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Reidemeister torsion of Seifert fibered homology lens spaces
and Dehn surgery

TERUHISA KADOKAMI

We provide necessary conditions on the Alexander polynomial of a knot K in a
homology sphere and on surgery coefficients p=q for the surgered manifold to be a
Seifert fibered space over S2 . As an application, we show that no p=q–surgery with
p > 3 on a knot in a homology sphere with the same Alexander polynomial as the
figure eight knot can produce a Seifert fibered space with base S2 . The main tool is
the abelian Reidemeister torsion.

55R55, 19J10, 57Q10, 57M25

1 Introduction

The Reidemeister torsion of manifolds has been studied since 1930’s (see Turaev [19]).
In particular, the Reidemeister torsion of Seifert fibered rational homology sphere is
studied in Némethi and Nicolaescu [12]. In this paper, we study the Reidemeister
torsion of Seifert fibered homology lens space over S2 . It is well-known that every
Seifert fibered homology lens space has S2 or RP2 as its base space, and every Seifert
fibered space over S2 has a framed link presentation as in Figure 1, where pi � 2 for
each i . We call pi the multiplicity of the singular fiber. See Orlik [14] or Saveliev [16],
for example. Thus the object of our study is such a 3–manifold that has the framed
link presentation of Figure 1 and has a finite cyclic first homology group. We extract
information on multiplicities of singular fibers from Reidemeister torsion by using the
norm and order of homology lens spaces which we introduced in [6], and apply the
information to the Seifert surgery problem to determine when Dehn surgery yields a
Seifert fibered space.

Throughout this paper, �d denotes a primitive d –th root of unity, H1.X / denotes the
first homology group of X with integer coefficients, and the operation in H1.X / is
written multiplicatively unless otherwise stated. We also use the following notation:

� Let A and B be elements of Q.�d /. Then A
:
D B means an equality of A and B

up to multiplication of ˙�m
d
.m 2 Z/.
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Figure 1: framed link presentation of a Seifert fibered space over S2

� Let ˛ be an element of Q.�d /. Then Nd .˛/ denotes the norm of ˛ associated to
the algebraic extension Q.�d / over Q.

� Let x be an element of .Z=pZ/� , the multiplicative group of the ring Z=pZ. Then
xx denotes the inverse element of x .

Let † be a homology sphere, and K a knot in †. Then �K .t/ is the Alexander
polynomial of K , and †.KIp=q/ is the result of p=q–surgery along K . More
generally, let LDK1[ � � � [Kn be an n–component link in †. Then �L.t1; � � � ; tn/

is the (n–variable) Alexander polynomial of L, and †.LIp1=q1; � � � ;pn=qn/ is the
result of pi=qi –surgeries along Ki for all i D 1; � � � ; n. We give a more precise
description of †.LIp1=q1; � � � ;pn=qn/ in Section 2.

Let M be a homology lens space with H1.M /Š Z=pZ .p � 2/, and T a generator
of H1.M /. Let d � 2 be a divisor of p , and  d W ZŒH1.M /� ! Q.�d / a ring
homomorphism such that  d .T / D �d . Then � d .M / 2 Q.�d /, the Reidemeister
torsion of M associated to  d , is determined up to multiplication by ˙�m

d
.m 2 Z/

(see Kadokami [7], Nicolaescu [13] or Turaev [18; 19] for details on Reidemeister
torsion).

In [6], we introduced the norm and the order of polynomials and homology lens spaces:
Let f .t/ be a polynomial over Z. We define the d –norm of f .t/, denoted by jf .t/jd ,
by

jf .t/jd D jNd .f .�d //j D

ˇ̌̌̌
ˇ Y

i2.Z=dZ/�

f .�i
d /

ˇ̌̌̌
ˇ;

where d is a positive integer. We note that jf .t/jd is a nonnegative integer. For an
arbitrary homology lens space M , there exists a knot K in a homology sphere † such
that M D†.KIp=q/ .p � 2/ (see Boyer and Line [1, Lemma 2.1]). We define the
d –norm and the d –order of M , denoted by jM jd and kM kd respectively, by

jM jd D j�K .t/jd and kM kd D
Y
d 0jd

jM jd 0 ;
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where d is a divisor of p . As proved in [6], both jM jd and kM kd are invariants of a
homology lens space M . We note that the norms and orders of a lens space are all 1
because a lens space is the result of surgery along the unknot.

We fix the following setting.

Setting (i) LDK1[ � � �[KNC1 is the .N C1/–component link in S3 of Figure 1.

(ii) M D S3.LIp1=q1; � � � ;pN =qN ; a/ is a homology lens space with H1.M / Š

Z=pZ where p � 2, pi � 2 .i D 1; � � � ;N /, gcd.pi ; qi/D 1 and a is an integer.

Theorem 1.1 Let M D S3.LIp1=q1; � � � ;pN =qN ; a/ be a Seifert fibered homology
lens space as in the setting above. Let d �2 be any divisor of p satisfying gcd.d;pi/D

1 for all i D 1; � � � ;N . Then we have the following:

(1) Let T be a generator of H1.M / and  d W ZŒH1.M /�!Q.�d / a ring homomor-
phism such that  d .T /D �d . Let u be an integer such that ŒmNC1�D T u in H1.M /,
where mNC1 is a meridian of KNC1 . Then we have gcd.d;u/D 1 and

� d .M /
:
D .�u

d � 1/N�2
NY

iD1

.�
u xpi

d
� 1/�1;

where xpi is the inverse element of pi in .Z=dZ/� .

(2) jM jd D 1.

(3) kM kd D 1.

Theorem 1.2 Let M D S3.LIp1=q1; � � � ;pN =qN ; a/ be a Seifert fibered homology
lens space as in the setting above, and assume N � 3. Let d � 2 be a common divisor
of p1 and p2 . Then we have the following:

(1) d is a divisor of p , gcd.d;pi/D 1 .i D 3; � � � ;N /, and gcd.d; qi/D 1 .i D 1; 2/.

(2) Let T be a generator of H1.M / and  d W ZŒH1.M /�!Q.�d / a ring homomor-
phism such that  d .T /D �d . Let u1 be an integer such that Œm1�D T u1 in H1.M /,
where m1 is a meridian of K1 . Then we have gcd.d;u1/D 1 and

� d .M /
:
D p3 � � �pN .�

u1xq1

d
� 1/�1.�

u1xq2

d
� 1/�1;

where xqi .i D 1; 2/ is the inverse element of qi in .Z=dZ/� .

