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A homological definition of the HOMFLY polynomial

STEPHEN BIGELOW

We give a new definition of the knot invariant associated to the Lie algebra suNC1 .
Knowing these for all N is equivalent to knowing the HOMFLY polynomial. Our
definition requires that the knot or link be presented as the plat closure of a braid. The
invariant is then a homological intersection pairing between two immersed manifolds
in a configuration space of points in a disk. This generalizes previous work on the
Jones polynomial, which is the case N D 1 .

57M25; 57M27, 20F36

1 Introduction

The Jones polynomial [7] was the first of the new generation of knot invariants, now
called “quantum invariants”. Soon after its discovery, several people independently
discovered a two variable version, now usually referred to as the HOMFLY polynomial
[5]. In this paper, we will be working with the invariant of type AN , which can be
obtained by specializing the HOMFLY polynomial XL.q; �/ to the value � D qN .
One motivation for studying this specialization is that it is related to the representation
theory of suNC1 .

Fix an integer N > 1, and let P be the invariant of type AN . This is an invariant of
oriented knots and links that takes values in the ZŒq˙1=2�. It satisfies the following
skein relation:

q.NC1/=2P

� �
� q�.NC1/=2P

� �
D .q1=2

� q�1=2/P

� �
Here, the three diagrams represent three links that are the same except inside a small
ball, where they are as shown. We can define P to be the unique invariant that satisfies
the above skein relation and takes the value one for the unknot.

In [1], I presented a definition of the Jones polynomial as a homological intersection
pairing between a certain pair of manifolds in a configuration space. The aim of this
paper is to give a similar definition of the invariant of type AN . The Jones polynomial
is the special case N D 1. The HOMFLY polynomial can be reconstructed from the
values of all invariants of type AN , which (perhaps) excuses the title of this paper.
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Suppose ˇ is a braid with 2n strands and with orientations on the strands. Suppose
the orientations are such that, reading from left to right along the bottom of ˇ , the
orientations are down, up, down, up, and so on, and reading from left to right along the
top of ˇ , the orientations are also down, up, down, up, and so on. Let ž be the plat
closure of ˇ , obtained by joining adjacent pairs of nodes at the top and at the bottom
of ˇ . The orientations on strands of ˇ give consistent orientations to the components
of ž. Every oriented knot or link can be obtained in this way.

The first goal of this paper is to define an invariant Q.ˇ/. In Section 2, we define a
configuration space C . This is similar to the space C in [1] except that we assign
colors to the puncture points and the points that make up a configuration. The colors
determine which pairs of points are allowed to coincide, and how to compute the
monodromy of a loop in the configuration space. In Section 3, we define immersed
manifolds T and S in C . In Section 4, we define Q.ˇ/ as an intersection pairing
between S and the image ˇ.T / of T .

The second goal of this paper is to prove that Q.ˇ/D P . ž/. In Sections 5, 8, and 9,
we prove that Q.ˇ/ is invariant under certain moves. By a result of Birman [3], this
implies that Q.ˇ/ is an invariant of the oriented knot or link ž. The more difficult
moves require some special tools, which we develop in Section 6 and Section 7. In
Section 10, we prove that Q.ˇ/ satisfies the above skein relation. In Section 11, we
bring these results together to show that Q.ˇ/D P . ž/.

Lawrence gave similar homological definitions of the Jones polynomial and the invariant
of type AN in [8] and [9]. The definition here appears different, and includes a more
precise description of the relevant manifolds in the configuration space. Under close
examination, the two approaches might turn out to be the same.

One possible future application of this paper is to generalize the ideas in [10]. There,
Manolescu gives evidence of a connection between the definition of the Jones poly-
nomial in [1] and the invariant defined by Seidel and Smith in [11]. Both definitions
involve intersections between manifolds in configuration spaces. However Seidel and
Smith obtain the additional structure of a graded abelian group, which they conjecture
to be a collapsed version of Khovanov’s homology theory. It would be interesting to
know whether the intersection pairing in [1] and in this paper could be refined to give
a graded abelian group.

Acknowledgements This research was partly supported by NSF grant DMS-0307235
and Sloan Fellowship BR-4124. I am grateful to Ciprian Manolescu and Dylan Thurston
for their interest and useful conversations.
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2 Preliminaries

In this section, we fix some notation and terminology. Throughout this paper, N and
n will be fixed positive integers, and we let k D 2n, and m D N n. We also fix a
unit complex number q that is not a root of unity, and a choice of square root q1=2 .
(We work over C, but most of our construction works over a more general ring, as we
briefly discuss at the end of the paper.)

2.1 The configuration space

Let D be the unit disk in the complex plane, and let

pD .p1; : : : ;pk/

be a sequence of k points ordered from left to right on the real line in D . Let c be the
k –tuple

cD .c1; : : : ; ck/D .0;N C 1; 0;N C 1; : : : ; 0;N C 1/:

We use the notation Dc to denote the triple .D;p; c/. We call this a disk with puncture
points p1; : : : ;pk , having colors c1; : : : ; ck respectively.

Let c0 be the m–tuple

c0 D .c01; : : : ; c
0
m/D .1; 2; : : : ;N; 1; 2; : : : ;N; : : : ; 1; 2; : : : ;N /:

Let zCc0.Dc/ be the set of all m–tuples .x1;x2; : : : ;xm/ of points in D such that

� if 1� i < j �m and jc0i � c0j j � 1 then xi ¤ xj , and

� if 1� i �m, 1� j � k , and jc0i � cj j D 1 then xi ¤ pj .

Now let W be the group of permutations w of f1; : : : ;mg such that c0i D c0
w.i/

for all
i D 1; : : : ;m. Let Cc0.Dc/ be the quotient of zCc0.Dc/ by the induced action of W .

Thus a point in Cc0.Dc/ is a configuration of m points in D , which we call mobile
points. Each mobile point is assigned a color. Two mobile points of the same color
are indistinguishable. A mobile point may coincide with a puncture point or another
mobile point if and only if their colors differ by at least two.

We will occasionally use configuration spaces similar to Cc0.Dc/ but with different
sequences of colors c0 and c. From now on, let C denote Cc0.Dc/.
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2.2 Braids

The braid group Bk has many equivalent definitions, including: the mapping class
group of a k –times punctured disk, the fundamental group of a certain configuration
space, and the group of geometric braids with k strands. We will move freely between
these definitions. We will also allow some extra structure, such as colors or orientations
on the strands of a geometric braid. Elements of the mapping class group act on the
left, paths in a configuration space compose from left to right, and geometric braids
read from top to bottom.

A braid in Bk induces a permutation of the puncture points in Dc . Let the mixed braid
group Bc be the subgroup of Bk consisting of braids that preserve the colors of the
puncture points. Throughout this paper, ˇ will be a fixed element of Bc .

Think of ˇ as a geometric braid and orient its strands in such a way that the upward
strands are colored N C 1 and the downward strands are colored 0. The condition
ˇ 2 Bc is equivalent to the condition on the orientations described in Section 1. We
can take the plat closure of ˇ to obtain an oriented knot or link ž. Let P . ž/ be the
invariant of ž of type AN .

