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Finite abelian subgroups of the mapping class group

S ALLEN BROUGHTON

AARON WOOTTON

The problem of enumeration of conjugacy classes of finite abelian subgroups of the
mapping class group M� of a closed, smooth, orientable surface S of genus � � 2

is considered. A complete method of enumeration is achieved for finite elementary
abelian subgroups and steps are taken toward enumeration of finite abelian subgroups.

20F34, 20F36, 14H37; 14H30, 14J50

1 Introduction

Let S be a closed, smooth, orientable surface of genus � � 2. The mapping class
group M� of S (or MCG) is the group of isotopy classes of homeomorphisms
of S . In this paper we shall investigate the conjugacy classes of finite elementary
abelian subgroups, and more generally the finite abelian subgroups of M� . While the
general finite subgroup classification is important we focus on the case where G is an
elementary abelian subgroup as a tractable case where complete classification methods
by standard linear algebra is possible. We note that by finite elementary abelian, we
mean G Š C v

p Š Fvp where Cp is a cyclic group of prime order p , and Fp is the finite
field of the same cardinality (we use the latter notation when we want to emphasize the
vector space structure of G ). We also consider the abelian case where positive steps
can be made toward such a classification. The main result of our work is to describe
methods which may be employed to completely classify all elementary abelian actions
in a given genus and steps toward a classification of abelian actions. The classification is
complex since it involves understanding the representation theory of certain subgroups
of symmetric groups, but for a fixed low genus since the symmetric groups are small,
we are able to produce very explicit results.

Our main results are presented in three parts. The first part, Theorem 2.8 in Section 2,
gives a decomposition of an abelian subgroup G of M� into an unramified part
(hyperbolic) and a ramified part (elliptic). We note that our use of the term “elliptic”
is with reference to the type of generating vector of the subgroup (see Section 2.4
for details), in contrast to Bers [2] and Gilman [18] where it is used to refer to finite
subgroups of M� . Since all the subgroups we are considering are finite, this should not
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cause any confusion. The second part, Section 3, gives a complete classification of the
unramified part for elementary abelian subgroups and provides steps to classify general
unramified abelian actions. Though complete results are not obtained for the general
abelian case, enough information is gathered to classify unramified abelian actions on
surfaces up to genus 65 (see Example 3.8) and the general method of how to classify
abelian actions is described through other examples. In the third part, Section 4, we
present methods allowing one to classify the ramified part for an elementary abelian
subgroup. We finish in Section 5 with some explicit examples to show how these
methods are utilized.

A starting point for our work are the papers Harvey [20] and MacLachlan [27] which
discuss cyclic and abelian groups of surface automorphisms and Gilman [16] where the
rank 1 elementary abelian subgroups of M� are considered. In [16], the concept of a
generating vector is introduced and this is a concept which we shall make heavy use of in
our classification. Our general approach is to adapt and extend the methods of Harvey
[21], especially in the discussion of unramified actions, using the correspondence
between groups of conformal automorphisms and conjugacy classes of subgroups of
the MCG.

We should note that our methods fail for nonabelian groups. There is a general
classification theory which describes the classes of subgroups as a finite sequence of
quotients of finite sets by the action of other mapping class groups (see Broughton
[8] for instance). In the abelian case the general method simplifies greatly because
all commutators are trivial, and we get a nice splitting into ramified and unramified
cases and the subcases are tractable. For the general case however, these simplifications
do not occur and calculations become complicated very quickly and are only really
possible through computer calculation. For low genus, some partial results including
many cases of infinite families are known, as mentioned further in this introduction.

Our study of finite subgroups of M� is primarily motivated by the over one hundred
year old study of groups of automorphisms of compact Riemann surfaces. Every group
of automorphisms of a surface genus � � 2 has an isomorphic image in M� by
sending an automorphism to its homotopy class. Due to the resolution of the Nielsen
Realization Problem by Kerckhoff [23], every finite subgroup of M� arises this way.
Thus the study of automorphisms of Riemann surfaces up to topological equivalence
is the same as the study of conjugacy classes of finite subgroups of the mapping
class group; see Proposition 2.1 in Section 2 for a precise statement. Early methods
for finding automorphism groups were ad hoc and focused on the geometry of the
surfaces themselves, with special attention for groups meeting the maximal order bound
84.� �1/, the Hurwitz bound. Later in the 1960’s and 1970’s, a more systematic study
began, especially using uniformizing Fuchsian groups. For instance, see the papers of
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Macbeath [25; 26], MacLachlan [27; 28], Harvey [20; 21], Gilman [16; 17], Gilman
and Patterson [19], and Singerman [30; 31; 32; 33]. The existence of automorphisms of
S guarantees that any uniformizing group … for S lies in some larger Fuchsian group
� as a normal subgroup, and �=…ŠG (see Section 2 for details). Moreover, � is a
finitely presented group whose presentation is completely determined by data derived
from the fixed points of the action of G on S . Thus the problem of determination
of conjugacy classes of M� can be interpreted as a problem in computational group
theory. For details on this systematic approach, see Section 2.2.

Since the development of this more systematic approach and in part due to the advances
in computer algebra systems, there has been tremendous progress in classification
results of automorphism groups of compact Riemann surfaces. A review of some
results as well as references are given in the paper Broughton [8] and the monograph
Breuer [6]. In [8] the complete classification in genus 2 and 3 is given (with one
omission; see Broughton [10]). Some additional calculations are available in preprint
form; see Broughton, Dirks, Sloughter and Vinroot [11] and Gregoire and Averill [1]
for higher genus. In addition, there is much literature dedicated to infinite families of
surfaces whose automorphism groups share certain properties; see for example Harvey
[20], Wootton [34; 35], Broughton [8], Conder and Kulkarni [13], and Kulkarni [24].
For reference, a comprehensive study in this area is given in Breuer’s monograph [6].
In this work he outlines a complete classification up to genus 48.

We note that in Breuer’s monograph [6], group actions are considered equivalent if
their representations on the first homology group are equivalent, a coarser classification
than the classification up to conjugacy in the mapping class group. These two different
ways to classify group actions for cyclic prime groups were considered in Gilman [17]
and Gilman and Patterson [19] and more recently in preprint form in Gilman [15].
An interesting related topic would be to compare these two different classifications
for other types of groups. Another related topic is the study of the Torelli group I�
which is the subgroup of M� consisting of all isotopy classes which act trivially on the
first homology group, and the Torelli Modular group which is defined to be M�=I� .
The Torelli Modular group may be identified with Sp.2�;Z/ under the homology
representation M� ! Sp.2�;Z/. Since the Torelli group is torsion-free, the order of
an element of finite order in M� will be preserved in the Torelli Modular group, and
consequently there is a nice correspondence between finite subgroups of the Torelli
Modular group and those of M� . For more information on the Torelli group and
Torelli Modular group, see for example Johnson [22] and Brendle [4].

A second motivating reason for studying the finite subgroups is to describe the structure,
especially the singularity structure (nonmanifold points), of the moduli space M�

of surfaces of genus � . The moduli space M� of surfaces of genus � is the space
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of conformal equivalence classes of surfaces of genus � . The moduli space may
be obtained as a quotient M� D T�=M� , of the Teichmüller space T� which is
homeomorphic to an open ball in C3��3 . In this context M� is often called the
Teichmüller modular group or the modular group. The singular points of M� (away
from the hyperelliptic locus in � D 2; 3/ are caused by the fixed points of finite
subgroups of M� , which in turn controls the torsion cohomology of the mapping
class group. For more details and applications, see Broughton [7]. The moduli space
may also be constructed from the Torelli group. The Torelli space T�=I� is a smooth
manifold since I� is torsion-free. Hence there is a faithful action of M�=I� on the
manifold T�=I� yielding the quotient .T�=I� /=.M�=I� /D T�=M� DM� .

An especially simple example of the interplay between geometric structure and the
finite subgroups of M� was made apparent when Maclachlan showed in [28] that
M� is generated by torsion elements (and consequently that the quotient space moduli
space is simply connected). Following this, a number of different people have found
sets of torsion generators for M� ; see Birman [3] and Brendle and Farb [5]. An
understanding of how such elements generate M� may be possible through an analysis
of the conjugacy classes of finite subgroups of M� .

Acknowledgments The first author wishes to thank I M Isaacs for advice shortening
the exposition in Section 4. The second author thanks the University of Portland for
support through the Butine faculty support program. Both authors would like to thank
the referee for suggestions on improving the introduction and better linking the paper
with the literature.

2 Reduction of classification to finite group calculations

It is standard to study surface groups, Teichmüller space, and the moduli space in terms
of Fuchsian groups so we present our problem in that context.

2.1 Finite group actions and finite subgroups of M�

Let G be a finite group. The group G is said to act (in an orientation preserving
manner) on surface a S of genus � � 2 if there is an injection

�W G ,! HomeoC.S/

into the group of orientation preserving homeomorphisms. Two actions �1; �2 are said
to be topologically equivalent it there is a homeomorphism h of S and an automorphism
! of G such that

�2.!.g//D h ı �1.g/ ı h�1:
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This is equivalent to saying that the images �1.G/ and �2.G/ are conjugate in the
group HomeoC.S/. The following are well known for � � 2:

� The map to the mapping class group M� D M.S/ is injective

(1) G
�
�! HomeoC.S/

�
�!M�

because G acts faithfully on H1.S/.