(3) jM jd D .p3 � � �pN /
'.d/; where '.�/ is the Euler function.
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If N � 2, then M is a lens space, and hence kM kp D 1.

The next theorem gives a relation between multiplicities of singular fibers and the order
of a Seifert fibered homology lens space.

Theorem 1.3 Let M D S3.LIp1=q1; � � � ;pN =qN ; a/ be a Seifert fibered homology
lens space as in the setting above. We assume N � 3. Then we have the following:

(1) kM kpD1 holds if and only if gcd.pi ;pj /D1 for any pair fi; j g .1� i < j �N /.
Moreover it is equivalent to gcd.p;pi/D 1 for all i D 1; � � � ;N .

(2) kM kp¤0; 1 holds if and only if there uniquely exists a pair fi; j g .1� i <j �N /

such that gcd.pi ;pj /� 2.

(3) kM kp D 0 holds if and only if there exist at least two distinct pairs fi; j g .1� i <

j �N / and fk; hg .1� k < h�N / such that gcd.pi ;pj /� 2 and gcd.pk ;ph/� 2.

As an application of the Reidemeister torsion to Seifert surgery problem, we have the
following:

Theorem 1.4 Let K be a knot in a homology sphere † such that �K .t/D t2�3tC1.
The only surgeries on K that may produce a Seifert fibered space with base S2 and with
H1 ¤ f0g;Z, have coefficients 2=q and 3=q , and produce Seifert fibered spaces with
three singular fibers. Moreover if the coefficient is 2=q , then the set of multiplicities is
f˛; ˇ; 5g where gcd.˛; ˇ/D2, and if the coefficient is 3=q , then the set of multiplicities
is f˛; ˇ; 4g where gcd.˛; ˇ/D 3.

We note that the Alexander polynomial of the figure eight knot is t2�3tC1. Hence we
may consider Theorem 1.4 as an algebraic analogue of the fact shown by W P Thurston
that all coefficients of Seifert surgery along the figure-eight knot are ˙1;˙2 and ˙3

[17, Chapter 4]. We mention that the Reidemeister torsion cannot capture the case
p D 1 because Reidemeister torsion of a homology sphere is zero.

In Section 2, we state surgery formulae for the Reidemeister torsion. In Section 3, we
prove a key lemma (Lemma 3.4 (1)) derived from the cyclicity of the first homology
group. In Section 4 and Section 5, we prove the theorems by using the surgery formula
and lemmas in Section 3.

For references on Dehn surgery including Seifert surgery, see Brittenham and Wu
[2], Culler, Gordon, Luecke and Shalen [3], Fintushel and Stern [5], Kadokami [6;
7], Kadokami and Yamada [8; 9], Miyazaki and Motegi [10], Moser [11], Orlik [14],
Saveliev [16] and Thurston [17]. For Reidemeister torsion, see Kadokami [6; 7],
Kadokami and Yamada [8; 9], Nicolaescu [13], de Rham [4], Sakai [15] and Turaev
[18; 19].

Algebraic & Geometric Topology, Volume 7 (2007)



Reidemeister torsion of Seifert fibered homology lens spaces and Dehn surgery 1513

2 Surgery formula for Reidemeister torsion

Lemma 2.5 below is used repeatedly in the later sections. It consists of special cases
of a surgery formula for the Reidemeister torsion due to V Turaev, and follows from
Lemma 2.1, Lemma 2.2, Lemma 2.3 and Lemma 2.4. We do not give any proofs in
this section. For details see Turaev [18; 19], and also Sakai [15] for Lemma 2.6.

Let R be a commutative ring with nonzero identity element. Then we denote the
classical ring of quotients by Q.R/. Let X be a finite CW-complex. Then the maximal
abelian torsion of X denoted by �.X / is an element of Q.ZŒH1.X /�/, which is
defined from a chain complex C� induced by the maximal abelian covering of X . Let
 W ZŒH1.X /�!R be a ring homomorphism. Then a chain complex is induced from
C� and  . We denote it by C � . The Reidemeister torsion associated to  , � .X /,
is defined from C � . It is an element of Q.R/ that is determined up to multiplication
by an element in ˙ .H1.X //. If C � is not acyclic, then we define � .X /D 0.

Lemma 2.1 Let X1 and X2 be subcomplexes of a finite CW-complex X such that
X DX1[X2 , and Y DX1\X2 . Let  W ZŒH1.X /�!R be a ring homomorphism, and
let  i W ZŒH1.Xi/�! R .i D 1; 2/ and  0W ZŒH1.Y /�! R be ring homomorphisms
induced by  . Then we have

� .X / � � 
0

.Y /
:
D � 1.X1/ � �

 2.X2/:

Lemma 2.2 (1) Let t be a generator of H1.S
1 �D2/. Then we have

�.S1
�D2/

:
D .t � 1/�1:

(2) �.S1 �S1/
:
D 1:

(3) Let L D K1 [ � � � [Kn be an n–component link in a homology sphere, E the
exterior of L, and ti .i D 1; � � � ; n/ the homology class of a meridian of Ki in H1.E/.
Then we have

�.E/
:
D

�
�L.t1/.t1� 1/�1 .nD 1/;

�L.t1; � � � ; tn/ .n� 2/:

Lemma 2.3 Let X be a finite CW-complex, and  W ZŒH1.X /�!R and  0W R!R0

ring homomorphisms. If � .X /¤ 0 and  0.� .X //¤ 0, then we have

� 
0ı .X /

:
D  0.� .X //:

Lemma 2.4 Let H be a finitely generated abelian group. If h is an element of H

with infinite order, then h� 1 is invertible in Q.ZŒH �/.
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Let LDK1[ � � �[Kn be an n–component link in a homology sphere †. Let pi and
qi .i D 1; � � � ; n/ be integers satisfying pi � 0; qi ¤ 0 and gcd.pi ; qi/D 1 for each i .
Then †.LIp1=q1; � � � ;pn=qn/ is defined as follows:

(1) Let N.L/ be a regular neighborhood of L in †. Note that N.L/ is a disjoint union
of N.Ki/’s ; N.L/D

Sn
iD1N.Ki/, where N.Ki/ is a regular neighborhood of Ki .