We will represent elements of �1.C / using braids as follows. Let cc0 denote the
concatenation

cc0 D .c1; : : : ; ck ; c
0
1; : : : ; c

0
m/:

Let G be group of those mixed braids in Bcc0 whose first k strands are straight. Then
�1.C / is the quotient of G obtained by equating any two braids that differ by a
sequence of crossing changes involving pairs of strands whose colors differ by at least
two. Thus we can represent an element of �1.C / by a braid in G (nonuniquely). We
will put the straight strands corresponding to puncture points in whatever position is
convenient, and not necessarily on the left.

2.3 Two homomorphisms

We now define two group homomorphisms

�W Bc! f˙qi=2
j i 2 Zg;

�0W �1.C /! f˙qi
j i 2 Zg:

Each of these maps into the multiplicative group of unit complex numbers.

In the following definitions, a crossing in a braid is called positive if the strand going
from the top right to the bottom left passes over the other strand, and negative otherwise.
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The orientations of the strands of colors 0 and N C 1 play no role in this paper except
to determine the orientations on the components of ž.

Suppose g is an element of Bc . Represent g by a braid diagram. To every positive
crossing in g , associate the monomial

� qN=2 if it involves two strands of the same color, and

� q�.NC1/=2 if it involves two strands of different colors.

To every negative crossing, associate the reciprocal of the term associated to the
analogous positive crossing. Let �.g/ be the product of the monomials associated to
the crossings of g .

Now suppose g is an element of �1.C /. Represent g by a braid diagram. To every
positive crossing in this braid diagram, associate the term

� �q�1 if it involves two strands of the same color,

� q1=2 if it involves two strands whose colors differ by one, and

� 1 otherwise.

To every negative crossing, associate the reciprocal of the term associated to the
analogous positive crossing. Let �0.g/ be the product of the terms associated to the
crossings of the braid diagram. The exponent of q in �0.g/ is an integer, since there
must be an even number of crossings involving strands whose colors differ by one.

3 A torus and a ball

The aim of this section is to define an immersion ˆ from an m–dimensional torus to C ,
and an embedding ‰ from an open m–ball to C . (As usual, mDN n.) Until otherwise
stated, we assume that nD 1, and hence that cD .0;N C 1/ and c0 D .1; 2; : : : ;N /.

Let S1 be the unit circle centered at the origin in the complex plane, and let T be the
product of N copies of S1 . Let A and B be the intersections of S1 with the closed
upper and lower half planes respectively.

Let 1; : : : ; N W S
1 ! D be figures of eight as shown in Figure 1. Assume i is

parametrized so that i jA is a loop that winds counterclockwise around p1 , and i jB

is a loop that winds clockwise around p2 . Thus the loops i.A/ are concentric loops
around p1 , and the loops i.B/ are concentric loops around p2 . We assume that the
points i.1/ are all on the real line, and

p1 < 1.1/ < � � �< N .1/ < p2:
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p1 p2 13

3.1/

Figure 1: Figures of eight for N D 3 , with 3.A/ and 2.B/ in bold

3.1 A special case

We now define ˆW T ! C when nD 1 and N D 2. The most difficult part of ˆ is
given by the following lemma.

Lemma 3.1 There is an immersion ˆ1W B �A! C such that

ˆ1j@.B�A/ D .1 � 2/j@.B�A/:

Proof It suffices to show that the loop .1�2/j@.B�A/ is null-homotopic in C . This
loop is the commutator of the loops ˛ and ˇ , where ˛W A! C is given by

˛.s/D .1.1/; 2.s//;

and ˇW B! C is given by

ˇ.s/D .1.s/; 2.1//:

We can represent ˛ by a braid as follows:

˛ D

Here, the strands are colored 0, 1, 2, and 3, from left to right. The straight strands on
the far left and the far right represent the puncture points.

Recall that the strand of color 2 may pass through the strand of color 0. Thus ˛ is
homotopic relative to endpoints to the loop ˛0 represented by the braid as follows:

˛0 D

Similarly, ˇ is homotopic relative to endpoints to ˇ0 D .˛0/�1 . Obviously ˛0 and ˇ0

commute, thus completing the proof.
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We can now define ˆW T ! C as follows.

ˆ.s1; s2/D

�
ˆ1.s1; s2/ if .s1; s2/ 2 B �A,
.1.s1/; 2.s2// otherwise.

This completes the definition of ˆ when n D 1 and N D 2. We can choose ˆ1 to
have some properties that will be useful later.

Lemma 3.2 The function ˆ1 in the previous lemma can be chosen so that for every
.x1;x2/ in its image,

� x1 lies in the closed disk bounded by 1.B/,

� x2 lies in the closed disk bounded by 2.A/, and

� at least one of x1 and x2 lies in the intersection of these two disks.

Proof Let C 0 be the set of points .x1;x2/ 2 C satisfying the three requirements of
the lemma. Let C 00 be the set of points .x1;x2/ 2 C 0 such that x1 and x2 both lie in
the intersection of the closed disks bounded by 1.B/ and 2.A/. Let ˛ , ˛0 , ˇ and
ˇ0 be as in the proof of the previous lemma.

Any reasonable choice of homotopy from ˛ to ˛0 relative to endpoints will lie in C 0 .
Further, we can assume that ˛0 lies in C 00 . Similarly, we can assume that the homotopy
from ˇ to ˇ0 lies in C 0 , and ˇ0 lies in C 00 . The commutator of ˛0 and ˇ0 is null
homotopic as a loop in C 00 .

3.2 General values of N

We now define ˆW T ! C when nD 1 and N is any positive integer. We will use
functions

ˆ1; : : : ; ˆN�1W B �A!D �D;

similar to ˆ1 for the case N D 2. Specifically,

ˆi j@.B�A/ D .i � iC1/j@.B�A/;

and for all .xi ;xiC1/ in the image of ˆi ,

� xi ¤ xiC1 ,

� xi lies in the closed disk bounded by i.B/,

� xiC1 lies in the closed disk bounded by iC1.A/, and

� at least one of xi and xiC1 lies in the intersection of these two disks.

Suppose .s1; : : : ; sN / 2 T . For i D 1; : : : ;N , let xi be as follows.
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� If si ; si�1 2A then xi D i.si/.

� If si 2A and si�1 2 B then xi is the second coordinate of ˆi�1.si�1; si/.

� If si ; siC1 2 B then xi D i.si/.

� If si 2 B and siC1 2A then xi is the first coordinate of ˆi.si ; siC1/.

Here, for convenience, we take s0 to be a point in A nB and sNC1 to be a point in
B nA. Let ˆ.s1; : : : ; sN /D .x1; : : : ;xN /.

We must show that ˆ is a well defined map from T to C . First note that if two
or more of the conditions apply in the definition of xi then they all give the value
xi D i.si/. Next note that x1 ¤ p1 , since either x1 D 1.s1/ or x1 is the first
coordinate of ˆ1.s1; s2/. Similarly, xN ¤ p2 . It remains to show that xi ¤ xiC1 for
all i D 1; : : : ;N � 1. There are several cases to check.

First, suppose si 2 A. Then either xi D i.si/ or xi is the second coordinate of
ˆi�1.si�1; si/. Also, either xiC1 D iC1.siC1/ or xiC1 is the first coordinate of
ˆiC1.siC1; siC2/. In all cases, xi lies in the disk bounded by i.A/, and xiC1 does
not. Thus xi ¤ xiC1 .

The case siC1 2 B is similar.