� Given a finite subgroup H �M� there is a finite group G � HomeoC.S/ such
that H D �.G/ and at least one conformal structure on S such that G is a group
of conformal automorphisms with respect to this conformal structure (Nielsen
Realization problem; see Kerckhoff [23]).

Thus we have the following:

Proposition 2.1 The map induced by (1) is a 1-1 correspondence between topological
equivalence classes of G –actions and conjugacy classes of subgroups of the mapping
class group.

2.2 Covering Fuchsian group and generating vectors

Suppose that G acts conformally on S . The quotient T D S=G is a surface of some
genus � and the quotient map S ! S=G is branched over r points Q1; : : : ;Qr with
periods (or branching orders) m1; : : : ;mr . We say that S D .�Im1; : : : ;mr / is the
signature or branching data of G acting on S and that S admits a G –.�Im1; : : : ;mr /

action. Since G acts conformally there is a uniformizing Fuchsian group � for the
G –action and the signature of � is .�Im1; : : : ;mr /. More precisely we have a map

… ,! �
�
�G;

where … is a torsion-free surface group acting on H so that S � H=…, and the
G –action on S is induced by the isomorphism x�W �=… ! G and the natural action
of �=… on H=….

Any such epimorphism �
�
� G can be neatly summarized in the context of finite

groups by a generating vector. Generating vectors were initially introduced by Gilman
[16] for the abelian case to enumerate conjugacy classes of automorphisms of order p .
See Broughton [7; 8] and Breuer [6] for additional details. For the conformal action
of G on a surface S with signature S D .�Im1; : : : ;mr /, the group � has signature
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.�Im1; : : : ;mr / and a presentation

(2) � ' �.�Im1; : : : ;mr /

D h˛i ; ˇi ; j ; 1� i � �; 1� j � r j

�Y
iD1

Œ˛i ; ˇi �

rY
jD1

j D 
m1

1
D � � � D mr

r D 1i;

and the genus � of S is given by the Riemann–Hurwitz equation

(3)
.2� � 2/

jGj
D .2�� 2C r/�

rX
jD1

1

mj
:

Let ai ; bi ; cj be images of the generators ˛i ; ˇi ; j under the epimorphism �W � �!G ,
ie,

(4) �W ˛i 7! ai ; �W ˇi 7! bi ; �W j 7! cj :

Then the set fai ; bi ; cj j1� i � �; 1� j � rg is a generating set for G satisfying the
following properties:

�Y
iD1

Œai ; bi �

rY
jD1

cj D 1;(5)

o.cj /Dmj :(6)

Each such generating set gives us a .2�C r/–tuple .a1; : : : a�; b1; : : : b�; c1; : : : c�/

satisfying (5) and (6) and is called a .�Im1; : : : ;mr /–generating vector. There is a
one to one correspondence between the set of .�Im1; : : : ;mr /–generating vectors
of G and Epi.�;G/, epimorphisms � ! G preserving the orders of the j , once
a generating set G D f˛i ; ˇi ; j j1 � i � �; 1 � j � rg of � has been fixed. Let
X ı.G;S/ D X ı.G; �Im1; : : : ;mr / denote the set of .�Im1; : : : ;mr / – generating
vectors of G acting on S .

There is a natural action of Aut.G/�Aut.�/ on Epi.�;G/ by

� �! ! ı � ı ��1

where .!; �/ 2 Aut.G/ � Aut.�/. The action transfers to X ı.G;S/ in a natural
way. The following is well known and the justification is provided in some detail in
Broughton [8].

Proposition 2.2 Using the notation above, we have:

(1) Each finite subgroup of the mapping class group has a uniquely determined
signature which may be recovered from the homology representation.

Algebraic & Geometric Topology, Volume 7 (2007)



Finite abelian subgroups of the mapping class group 1657

(2) The conjugacy classes of finite subgroups of the mapping class group are in one
to one correspondence to the Aut.G/�Aut.�/ orbits on X ı.G;S/.

(3) The group Aut.�/ may be constructed geometrically from the mapping class
group MB of T preserving the branch point set and the branching orders.

Remark 2.3 Let’s give a bit more detail on the last point of the proposition. Let
BD fQ1; : : : ;Qr g denote the branch point set, and T oD T �B and Q0 2 T o . Every
homeomorphism of T o may be identified with a homeomorphism of the pair .T;B/
and vice versa. The fundamental group, �1.T

o;Q0/ has a presentation of the form

(7)
D
z̨i ; ži ; zj ; 1� i � �; 1� j � r j

�Y
iD1

Œz̨i ; ži �

rY
jD1

zj D 1
E

where the z̨i ; ži are the canonical pair around the i –th handle and zj encircles the
j –th puncture. There is an epimorphism �1.T

o;Q0/! � given by

(8) z̨i! ˛i ; ži! ˇi ; zj ! j :

Let M.T o;S/ denote the subgroup of the mapping class group of M.T o/ that pre-
serves periods of the branch points. Then the canonical map M.T o;S/!Out.�/ is
an isomorphism; see Zieschang, Vogt and Coldeway [36] for more details.

2.3 The Aut.G / � Aut.�/ actions for abelian groups

It is clear how Aut.G/ acts on X ı.G;S/ namely ! 2 Aut.G/ acts via

.a1; : : : a�; b1; : : : b�; c1; : : : c�/! .!a1; : : : !a�; !b1; : : : !b�; !c1; : : : !cr /:

In order to compute the action of Aut.�/ on X ı.G;S/ we need a generating set
for Aut.�/. This can be constructed as follows. In [3], Birman constructs a set of
geometrically defined generators of M.T o;S/ using Dehn twists and spin maps. The
action of these geometric generators on �1.T

o;Q0/ can be written as substitution
formulas in the generators hz̨i ; ži ; zj j1 � i � �; 1 � j � ri using the presentation
(7) and then writing h˛i ; ˇi ; j j1� i � �; 1� j � ri as substitution formulas in the
generators using the homomorphism (8) and the presentation (2). Any substitution
formula can be tested against the presentation to see if it really is an automorphism. In
Table 1, Table 2 and Table 3 we provide some examples, many of which first appeared
in Harvey [20]. There are many more but we will not record them here since we are
only going to use the much simpler transformations for abelian groups.
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˛i ˇi ˛iC1 ˇiC1

Ai ˛i ˇi˛i ˛iC1 ˇiC1

Bi ˛iˇi ˇi ˛iC1 ˇiC1

Ri ˛iˇi˛
�1
i ˛�1

i ˛iC1 ˇiC1

Si ı˛iC1ı
�1 ıˇiC1ı

�1 ˛i ˇi

Zi ˛i˛iC1 ˛�1
iC1

ˇi˛iC1 �˛iC1 ˇiC1ˇ
�1
i ��1

Table 1: Action of automorphisms Ai , Bi , Ci , Ri , Si , Zi . Here ı D
Œ˛i ; ˇi � , "D Œ˛�1

iC1
; ˇi � .

j jC1 requirements
Tj jjC1

�1
j j o.j /D o.jC1/

T�1
j jC1 �1

jC1
jjC1 o.j /D o.jC1/

Table 2: Action of Tj

˛i ˇi j notes
Ui;j ˛i ˇixj x�1 yj y�1 x D ˛�1

i ˇ�1
i w2, y D x�1˛�1

i x

Vi;j ˛iuj u�1 ˇi vjv
�1 uD ˇi˛

�1
i ˇ�1

i w2, uD v D u�1ˇiu

Table 3: Action of Ui;j ;Vi;j . Here w2 D
Q�

kDiC1
Œ˛k ; ˇk �

Qj�1

kD1
k .

When the group G is an additively written abelian group the formulas are much
simpler since all commutators will disappear and elements are equal to their con-
jugates. To avoid confusing the additive formulas with the multiplicative formu-
las in the general case we will use uppercase letters for a generating vector viz.,
.A1; : : :A�;B1; : : :B�;C1; : : :C�/. In this case an arbitrary assignment of elements
of G to the generators �W ˛i ! Ai , ˇi ! Bi will define an element of Hom.�;G/
since the commutation relation is trivially satisfied. Our transformations above may be
written

Ak
i W Bi! Bi C kAi

Bk
i W Ai!Ai C kBi

Zk
i W Ai �!Ai C kAiC1;BiC1 �! BiC1� kBi

Ri W Ai! Bi ; Bi!�Ai

Si:W Ai!AiC1; Bi! BiC1; AiC1!Ai ; BiC1! Bi
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and trivial on all other generators. If we include branch points then we must also add
an assignment �W j ! Cj , with

o.Cj /Dmj ;(9)

C1CC2C � � �CCr D 0:(10)

We can then add to our table of transformations:

Ti W Cj ! CjC1;CjC1! Cj ; mj DmjC1

Uk
i;j W Bi! Bi C kCj

Vk
i;j W Ai!Ai C kCj

Obviously, any permutation of the Cj preserving order is permissible.