Let EL denote the exterior of L: EL D† nN.L/. Note that @EL D
Sn

iD1 @N.Ki/.

(2) Let mi and li .i D 1; � � � ; n/ be a meridian and a longitude of Ki , which lie
on @N.Ki/ � @EL . We take a simple closed curve m0i on @N.Ki/ .i D 1; � � � ; n/

such that Œm0i �D Œmi �
pi Œli �

qi in H1.@N.Ki//. Let ri and si .i D 1; � � � ; n/ be integers
satisfying pisi�qiri D 1. We take a simple closed curve l 0i on @N.Ki/ .i D 1; � � � ; n/

such that Œl 0i �D Œmi �
ri Œli �

si in H1.@N.Ki//.

(3) Let V1; � � � ;Vn be n–copies of S1 � D2 . Then †.LIp1=q1; � � � ;pn=qn/ is
defined as the 3–manifold obtained from EL and fV1; � � � ;Vng by identifying @N.Ki/

and @Vi by a homeomorphism such that m0i is identified with a meridian of Vi for
each i . Note that l 0i is identified with a longitude of Vi . We sometimes express

†.LIp1=q1; � � � ;pn=qn/DEL[V1[ � � � [Vn

schematically.

(4) Let M D†.LIp1=q1; � � � ;pn=qn/ as above. We define Mk .k D 1; � � � ; n/ by

Mk DM n .V1[ � � � [Vk/DEL[VkC1[ � � � [Vn:

Note that M �M1 � � � � �Mn DEL .

We assume that M is a homology lens space with H1.M /Š Z=pZ .p � 2/. Let T

be a generator of H1.M /, d � 2 a divisor of p and  d W ZŒH1.M /�!Q.�d / a ring
homomorphism such that  d .T /D �d . We then define  k;d W ZŒH1.Mk/�!Q.�d /

by  k;d D  d ı �k , where �k W ZŒH1.Mk/�! ZŒH1.M /� is a ring homomorphism
induced from the natural inclusion Mk ,!M . Then we have the following surgery
formula for the Reidemeister torsion.

Lemma 2.5 (1) If n� 2 and  d .Œl
0
i �/¤ 1 .i D 1; � � � ; n/, then we have

� d .M /
:
D�L.�1; � � � ; �n/

nY
iD1

. d .Œl
0
i �/� 1/�1;

where �i D  d .Œmi �/.
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(2) If n� 2, and Œl 0i � .i D kC 1; � � � ; n/ has infinite order in H1.Mk/, then we have

�.Mk/
:
D�L.Œm1�; � � � ; Œmn�/

nY
iDkC1

.Œl 0i �� 1/�1 in Q.ZŒH1.Mk/�/:

(3) If n� 1, �.Mk/¤ 0 and  d .Œl
0
i �/¤ 1 .i D 1; � � � ; k/, then we have

� d .M /
:
D  k;d .�.Mk//

kY
iD1

. d .Œl
0
i �/� 1/�1:

The following is an explicit form of Lemma 2.5 (3) in the case nD k D 1.

Lemma 2.6 Let K be a knot in a homology sphere † and M D †.KIp=q/

.p � 2/. Let T be a generator of H1.M / that corresponds to a meridian of K ,
and  d W ZŒH1.M /�!Q.�d / a ring homomorphism such that  d .T /D �d . Then we
have

� d .M /
:
D�K .�d /.�d � 1/�1.�

xq

d
� 1/�1;

where xq is the inverse element of q in .Z=dZ/� .

3 Conditions from the first homology group

We consider constraints on the multiplicities of singular fibers that come from the
assumption that the first homology group is finite cyclic. Let M be a Seifert fibered
homology lens space as in the setting in Section 1:

M D S3.LIp1=q1; � � � ;pN =qN ; a/DEL[V1[ � � � [VN [VNC1:

We take mi and li .i D 1; � � � ;N C 1/ on @EL as in Section 2. We also take m0i and
l 0i on @EL as in Section 2 except m0

NC1
and l 0

NC1
such that

Œm0NC1�D ŒmNC1�
aŒlNC1� and Œl 0NC1�D ŒmNC1�:

Then we have the following:

Lemma 3.1 The first homology group H1.M / is generated by Œmi �; Œli �; Œm
0
i � and

Œl 0i � .i D 1; � � � ;N C 1/ subject to the following relations:

Œm0i �D Œmi �
pi Œli �

qi D 1 .i D 1; � � � ;N /; Œm0NC1�D ŒmNC1�
aŒlNC1�D 1;

Œli �D ŒmNC1� .i D 1; � � � ;N /; Œm1� � � � ŒmN �D ŒlNC1�;

Œl 0i �D Œmi �
ri Œli �

si .i D 1; � � � ;N /; Œl 0NC1�D ŒmNC1�:
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The presentation matrix A of H1.M / with respect to Œm1�; � � � ; ŒmNC1� is

AD

0BBB@
p1 0 q1

: : :
:::

0 pN qN

1 � � � 1 a

1CCCA :
Here the operation is additive. We recall H1.M /Š Z=pZ.

Lemma 3.2 Let � D p1 � � �pN and �i D �=pi .i D 1; � � � ;N /. Then

p D

ˇ̌̌̌
�a�

NX
iD1

qi�i

ˇ̌̌̌
:

In particular, if d divides pi and pj .i ¤ j /, then d divides p .

Proof It is well known that j det Aj is the order of H1.M / and

det AD �a�

NX
iD1

qi�i

(cf Saviliev [16]). Since the order of H1.M / is p , we have the result.

Lemma 3.3 Let Ai;j be the cofactor of .i; j /–entry of A. Then we have

Ai;NC1 D ˙�i .i D 1; � � � ;N /;

Ai;i D �ia�
X
j¤i

qj�ij .i D 1; � � � ;N /;

Ai;j D ˙qj�ij .i ¤ j /;

ANC1;i D ˙qi�i .i D 1; � � � ;N /;

ANC1;NC1 D �;

where �ij D �=pipj .i ¤ j /.

The following is a key to prove results stated in Section 1.

Lemma 3.4 (1) Let d � 2 be a common divisor of pi and pj .i ¤ j /. Then we
have gcd.d;pk/D 1 for k ¤ i; j .

(2) Let ` be a prime divisor of gcd.p;pi/. Then there exists j ¤ i such that ` is a
divisor of pj .

