a pair of knots Kˇ.T;T

?/ and Kˇ.T
� ; .T ?/x� / with identical Khovanov

homology by applying Lemma 3.1. It was show by the author [18, Theorem 1.1] that
this pair of knots have distinct HOMFLYPT polynomials from which we conclude that
the knots are distinct, and observe that they must have different triply-graded homology.
Finally, it follows from the work of Lickorish [10, Theorem 1 and Lemma 2] that both
of the knots constructed are prime whenever T is a prime tangle; a complete argument
is given in [18, Theorem 1.1].

Remark Since the pair of knots generated in the proof of Theorem 4.1 have distinct
HOMFLYPT polynomial they can not be related by mutation (cf Section 6).

Examples of knots arising as in Theorem 4.1 (in particular, examples of prime simple
tangles) are given in Section 7.2.

5 Constructing infinite families

Although one needs a mechanism to prove that the knots obtained are distinct, the
action of � defined in Section 3 may be iterated to obtain infinite families of knots
with identical Khovanov homology. Luse and Rong [11] classified the particular family
Kˇ.T;U / taking ˇ D ��1

1
�2�
�2n
1

in the case where T and U horizontal full-twists.

Theorem 5.1 For each n 2N there is an infinite family of distinct knots with identical
Khovanov homology.

Proof Fix n 2N and consider the family of knots K` DKˇ.�
2`; ��2`/ where �2`

is the tangle consisting of ` horizontal full-twists, and ˇ D ��1
1
�2�
�2n
1

. The tangles
are clearly simple, so by iterating Lemma 3.1 K` and K`0 have identical Khovanov
homology for any `; `0 2 Z. According to [11, Theorem 1.1], K` and K`0 are distinct
knots whenever gcd.`; 2nC 1/ ¤ gcd.`0; 2nC 1/. If p

˛1

1
p
˛2

2
� � �p

˛k

k
is the prime

decomposition of 2nC1, we can choose `D pi (for any of the i 2 f1; : : : ; kg) so that
gcd.`; 2nC 1/D pi . Letting `0 range over all primes that do not appear in the prime
decomposition of 2nC 1 gives the result.

Remark The classification of this family of knots in the case n D 1 is due to Ka-
nenobu [5]; this example is given in Section 7.4.
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6 A remark on mutation

Knot mutation (cf Rolfsen [15]) is a well known operation on tangles that alters knots
without changing any of the skein-type polynomial invariants (ie Jones, HOMFLYPT,
: : : ). Although Wehrli has given examples of split links related by mutation that have
different Khovanov homology [19], it is unknown if mutation preserves Khovanov
homology for knots [1; 19]. As a third application of Lemma 3.1, we give an infinite
family of knots that admit a mutation which is not detected by Khovanov homology.

Consider the family of knots Km.T /DKˇ.�
m;T / as in Figure 1, where �m is the

tangle consisting of m 2 Z horizontal half-twists (and ˇ is such that Km.T / has only
one component).

Proposition 6.1 The mutation � that flips a simple tangle T in the knot digram
Km.T / across the horizontal axis is not detected by Khovanov homology. That is,
Kh.Km.T //Š Kh.Km.�T // for all m 2 Z.

Proof If we consider a similar construction to that of Section 3 allowing B2 to act
on the left (ie � W T 7! T and x� W T 7! T ), the proof of Lemma 3.1 goes
through in the same way for this left action (on the same class of knots), and hence
leaves Khovanov homology invariant. Indeed, one need only consider a 180 degree
rotation of Figure 1, and the proof goes through verbatim after renaming ˇ D ˇ�1 ,
T D

U

and U D

T

.

Since the tangles T and �m are simple, we can can apply Lemma 3.1 to Km.T /

resulting in a new knot KmC1.T
x� ) with identical Khovanov homology (note that with

this notation .�m/� D �mC1 ). The key observation is that acting on the left by the
inverse x� removes the twist added to �m , while the result of acting by � on the left of
T x� is a tangle isotopic (fixing endpoints) to the mutant �T . Hence we obtain a third
knot Km.�T / – precisely the desired mutant – with identical Khovanov homology.

The elements of the proof of Proposition 6.1 can be seen in the example given in
Section 7.5, in particular Figure 10.

7 Examples

The preceding sections show that the construction of Section 3 gives rise to a wide
range of knots; in this section we give some particular examples. The notation for
knots used below is consistent with Rolfsen’s notation [14] for knots with fewer that
11 crossings, and KNOTSCAPE notation [17] otherwise up to mirrors (see also the Knot
Atlas [4]).
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7.1 A first example

Figure 4: The knots 88 and 10129:

The knots 88 and 10129 admit diagrams of the form of Figure 1 with ˇ D ��1
1
�2�
�2
1

,
as shown in Figure 4. This explains the coincidence in Khovanov homology enjoyed
by this pair of knots, a fact well documented in [4]. It may be illustrative to revisit the
proof of Lemma 3.1 with this particular example in hand. Observe that as a result of
this choice of diagrams, 88 is obtained by resolving the distinguished crossings shown
in Figure 5 by ! and ! .

Figure 5: The distinguished crossings for the knot 10129 .

The knot K. /D 10137 , so that the diagram of exact sequences (5) gives

0 // Khu
q.88/

$$

0 // Khu
q.10129/ // KhuC1

qC2
.10137/ //

11

0

0

for u > 0 and hence the isomorphism Khu
q.88/ Š KhuC1

qC2
.10137/ Š Khu

q.10129/ for
u> 0. Similarly, The knot K. /D 89 (this knot is shown in Figure 9), so that the
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diagram of exact sequences (8) gives

0
��

0 // Khu�1
q�2.89/ //

//

Khu
q.10129/ // 0

Khu
q.88/ // 0

for u< 0 and Khu
q.88/Š KhuC1

qC2
.89/Š Khu

q.10129/ for u< 0.