When G is abelian then the induced action of Aut.�/ on a generating vector can be writ-
ten in matrix vector form. Suppose that ��1 2Aut.�/ is induced by a homeomorphism
of T o preserving branch order. Then

.A1; : : :A�;B1; : : :B�;C1; : : :Cr / �! .A1; : : :A�;B1; : : :B�;C1; : : :Cr /M

where M is a matrix of the form

(11) M D

�
Sp Z

0 P

�
where Sp is a 2�� 2� integral symplectic matrix, P is an r � r permutation matrix,
and Z is arbitrary integer valued matrix. The matrix Sp is the induced symplectic
automorphism on H1.T IZ/. Perhaps the easiest way to see this is that each of the
generators listed above has the given matrix decomposition (see also Gilman [16]).

2.4 Hyperbolic–elliptic decomposition, abelian case

In the group � the generators h˛i ; ˇi j1 � i � �i are hyperbolic elements and the
generators fj j1� j � rg are elliptic elements. Accordingly we define the hyperbolic
(unramified) and elliptic (ramified) parts of G : Gh D hAi ;Bi j1 � i � �i and Ge D

hCj j1 � j � ri. We are interested in the action of Aut.�/ on the splitting of G .
Accordingly define for � 2 Aut.�/

Gh;�
D
˝
� ı ��1.˛i/; � ı �

�1.ˇi/j1� i � �
˛
; Ge;�

D
˝
� ı ��1.j /j1� j � r

˛
:

We have the following:

Proposition 2.4 Let �W ˛i ! Ai , ˇi ! Bi , j ! Cj , be an arbitrary assignment.
Then � extends to an epimorphism �W �!G if and only if the relations (9) and (10)
hold and G D hGh;Gei.
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Proposition 2.5 Let �W �!G be an epimorphism then GeDGe;� for all � 2Aut.�/.

Proof Let �e D hj j1 � j � ri. If N.�e/ is the normal closure of �e then Ge D

�.N.�e//. It is well known that in � every elliptic element is conjugate to one of the
j , and hence h� ı ��1.Cj /j1� j � ri D �.��1.N.�e///D �.N.�e//DGe .

Proposition 2.6 The elliptic components .C1; : : :Cr / and .C 0
1
; : : : ;C 0r / of two abel-

ian generating vectors are M.�/–equivalent if and only if one is a permutation of the
other: C 0j D C�j for some permutation � .

Proof The automorphism � is induced by a homeomorphism h of .T o;Q0/ which
must permute the punctures Q1; : : : ;Qr . Since h is orientation-preserving then
h�1.�j / is a conjugate of some e�j for some permutation � .

Next let Ge be a subgroup of G and consider all possible subgroups H such that
G D hH;Gei. Let H0 be one of smallest order. Then we may also assume that
Gh DH0 .

Proposition 2.7 Let �W �!G be an action and let H0 be the subgroup of smallest
order such that G D hH0;G

ei. Then there is � 2M.�/ such that Gh;� D H0 and
Ge;� DGe .

Proof The equality Ge;� DGe is automatic. Each Ai and Bi may be written:

Ai DA0i C ai;1C1C � � �C ai;r Cr ; A0i 2H0

Bi D B0i C bi;1C1C � � �C bi;r Cr ; B0i 2H0

By applying V
�ai;j

i;j we can remove the component ai;j Cj from the expression for Ai

and affect no other terms. Thus all the Ai can be reduced to A0i . Similarly the Bi can
be reduced to B0i . Now hA0i ;B

0
i j1 � i � �i �H0 and G D h

˝
A0i ;B

0
i j1� i � �i;Ge

˛
by construction, so H0 D hA

0
i ;B
0
i j1� i � �i by minimality.

2.5 The elementary abelian case

Finally let us assume that G D Fwp , an elementary abelian group considered as a vector
space over Fp . The generators Ai ;Bi ;Cj may then be thought of as vectors over
Fp . Now let XAB be the matrix Œ A1 � � � A� B1 � � � B� � and XC be the matrix
Œ C1 � � � Cr �. Then by Equation (11) the action of .!; �/ on X D Œ XAB XC � is

Œ XAB XC �!M! Œ XAB XC �M�1
�
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where M! 2GLw.p/ and

M�1
� D

�
Sp Z

0 P

�
:

Next by Proposition 2.7 we assume that � is chosen so that Fwp DGh˚Ge . Now write
Fwp D Fu

p˚ Fvp and find an N 2 GLw.p/ such NGh D Fu
p˚ 0 and NGe D 0˚ Fvp .

It then follows that

(12) N Œ XAB XC �D

�
YAB 0

0 YC

�
where YAB is u� 2� matrix of rank u and YC is a v� r matrix of rank v . Thus we
may assume the generating vector X of our initial � has the form of the right hand
side of Equation (12). Now suppose that we look at a transformed generating vector
M!XM�1

�
that has the same form ie:�

WAB 0

0 WC

�
D

�
M11 M12

M21 M22

� �
YAB 0

0 YC

� �
Sp Z

0 P

�
D

�
M11YABSp M11YABZCM12YC P

M21YABSp M21YABZCM22YC P

�
Since M21YABSpD 0 and YABSp has rank u then M21 D 0,and M11 and M22 are
invertible. Since M11YABZCM12YC P is also assumed zero, it follows that�

WAB 0

0 WC

�
D

�
M11YABSp 0

0 M22YC P

�
D

�
M11

M22

� �
YAB 0

0 YC

� �
Sp
0 P

�
ie, we can just find the equivalence classes of the unramified and the ramified compo-
nents independently. We summarize the results in a theorem.

Theorem 2.8 Suppose that the group G D Fwp acts on a surface S with signature
.�Ipr / and genus 1 C pw.� � 1/ C pw�1 r.p�1/

2
determined by an epimorphism

�W � ! G (note that r D 1 is infeasible). Then there are unique integers u; v such
that w D uC v , 0� u� 2� , 1� v < r , a u� 2� matrix WAB of rank u, and a v � r

matrix WC of rank v such that the matrix�
WAB 0

0 WC

�
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is a representative of the topological equivalence class of G –actions on S . Moreover if�
W 0

AB
0

0 W 0
C

�
is another representative satisfying similar rank conditions for W 0

AB
and W 0

C
then

WAB and W 0
AB

define equivalent unramified actions with signature .�I �/ and WC

and W 0
C

define equivalent purely ramified actions with signature .0Ipr /.

Corollary 2.9 For 0 � u � 2� , let hu be the number of equivalence classes of
unramified actions of Fu

p on a surface of genus 1Cpu.�� 1/ with signature .�I �/
and hu D 0 otherwise. Let ev be the number of equivalence classes of purely ramified
actions of Fvp on a surface S of genus 1Cpw�1 r.p�1/

2
�pw with signature .0Ipr / for

1� v < r . Let e0 D 1 and ev D 0 otherwise. Then the number of inequivalent actions
of Fwp on a surface of genus 1Cpw.�� 1/Cpw�1 r.p�1/

2
with signature .�Ipr / is

given by

# actions D
wX

uD0

huew�u:

2.6 Cohomological invariants

For abelian covers we may use cohomology to concoct an M–invariant to distinguish
classes. As noted above, for an abelian group G , Hom.�;G/ classifies covers T by
subgroups of G . We have the sequence of equivalences

Hom.�;G/w Hom.H1.T IZ/;G/wH 1.T IG/:

Given two elements of �1; �2 2H 1.T IG/ we may consider the cup product �1[�2 2

H 1.T IG˝G/. If h is an orientation-preserving homeomorphism then

h��1[ h��2 D h�.�1[ �2/D �1[ �2:

In particular if �1 D �2 D � then

h��[ h��D �[ �

since h is orientation preserving. It is not hard to show that if �W ˛i!Ai , �W ˇi!Bi ,
then

�[ �D

�X
iD1

.Ai ˝Bi �Bi ˝Ai/

Observe that the invariance of �[ � under the transforms in Section 2.3 may also be
proved by direct computation.
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Example 2.10 Let G = Cn ˚ Cm with x generating Cn and y generating Cm

additively (cyclic groups of order m and n). Consider the following epimorphisms:

�1W .˛1; ˇ1; ˛2; ˇ2/! .x;y; 0; 0/

�2W .˛1; ˇ1; ˛2; ˇ2/! .x; 0;y; 0/

�1[ �1 D x˝y �y˝xThen

�2[ �2 D 0

and so the epimorphisms are different under the action of Aut .�.2I �//.

3 The unramified abelian case

In this section, we consider the case when G is abelian and � D…� is torsion-free.
For the special case when G is elementary abelian, complete results were derived in
Broughton [9]. We shall apply the ideas from this case to the more general abelian case.
Due to the complexity of the problem, we shall only produce partial results, though
the results we derive will be sufficient to produce explicit results for genus up to 65.
We shall also illustrate how in principle one could use the results to classify all fixed
point abelian actions for arbitrary genus. It should be noted that we do not consider
the abelian case for general � because Theorem 2.8 no longer holds so there could be
overlap between Gh and Ge making the problem much more difficult.