Finally, if si 2 B and siC1 2 A then .xi ;xiC1/D ˆi.si ; siC1/, so xi ¤ xiC1 . This
completes the proof that ˆ is a well defined map from T to C . The following lemma
gives one of its important properties.

Lemma 3.3 �0 ıˆ�.�1.T //D f1g.

Figure 2: A braid representing g2 when N D 2

Proof For i D 1; : : : ;N , let gi W S
1! T be the map gi.s/D .1; : : : ; 1; s; 1; : : : ; 1/,

where the s occurs in entry number i . Then ˆ ıgi is the loop in C given by

ˆ ıgi.s/D .1.1/; : : : ; i�1.1/; i.s/; iC1.1/; : : : ; N .1//:
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Represent this by a mixed braid with N C 2 strands. Every strand is straight except
for the strand with color i , which describes a figure of eight. See Figure 2. There
are two positive crossings that involve a pair of strands with colors i and i � 1, and
two negative crossings that involve a pair of strands with colors i and i C 1. Thus
�0.ˆ ıgi/D 1. Since the loops gi generate �1.T /, this completes the proof.

3.3 Working with the immersed torus

Let T 0 be the union of the N C 1 subsets of T of the form

A� � � � �A�B � � � � �B;

where the product is of some number of copies of A (possibly zero) followed by some
number of copies of B (possibly zero). Then the restriction of ˆ to T 0 is simply
1 � � � � � N . This makes it fairly easy to work with ˆ.T 0/.

Now let X be the intersection of the disks bounded by 1.B/ and N .A/, and let
CX be the set of points in C that include at least one mobile point in X . The image
under ˆ of any point in T nT 0 involves at least one of the maps ˆ1; : : : ; ˆN�1 . Thus
ˆ.T nT 0/ is contained in CX . In practice, we can often assume that X is small, and
that we can safely ignore ˆ.T nT 0/.

From now on we will omit any reference to ˆ, and treat T as if it were an oriented
N –dimensional submanifold of C .

3.4 A basepoint

Choose points t1; : : : ; tN in the disk such that

� ti 2 i.B/,

� ti is below the real line, and

� the real parts of t1; : : : ; tN are in increasing order and lie between N .1/ and
p2 .

Let tD .t1; : : : ; tN /. This will be our basepoint of T .

For i D 1; : : : ;N , let �i W I !D be a vertical edge from a point on the lower half of
@D up to ti . Let � W I ! C be the path

�.s/D .�1.s/; : : : ; �N .s//:

Let xD �.0/. This will be our basepoint for C . Thus � is a path from the basepoint x
of C to the basepoint t of T .
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3.5 A ball

Let
S D f.s1; : : : ; sN / 2 RN

j 0< s1 < � � �< sN < 1g:

This is an open N –ball. Let  W I ! D be the straight edge from p1 to p2 . Let
‰W S ! C be the embedding

‰.s1; : : : ; sN /D . .s1/; : : : ;  .sN //:

From now on we will omit any reference to ‰ , and treat S as an oriented N –
dimensional submanifold of C .

For i D 1; : : : ;N , let �i W I ! D be a vertical edge from xi to a point on  . Let
�W I ! C be the map

�.s/D .�1.s/; : : : ; �N .s//:

Let sD �.1/. This will be our basepoint for S . Thus � is a path from the basepoint x
of C to the basepoint s of S .

3.6 General values of n

We now define T and S for any positive integers n and N .

Let C1DC.1;:::;N /.D.0;NC1//. This is the configuration space in the case nD 1. Note
that Dc can be obtained by gluing together n (topological) copies of D.0;NC1/ side
by side. This defines an embedding from the product of n copies of C1 into C .

Let T be the product of n copies of the immersed N –torus in C1 as defined in the
case nD 1. Let � be the product of n copies of the path in C1 . This is a path from a
basepoint x of C to a basepoint t of T .

Define an open m–ball S and a path � from x to a basepoint s of S similarly, by
taking a product of n copies of the versions when nD 1.

4 Definition of the invariant

The aim of this section is to define the invariant Q.ˇ/. We give two equivalent
definitions of an intersection pairing hS; ˇ.T /i. The first gives an explicit method
of computation, and the second uses a more abstract homological approach. We then
define Q.ˇ/ to be a renormalization of hS; ˇ.T /i.
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4.1 An intersection pairing

We can represent ˇ by a homeomorphism from D to itself that fixes the boundary point-
wise, and preserves the colors of the puncture points. This induces a homeomorphism
from C to itself, which we also call ˇ .

Note that S and ˇ.T / are immersed m–manifolds in the .2m/–manifold C . By
applying a small isotopy we can assume that they intersect transversely at a finite number
of points. For each such intersection point y, let �y be the sign of the intersection at y,
and let �y be the composition of the following paths in order:

� ˇ ı �

� a path in ˇ.T / from ˇ.t/ to y
� a path in S from y to s
� x� , the path � in the opposite orientation

Note that �y is a closed loop based at x, since ˇ.x/D x. Let

hS; ˇ.T /i D
X

�y�
0.�y/;

where the sum is taken over all y 2 S \ˇ.T /.

We now describe how one could use this definition to explicitly compute hS; ˇ.T /i
for a given ˇ . The computation is complicated, and impractical in all but the simplest
examples. However it might provide an aid to understanding, and some aspects of it
will be used later in the paper.

We first describe how to recognize a point y in the intersection of S and ˇ.T /. Note
that y lies in S if and only if every interval Œp2i�1;p2i � contains N of the mobile
points of y, having colors 1; : : : ;N , reading from left to right.

Recall that T is the product of n tori, which we will call T1; : : : ;Tn . Corresponding
to each torus is a small disk X in D , as defined in Section 3.3. If necessary, apply an
isotopy to ˇ so that the images of these disks under ˇ are disjoint from the intervals
Œp2j�1;p2j � used to define S .

Suppose y 2 S . None of the mobile points in y lie in the image under ˇ of any of the
copies of the disk X . Thus y lies on ˇ.T / if and only if it lies in the image under ˇ
of the product of n copies of the set T 0 defined in Section 3.3. In other words, y lies
on ˇ.T / if and only if the following conditions hold for each Ti . Let 1; : : : ; N be
the figures of eight used to define Ti . Then, for every j D 1; : : : ;N , y must include
one mobile point of color j on ˇ.j /. This lies in one of the two loops that make
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up ˇ.j /. Taking the corresponding loops for all j , we must have the innermost N1

loops around one of the puncture points, and the innermost N2 loops around the other,
for some N1 and N2 with N1CN2 DN .

Using the above descriptions, it is possible to list every point y in the intersection of S

and ˇ.T /. It remains to compute the contribution of each such y to hS; ˇ.T /i.

First we describe how to find a braid diagram representing the path �y in the case
nD 1. The two strands corresponding to puncture points will always be straight. For
i D 1; : : : ;N , the strand of color i describes a path along ˇ.�i/ and then along ˇ.i/

to the mobile point that lies on this figure of eight. There is some flexibility in the
relative timing of these paths. For example, we can make any choice in which the paths
along ˇ.i/ occur in the order i D 1; : : : ;N .

A crossing in the braid diagram of �y corresponds to a configuration in which two
mobile points lie in the same vertical line. Here, we assume �y is in general position.
The last half of �y , which lies in S and � , contributes no crossings to the braid diagram.