(3) If gcd.pi ;pj /D 1 for every pair fi; j g, then we have gcd.p;pi/D 1 for every i .

Algebraic & Geometric Topology, Volume 7 (2007)



Reidemeister torsion of Seifert fibered homology lens spaces and Dehn surgery 1517

Proof (1) Let ı be the greatest common divisor of all N –minors of A. Since
H1.M / is cyclic, we have ı D 1 by the elementary divisor theory. Suppose that there
exists k ¤ i; j such that gcd.d;pk/� 2. Then each Ai;j is divisible by gcd.d;pk/

by Lemma 3.3, and hence ı is divisible by gcd.d;pk/. This contradicts ı D 1.

(2) By Lemma 3.2 and gcd.pi ; qi/D 1, ` divides �i . Hence there exists j ¤ i such
that ` divides pj .

(3) Suppose there exists i such that gcd.p;pi/ � 2. We take a prime divisor ` of
gcd.p;pi/. Then there exists j ¤ i such that ` divides pj by (2). This contradicts
gcd.pi ;pj /D 1.

Remark 3.5 We can show the following, although not needed here.

(1) H1.M / is cyclic if and only if ı D 1.

(2) ı coincides with the greatest common divisor of �ij ’s.

4 Proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3

We need the following well known fact (cf Nicolaescu [13]).

Lemma 4.1 Let L be the link in Figure 1. Then we have

�L.t1; � � � ; tN ; tNC1/D .tNC1� 1/N�1:

Recall that

M D S3.LIp1=q1; � � � ;pN =qN ; a/DEL[V1[ � � � [VNC1:

When a generator T of H1.M / and a ring homomorphism  d W ZŒH1.M /�!Q.�d /

such that  d .T /D �d are given, we set �i D  d .Œmi �/ .i D 1; � � � ;N C 1/. Then �i
is a d –th root of unity and f�1; � � � ; �NC1g generates  d .H1.M //ŠZ=dZ. The next
lemma follows from Lemma 3.1.

Lemma 4.2 The following relations hold:

(1) �
pi

i �
qi

NC1
D 1 .i D 1; � � � ;N /;

(2)
� NY

iD1

�i

�
�a

NC1 D 1;

(3)  d .Œl
0
i �/D �

ri

i �
si

NC1
.i D 1; � � � ;N / and  d .Œl

0
NC1�/D �NC1:
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Proof of Theorem 1.1 (1) Let d � 2 be as in the statement of Theorem 1.1. By
Lemma 4.2 (1) and gcd.d;pi/D 1 .i D 1; � � � ;N /, we have �i D �

�qi xpi

NC1
, where xpi is

the inverse element of pi in .Z=dZ/� . Hence �NC1 generates  d .H1.M //Š Z=dZ.
Since a generator of  d .H1.M // is a primitive d –th root of unity, �NC1D �

u
d

is also
a primitive d –th root of unity. Therefore we have gcd.d;u/D 1.

By Lemma 4.2 (3), �i D �
�qi xpi

NC1
and pisi � qiri D 1, we have

 d .Œl
0
i �/D �

ri

i �
si

NC1
D �
�qi ri xpiCsi

NC1
D �

xpi .pi si�qi ri /
NC1

D �
xpi

NC1
.i D 1; � � � ;N /

and  d .Œl
0
NC1

�/D �NC1 . Hence  d .Œl
0
i �/ .i D 1; � � � ;N C1/ is a primitive d –th root

of unity.

By Lemma 2.5 (1) and Lemma 4.1, we have

� d .M /
:
D�L.�1; � � � ; �NC1/

NC1Y
iD1

. d .Œl
0
i �/� 1/�1

D .�NC1� 1/N�1.�NC1� 1/�1
NY

iD1

.�
xpi

NC1
� 1/�1

D .�u
d � 1/N�2

NY
iD1

.�
u xpi

d
� 1/�1:

(2) Let M be the result of p=q–surgery along a knot K in a homology sphere †:
M D†.KIp=q/. We take the homology class of a meridian for K as T . By (1) and
Lemma 2.6, we have

(4–1) �K .�d /.�d � 1/�1.�
xq

d
� 1/�1 :

D .�u
d � 1/N�2

NY
iD1

.�
u xpi

d
� 1/�1

By noting gcd.d; q/D gcd.d;u/D gcd.d;pi/D 1, we have

jNd .�d � 1/j D jNd .�
xq

d
� 1/j D jNd .�

u
d � 1/j D jNd .�

u xpi

d
� 1/j ¤ 0:

Therefore by taking the norms of both sides of (4–1), we have jNd .�K .�d //j D 1 and
hence jM jd D 1.

(3) If d 0 divides d , then we have gcd.d 0;pi/D 1 for all i . Hence jM jd 0 D 1 by (2).
Thus we have

kM kd D
Y
d 0jd

jM jd 0 D 1:
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Lemma 4.3 For 1� j < i �N , let Mj DEL[VjC1[� � �[VNC1 be a 3–manifold
as in Section 2. Then we have

.ŒmNC1�� 1/.Œl 0i �� 1/�1
D

pi�1X
kD0

Œl 0i �
k in Q.ZŒH1.Mj /�/:

Proof We prove the lemma in steps.

Step 1 ŒmNC1� in H1.Mj / has infinite order.

Proof In this step, we write operation additively, and consider H1.Mj IQ/ as a vector
space over Q. It is sufficient to prove ŒmNC1�¤ 0 in H1.Mj IQ/.

Since M is a rational homology sphere and Mj is the exterior of a j –component
link in M with fm0

1
; � � � ;m0j g as meridians, we have dim H1.Mj IQ/ D j and that

fŒm0
1
�; � � � ; Œm0j �g is a basis.

Assume that ŒmNC1�D 0 in H1.Mj IQ/. Then by the relations Œli �D ŒmNC1� .i D

1; � � � ;N / etc, we have Œm0
1
�D p1Œm1�; � � � ; Œm

0
j �D pj Œmj � and Œm1�C� � �C Œmj �D 0.

This contradicts the fact that fŒm0
1
�; � � � ; Œm0j �g is a basis.

Step 2 ŒmNC1�D Œl
0
i �

pi .i > j / in H1.Mj /.