As in the proof of Lemma 3.1, the isomorphism in homological grading uD 0 follows
from Diagram (8) (for the torsion part) and Equation (1) and Equation (2) (for the free
part).

Remark Note that this example illustrates the case of tangle connectivity of the form
for T and for U in the proof of Lemma 3.1.

7.2 Pairs of non-mutant prime knots

To illustrate Theorem 4.1, we first need examples of prime simple tangles; these are
provided in Figure 6. The fact that these are prime tangles for all k � 0 is shown by
Lickorish [10, Section 2 Example (a)]. That these tangles are simple for k � 0 is an
application of kC 2 Reidemeister type II moves followed by a single Reidemeister
type I move to see that T C is isotopic (fixing endpoints) to .

�k�1

k

Figure 6: A prime simple tangle for k � 0 .

The knots obtained from this construction in the case k D 0 are shown in Figure 7.

Remark In the proof of Theorem 4.1, the fact that the knots obtained (for example,
those of Figure 7) have distinct HOMFLYPT polynomials depends on the fact that
Kˇ

�
;

�
and Kˇ

�
;

�
have distinct HOMFLYPT polynomial (cf [18, Theorem

1.1]). In the examples constructed for the proof Theorem 4.1 using ˇ D ��1
1
�2�
�2
1

,

Algebraic & Geometric Topology, Volume 7 (2007)



1404 Liam Watson

Figure 7: Non-mutant prime knots with identical Khovanov homology.

the knots are 41#41 and 89 ; these have distinct HOMFLYPT polynomials (cf Section
7.4). However any such pair will do, and many more examples exist; we give two to
conclude this section.

If ˇD ��1
1
�2�
�3
1

then KDKˇ

�
;

�
D 52#5?

2
and we obtain K� D 1048 . These

have the same Khovanov homology by Lemma 3.1, while K and K� are distinguished
by the HOMFLYPT polynomial.

If ˇD ��1
1
�2�
�1
1
�2�
�2
1

then KDKˇ

�
;

�
D 63#63 and we obtain K� D 12a

819
.

Again, these have the same Khovanov homology, while K and K� are distinguished
by the HOMFLYPT polynomial.

Remark The reader may have observed that the base case in all of these examples is
provided by taking a connected sum of a 2–bridge knot with its mirror image. While it
is tempting to guess that any such connected sum will give rise to a family of examples,
we leave it as an exercise to show that (at very least) the .2; n/–torus knots should
be omitted since the action of � is trivial on these examples (consider ˇ D �n

1
or

ˇ D ��1
1
�n�2

2
��1

1
).

7.3 An aside on non-simple tangles

It is natural to ask if Lemma 3.1 holds without the simplicity assumption on the tangles.
For example, the knots 12a

990
and 12a

1225
arise in this way (consider the braid closure

of ˇ�3
2
ˇ�1��3

2
where ˇ D ��1

1
�2�
�2
1

). A second example of this phenomenon is
given by the knots 12a

427
and 15n

45009
shown in Figure 8. Both of these examples

share the same Khovanov homology (verified using the software KhoHo [16]). Indeed,
as noted in Section 3, the simplicity requirement on the tangles is not required to show
that knots obtained in this way have identical Jones polynomial [18]. However it seems
optimistic (though tempting) to conjecture that Lemma 3.1 holds for all tangles.

Question Is there a knot Kˇ.T;U / with non-simple tangles for which the action of
� is detected by Khovanov homology?
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While the construction of Section 3 provides a wide range of examples of knots with
identical Khovanov homology, the examples given in this section serve as a reminder
that the restriction to simple tangles is a particularly special case.

Figure 8: The knots 12a
427

and 15n
45009

.

7.4 Kanenobu’s knots

It has been shown that the action of B3 may be iterated to obtain infinite families. We
illustrate the case n D 1 of Theorem 5.1 so that the braid in question is once more
ˇ D ��1

1
�2�
�2
1

to obtain a particular infinite family of knots with identical Khovanov
homology. Let K DKˇ

�
;

�
so that K� DKˇ

�
;

�
; the knots K D 41#41 ,

K� D 89 and K�2

D 12n
462

are shown in Figure 9. By Lemma 3.1 these knots have
the same Khovanov homology, while 41#41 and 89 (equivalently 89 and 12n

462
) have

different HOMFLYPT polynomials. It should be noted that 41#41 and 12n
462

share the
same HOMFLYPT polynomial, and the interested reader should consult [5] in which
Kanenobu originally classified this example. In particular, this provides an infinite
family of distinct knots with homology Kh.89/, and the case nD 1 of Theorem 5.1.

Figure 9: The first three knots in Kanenobu’s sequence.

7.5 Mutants

The family of non-alternating knots with 13 crossings given in Figure 10 illustrate
the construction used in the proof of Proposition 6.1. The four knots in question are
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x� //

mutate

""

mutate

}}zzt t t t

x� //

Figure 10: Two pairs of mutants illustrating Proposition 6.1.

arranged in Figure 10 so that pair in the first row (13n
164

and 13n
922

) are related by
twisting (and hence have identical Khovanov homology by Lemma 3.1), as are the pair
in the second row (13n

161
and 13n

795
). Note that we are acting by the inverse x� in this

example. The columns are related by mutation (flipping across the horizontal axis),
and the diagonal arrow in Figure 10 corresponds to the left action of � 2B2 used in
the proof of Proposition 6.1, the second step of the mutation relating 13n

164
and 13n

161

(the knots in the left column of Figure 10). That is, each mutant pair (and indeed, any
mutant pair of form given in Section 6) can be seen as the composition of right (twist)
action, followed by a left (untwist) action.
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