The case n> 1 is basically the same as the case nD 1. The 2n strands corresponding
to puncture points are straight. Each of the remaining m strands describes a path along
the copies of ˇ.�i/ and ˇ.i/ from the appropriate torus ˇ.Tj /. Within each torus Tj ,
perform the paths along ˇ.i/ in the order i D 1; : : : ;N .

Finally, we describe how to compute the sign �y . Each mobile point of y is a point of
intersection between some edge from p2j�1 to p2j and the image under ˇ of one of
the figures of eight used to define T . Determine the sign of this intersection, taking
the oriented edge first, and the oriented figure of eight second. Then �y is the product
of the signs of the intersections at the mobile points of y, multiplied by the sign of the
permutation of the mobile points induced by the loop �y .

This completes the computation of hS; ˇ.T /i. By Lemma 3.3, �0.�y/ does not depend
on the choice of path in ˇ.T /. It remains to check that the sum is invariant under isotopy
of ˇ . One could do this by checking invariance under certain moves. However the
real reason hS; ˇ.T /i is well defined is that it computes the homological intersection
pairing described below.

4.2 A homological definition

We now define some homology modules of C .

Let L be the flat complex line bundle over C with monodromy given by �0 . Let h� ; �i
be the sesquilinear inner product on C given by hx;yi D xxy . This inner product is
preserved by the monodromy of L, so it gives a well-defined inner product on the fiber
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of L at any point. In other words, L is a Hilbert line bundle. Topologists may prefer
to give C the discrete topology and think of L as a covering space of C . Each fiber
of this covering space has the structure of a 1–dimensional Hilbert space, and these
structures are locally consistent.

Let Hm.C IL/ denote the m–dimensional homology of C with local coefficients. For a
definition of homology with local coefficients, see, for example, Hatcher [6, Section 3H].
It is similar to singular homology with module coefficients, except that the coefficient
of a simplex is a lift of that simplex to L.

Let H
f̀

m .C IL/ denote the m–dimensional locally finite homology of C with local
coefficients (also called Borel–Moore homology). For a definition of locally finite
homology, see, for example, Hatcher [6, Exercise 3H.6]. Briefly, the idea is to allow
infinite sums of simplices with local coefficients, as long as every compact set in C

meets only finitely many simplices.

From now on, all homology modules will be assumed to use coefficients in L. For
example, we will write Hm.C / to mean Hm.C IL/. We also use relative versions of
these homology theories. Recall the following basic theorems.

Theorem 4.1 (Poincaré–Lefschetz Duality) H m.C / and H
f̀

m .C; @C / are isomor-
phic.

Theorem 4.2 (The Universal Coefficient Theorem) H m.C / and Hom.Hm.C /;C/
are conjugate-isomorphic.

These theorems imply that H
f̀

m .C; @C / is conjugate-isomorphic to Hom.Hm.C /;C/.
Thus there is a sesquilinear pairing

h� ; �iW H f̀
m .C; @C /�Hm.C /! C:

The precise definition of this pairing follows from the more explicit statements of
Poincaré–Lefschetz duality and the universal coefficient theorem, which give definitions
of the isomorphisms.

Let ˇ� be the automorphism of �1.C / induced by ˇ . It is not too hard to show that
�0 ı ˇ� D �

0 . Thus ˇ lifts to an action on L. Choose this lift to act as the identity
on the fiber over the basepoint x. Thus there are induced actions of ˇ on Hm.C /,
Hm.C; @C / and H

f̀
m .C /. By abuse of notation, we use ˇ to denote every one of

these induced actions.

For the rest of this paper, fix an identification of the fiber over x with C. Let z� be the
lift of � to L starting at the element 1 of the fiber over x. By Lemma 3.3, we can
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lift T to an immersed torus zT in L such that zT contains z�.1/. This determines an
element of Hm.C /, which we also denote by T .

Similarly, � determines a lift zS of S to L. Let S denote the open m–ball, the corre-
sponding element of H

f̀
m .C /, and also the corresponding element of H

f̀
m .C; @C /.

Then hS; ˇ.T /i is the sesquilinear pairing of S 2H
f̀

m .C; @C / and ˇ.T / 2Hm.C /.

We list some properties of the pairing h� ; �i.

� It is the same as the previous more computational definition.

� It is sesquilinear (conjugate-linear in the first entry and linear in the second).

� It is invariant under the action of Bc .

� It has the following symmetry property: if v1; v2 2Hm.C / and v0
1
; v0

2
are their

images in H
f̀

m .C; @C / then hv0
1
; v2i D .�1/mhv0

2
; v1i.

These all follow from standard results in homology theory.

As an aside, note that it might be possible to obtain a unitary representation of Bc
with some more work along these lines. Compare the result of Budney [4] that the
Lawrence–Krammer representation is negative-definite Hermitian.

4.3 Definition of the invariant

We are finally ready to define the invariant Q.ˇ/. Let

ŒN C 1�D
q.NC1/=2� q�.NC1/=2

q1=2� q�1=2
:

This is the quantum integer corresponding to N C 1. Then let

Q.ˇ/D
�.ˇ/

ŒN C 1�qm=2
hS; ˇ.T /i:

The main result of this paper is that Q.ˇ/D P . ž/.

5 Height-preserving isotopy

For all i D 1; : : : ; n� 1, let � 0i D �2i�2iC1�2i�1�2i . The aim of this section is to
prove the following.

Lemma 5.1 Q.�2
1
ˇ/DQ.ˇ�2

1
/DQ.� 0iˇ/DQ.ˇ� 0i/DQ.ˇ/.
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Assume the plat closure ž is defined so that all maxima are at the same height and all
minima are at the same height. Then the above lemma is equivalent to the statement
that Q.ˇ/ is invariant under height preserving isotopy of ž. We will not use this
formulation, but mention it by way of motivation.

Claim Q.�2
1
ˇ/DQ.ˇ/.

Proof We have
�.�2

1ˇ/D q�.NC1/�.ˇ/:

By this and the properties of the sesquilinear pairing, it suffices to show

�2
1 S D qNC1S:

We can choose the function �2
1

to act as the identity on the subset S of C . It remains
to show that �2

1
acts as multiplication by qNC1 on the fiber over s.

Figure 3: .�2
1 �/ � .

x�/ , with relevant crossings shaded

Let � be the concatenation of the paths �2
1
� and x� . This is represented by a braid in

which strands of colors 1; : : : ;N make a positive full twist around two with colors
0 and N C 1. For example, Figure 3 shows the case where nD 2 and N D 3. The
relevant crossings are those between strands of neighboring colors. There are N C 1

pairs of strands that have neighboring colors, and each such pair makes two positive
crossings. Thus

�0.�/D .q1=2/2NC2
D qNC1:

Thus �2
1
.S/D qNC1S , as required.

Claim Q.� 0iˇ/DQ.ˇ/.
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Proof We have
�.� 0iˇ/D q�1�.ˇ/:

By this and the properties of the sesquilinear pairing, it suffices to show

� 0iS D qS:

We can choose the function � 0i to preserve S as a subset of C . However � 0i reverses the
order of two of the N –balls used to define S . This represents a change of orientation
if and only if N is odd. It remains to show that � 0i acts as multiplication by .�1/N q

on the fiber over s.