Proof By the relations

Œmi �
pi ŒmNC1�

qi D 1; Œmi �
ri ŒmNC1�

si D Œl 0i � and pisi � qiri D 1

that hold in H1.Mj / for i � j C 1, we have

ŒmNC1�D ŒmNC1�
pi si�qi ri D ŒmNC1�

pi si Œmi �
pi ri D .Œmi �

ri ŒmNC1�
si /pi D Œl 0i �

pi :

Step 3 Œl 0i � .i > j / in H1.Mj / has infinite order.

Proof If there exists an index i .j C 1� i �N / such that Œl 0i � has finite order, then
ŒmNC1� has finite order by Step 2. This contradicts Step 1.

By Step 3 and Lemma 2.4, Œl 0i �� 1 is invertible in Q.ZŒH1.Mj /�/ for i > j . Hence
we have the result by Step 2.

Proof of Theorem 1.2 (1) By Lemma 3.2, d divides p . By Lemma 3.4 (1),
gcd.d;pi/ D 1 .i D 3; � � � ;N /. Since gcd.p1; q1/ D 1 and d divides p1 , we have
gcd.d; q1/D 1. Similarly we have gcd.d; q2/D 1.

(2) We prove this part in steps.

Step 1 �2 D �
�1
1

and �i D 1 .i D 3; � � � ;N C 1/.
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Proof Since �d
1
D1 and d divides p1 , we have �p1

1
D1. Since �p1

1
D1, gcd.d; q1/D

1 and �
p1

1
�

q1

NC1
D 1 in Lemma 4.2 (1), we have �NC1 D 1. Since �NC1 D 1,

gcd.d;pi/ D 1 .i D 3; � � � ;N / and �pi

i �
qi

NC1
D 1, we have �i D 1 .i D 3; � � � ;N /,

and hence �1�2 D 1 by Lemma 4.2 (2).

Step 2 �1 D �
u1

d
, �2 D �

�u1

d
and gcd.d;u1/D 1.

Proof We have �1D d .Œm1�/D d .T
u1/D �

u1

d
. By Step 1, �2D ��1

1
D �
�u1

d
, and

�1 D �
u1

d
generates  d .H1.M //Š Z=dZ. Hence we have gcd.d;u1/D 1.

We set M2 DEL[V3[ � � � [VNC1 as in Section 2.

Step 3 �.M2/
:
D

NY
iD3

� pi�1X
kD0

Œl 0i �
k

�
in Q.ZŒH1.M2/�/.

Proof By Lemma 2.5 (2), Lemma 4.1 and Lemma 4.3, we have

�.M2/
:
D .ŒmNC1�� 1/N�2

NY
iD3

.Œl 0i �� 1/�1
D

NY
iD3

� pi�1X
kD0

Œl 0i �
k

�
:

By Lemma 4.2 (3), Step 1 and Step 2, we have  d .Œl
0
i �/D 1 .i � 3/,  d .Œl

0
1
�/D �

�u1xq1

d

and  d .Œl
0
2
�/D �

u1xq2

d
. Hence we have the result by Lemma 2.5 (3) and Step 3.

(3) Let M be the result of p=q–surgery along a knot K in a homology sphere †.
We take the homology class of a meridian for K in H1.M / as T . By (2) and Lemma
2.6, we have

(4–2) �K .�d /.�d � 1/�1.�
xq

d
� 1/�1 :

D p3 � � �pN .�
u1xq1

d
� 1/�1.�

u1xq2

d
� 1/�1

By noting gcd.d; q/D gcd.d;u1/D gcd.d; q1/D gcd.d; q2/D 1, we have

jNd .�d � 1/j D jNd .�
xq

d
� 1/j D jNd .�

u1xq1

d
� 1/j D jNd .�

u1xq2

d
� 1/j ¤ 0:

By taking the norms of both sides of (4–2), we obtain jM jd D jNd .�K .�d //j D

.p3 � � �pN /
'.d/ .

Proof of Theorem 1.3 It is sufficient to prove (1) and (3).

(1) Suppose kM kp D 1. By Theorem 1.2 (2), we have gcd.pi ;pj /D 1 for every pair
fi; j g.

Suppose gcd.pi ;pj / D 1 for every pair fi; j g. By Lemma 3.4 (3), we have that
gcd.p;pi/D 1 for every i .
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Suppose gcd.p;pi/ D 1 for every i D 1; � � � ;N . By Theorem 1.1 (3), we have
kM kp D 1.

(3) Let M be the result of p=q–surgery along a knot K in a homology sphere †.
We first prove “if” part. Without loss of generality, we may assume that fi; j g D f1; 2g,
and fk; hg D f1; 3g or f3; 4g. Hence it is sufficient to prove Step 1 and Step 2 below.

Step 1 If gcd.p1;p2/� 2 and gcd.p1;p3/� 2, then there exists a divisor d � 2 of
p such that �K .�d /D 0.

Proof Take a divisor d2 � 2 of gcd.p1;p2/ and a divisor d3 � 2 of gcd.p1;p3/,
and set d D d2d3 . By Lemma 3.4 (1), we have gcd.d2; d3/ D 1, and hence d is a
divisor of p1 . By Lemma 3.2, both d2 and d3 are divisors of p , and hence d is a
divisor of p because gcd.d2; d3/D 1.

Let  d W ZŒH1.M /�!Q.�d / be a ring homomorphism such that  d .T /D �d , where
T is a generator of H1.M / that corresponds to a meridian of K . We set  d .Œmi �/D

�i .i D 1; � � � ;N C 1/, where mi is a meridian of Ki . Since d is a divisor of p1 ,
gcd.d; q1/ D 1 and �p1

1
�

q1

NC1
D 1 in Lemma 4.2 (1), we have �NC1 D 1. Hence

�
pi

i D 1 for all i by Lemma 4.2 (1). By Lemma 3.4 (1), gcd.d2;pi/D 1 for i ¤ 1; 2,
and gcd.d3;pi/D 1 for i ¤ 1; 3. Hence gcd.d;pi/D 1 for i � 4. Since �pi

i D 1, we
have �i D 1 for i � 4, and �1�2�3 D 1 by Lemma 4.2 (2). Therefore  d .H1.M // is
generated by �2 and �3 . We note that gcd.d2;p3/D gcd.d3;p2/D 1 are used in the
next paragraph.