3.1 The unramified elementary abelian case

The following was proved in Broughton [9] and completely classifies all unramified
elementary abelian actions up to topological equivalence (to keep notation consistent
with the elementary abelian case, for an abelian group G , by p–rank we mean the
number of invariant factors of G ). The corollary immediately follows.

Theorem 3.1 Suppose � D…� is a surface group of orbit genus � and generators
˛1; : : : ; ˛�; ˇ1; : : : b� and G is an elementary abelian group of p–rank r � 2� with
generators !1; : : : ; !r . Then there exists an integer r=2�K �min.�; r/ such that any
epimorphism from � onto G is Aut .G/�Aut .�/–equivalent to one of those below:

�W D

8̂̂̂̂
<̂
ˆ̂̂:
�.˛i/D !i i �K

�.˛i/D 0 i >K

�.ˇi/D !iCK i � r �K

�.ˇi/D 0 i > r �K
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Corollary 3.2 Suppose G is an elementary abelian group of p–rank r , let M� denote
the mapping class group of a closed surface of genus � and let �D .��1Cpr /=pr . If
� is not an integer, there are no conjugacy classes of subgroups of M� isomorphic to G

with fixed point free action. Else, the number of conjugacy classes of subgroups of M�

isomorphic to G with fixed point free action is calculated as follows: if r � � , there
are r=2C 1 different classes of epimorphisms for r even and .r C 1/=2 epimorphisms
if r is odd, if r D �C i with 0< i < � there are .�� i/=2 classes of epimorphisms if
�� i is even and .�� i C 1/=2 if �� i is odd, and if r D 2� or r D 1, there is just
one class.

We illustrate with an example.

Example 3.3 Suppose � has genus 2 and G is an elementary abelian p–group of
p–rank 2. If �W � ! G is a surface kernel epimorphism, then using the Riemann–
Hurwitz formula, the genus � of the kernel will be � D p2C 1. In fact, by simple
application of the Riemann Hurwitz formula, it can be shown that for p > 5, � is the
only Fuchsian group which admits an elementary abelian quotient of order p2 with
kernel of orbit genus p2C 1 (for p D 5, see Example 5.1). This means for p > 5,
in Mp2C1 , the conjugacy classes of elementary abelian subgroups of order p2 will
be in a one to one correspondence with the classes of epimorphisms from � onto G .
Applying Corollary 3.2, there are two such classes.

3.2 The general unramified abelian case

We now consider partial results for the general abelian case. Before we start, we
introduce some notation and terminology.

Notation For the rest of this section, G will denote an additively written abelian group
of p–rank r with invariant factors n1 � n2 � � � � � nr where niC1jni and !1; : : : ; !r

are a fixed set of generators of orders n1; : : : ; nr respectively. Also, for an integer n,
Cn denotes the cyclic group of order n.

The following two steps can be taken to classify all fixed point free G–actions on a
surface: first determine a set of epimorphisms with the property that every epimorphism
is equivalent to one in this set, and then reduce this set so no two epimorphisms are
equivalent. In the following, we shall consider the first step. Though in general we shall
not consider the problem of distinguishing between classes, we shall present explicit
examples showing how in principle one could tackle this problem. Note that r � 2� ,
so we only need consider epimorphisms from � to G with p–rank at most 2� .
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Proposition 3.4 Any epimorphism �W �!G is equivalent to one of those described
below:

(1) r � � .

�W D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�.˛i/D !i i � r

�.˛i/D 0 i > r

�.ˇi/D
rP

jDiC1

Nˇi ;!j!j i � r

�.ˇi/D 0 i > r

where
� .niC1;Nˇi ;!iC1

/ > 1 or Nˇi ;!iC1
D 1 for each i � r � 1

� for each i , if j > i C 1 is the largest integer such that Nˇi ;!j ¤ 0, then
hNˇi ;!j!j i � hNˇiC1;!j!j i.

(2) r > � .

�W D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�.˛i/D !i 1� i � �

�.ˇi/D
rP

jDiC1

Nˇi ;!j!j ; 1� i � 2�� r

�.ˇi/D !2��iC1C

2��iP
jDiC1

Nˇi ;!j!j 2�� r < i < �

�.ˇ�/D !�C1 i D �

where
� for i > 2��r either the order of Nˇi ;!j!j does not divide nr or Nˇi ;!j D 0

� for i � 2�� r if j > i C 1 is the largest integer such that Nˇi ;!j ¤ 0, then
hNˇi ;!j!j i � hNˇiC1;!j!j i

� for i � 2�� r � 1, .ni ;Nˇi ;!iC1
/ > 1 or Nˇi ;!iC1

D 1.

Proof We shall use induction on the p–rank of the group G . For p–rank r D 1, we
are done by Harvey [21, Theorem 14]. Assuming the result holds for p–rank r �1, we
shall prove it holds for p–rank r . The proof falls into two different cases depending
upon whether 1< r � � or � < r � 2� . First suppose that r � � .

Let �W � ! G D Cn1
� � � � � Cnr

denote the epimorphism onto G and ˆW G !

Cn1
� � � � � Cnr�1

the projection map onto the quotient group G=Cnr
(by abuse of

notation, we identify Cn1
� � � � �Cnr�1

with the corresponding subgroup of G ). Since
� is torsion-free, all subgroups will be torsion-free. In particular, the map ˆ ı � will
be a surface kernel epimorphism from � onto Cn1

� � � � �Cnr�1
, so by induction, will

be equivalent to one as given in the statement of the proposition. Lifting to G and
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composing with appropriate automorphisms of G , it follows that � is equivalent to an
epimorphism of the following form:

�W D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�.˛i/D !i i < r

�.˛i/Dmi!r i � r

�.ˇi/DMi!r C

r�1P
jDiC1

Nˇi ;!j!j i � r

�.ˇi/DMi!r i > r

for integers mi , r � i � � and Mj , 1� j � � (for convenience, by abuse of notation,
we shall denote any epimorphism equivalent to � by �). Similar to the elementary
abelian case in Broughton [9], we now reduce using the automorphisms from Aut .�/
developed in Section 2.3 and the automorphisms of the abelian group G . In most
instances, since the reduction steps are between pairs of pairs of generators and constant
on all others, we shall just consider the pairs which are changed. To start, let k be the
smallest integer such that .M2�kM1/!r generates the subgroup generated by M1!r

and M2!r and let ˆ 2 Aut.G/ where ˆ.!1/D !1C k!2 and the identity map on

all other generators. Then the map A
n2�Nˇ1;!2

1
ˆ ıZk

1
modifies the images of ˛1 , ˛2 ,

ˇ1 and ˇ2 but acts trivially on the images of ˛i and ˇi for i � 3. Specifically, after
renaming the coefficients, we get:

.˛1; ˇ1; ˛2; ˇ2/ �! .!1;M1!r C

r�1X
jD2

Nˇi ;!j!j ; !2;M2!r C

r�1X
jD3

Nˇi ;!j!j /

�! .!1;

rX
jD2

Nˇ1;!i
!i ; !2;

rX
jD3

Nˇ2;!i
!i/

where hNˇ1;r!r i � hNˇ2;r!r i. Applying similar transformations to all proceeding
pairs of pairs up to the pair .˛r ; ˇr / we get:

�W D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�.˛i/D !i i < r

�.˛i/Dmi!r i � r

�.ˇi/D
rP

jDiC1

Nˇi ;!j!j i � r

�.ˇi/DMi!r i > r

where hNˇi ;r!r i � hNˇiC1;r!r i for all i . In particular, this implies

hNˇ1;r ;Nˇ2;r ; : : : ;Nˇr�1;r!r i � hNˇr ;r!r i:
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Next, we reduce the pairs .˛i ; ˇi/ with i�r . First, to any such pair, we apply Bk
i where

k is the smallest integer such that .miCkMi/!r generates the subgroup generated by
mi!r and Mi!r (for brevity, by abuse of notation, we rename .mi CkMi/ by mi ).
Then for a given i , since hMi!r i�hmi!r i, there exists n such that .MiCnmi/!r D0.
Applying the automorphism An

i , we get .˛i ; ˇi/! .0;Mi!r /. Following this, for the
pairs, .˛��1; ˇ��1; ˛�; ˇ�/, we apply Ak

��1
where k is the smallest integer such that

.M��kM��1/!r generates the subgroup generated by M�!r and M��1!r . Renam-
ing .M��kM��1/!r by M� , we get .˛��1; ˇ��1; ˛�; ˇ�/! .M��1!r ; 0;M�!r ; 0/

where hM��1!r i � hM�!r i. Finally, we eliminate the image of ˇ��1 by applying
An
��1

where n is the smallest integer such that .M��1� nM�/!r D 0 and then apply
S��1 and R��1 giving .˛��1; ˇ��1; ˛�; ˇ�/! .0; 0;M��1!r ; 0/ (after renaming
coefficients). Applying similar transformations to pairs .˛i ; ˇi ; ˛iC1; ˇiC1/ with i > r ,
we get:

�W D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�.˛i/D !i i < r

�.˛r /DM!r i D r

�.˛i/D 0 i > r

�.ˇi/D
rP

jDiC1

Nˇi ;!j!j i � r

�.ˇi/D 0 i > r

for some integer M . Finally, we apply Zk
r�1

where k is the smallest integer such that
.M �kNˇr�1;!r

; nr /D 1 (note that such an integer exists since M!r and Nˇr�1;!r
!r

generate h!r i). Finally, by applying Gr and an appropriate automorphism of G , after
renaming the coefficients, we get:

�W D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�.˛i/D !i i � r

�.˛i/D 0 i > r

�.ˇi/D
rP

jDiC1

Nˇi ;!j!j i � r

�.ˇi/D 0 i > r

For the last reduction step, if .Nˇr�1;!r
; nr /D 1, we first apply ˆ 2Aut.G/ such that

ˆ.Nˇr�1;!r
!r /D!r and identity on all other generators. Then, assuming b is the inte-

ger with ˆ.!r /D b!r , we perform Gr ıZ
bC1
r�1
ıGr ıˆ giving .˛r�1; ˇr�1; ˛r ; ˇr /!