Figure 4: .� 01�/ � .x�/ , with relevant crossings shaded

Let �i be the concatenation of the paths � 0i� and x� . This is represented by a braid
in which two collections of N parallel strands of colors 1; : : : ;N form a large letter
X enclosing two strands of colors 0 and N C 1. For example, Figure 4 shows the
case where nD 2 and N D 2. There are a total of 4N crossings that involve strands
corresponding to puncture points. Of these, there are N crossings between strands
whose colors differ by 1. There are a total of N 2 crossings that do not involve a
puncture point. Of these, there are N crossings between strands of the same color, and
2.N � 1/ crossings between strands whose colors differ by 1. Altogether we have

�0.�i/D .�q�1/N .q1=2/2NC2
D .�1/N q:

Thus � 0i.S/D .�1/N qS , as required.

It remains to show that Q.ˇ�2
1
/ D Q.ˇ/ and Q.ˇ� 0i/ D Q.ˇ/. It suffices to show

that �2
1

T D qNC1T and � 0i.T / D qT . The proof of these identities is the same as
the proof of the analogous identities for S given in the previous two claims. This
completes the proof of the lemma.

6 Barcodes

Before we prove the invariance of Q.ˇ/ under other moves, we will look more closely
at H

f̀
m .C / and Hm.C; @C /. In the process, we will introduce a useful tool I call a

barcode.
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6.1 A basis for locally finite homology

Let CR be the set of points in C that are configurations of points on the real line in D .

Lemma 6.1 The map H
f̀

m .CR/!H
f̀

m .C / induced by inclusion is an isomorphism.

For the details of the proof, see Lemma 3.1 of [2]. The idea is to vertically “squash”
configurations of points in the disk to configurations of points in the real line. The
only difficulty is that a configuration may involve two points (either two mobile points
or a mobile point and a puncture point) that lie in the same vertical line, but whose
colors differ by at most one. Such a configuration would be “sent to infinity” as it was
squashed to the real line. Since we are using locally finite homology, this does not pose
a serious problem.

We now enumerate the components of CR .

Definition 6.2 A code sequence is a permutation of the sequence cc0 that contains c
as a subsequence.

Suppose S 0 is a connected component of CR . Choose a point yD .y1; : : : ;ym/ in S 0

such that y1; : : : ;ym are distinct from each other and from the puncture points. Let
c00 D .c00

1
; : : : ; c00

mCk
/ be the sequence of colors of mobile points and puncture points,

reading from left to right on the real line. Then c00 is a code sequence. We say c00

represents S 0 (nonuniquely).

Suppose i is such that jc00i �c00
iC1
j � 2 and at least one of c00i and c00

iC1
is in f1; : : : ;N g.

Then we can exchange c00i and c00
iC1

in c00 without altering the connected component of
CR it represents. This corresponds to moving a mobile point through another mobile
point or a puncture, provided their colors permit this. We say two code sequences are
equivalent if they are related by a sequence of such transpositions. The equivalence
classes of code sequences enumerate the connected components of CR .

Definition 6.3 A code sequence is trivial if it is equivalent to a code sequence whose
first or last entry lies in f1; : : : ;N g.

Suppose S 0 is the connected component of CR corresponding to a code sequence c00 .
If c00 is trivial then S 0 contains a point .y1; : : : ;ym/ such that y1 or ym lies on @D . In
this case, S 0 is homeomorphic to the closed upper half space in Rm , so H

f̀
m .S 0/D 0.

If c00 is not trivial then every point in S 0 is a configuration of points between p1 and
p2n . In this case, S 0 is homeomorphic to an Rm , so H

f̀
m .S 0/D C.
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To those more familiar with ordinary homology, it may seem strange that Rm has
nontrivial locally finite homology, but the closed open half space does not. One way
to think of locally finite homology is as homology relative to the complement of a
large compact set. (To be precise, one should take an inverse limit.) For either Rm or
the closed upper half space, we can take homology relative to the complement of a
large closed ball. However in the case of the closed upper half space, this closed ball
includes part of the boundary of the space.

For every nontrivial code sequence c00 , choose a nonzero element of H
f̀

m .S 0/, where
S 0 is the corresponding component of CR . By Lemma 6.1, this gives a basis for
H

f̀
m .C /. To define this basis precisely, we would need to specify an orientation and a

lift to L for every component of CR . In practice, it often suffices to specify an element
of H

f̀
m .C / up to multiplication by a nonzero scalar.

6.2 A basis for homology relative to boundary

Let
h� ; �i0W H f̀

m .C /�Hm.C; @C /! C
be the nondegenerate sesquilinear pairing defined using the more general version of
Poincaré–Lefschetz Duality. We define a basis of Hm.C; @C / that is dual to our basis
of H

f̀
m .C / with respect to this pairing.

Figure 5: An example of edges used to define a barcode

Let E1; : : : ;Em be vertical edges in D that are disjoint from each other and from the
puncture points, and have endpoints on @D . See, for example, Figure 5. Associate a
color to each edge such that the colors of the edges are some permutation of c0 . Let
c00 be the sequence of colors of vertical edges or puncture points, reading from left to
right. This is a code sequence.

Let Z be the set of configurations that consist of one point on each edge Ei , having
the same color as Ei . This is a properly embedded closed m–ball in C . Choose an
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oriented lift of Z to L that is not the lift to the zero section. This represents an element
of Hm.C; @C /. By abuse of notation, we will use Z to denote both the m–ball in
C and a corresponding element of Hm.C; @C /, and call either of these the barcode
corresponding to the code sequence c00 .

Two equivalent code sequences will give rise to the same barcode in Hm.C; @C /, up
to the choices of orientation and lift. If c00 is trivial then any barcode corresponding to
c00 is the zero element of Hm.C; @C /. For each equivalence class of nontrivial code
sequences, choose a corresponding barcode in Hm.C; @C /. I claim that these form a
basis for Hm.C; @C /.

Suppose S 0 is a component of CR and Z is a barcode. If S 0 and Z correspond to the
same nontrivial code sequence then they intersect at one point, so we can choose our
lifts and orientations so that hS 0;Zi0 D 1. On the other hand, if S 0 and Z correspond
to different nontrivial code sequences then they do not intersect, so hS 0;Zi0D 0. Thus
we have a basis of Hm.C; @C / that is dual to our basis for H

f̀
m .C /.

6.3 Images of the torus

Throughout this subsection, unless otherwise stated, we assume n D 1. We now
compute the image of T in H

f̀
m .C /, and also in Hm.C; @C /.

The unique nontrivial code sequence is .0; 1; : : : ;N C1/. Let Z be the corresponding
barcode. We specify an orientation and lift of Z as follows. Take Z to be the product
of edges of colors 1; : : : ;N in order, with each edge oriented upwards. We can assume
that Z contains the basepoint x. Choose the lift of Z to L that contains the point 1

in the fiber over x. Note that hS;Zi0 D 1.

Lemma 6.4 For any n� 1, the image of T in H
f̀

m .C / is .q� 1/mS .

Proof By the construction of T , it suffices to prove this lemma in the case nD 1.