Since �p2

2
D 1, we have .�d2

2
/p2 D 1. On the other hand .�d2

2
/d3 D �d

2
D 1. Hence

�
d2

2
D 1 since gcd.d3;p2/D 1. Similarly �d3

3
D 1 since gcd.d2;p3/D 1. If one of �2

and �3 is not “primitive”, then �2 and �3 do not generate  d .H1.M //. Hence �2 and
�3 are primitive d2 –th and d3 –th root of unities respectively, and hence �1 is a primitive
d –th root of unity since �1�2�3 D 1 and gcd.d2; d3/ D 1. Since gcd.p1; q1/ D

gcd.p2; q2/D 1 and d2 divides p1 and p2 , we have gcd.d2; q1/D gcd.d2; q2/D 1.
Similarly we have gcd.d3; q1/Dgcd.d3; q3/D1. Since gcd.d2; q1/Dgcd.d3; q1/D1,
we have gcd.d; q1/D 1. Hence we have

 d .Œl
0
i �/D �

�xqi

i ¤ 1 .i D 1; 2; 3/;

where xq1 , xq2 and xq3 are integers satisfying q1xq1 � 1 .mod d/, q2xq2 � 1 .mod d2/

and q3xq3 � 1 .modd3/ respectively.

We set M3 DEL[V4[ � � � [VNC1 and  3;d W ZŒH1.M3/�!Q.�d / as in Section 2.
By Lemma 4.3, we have

�.M3/
:
D .ŒmNC1�� 1/N�2

NY
iD4

.Œl 0i �� 1/�1
D .ŒmNC1�� 1/

NY
iD4

� pi�1X
kD0

Œl 0i �
k

�
;
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and hence � 3;d .M3/D 0. By Lemma 2.5 (3), we have

� d .M /
:
D � 3;d .M3/

3Y
iD1

.�
xqi

i � 1/�1
D 0;

and hence �K .�d /D 0 by Lemma 2.6.

Step 2 If gcd.p1;p2/� 2 and gcd.p3;p4/� 2 .N � 4/, then there exists a divisor
d � 2 of p such that �K .�d /D 0.

Proof Take a divisor d1 � 2 of gcd.p1;p2/ and a divisor d3 � 2 of gcd.p3;p4/,
and set d D d1d3 . By Lemma 3.4 (1), we have gcd.d1; d3/D 1. By Lemma 3.2, both
d1 and d3 are divisors of p . Hence d is a divisor of p since gcd.d1; d3/D 1.

Let  d W ZŒH1.M /�!Q.�d / be a ring homomorphism such that  d .T /D �d , where
T is a generator of H1.M / that corresponds to a meridian of K . We set  d .Œmi �/D

�i .i D 1; � � � ;N C 1/, where mi is a meridian of Ki . Since d1 divides p1 , we have
.�

p1

1
/d3 D 1 and also gcd.d1; q1/ D 1 since gcd.p1; q1/ D 1. Hence .�d3

NC1
/q1 D

1 since �p1

1
�

q1

NC1
D 1. On the other hand .�

d3

NC1
/d1 D 1. Thus �d3

NC1
D 1 since

gcd.d1; q1/ D 1. Similarly we have �d1

NC1
D 1. Hence we have �NC1 D 1 since

gcd.d1; d3/D 1, and we have �pi

i D 1 for all i by Lemma 4.2 (1). By Lemma 3.4 (1),
gcd.d1;pi/D 1 for i ¤ 1; 2, and gcd.d3;pi/D 1 for i ¤ 3; 4. Hence gcd.d;pi/D 1

for i � 5. Therefore we have �i D 1 for i � 5, and �1�2�3�4 D 1. We note that
gcd.d1;p3/ D gcd.d1;p4/ D gcd.d3;p1/ D gcd.d3;p2/ D 1 are used in the next
paragraph.

Since gcd.d3;p1/D 1 and d1 divides p1 , we have gcd.d;p1/D d1 . Hence �d
1
D 1

and �p1

1
D 1 imply �d1

1
D 1. Similarly we have �d1

2
D 1, �d3

3
D 1 and �d3

4
D 1.

Thus �1�2 and �3�4 are d1 –th and d3 –th root of unities respectively. Hence we have
�1�2D�3�4D1 since �1�2�3�4D1 and gcd.d1; d3/D1. Hence  d .H1.M //ŠZ=dZ

is generated by �1 and �3 . For the similar reason as Step 1, both �1 and �3 are
“primitive”. Thus �1 and �2 (resp. �3 and �4 ) are primitive d1 –th (resp. d3 –th) root of
unities. Since gcd.p1; q1/D 1 and d1 divides p1 , we have gcd.d1; q1/D 1. Similarly
we have gcd.d1; q2/D gcd.d3; q3/D gcd.d3; q4/D 1. Hence we have

 d .Œl
0
i �/D �

�xqi

i ¤ 1 .i D 1; 2; 3; 4/;

where xq1 , xq2 , xq3 and xq4 are integers satisfying q1xq1�1 .modd1/, q2xq2�1 .modd1/,
q3xq3 � 1 .modd3/ and q4xq4 � 1 .modd3/ respectively.
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We set M4 DEL[V5[ � � � [VNC1 and  4;d W ZŒH1.M4/�!Q.�d / as in Section 2.
By Lemma 4.3, we have

�.M4/
:
D .ŒmNC1�� 1/N�2

NY
iD5

.Œl 0i �� 1/�1
D .ŒmNC1�� 1/2

NY
iD5

� pi�1X
kD0

Œl 0i �
k

�
;

and hence � 4;d .M4/D 0. By Lemma 2.5 (3), we have

� d .M /
:
D � 4;d .M4/

4Y
iD1

.�
xqi

i � 1/�1
D 0;

and hence �K .�d /D 0 by Lemma 2.6.

We next prove “only if” part of Theorem 1.3 (3). Suppose kM kp D 0. Then there
exists a divisor d � 2 of p such that �K .�d /D 0, and there exists a pair fi; j g such
that gcd.pi ;pj /� 2 by (1). We may set fi; j g D f1; 2g without loss of generality. Let
 d W ZŒH1.M /�!Q.�d / be a ring homomorphism such that  d .T /D �d , where T

is a generator of H1.M / that corresponds to a meridian of K . We set  d .Œmi �/ D

�i .i D 1; � � � ;N C 1/, where mi is a meridian of Ki .

Step 3 �NC1 D 1.