.!r�1; !r ; !r ; 0/. Note that for l < r , none of the transformations used during this
proof change the fact that .nl ;Nˇl�1;!l

/ > 1 or Nˇl�1;!l
D 1. Observe also that

the reduction methods used imply that if j > i C 1 is the largest integer such that
Nˇi ;!j ¤ 0, then hNˇi ;!j!j i � hNˇiC1;!j!j i.
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Now suppose that r > � . Since the arguments regarding transformations are similar to
those used for the previous case, we shall skip many steps. Assuming the result holds
when the p–rank of the group is r � 1 � � , induction implies after composing with
appropriate automorphisms of G , � has the following form:

�W D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�.˛i/D !i 1� i � �

�.ˇi/DMi!r C

r�1P
jDiC1

Nˇi ;!j!j ; 1� i � 2�� r C 1

�.ˇi/D !2��iC1C

2��iP
jDiC1

Nˇi ;!j!j 2�� r C 1< i < �

�.ˇ�/D !�C1

As with the previous case, for each i < r , we can use the transformations Zi , Ai

and appropriate automorphisms of G to move a generator for h!r i to the image of
ˇ2��rC1 giving

�.ˇ2��rC1/D !2��rC1C

2��rX
jDrC1

Nˇi ;!j!j :

Applying these transformations, we get:

�W D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�.˛i/D !i 1� i � �

�.ˇi/D
rP

jDiC1

Nˇi ;!j!j ; 1� i � 2�� r

�.ˇi/D !2��iC1C

2��iP
jDiC1

Nˇi ;!j!j 2�� r C 1� i < �

�.ˇ�/D !�C1

where hNˇ1;!r
!r i � hNˇ2;!j!j i � � � � � hNˇ2��rC1;!r

!r i.

For the last reduction step, we apply an appropriate automorphism of G that acts trivially
on all generators except !r and eliminates all elements from the sum

Pr�1
jDiC1 Nˇi ;!j!j

with the order of Nˇi ;!j!j dividing nr . Then we get:

�W D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�.˛i/D !i 1� i � �

�.ˇi/D
rP

jDiC1

Nˇi ;!j!j ; 1� i � 2�� r

�.ˇi/D !2��iC1C

2��iP
jDiC1

Nˇi ;!j!j 2�� r < i
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where the order of Nˇi ;!j!j does not divide nr for i > 2�� r . As with the last case,
if i � 2�� r , the reduction methods used implies that if j > iC1 is the largest integer
such that Nˇi ;!j ¤ 0, then hNˇi ;!j!j i � hNˇiC1;!j!j i.

We note that though more refined sets of epimorphisms can be obtained (in particular,
the elementary abelian case), our goal was to provide a set of epimorphisms independent
of the genus and invariant factors. We finish with an explicit example showing how to
use Proposition 3.4 to determine all classes of fixed point free actions.

Example 3.5 Suppose that � has genus 2 and G has p–rank 3 with invariant factors
4; 4; 2. Proposition 3.4 implies there are up to six classes of epimorphisms of the form
.˛1; ˇ1; ˛2; ˇ2/! .!1; a!2C b!3; !2; !3/ where a D 0; 1; 2 and b D 0; 1. Using
elements of Aut .G/ � Aut .�/ it is fairly straight forward to reduce each of these
epimorphisms to one of the following three:

�1W D .˛1; ˇ1; ˛2; ˇ2/! .!1; !2; !3; 0/

�2W D .˛1; ˇ1; ˛2; ˇ2/! .!1; !3; !2; 0/

�3W D .˛1; ˇ1; ˛2; ˇ2/! .!1; !2; 2!2; !3/

We shall show that these three epimorphisms are distinct.

First note that if �i is equivalent to �j , then there exists � 2 Aut .G/ and � 2 Aut .�/
such that � ı�i ı�D �j . Since the cup product [ is an Aut .�/ invariant, it follows that
.� ı�i/[.� ı�i/D �j [�j . Therefore, in order to show distinctness, it suffices to show
that for i ¤ j , there does not exist � 2Aut .G/ such that .� ı�i/[ .� ı�i/D �j [�j .
Since Aut .G/ is finite, this can be checked directly. We illustrate by showing that �1

and �2 are not equivalent.

First, taking the cup product we get

�1[ �1 D !1˝!2�!2˝!1

� ı �2[ � ı �2 D �.!1/˝ �.!3/� �.!3/˝ �.!1/:and

Assuming that �.!1/ D A!1CB!2CC!3 and �.!3/ D D!1CE!2CF!3 , by
simplifying the tensor product and combining like terms, in order for these products to
be equal, we must have .AE�DB/D 1 mod .4/. However, this is impossible since
both D and E must be divisible by 2 (since !3 has order 2). Thus �1 and �2 are not
equivalent. All other cases follow similar arguments and so it follows that there are
three topological equivalence classes of fixed point G–actions on a surface of genus
33.
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3.3 Classification for Genera � 65

Due to the ad hoc style arguments which seem required to distinguish classes, we fall
short of a general classification for abelian groups. However, Proposition 3.4 coupled
with the following results will allow a classification up to genus 65 (and in fact is
enough to classify certain infinite families).

Lemma 3.6 If G has p–rank 2 and n2 is square free, then for each divisor N of n2

with 1�N � n2 , any epimorphism �W �! G is equivalent to one of those described
below:

�W D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�.˛1/D !1

�.˛2/D !2

�.˛i/D 0 i > 2

�.ˇ1/DN!2

�.ˇi/D 0 i > 1

Moreover, no two such epimorphisms are equivalent under the action of Aut .G/ �
Aut .�/, so in particular, there are d.n2/ epimorphisms up to the action of Aut .G/�
Aut .�/ (where d.n2/ denotes the number of divisors of n2 ).

Proof By Proposition 3.4, any epimorphism from � onto a p–rank 2 abelian group
will be equivalent to one of the form �N W .˛1; ˇ1; ˛2; ˇ2/! .!1;N!2; !2; 0/ with the
image of all other generators being trivial. Therefore, we just need to determine when
�N and �M are equivalent for M ¤ N . We start by showing that if gcd .n;N / ¤

gcd .n;M /, then �N and �M are not equivalent.

First, using the arguments from Example 3.5, it suffices to show that there does not
exist � 2Aut .G/ such that .� ı�N /[.� ı�N /D �M [�M . In general, if � 2Aut .G/,
then � can be identified with a 2�2 matrix with integer coefficients with the action of
� on the generators !1 and !2 defined as follows:

� �
!1

!2
D

A B

C D
�
!1

!2
D

A!1CB!2

C!1CB!2

Under such a realization, since this map must restrict to an automorphism of the
subgroup Cn2

� Cn2
, the determinant det .�/ D AD � BC must be a unit in Cn2

.
Assuming � has this form, calculating the two cup products and simplifying, we get

.� ı �N /[ .� ı �N /DN det .�/.!1˝!2�!2˝!1//

�M [ �M DM.!1˝!2�!2˝!1/:and
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Since det .�/ is a unit in Cn2
, if gcd .n;N / ¤ gcd .n;M /, then we can never have

N det .�/DM (else they would be associates in the ring Cn2
and thus we would have

gcd .n;N /D gcd .n;M /). Thus if gcd .n;N /¤ gcd .n;M / then �N and �M define
inequivalent classes. To finish, we need to show if gcd .n;N /D gcd .n;M /, then �N

and �M are equivalent.

Suppose nD p1 : : :psq1 : : : qr where the pi and qi are all distinct primes and d D

p1 : : :ps D gcd .n;N /. Observe that by applying S2 followed by Zk
1

for any integer
k to �N , we have the epimorphism .˛1; ˇ1; ˛2; ˇ2/! .!1;N!2; 0; .1 � kN /!2/.
Moreover, if .1 � kN; n2/ D 1, then there exists an integer a which induces an
automorphism of Cn2

via multiplication, such that a.1�kN /D1 mod .n2/. Applying
this automorphism and reapplying S2 , we see that �N is equivalent to �aN for any
such a and .n2; aN /D d (since a is a unit in Cn2

/.