There is only one nontrivial code sequence, so T is some scalar multiple of S in
H

f̀
m .C /. Let Z be as above. It remains to show that

hT;Zi0 D .q� 1/
N
:

This is equivalent to
hZ;T i D .1� q/N :

Let 1; : : : ; N W S
1!D be the figures of eight used to define T , and let E1; : : : ;EN

be the edges used to define Z . See Figure 6. For each i D 1; : : : ;N , i intersects Ei
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y�1

yC
1

1

2 y�
2

yC
2

E1 E2

Figure 6: Z and T in the case N D 2

at two points. Call these points yCi and y�i , where yCi is above y�i . Then Z and T

intersect at the 2N points of the form

.y˙1 ; : : : ;y
˙
N /:

Each such point y contributes a monomial ˙qk to hZ;T i.

Our basepoint of T is given by

tD .y�1 ; : : : ;y
�
N /:

The orientation of the intersection of Ei and i at y�i is positive. Thus t contributes
1 to hZ;T i.

Now suppose y and y0 are two points of intersection between Z and T that differ
only at the mobile point of color i , where y has y�i and y0 had yCi . Let � be the loop
in C that follows a path in T from y to y0 , and then follows a path in Z back to y0 .
This can be represented by a braid in which all strands are straight except the strand of
color i , which makes a positive full twist around the strands of color iC1; : : : ;N C1.
Thus �0.�/D q . Also note that the orientation of the intersection at y0 is the opposite
of that at y. Thus if y contributes ˙qk to hZ;T i0 then y0 contributes �qkC1 .

Summing the contributions of the 2N points in T \Z we obtain

hZ;T i D .1� q/N ;

as required.

Lemma 6.5 If n D 1 and Z is as above then the image of T in Hm.C; @C / is
.1C qC � � �C qN /Z .

Proof Recall that hS;Zi0 D 1. Thus it suffices to prove the identity

hS;T i D 1C qC � � �C qN :
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12
p1 p2

Figure 7: A stretched T for N D 2 , with X shaded

Let 1; : : : ; N be the figures of eight used to define T . Isotope T so that the disk X ,
as defined in Section 3.3, is below the interval Œp1;p2�. See Figure 7. Now each i

intersects the interval Œp1;p2� at two points ai and bi , where ai is to the left of bi .
Thus the points a1; : : : ; aN ; b1; : : : ; bN are in order from left to right.

For i D 0; 1; : : : ;N , let

yi D .a1; : : : ; ai ; biC1; : : : ; bN /:

Then y0; : : : ; yN are the points of intersection between S and T . Each of these
contributes a monomial ˙qk to hS;T i.

The sign of the intersection of S and T at yi is positive for all i D 0; : : : ;N . It is
not hard to see that yN contributes C1 to hS;T i. We now show that yi contributes
qN�i , for all i D 0; : : : ;N . Let � be a loop in C that follows a path in T from yi to
yi�1 , and then follows a path in S back to yi . We can choose � to be the loop where
all mobile points remain stationary except for the point of color i , which starts at ai ,
follows i around p2 to bi , and then moves horizontally back to ai . The point of
color i makes a full loop in the positive direction around a point of color i C 1, Thus
�0.�/D q , so the contribution of yi�1 is q times the contribution of yi . Summing the
contributions of yi for all i gives the desired identity.

7 A partial barcode

The aim of this section is to prove a certain identity in H
f̀

m .C; @C /, which will show
that S can be, in some sense, partially converted into a barcode.
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Recall that S was defined to be the product of n copies of an N –dimensional ball.
Call these N –balls S1; : : : ;Sn . Let Z be the nontrivial barcode for the case nD 1,
as defined in Section 6.3. Let Zi be the product

Zi D S1 � � � � �Si�1 �Z �SiC1 � � � � �Sn:

The basepoint s lies in Zi , so the path � determines a lift of Zi to L. We obtain an
element of H

f̀
m .C; @C /, which we also call Zi . The aim of this section is to prove

the following.

Lemma 7.1 .q� 1/N S D .1C qC � � �C qN /Zi in H
f̀

m .C; @C /.

Take nD 1 until otherwise stated. By Lemma 6.4, T D .q�1/N S . It remains to show
that

T D .1C qC � � �C qN /Z1:

But this is immediate from Lemma 6.5. We now describe a more direct approach to
proving this identity, and what the result of this approach must be, given that we already
know the identity holds.

First, vertically “stretch” T , as suggested by Figure 7. Continue this stretching process
and use an excision argument to obtain a disjoint union of barcodes. One of these
must be Z1 , with the desired coefficient. Any other barcode must correspond to a
trivial code sequence. Such a barcode represents zero in H

f̀
m .C; @C /, since one of

the vertical edges can be slid to the boundary of the disk.

We can apply most of this argument to the case n > 1. The only difficulty is that
the N –balls S1; : : : ;Si�1 and SiC1; : : : ;Sn prevent us from simply sliding a vertical
edge to the boundary of the disk. To overcome this problem, we prove a claim that
will imply that each such N –ball is in some sense “transparent” to any other mobile
point. We need to make some definitions before we can state the claim precisely.

We continue with the assumption nD1, but introduce a configuration space with one ex-
tra mobile point. Fix any j D 1; : : : ;N . Let c0j denote the sequence .1; 2; : : : ;N; j /.
Let C 0 be the configuration space

C 0 D Cc0j .Dc/:

Let S 0 be the product of the usual N –ball in C and a circle of color j around the
interval Œp1;p2�. This is an .N C 1/–dimensional submanifold of C 0 .

Let g be the generator of �1.S
0/. Then g can be represented by a braid with strands

of colors 0; 1; : : : ;N C 1 that are straight, and another strand of color j that makes
a positive full twist around all of the other strands. This strand makes two crossings
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with another strand of color j , and four crossings with the two strands of colors j ˙1.
Thus

�0.g/D .�q�1/2.q1=2/4 D 1:

Thus we can lift of S 0 to L. This represents an element of H
f̀

m .C /, which we also
call S 0 .

Claim S 0 D 0 in H
f̀

m .C 0/.

Proof First consider the case N D 1. Then S 0 is simply the product of an edge 
between the two puncture points and a circle ı around  .

The only nontrivial code sequence is .0; 1; 1; 2/. Let Z be the corresponding barcode.
It suffices to show that

hS 0;Zi0 D 0:

Let E and E0 be properly embedded vertical edges passing between the puncture
points, where E0 is to the right of E . As a closed 2–ball, Z is the product of E and
E0 , both having color 1.

 ı

a1

a2

a3

b1

b2

b3

E E0

Figure 8: S 0 and Z in the case N D 1

Let a1 , a2 and a3 be the points of intersection between E and  [ ı , reading from
top to bottom. Let b1 , b2 , and b3 be the analogous points of intersection between E0

and  [ ı . See Figure 8. There are four points of intersection between S 0 and Z :

� y1 D .a2; b1/

� y2 D .a2; b3/

� y3 D .a1; b2/

� y4 D .a3; b2/
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Each of these contributes a monomial ˙qk to hS 0;Zi0 . Assume the orientations and
lifts to L were chosen so that y1 contributes C1.