Proof If  d .Œl
0
i �/ D 1 for some i , then we have �NC1 D 1 by Lemma 4.2 (1) and

(3), and pisi � qiri D 1. Otherwise, since �K .�d /D 0 and by Lemma 2.6, we have
� d .M /D 0. Hence by Lemma 2.5 (1),

�L.�1; � � � ; �NC1/D .�NC1� 1/N�1
D 0:

Thus we have �NC1 D 1.

Step 4 If gcd.d;pk/� 2, there is an index h¤ k such that gcd.pk ;ph/� 2.

Proof Take a prime divisor ` of gcd.d;pk/. By Lemma 3.4 (2), there is an index
h¤ k such that ` is a divisor of ph . Then ` is a divisor of gcd.pk ;ph/.

Step 5 d is not a common divisor of p1 and p2 .

Proof If d is a common divisor of p1 and p2 , then jM jd ¤ 0 by Theorem 1.2 (2).
This contradicts �K .�d /D 0.

Step 6 There are indices k ¤ h such that fk; hg ¤ f1; 2g and gcd.pk ;ph/� 2.
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Proof By Step 3 and Lemma 4.2 (1), we have �pk

k
D1 for all k . Suppose gcd.d;pk/D

1 for all k � 3. Then we have �k D 1 for all k � 3. By Lemma 4.2 (2), we have
�1�2 D 1. Thus �1 generates  d .H1.M //Š Z=dZ, and hence both �1 and �2 D ��1

1

are primitive d –th root of unities. Since �p1

1
D �

p2

2
D 1, d is a common divisor of

p1 and p2 . This contradicts Step 5. Therefore there exists an index k � 3 such that
gcd.d;pk/ � 2. By Step 4, there exists an index h ¤ k such that gcd.pk ;ph/ � 2,
and fk; hg ¤ f1; 2g by k � 3.

This concludes the proof of Theorem 1.3.

5 Proof of Theorem 1.4

We set f .t/ D t2 � 3t C 1 in this section. Let ˛ and ˇ .˛ > ˇ/ be the roots of
f .t/D t2� 3t C 1D 0. Then we need the following lemmas on the norms of f .t/.

Lemma 5.1 jf .t/jd D jˆd .˛/ˆd .ˇ/j; where

ˆd .x/D
Y

i2.Z=dZ/�

.x� �i
d /;

the d –th cyclotomic polynomial.

Proof

jf .t/jd D

ˇ̌̌̌
ˇ Y

i2.Z=dZ/�

.�i
d �˛/.�

i
d �ˇ/

ˇ̌̌̌
ˇD jˆd .˛/ˆd .ˇ/j:

Lemma 5.2 Let ` be a prime number. Then we have the following:

(1) jf .t/j` D ˛`Cˇ` � 2.

(2) jf .t/j` > 2.

Proof (1) Since ` is prime, ˆ`.x/D .x
` � 1/=.x � 1/. Note that ˛Cˇ D 3 and

˛ˇ D 1. Hence by Lemma 5.1, we have

jf .t/j` D

ˇ̌̌̌
˛` � 1

˛� 1
�
ˇ` � 1

ˇ� 1

ˇ̌̌̌
D ˛`Cˇ` � 2:

(2) Since ˛ D .3C
p

5/=2D 2:618 � � �> 2, we have jf .t/j`D˛`Cˇ`�2>22�2D

2:
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Proof of Theorem 1.4 Let ` be a prime divisor of p . By Lemma 5.2, we have
jM j` > 2. Hence kM kp ¤ 1 and N � 3 because M is not a lens space. Since
f .t/D t2� 3t C 1 is irreducible over Q and is not a cyclotomic polynomial, we have
f .�d /¤ 0 for every positive integer d , and hence we have kM kp ¤ 0. By Theorem
1.3, without loss of generality we may assume that

.�/ gcd.p1;p2/� 2 and gcd.pi ;pj /D 1 for fi; j g ¤ f1; 2g:

Step 1 Let ` be a prime divisor of p . Then ` is a divisor of gcd.p1;p2/.

Proof Suppose ` divides none of pi ’s. Then we have jM j` D jf .t/j` D 1 by
Theorem 1.1 (2). This contradicts Lemma 5.2 (2). Therefore ` is a divisor of some
pk . By Lemma 3.4 (2), there exists h¤ k such that ` is a divisor of some ph . By the
assumption .�/, we have fk; hg D f1; 2g, and hence ` is a divisor of gcd.p1;p2/.

We first show that gcd.p1;p2/D 2 or 3.

Step 2 gcd.p1;p2/ is not divisible by 4, 6 nor 9.

Proof Suppose that gcd.p1;p2/ is divisible by 4. Then p is also divisible by 4. By
Theorem 1.2 (2), jf .t/j2 D p3 � � �pN and jf .t/j4 D .p3 � � �pN /

2 . By computing
concretely, we have jf .t/j2 D 5 and jf .t/j4 D 32 . This is a contradiction. Therefore
gcd.p1;p2/ is not divisible by 4. Other cases are shown in a similar way.

Step 3 For any prime number `� 5, ` is not a divisor of gcd.p1;p2/.

Proof Suppose ` is a divisor of gcd.p1;p2/. Then jM j` D .p3 � � �pN /
`�1 by

Theorem 1.2 (2). Hence by Lemma 5.2 (2), there exists an integer m� 2 such that

(5–1) ˛`Cˇ` � 2Dm`�1

Since ˛x C ˛�x � 2x�1 � 2 > 2x�1 � 2; ˛x
C˛�x

� 2D 2x�1 does not hold for
x � 5. Hence we have m¤ 2.

By the equation (5–1), we have

m`�1 < ˛` and m< ˛
`

`�1 :

Suppose `� 11. Since

˛11 < .2:62/11
D 39931:4 � � �< 310

D 59049;

we have m< ˛
`

`�1 � ˛
11
10 < 3. By m¤ 2, this case does not occur.
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Suppose `D 5 or 7. Since

˛5 < .2:62/5 D 123:454 � � �< 44
D 256;

we have m< ˛
7
6 < ˛

5
4 < 4 and mD 3.

If `D 5, then we have ˛5
C˛�5

� 2D 121¤ 34
D 81.

If `D 7, then ˛7
C˛�7

� 2D 841¤ 36
D 729, and we have Step 3.

Step 4 gcd.p1;p2/D 2 or 3.

Proof By Step 2 and Step 3, we have the result.

We prove that p D 2 or 3.

Step 5 p is a power of 2 or 3.

Proof By Step 1 and Step 4, we have the result.