Assume ..1 � kN /; n2/ D 1 and ..1 � cN /; n2/ D 1, let a D .1 � kN /�1 and
b D .1 � cN /�1 (all taken mod .n2/). In order to avoid redundancy, we may
assume 0� k; c � q1 : : : qr . Now if aN D bN mod .n2/, then .1�kN /D .1�cN /

and consequently q1 : : : qr j.k � c/. However, this implies k D cC aq1 : : : qr which
contradicts that 0 � k; c � q1 : : : qr unless a D 0. Thus �aN D �bN only when
aD b . Therefore, since there are precisely �.n2=d/D .q1 � 1/.q2 � 1/ : : : .qr � 1/

different integers M with .n2;M / D d , it suffices to show that there are precisely
.q1� 1/.q2� 1/ : : : .qr � 1/ choices for k such that .1� kN; n2/D 1.

Observe that pi does not divide 1� kN for any value of i or k , so it follows that
.1� kN; n2/D 1 provided T D qi1

: : : qit
does not divide 1� kN for any divisor T

of q1 : : : qr . Suppose T D qi1
: : : qit

is a divisor of q1 : : : qr . Then .T;N /D 1 (since
gcd .n2;N /D d ), so there exists k and c such that cT C kN D 1, or cT D 1� kN .
Moreover, if c1T Ck1N D 1 for any other c1 and k1 , we must have c1D cCvN for
some integer v and for every integer v , if we define c1 D cC vN and k1 D k �T v ,
then c1T D 1�k1N . This implies there will be precisely q1 : : : qr=T values of k for
which T divides 1�kN . Since there are q1 : : : qr total choices for k and q1 : : : qr=T

choices which are divisible by T for each divisor T of q1 : : : qr , we can form a
weighted sum over all the divisors of q1 : : : qr to determine precisely how many are not
divisible by any such T . Specifically, the number of values of k with 0� k < q1 : : : qr

such that .1� kN; q1 : : : qr /D 1 is

q1q2 : : : qr C

rX
nD1

�
.�1/n

X
r�i1>i2>���>in�1

q1 : : : qr

qi1
: : : qin

�
D .q1� 1/.q2� 1/ : : : .qr � 1/:

The result follows.
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In fact Lemma 3.6 can be generalized further so for pD 2 we don’t have 16jn2 (though
the proof is more technical). The next result is a generalization of the elementary abelian
case and the proof is identical.

Lemma 3.7 If n2 D p a prime, then there exists K with r=2�K �min. � ; r/ such
that any epimorphism �W �! G is equivalent to one and only one of those described
below:

�W D

8̂̂̂̂
<̂
ˆ̂̂:
�.˛i/D !i i �K

�.˛i/D 0 i >K

�.ˇi/D !iCK i � r �K

�.ˇi/D 0 i > r �K

We now have enough information to complete the classification of fixed point free
abelian actions up to genus 65.

Example 3.8 First we eliminate all cases which can be classified by our results.
Suppose G has invariant factors n1; n2; : : : ; nr . By Theorem 3.1, we may assume that
n1 ¤ p for p a prime and by Lemma 3.7, if the p–rank is greater than 1, we may
assume that n2 ¤ p for p a prime either. Consequently, if G has p–rank at least 3

and n3 D a, then n2 D ab and n1 D abc where if a is prime, then b ¤ 1. Thus we
would have jGj D a3b2c � 64 unless aD 2, b D 2 and c D 1. However, in this case
the invariant factors are 4; 4; 2 and we classified all such epimorphisms in Example 3.5.
Thus we may assume G has p–rank 2.

For p–rank 2, Lemma 3.6 implies we may assume there exists a prime p such that
p2jn2 (and consequently p2jn1 ). If p � 3, then jGj � 34 and so the genus of the
resulting surface will be at least 82, so we may assume pD 2. This means n1D 4k for
some integer k . If k > 3, the resulting surface will have genus greater than 65, so we
only need n1D n2D 4, n1D 8 and n2D 4, and n1D 12 and n2D 4. However, in all
these cases, there is a unique value N for which .N; n2/ > 1, so using the cohomology
arguments of Lemma 3.6 and the general form given in Proposition 3.4, it is easy to
check that there are just three classes:

�1W .˛1; ˇ1; ˛2; ˇ2/! .!1; !2; 0; 0/

�2W .˛1; ˇ1; ˛2; ˇ2/! .!1; 2!2; !2; 0/

�3W .˛1; ˇ1; ˛2; ˇ2/! .!1; 0; !2; 0/

4 The totally ramified case

Assume that G D Fvp and that our action is purely ramified, namely S=G has genus 0,
and that there are r branch points. We are going to describe a method for computing
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the number of equivalence classes of actions of G . In each case there will be several
small exceptional primes and a finite number of infinite families for which the number
of actions is expressed as a polynomial in the prime. The infinite families are defined
by the existence or nonexistence of certain roots of unity and so each family is typically
the set of primes in an arithmetic progression. Unfortunately, our method depends on
the enumeration of the finite subgroups of the symmetric group on r points, so exact
general results are impossible for all p–ranks and numbers of branch points. Thus, we
will describe the general method, but only derive the precise details for 3 and 4 branch
points (Table 10).

We may associate a generating set fCj j1� j � rg with a matrix X

fCj j1� j � rg $ Œ X1 X2 � � � Xr �DX

where X satisfies the following conditions:

X is a v� r matrix of rank v:(13)

X1CX2C � � �CXr D 0:(14)

Note that 1� v < r and r � 2. Let us explicitly define the action as we shall need it in
our calculations. Let g 2GL.v; Fp/ be a v� v invertible matrix over Fp , and ˛ 2†r .
Let �˛ be the standard permutation matrix defined by

�˛ D

26664
E˛.1/
E˛.2/
:::

E˛.r/

37775
where E1; : : : ;En are the rows of the identity matrix. Then �˛ˇ D �˛�ˇ and the
action Aut.G/ �Aut.�/ on the set of matrices X is the action of GL.v; Fp/ �†r

given by

(15) .g; ˛/ �X D gX�>˛ ;

ie, gX�>˛ D Œ gX˛.1/ gX˛.2/ � � � gX˛.r/ �:

The problem of computing the number of equivalence classes is the same as computing
the number of orbits under the given action. Before we start setting up the machinery
for the computation of the orbits, let us prove a trivial case for all p–ranks.

Proposition 4.1 Suppose that the number of branch points is one more than the
p–rank of G . Then there is a unique action of G .
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Proof Let g D Œ X1 X2 � � � Xv � be the square matrix obtained by dropping the last
column of X . Since X1 CX2 C � � � CXr D 0 then the column space of g is the
same as the column space of X . It follows the that g is full rank and hence invertible.
Then g�1X D Œ Iv �Ev � where Ir is the v� v identity matrix and Ev a column of
ones.

4.1 Orbit spaces via equisymmetry

Let � be a finite set upon which the finite group G (different from our G above) acts.
Consider the following standard constructs. Given a subset Y �� or H �G let

GY D fg 2Gjgx D x;8x 2 Y g and Gx DGfxg

and �H
D fx 2�jgx D x;8g 2H g and �g

D�fgg:

For H � G let SH denote the action closure of H , the largest group fixing all the
points fixed by all elements of H ,

SH DG�H D

\
x2�H

Gx :

Also SY denotes the action closure of a subset Y ��, the set of all points fixed by all
elements of G fixing all of Y ,

SY D�GY D

\
g2GY

�g:

Next for a subgroup H � G let hH i denote the conjugacy class of subgroups of G

determined by H . The set of conjugacy classes has a partial order hH1i � hH2i if and
only if H1 � gH2g�1 for some g 2G . We make the following additional definitions.

Definition 4.2 Two points x;y 2� are called equi-isotropic if Gx DGy and equi-
symmetric if Gx and Gy are conjugate subgroups. The group Gx is called the isotropy
type of x and hGxi is called the symmetry type of x . If H DGx for some x then the
H –isotropic stratum or the isotropic stratum of x is the set of all points with isotropy
type H :

V�H
WD fy 2�jGy DH g:

Likewise if H DGx for some x then the H –equisymmetric stratum or the equisym-
metric stratum of x is the set of all points with symmetry type hH i:˝

V�H
˛
WD fy 2�jGy 2 hH ig:
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The action closure �H of V�H is the set of points with H –isotropy or greater, ie,
�H D fx 2�jH �Gxg. It is easily seen that

(16) �H
D V�H

[

[
K

V�K ;

a disjoint union for a set of closed groups K strictly containing K � H . We can
actually take the union over all subgroups K �H fixing any point, though some of
the V�K may be empty. We get a similar union

(17)
˝
�H

˛
D
˝
V�H

˛
[

[
K

˝
V�K
˛
;

for a set of closed point stabilizers K such that hKi � hH i. The equations (16) and
(17) may be rewritten to iteratively computeˇ̌

V�H
ˇ̌
D
ˇ̌
�H

ˇ̌
�

X
K

ˇ̌
V�K
ˇ̌

(18)

ˇ̌˝
V�H

˛ˇ̌
D
ˇ̌˝
�H

˛ˇ̌
�

X
K

ˇ̌˝
V�K
˛ˇ̌

(19)

where the sums are over the same set of subgroups as above.