For i D 2; 3; 4, let �i be a loop that follows a path in Z from y1 to yi , and then
follows a path in S 0 back to y1 . These are represented by the braids

�2 D ; �3 D ; �4 D ;

where the strands have colors 0; 1; 1; 2, reading from left to right. Thus we have the
following:

� �0.�2/D .q
1=2/2 D q

� �0.�3/D .�q�1/�1 D�q

� �0.�4/D .�q�1/�1.q1=2/�2 D�1

For i D 2; 3; 4, let �i be the sign of the intersection of S 0 and Z at yi . For j D 1; 2; 3,
the intersections of the relevant edges at aj and bj have the same sign. The intersections
at a1 and a3 have opposite signs. The loops �3 and �4 transpose the two mobile points,
but �2 does not. Combining these facts, we obtain �2 D �3 D�1 and �4 D 1. Thus

hS 0;Zi0 D 1C �2�
0.�2/C �3�

0.�3/C �4�
0.�4/D 0:

Now consider the case N > 1. The only nontrivial code sequence is

.0; 1; : : : ; j � 1; j ; j ; j C 1; : : : ;N;N C 1/:

Let Z be the corresponding barcode. We must show that

hS 0;Zi0 D 0:

As a closed m–ball, Z is a product of vertical edges

E1; : : : ;Ej�1;Ej ;E
0
j ;EjC1; : : : ;EN :

Here, Ek has color k for k D 1; : : : ;N , and E0j has color j . Let yk be the point of
intersection between Ek and the interval Œp1;p2�. Any point of intersection between
S 0 and Z must include the mobile points yk of color k for every k ¤ j . These points
play no important role since they remain the same throughout the proof. The rest of
the computation proceeds exactly as in the case N D 1.

This completes the proof of the claim, and hence of the lemma.
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8 Bridge-preserving isotopy

We use the notation
�2112 D �2�

2
1�2:

The aim of this section is to prove the following.

Lemma 8.1 Q.�2112ˇ/DQ.ˇ�2112/DQ.ˇ/.

Combined with Lemma 5.1, this implies that Q.ˇ/ is invariant under any isotopy of ž

through links that are in bridge position.

Claim Q.�2112ˇ/DQ.ˇ/.

Proof We have
�.�2112ˇ/D q�1�.ˇ/:

By this and the properties of the sesquilinear pairing, it suffices to show that the identity

�2112S D qS

holds in H
f̀

m .C; @C /.

Let Z2 be as defined in Section 7. By Lemma 7.1, it suffices to show that �2112Z2 D

qZ2 in H
f̀

m .C; @C /. We can choose the function �2112 to act as the identity on the
subset Z2 of C . It remains to show that �2112 acts as multiplication by q on the fiber
over s.

Let � be the concatenation of the paths �2112� and x� . We can represent � by a braid
in which strands of color 1; : : : ;N wind in parallel around a strand of color 0. Thus
�0.�/D q . Thus �2112Z2 D qZ2 , as required.

It remains to show that Q.ˇ�2112/DQ.ˇ/. It suffices to prove the following.

Claim Q.ˇ�1/DQ.ˇ/.

Proof We have the following identities:

� qm=2 D qm.qm=2/

� ŒN C 1�D ŒN C 1�

� �.ˇ�1/D �.ˇ/
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By the definition of Q.ˇ/, it remains to show that

hS; ˇ�1.T /i D qm
hS; ˇ.T /i:

By Lemma 6.4 and the properties of the sesquilinear pairing, this is equivalent to

hˇ.T /;T i D .�1/mhT; ˇ.T /i:

This follows from the symmetry property of the pairing.

9 Markov–Birman stabilization

Recall that cD .0;N C 1; 0;N C 1; : : : ; 0;N C 1/. Let c1 D .0;N C 1/, and let cc1

denote the concatenation of these sequences. This is the sequence of colors of puncture
points when we replace n with nC 1. Let

�W Bc! Bcc1

be the obvious inclusion map. The Markov–Birman stabilization of ˇ is the braid

ˇ0 D .��1
2nC1�2n�2nC1/�.ˇ/:

The aim of this section is to prove the following.

Lemma 9.1 If ˇ0 is the Markov–Birman stabilization of ˇ then Q.ˇ0/DQ.ˇ/.

Combined with Lemma 5.1 and Lemma 8.1, this implies that Q.ˇ/ is an invariant of
the oriented knot or link ž.

Let D0 be the k C 2 times punctured disk Dcc1
. Let c0

1
D .1; : : : ;N /, and let c0c0

1

denote the concatenation of these sequences. Let C 0 be the configuration space

C 0 D Cc0c0
1
.D0/:

Let S 0 and T 0 be the obvious m0–ball and m0–torus in C 0 .

We have the identity
�.ˇ0/D qN=2.�.ˇ//:

Due to the coefficients in the definitions of Q.ˇ/ and Q.ˇ0/, it now suffices to show

(1) hS 0; ˇ0.T 0/i D hS; ˇ.T /i:

Let Zn be the subset of C as defined in Section 7. Let Z0n be the subset of C 0 defined
similarly, namely by replacing the second to rightmost N –ball of S 0 with a barcode.
By Lemma 7.1, Equation (1) is equivalent to

hZ0n; ˇ
0.T 0/i D hZn; ˇ.T /i:
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This, in turn, is equivalent to

(2) h�.Z0n/; �.ˇ/.T
0/i D hZn; ˇ.T /i;

where � D ��1
2nC1�

�1
2n �2nC1:

First let us look at �.Z0n/. Let D3 be the three times punctured disk consisting of points
in D0 to the right of a vertical line between p2n�1 and p2n . There is an embedding

Cc0.D0 nD3/�Cc0
1
.D3/! C 0:

We can assume that Zn lies in Cc0.D0 nD3/ and

Z0n DZn �SnC1;

where SnC1 is the obvious N –ball in Cc0
1
.D3/. Thus

�.Z0n/DZn � �.SnC1/:

Next we look at �.ˇ/.T 0/. Let D2 be the twice punctured disk consisting of points in
D0 to the right of a vertical line between p2n and p2nC1 . There is an embedding

Cc0.D0 nD2/�Cc0
1
.D2/! C 0:

We can assume that T lies in Cc0.D0 nD2/, and

T 0 D T �TnC1;

where TnC1 is the obvious N –dimensional torus in Cc0
1
.D2/. Then

�.ˇ/.T 0/D ˇ.T /�TnC1:

Equation (2) is now equivalent to

hZ � �.SnC1/; ˇ.T /�TnC1i D hZ; ˇ.T /i:

Any point of intersection between Z � �.SnC1/ and ˇ.T /�TnC1 must lie in

Cc0.D0 nD3/�Cc0
1
.D2/;

which is the intersection of the two relevant product spaces. Thus it suffices to show

(3) h�.SnC1/;TnC1i D 1;

where the intersection pairing is between submanifolds of Cc0
1
.D3/.

All that remains is to compute the intersection pairing of two specific submanifolds of
a specific configuration space, depending only on N . Figure 9 shows the case N D 1.
The case N > 1 is similar. There is one point of intersection y between �.SnC1/ and
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Figure 9: Computing h�.SnC1/;TnC1i when N D 1

TnC1 . The sign of this intersection is positive. Each of �.SnC1/ and TnC1 comes with
a path from a configuration of points on @D3 to y. These paths are homotopic relative
to endpoints. This completes the proof of Equation (3), and hence of the lemma.

10 The skein relation

Let ˇC D ��1
2
�1�2ˇ and ˇ� D ��1

2
��1

1
�2ˇ . The aim of this section is to prove the

following.

Lemma 10.1 q.NC1/=2Q.ˇ�/� q�.NC1/=2Q.ˇC/D .q
1=2� q�1=2/Q.ˇ/.