Step 6 p is not divisible by 4.

Proof Recall jf .t/j4 D 9 (see Step 2). Suppose that p is divisible by 4. Then
jf .t/j4 D 1 as shown below, and this is a contradiction:

By Step 1 and Step 4, we have gcd.p1;p2/D 2. Hence without loss of generality we
may assume that p1 is of the form p1 D 2p0

1
where p0

1
is odd. By Lemma 3.4 (1),

gcd.pi ; 2/D 1 for i � 3, and hence we have the following claim:

Claim A gcd.pi ; 4/D 1 .3� i �N /.

We compute � 4.M / by two ways. We use the same notation as in Section 4. By
Lemma 2.6, we have

(5–2) � 4.M /
:
D f .�4/.�4� 1/�1.�

xq
4
� 1/�1:

We note that at least one of �1; � � � ; �NC1 is a primitive 4–th root of unity because they
generate  4.H1.M //Š Z=4Z. Suppose �1 is not a primitive 4–th root of unity. Then
we have �p1

1
D �2p0

1
1
D 1. Hence �NC1 D 1 since gcd.4; q1/D 1 and �p1

1
�

q1

NC1
D 1.

Hence �i D 1 .3� i �N / since �pi

i �
qi

NC1
D 1 .3� i �N /, �NC1 D 1 and Claim A

holds. By Lemma 4.2 (2), we have �1�2 D 1. Thus �2 is also not a primitive 4–th root
of unity. This is a contradiction. Therefore �1 is a primitive 4–th root of unity. For the
same reason, �2 is also a primitive 4–th root of unity.
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Since �p1

1
�

q1

NC1
D 1 (p1 D 2p0

1
; p0

1
: odd, q1 : odd), we have �NC1 D �1. Since

�NC1 D�1 and Claim A holds, we have

 d .Œl
0
i �/D �

ri

i �
si

NC1
D �
�xpi

NC1
D�1 .3� i �N /

(see the proof of Theorem 1.1 (1)). Since r1 and r2 are odd, both  d .Œl
0
1
�/ and  d .Œl

0
2
�/

are primitive 4–th root of unities. We set  d .Œl
0
i �/D �

vi

4
.iD1; 2/ where gcd.vi ; 4/D1.

By Lemma 2.5 (1), we have

� 4.M /
:
D .�1� 1/N�1.�

v1

4
� 1/�1.�

v2

4
� 1/�1.�1� 1/�.N�1/

:
D .�

v1

4
� 1/�1.�

v1

4
� 1/�1:(5–3)

By (5–2) and (5–3), we have jf .t/j4 D 1 as in the proof of Theorem 1.1 (2).

Step 7 p is not divisible by 9.

Proof By an easy computation, we have jf .t/j9 D 192 . Suppose that p is divisible
by 9. Then jf .t/j9 D 1 as shown below, and this is a contradiction:

Suppose that p is divisible by 9. By Step 1 and Step 4, we have gcd.p1;p2/ D 3.
Hence without loss of generality we may assume that p1 is of the form p1 D 3p0

1

where gcd.p0
1
; 3/ D 1. By Lemma 3.4 (1), gcd.pi ; 3/ D 1 for i � 3, and hence we

have the following claim:

Claim B gcd.pi ; 9/D 1 .3� i �N /.

We compute � 9.M / by two ways. By Lemma 2.6, we have

� 9.M /
:
D f .�9/.�9� 1/�1.�

xq
9
� 1/�1:(5–4)

We note that at least one of �1; � � � ; �NC1 is a primitive 9–th root of unity because they
generate  9.H1.M //Š Z=9Z. Suppose �1 is not a primitive 9–th root of unity. Then
we have �p1

1
D �

3p0
1

1
D 1. Hence �NC1 D 1 since gcd.9; q1/D 1 and �p1

1
�

q1

NC1
D 1.

Hence �i D 1 .3� i �N / since �pi

i �
qi

NC1
D 1 .3� i �N /, �NC1 D 1 and Claim B

holds. By Lemma 4.2 (2), we have �1�2 D 1. Thus �2 is also not a primitive 9–th root
of unity. This is a contradiction. Therefore �1 is a primitive 9–th root of unity. For the
same reason, �2 is also a primitive 9–th root of unity.

Since �p1

1
�

q1

NC1
D 1, we have that �NC1 is a primitive 3–rd root of unity. Since �NC1

is a primitive 3–rd root of unity and Claim B holds,  d .Œl
0
i �/D �

ri

i �
si

NC1
D �
�xpi

NC1
.3�

i � N / is a primitive 3–rd root of unity (see the proof of Theorem 1.1 (1)). Since
gcd.ri ; 3/D 1 .i D 1; 2/,  d .Œl

0
i �/ .i D 1; 2/ is a primitive 9–th root of unity. We set

Algebraic & Geometric Topology, Volume 7 (2007)



1528 Teruhisa Kadokami

 d .Œl
0
i �/D �

vi

9
.i D 1; 2/,  d .Œl

0
i �/D �

wi

3
.3 � i � N / and  d .Œl

0
NC1

�/D �w
3

where
gcd.vi ; 9/D 1, gcd.wi ; 3/D 1 and gcd.w; 3/D 1.

By Lemma 2.5 (1), we have

� 9.M /
:
D .�w3 � 1/N�1.�

v1

9
� 1/�1.�

v2

9
� 1/�1.�w3 � 1/�1

NY
iD3

.�
wi

3
� 1/�1

:
D .�w3 � 1/N�2.�

v1

9
� 1/�1.�

v2

9
� 1/�1

NY
iD3

.�
wi

3
� 1/�1:(5–5)

By (5–4) and (5–5), we have jf .t/j9 D 1 as in the proof of Theorem 1.1 (2), which
concludes the proof of Step 7.

We show finally the rest, concluding the proof of Theorem 1.4.

(i) By Theorem 1.2 (3) and jf .t/j2 D 5, we have p3 � � �pN D 5. Hence N D 3 and
p3 D 5.

(ii) By Theorem 1.2 (3) and jf .t/j3 D 42 , we have p3 � � �pN D 4. Then the case (a)
N D3 and p3D4 or the case (b) N D4 and p3Dp4D2 occur. Since gcd.pi ;pj /D1

for fi; j g ¤ f1; 2g, the case (b) does not occur. Hence N D 3 and p3 D 4.
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