If x and y have the same symmetry type, ie, Gx and Gy are conjugate, then
the orbits Gx and Gy have the same size jGj=jGxj. Since Ggx D gGxg�1 , then
g V�H D V�gHg�1

for a point stabilizer H and so the set
˝
V�H

˛
is G –invariant. Indeed

we have a disjoint union˝
V�H

˛
D

[
K2hH i

V�K
D

[
g2G=NG.H /

g V�H

from which we get
ˇ̌˝
V�H

˛ˇ̌
D jhH ij

ˇ̌
V�H

ˇ̌
. Since

˝
V�H

˛
!
˝
V�H

˛
=G is a jGj=jH j to 1

map, we have ˇ̌˝
V�H

˛
=G
ˇ̌
D
jH j

jGj

ˇ̌˝
V�H

˛ˇ̌
D

jH j

jNG.H /j

ˇ̌
V�H

ˇ̌
and it follows that

(20) j�=Gj D
X
H

ˇ̌˝
V�H

˛
=G
ˇ̌
D

X
H

jH j

jNG.H /j

ˇ̌
V�H

ˇ̌
;

where hH i runs over all conjugacy classes of point stabilizers. So computing j�=Gj

is just a matter of determining the point stabilizers H and the equisymmetric or the
equi-isotropic strata. The cardinalities of the closed subsets �H are generally easier
to calculate directly which is why we use the above formulas.
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4.2 Matrix formulation of Möbius inversion

The iterative calculation of j�=Gj via the formulas (18) and (20), which amounts to
Möbius inversion, can be put into a very succinct matrix format. Consider the set of
subgroups H � G such that �H is nonempty. For each conjugacy class of subgroups
in this set select a representative and then list the subgroups hidi DH1;H2; : : : ;Hs , in
such a way that hHii � hHj i H) i � j . This can always be done, though generally
not in a unique way. From Equation (16) we have:ˇ̌

�Hi
ˇ̌
D
ˇ̌
V�Hi

ˇ̌
C

X
K�Hi

ˇ̌
V�K
ˇ̌

(21)

D
ˇ̌
V�Hi

ˇ̌
C

X
j>i

� X
K2hHj i;Hi�K

ˇ̌
V�K
ˇ̌�

For H;K �G , let

U.H;K/D fgKg�1
jg 2G;H � gKg�1

g(22)

D.H;K/D fg�1Hgjg 2G;g�1Hg �Kg(23)

and set ui;j D jU.Hi ;Hj /j; di;j D jD.Hi ;Hj /j. Observe that ui;i D di;i D 1 and
ui;j D di;j D 0 if i > j and from Lemma 4.3 below we have

(24) ui;j D di;j
jhHj ij

jhHiij
:

Then Equation (21) can be rewritten asˇ̌
�Hi

ˇ̌
D
ˇ̌
V�Hi

ˇ̌
C

X
i<j

ui;j

ˇ̌
V�Hj

ˇ̌
(25)

D
ˇ̌
V�Hi

ˇ̌
C

X
i<j

di;j

ˇ̌˝
Hj

˛ˇ̌ˇ̌˝
Hi

˛ˇ̌ ˇ̌ V�Hj
ˇ̌

and we have the equality

(26)
ˇ̌˝
V�Hi

˛ˇ̌
D
ˇ̌
V�Hi

ˇ̌
jhHiij:

Now let us convert to matrix notation. Define

U D Œui;j �; D D Œdi;j �

S D diag.jhH1ij; jhH2ij; : : : ; jhHsij/

N D diag.jNG.H1/j; jNG.H2/j; : : : ; jNG.H2/j/

T D diag.jH1j; jH2j; : : : ; jHsj/:
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The matrices U D Œui;j � and D D Œdi;j � are upper triangular with 1’s on the diagonal.
It follows from (24) that U D S�1DS . Let L, Lı;Eı;Oı be the vectors

LD Œ j�H1 j j�H2 j � � � j�Hs j �>

Lı D
� ˇ̌
V�H1

ˇ̌ ˇ̌
V�H2

ˇ̌
� � �

ˇ̌
V�Hs

ˇ̌ �>
Eı D

� ˇ̌˝
V�H1

˛ˇ̌ ˇ̌˝
V�H2

˛ˇ̌
� � �

ˇ̌˝
V�Hs

˛ˇ̌ �>
Oı D

� ˇ̌˝
V�H1

˛
=G
ˇ̌ ˇ̌˝
V�H2

˛
=G
ˇ̌
� � �

ˇ̌˝
V�Hs

˛
=G
ˇ̌ �>

:

The vectors Eı and Oı are the cardinalities of the various equisymmetric strata and
corresponding orbits, j�=Gj is simply the sum of the entries of Oı . The equations
(21) to (26) can be translated into the following matrix equations:

LD ULı D S�1DSLı

Lı D U�1LD S�1D�1SL

Eı D SLı D SS�1D�1SLDD�1SL

Oı D
1

jGj
TEı D

1

jGj
TD�1SL:

Finally we have the matrix equation N�1 D
1
jGj

S relating normalizers and conjugacy
classes resulting in our final equation

(27) Oı D TD�1N�1L:

The following lemma relates the ui;j and di;j .

Lemma 4.3 Let H � K be subgroups of a finite group G . Let U.H;K/ and
D.H;K/ be the sets defined in equations (22) and (23). Then

(28) U.H;K/jhH ij D jD.H;K/jjhKij:

Proof Let P D f.S;T / 2 hH i � hKijS � T g. By considering the projections
P ! hH i, P ! hKi we see that jU.H;K/jjhH ij D jP j D jD.H;K/jjhKij.

Remark 4.4 The entries of D can be found by enumerating the subgroups of Hj and
then determining to which Hi they are conjugate. In our calculations we will just work
with subgroups of small symmetric groups.
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4.3 Structure of stabilizers

Let � be the set of matrices X satisfying conditions (13) and (14), and GDGL.v; Fp/�

†r with the action given in Equation (15). There are two canonical representations
�1W G!GL.v; Fp/, .g; ˛/ 7!g and �2W G!†r!GL.r; Fp/, .g; ˛/ 7!�˛ . We are
going to describe the structure of stabilizers H �G in terms of the two representations.
Let X0 2� and suppose that H is a subgroup fixing X0 , (the subgroup need not be
action closed). If X is any matrix stabilized by H then �1.h/X�

>
2
.h/DX , h2H or

(29) �1.h/X DX�2.h/; h 2H;

ie, X 2 HomH .F
r
p; F

v
p/ is an intertwining operator. Now, the restricted map p2W H !

†r , is one to one, for if .g; ˛/ 2 ker.p2/ then ˛ D id and X0 D gX0 . Since X0

has rank v then g D I . Let H 0 D p2.H / denote the isomorphic image of H in †r .
Reversing the process, we can construct candidate stabilizers by selecting a subgroup
H 0 � †r , and a suitable representation q D �1 ı p�1

2
W H 0 ! GL.v; Fp/ and then

construct H by

(30) H D f.q.˛/; ˛/j˛ 2H 0g:

It is not clear that an arbitrary H so constructed fixes any matrices in �, in fact the
representation q must satisfy certain properties which we proceed to discuss.

For the remainder of our discussion we are going to assume that p − jH j, so that
we may use the theory of reducible representations to aid our computations. Since
jH j divides r ! we are only excluding the small primes p � r . Both H –modules Fvp ,
Fr

p can be rewritten as a direct sum of Fp –irreducibles, Fvp D V1 ˚ V2 ˚ � � � ˚ Vm ,
Fr

p DW1˚W2˚ � � �˚Wn . By a change in coordinates, we may write

A�1�1.h/AD

26664
�1.h/ 0 � � � 0

0 �2.h/ � � � 0
:::

:::
: : :

:::

0 0 � � � �m.h/

37775

B�1�2.h/B D

26664
 1.h/ 0 � � � 0

0  2.h/ � � � 0
:::

:::
: : :

:::

0 0 � � �  n.h/

37775
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where each �i , and  j is irreducible on Vi and Wj respectively. Writing Y DA�1XB

in corresponding block form

(31) Y DA�1XB D

26664
Y1;1 Y1;2 � � � Y1;n

Y2;2 Y2;2 � � � Y2;n
:::

:::
: : :

:::

Ym;1 Ym;2 � � � Ym;n

37775
the intertwining property has an equivalent formulation

(32) �1.h/X DX�2.h/”8i;j �i.h/Yi;j D Yi;j j .h/;

and hence we may consider Yi;j 2 HomH .Wj ;Vi/. Now, as H acts irreducibly on
Vi and Wj , then Yi;j D 0 if �i ,  j are inequivalent. If �i and  j are equivalent
then Yi;j is invertible, if nonzero, by Schur’s Lemma. The number of invertible Yi:j

is pk � 1, where k is the number of irreducibles into which �i D  j splits in the
algebraic closure of Fp . We choose  n to be the trivial representation acting on the
space WnD hŒ 1 1 : : : 1 �>i. Since X Œ 1 1 : : : 1 �>D 0 then Yi;nD 0 for all i . For
convenience we introduce a special name for the representation on W1˚ � � �˚Wn�1 .