We have the identities

�.ˇC/D qN=2�.ˇ/;

�.ˇ�/D q�N=2�.ˇ/:

Thus it suffices to show

q1=2
hS; ˇ�.T /i � q�1=2

hS; ˇC.T /i D .q
1=2
� q�1=2/hS; ˇ.T /i:

Let Z2 be as defined in Section 7. By Lemma 7.1, it suffices to show that

q1=2
hZ2; ˇ�.T /i � q�1=2

hZ2; ˇC.T /i D .q
1=2
� q�1=2/hZ2; ˇ.T /i:

By some simple manipulation, this is equivalent to

h��1
2 .�1� 1/.�1C q/�2.Z2/; �

�1
2 �1�2ˇ.T /i D 0:

Thus it suffices to prove the identity

(4) ��1
2 .�1� 1/.�1C q/�2.Z2/D 0

in H
f̀

m .C; @C /.
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Let c0
1
D .1; : : : ;N /, and let c0

2
be the .m�N /–tuple

c02 D .1; : : : ;N; 1; : : : ;N; : : : ; 1; : : : ;N /:

Thus c0 is the concatenation c0
1
c0

2
.

Let D3 be the set of points in D on or to the left of a vertical line between p3 and
p4 . There is an obvious embedding

Cc0
1
.D3/�Cc0

2
.D nD3/! C:

We can write Z2 D S1 �Z0;

where S1 is the obvious N –ball in Cc0
1
.D3/, and Z0 lies in Cc0

2
.D nD3/.

Now �1 and �2 both act as the identity on D nD3 . Thus, to prove Equation (4), it
suffices to show that

(5) ��1
2 .�1� 1/.�1C q/�2.S1/D 0

in H
f̀

N
.Cc0

1
.D3//.

We now eliminate the conjugation by �2 in Equation (5). Let D0
3
D �2D3 . This is a

disk with three puncture points, which have colors 0; 0;N C 1, reading from left to
right. Let S 0

1
D �2S1 . Then Equation (5) is equivalent to the identity

(6) .�1� 1/.�1C q/.S 01/D 0

in H
f̀

N
.Cc0

1
.D0

3
//.

In the context of D0
3

, there are only two nontrivial code sequences up to equivalence.
These are .0; 1; 2; : : : ;N; 0;N C 1/ and .0; 0; 1; 2; : : : ;N;N C 1/.

Suppose Z is the barcode corresponding to .0; 1; 2; : : : ;N; 0;N C 1/. Then �1.S
0
1
/

and Z do not intersect, so
h�1.S

0
1/;Zi

0
D 0:

Now S 0
1

and Z intersect at a single point y. Similarly, �2
1
.S 0

1
/ and Z intersect at a

single point, which we can assume is also y. The signs of these intersections are the
same. Each of S 0

1
and �2

1
.S 0

1
/ comes with a path from y to x. These paths differ by

the direction the points of colors 1; : : : ;N pass around the middle puncture point. We
obtain the identity

hS 01;Zi
0
D qh�2

1 .S
0
1/;Zi

0:

A simple computation now gives

h.�1� 1/.�1C q/.S 01/;Zi
0
D 0:
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Now suppose Z is the barcode corresponding to .0; 0; 1; 2; : : : ;N;N C 1/. Then �1

acts as the identity on Z . It follows that

hS 01;Zi
0
D h�1.S

0
1/;Zi

0
D h�2

1 .S
0
1/;Zi

0:

A simple computation now gives

h.�1� 1/.�1C q/.S 01/;Zi
0
D 0:

This completes the proof of Equation (6), and hence of the lemma.

11 Conclusion

We are now ready to prove the main theorem of this paper. Let Q.ˇ/ be as defined in
Section 4. Let ž be the plat closure of ˇ , as an oriented knot or link. Let P . ž/ be the
invariant of ž of type AN , as defined in the introduction.

Theorem 11.1 Q.ˇ/D P . ž/.

Proof Birman [3] proved that two braids have isotopic plat closures if and only if they
are related by a sequence of moves of certain types. The original theorem applied to
unoriented knots, whereas we wish to apply it to oriented knots and links. However
the result is essentially the same. The moves are those given in Lemmas 5.1, 8.1, and
9.1. Thus Q.ˇ/ is an invariant of the oriented knot or link ž.

Suppose we have three links as shown in the skein relation given at the beginning of
this paper. By applying an isotopy, we can present these links as the plat closures of
braids ˇC , ˇ� and ˇ as in Section 10. By Lemma 10.1, the invariant Q satisfies the
required skein relation.

It remains only to prove that Q is correctly normalized to take the value one for the
unknot. Suppose nD 1 and ˇ is the identity braid. By Lemma 6.5,

hS;T i D 1C qC � � �C qN :

Thus Q.ˇ/D
1

ŒN C 1�qN=2
.1C qC � � �C qN /D 1;

as required.

We now show how to eliminate the factor of ŒN C1� from the definition of Q. Suppose
the rightmost strand of ˇ makes no crossings with any other strands. Note that any
oriented knot or link is the plat closure of some such braid ˇ .
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Let m0 Dm�N . Let c0
1
D .1; : : : ;N /. and let c0

2
be the m0–tuple

c02 D .1; : : : ;N; 1; : : : ;N; : : : ; 1; : : : ;N /:

Thus c0 is the concatenation c0
2
c0

1
. Recall that S was defined to be the product of n

copies of an N –dimensional ball. Let S 0 be the product of all but the rightmost of
these N –balls, as a subset of Cc0

2
.Dc/. Similarly, let T 0 be the product of all but the

rightmost N –torus used to define T . Let

Q0.ˇ/D �.ˇ/q�m0=2
hS 0; ˇ.T 0/i:

Theorem 11.2 If the rightmost strand of ˇ makes no crossings with any other strands
then Q0.ˇ/D P . ž/.

Proof Let Zn be as defined in Section 7. By Lemma 7.1,

.q� 1/
N
hS; ˇ.T /i D .1C qC � � �C qN /hZn; ˇ.T /i:

Let D1 be the once punctured disk consisting of points in D to the right of a vertical
line between p2n�1 and p2n . There is an embedding

Cc0
2
.D nD1/�Cc0

1
.D1/! C:

Then Zn D S 0 �Z , where Z is the obvious barcode in Cc0
1
.D1/.

Let D2 be the twice punctured disk consisting of points in D to the right of a vertical
line between p2n�2 and p2n�1 . There is an embedding

Cc0
2
.D nD2/�Cc0

1
.D2/! C:

Then T D T 0 �Tn , where Tn is the obvious N –torus in Cc0
1
.D2/.

By assumption, ˇ acts as the identity on D1 . Any point of intersection between Zn

and ˇ.T / must lie in
Cc0

2
.D nD2/�Cc0

1
.D1/;

which is the intersection of the two relevant product spaces. Thus

hZn; ˇ.T /i D hS
0; ˇ.T 0/ihZ;Tni:

By Lemma 6.4, hZ;Tni D .1� q/N :

A straightforward calculation now gives Q0.ˇ/DQ.ˇ/, as required.

The computational definition of the pairing works over any ring containing an invertible
element q . Thus Q0.ˇ/ is well defined over any ring containing an invertible element
q1=2 . Since it is a polynomial in q˙1=2 , the above theorem applies for any such ring.
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