Definition 4.5 For a subgroup H 0 � †r acting naturally on the space Fr
p write

Fr
p DW˚ hŒ 1 1 : : : 1 �>i as a direct sum of subrepresentations. If � denotes the

natural representation of H 0 , we call �W , the natural representation restricted to W ,
the reduced natural representation of H 0 and denote it by x� . If p − r then may take
W D f.x1; : : : ;xr / 2 Fr

pjx1C � � �Cxr D 0g.

Remark 4.6 Though a bit pedantic, we remind ourselves on how to construct A and
B since the details will be used in a later proof. The matrix A may be constructed
by choosing column vectors that span V1 then adding vectors that span V2 and so
on to get A D Œ A1 A2 � � � Am �, where Ai is a v � vi matrix. Construct B D

Œ B1 B2 � � � Bn �, similarly. Now write A�1 D
�
.A�

1
/> .A�

2
/> � � � .A�m/

>
�> as a

column of matrices with A�i of size vi � v . Define the B�j similarly. We have the
following transformation formula:

(33) Yi;j DA�i XBj ; X D
X
i;j

AiYi;j B�j

The next definition helps us characterize the representations we are looking for in the
defining Equation (30).

Definition 4.7 Let H be a finite group and k a field whose characteristic is coprime to
jH j. Let �1 , �2 be two representations of finite degree on k vector spaces V;W . We
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say that �2 dominates �1 .�1��2/ if and only if for each k –irreducible representation
� of H; h�; �1i � h�; �2i where h�; �i is the number of times the representation �
is contained in a representation � of H .

Proposition 4.8 Let H , k and �1 , �2 be as in Definition 4.7. Then �1 � �2 if and
only if the space of intertwining operators HomH .W;V / contains a surjective map.
Similarly �2 � �1 if and only if HomH .W;V / contains an injective map.

When restated in terms H –modules over Fp the proposition is self-evident. In proof of
Proposition 4.10, which characterizes the representations defining subgroups that fix a
point, we will see that the dominance condition �1 � �2 is equivalent to the existence
of an intertwining operator X with linearly independent rows.

Remark 4.9 Suppose the action of H has several orbits on f1; 2; : : : ; rg and that by
selecting a suitable conjugate of H 0 each orbit is an interval of t integers

fs; sC 1 : : : ; sC t � 1g:

We may write

(34) X D Œ Z1 Z2 � � � Zl �

as a block matrix where each block is defined by an orbit and hence invariant under
H 0 . Then �1 must satisfy

(35) �1.h/Zk DZk�2;k.h/; k D 1; : : : ; l

where �2;k.h/ is the induced permutation matrix on the orbit defining Zk . We use
these representations to characterize when a pair H 0 �†r , qW H 0!GL.v; Fp/ fixes
a point in �.

Proposition 4.10 Assume that v > 1 if p D 2. Let H 0 �†r such that p − jH j, let
qW H 0! GL.v; Fp/ be an arbitrary representation, and let H D f.q.˛/; ˛/j˛ 2H 0g.
Let �; x� be the standard and reduced representations of H 0 afforded by H 0 � †r ,
and �i D �2;i ıp�1

2
be the representations of H 0 determined by the orbits of H 0 on

f1; 2; : : : ; rg. Then H fixes a point in � if and only if all the following conditions
hold:

� q is dominated by x� .

� q and �k have a common irreducible for k D 1; : : : ; l .
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Proof By taking a conjugate of H 0 we may assume that the orbits occur in intervals
as Remark 4.9. Let �1 and �2 , �2;k , Zk be as defined previously so that �1D q ıp2 ,
and, �2 D � ıp2 , x�2 D x� ıp2 , �2;i D �i ıp2 . To show that H fixes an element of �
we need to find a v� r matrix X such that
� �1.h/X DX�2.h/; h 2H ,
� X1CX2C � � �CXr D 0,
� X is surjective, ie, has linearly independent rows,
� each column Xi is nonzero.

We leave it to the reader to show that the conditions are necessary, we show how to
construct an X if the conditions hold. Our proof depends on carefully setting up
the diagonalizing matrices A and B , and then carefully selecting the Yi;j . Because
.g; ˛/ in H acts on a column Xj by Xj ! gX˛.j/ , then a Zk defined by an H 0 orbit
will be nonzero if and only if all the columns of the given Zk are nonzero. Thus we
merely need to construct X satisfying the first three bullets and all Zi nonzero. The
diagonalizing matrix A may be constructed according to any decomposition, but we
need to be more careful with B . Decompose �2;1 into H –irreducibles and then place
the corresponding basis vectors into B as columns as described in Remark 4.9. Next
decompose �2;2 and add the basis vectors as columns, and continue on to the last orbit.
Each orbit determines a unique trivial subrepresentation of the �2;k . A spanning vector
for this subrepresentation is the vector with 1’s in the locations corresponding to the
orbit and zeros elsewhere. By construction, for each of these vectors, B contains a
column which is a scalar multiple of this vector. We assume that the scalar is 1 and
that the last column of B is the vector corresponding to the orbit defining �2;l . Now
the sum of these columns is Œ 1 1 : : : 1 �> . If we replace the last column of B with
the vector Œ 1 1 : : : 1 �> we obtain a matrix C with the same column span as B and
hence C is invertible. Moreover as we exchanged one invariant vector for another
B�1�2.h/B D C�1�2.h/C . Thus we can assume that B has Bn D Œ 1 1 : : : 1 �>

as its last column.

Now we are going to further modify A and B as follows. We assume that we have
selected our representations �i and  j so that if any two are equivalent then they are
equal. This can be achieved by modifying the columns of A or B corresponding to
the H –invariant subspace corresponding to a �i or  j . Note that we do not need to
alter the last column of B . In this circumstance we define the matrix components of Y

in Equation (31):

Yi;j D yi;j Ivi
if �i D  j(36)

Yi;j D 0; otherwise:
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By Equation (32) the above equations always define an intertwining operator constructed
via Equation (33). Now X1CX2C� � �CXr DXBn , where BnD Œ 1 1 : : : 1 �> . But
XBn equals the last column of XBDAY . It follows then that X1CX2C� � �CXr D 0

if and only if the last column of Y is zero, ie, Yi:n D 0 for all i . Next we modify Y

so that X is surjective. From the hypotheses x�2 dominates �1 , and hence for each
irreducible �i there can be chosen a  j.i/ with �i D j.i/ , j .i/ < n, and such that for
distinct i1; i2 we have j .ii/¤ j .ii/. If we select yi;j.i/ ¤ 0 and all other yi;j D 0

then the resulting matrix Y , and consequently X , has linearly independent rows. (This
argument shows surjectivity in Proposition 4.8.)

Finally, we show that the Yi;j can be chosen so that each Zk in Equation (34) is
nonzero. By Equation (34) Y DA�1XB D Œ A�1Z1B A�1Z2B � � � A�1ZlB � so
if some Zi D 0 then Y has a block column equal to zero and by construction there
is a set J0 of j ’s such that Yi;j D 0, 1 � i � m, j 2 J0 . The J0 consists of all
j such that  j comes from the subspace determined by the orbit corresponding to
Zk . By assumption �1 and �2;k have a common irreducible. Then we can set some
Yi;j Dyi;j Ivi

for i and a j 2J0 , and any yi;j ¤ 0. The modified Y will still define an
intertwining operator, and Y will remain full rank since we are modifying columns that
were initially zero. Thus we can guarantee that all Zk are nonzero, and still leave X a
surjective intertwining operator. The potential problem is if we were forced to change
something in the last column of Y . This can only happen if the trivial representation is
the only common irreducible between �2;l and x�2 . Now suppose that there is another
�2;l 0 such that x�2 and �2;l 0 have a common nontrivial irreducible. Then by taking a
conjugate of H 0 we can switch �2;l and �2;l 0 so that the Yi;j can be adjusted without
affecting the last column of Y . Now suppose that even switching in not possible. Then
it follows that q is trivial and that the number of orbits is greater than v . Define X as
follows:

X D

26664
Er1

0 � � � 0 r1y1ErvC1
� � � r1yl�vErl

0 Er2
� � � 0 r2y1ErvC1

� � � r2yl�vErl

:::
:::

: : : 0
:::

: : :
:::

0 0 0 Erv rvy1ErvC1
� � � rvyl�vErl

37775
where En is a row matrix of 1’s, rs is the size of the s–th orbit and

(37) y1rvC1C � � �Cyl�vrl D�1; yi ¤ 0; ri ¤ 0:

Assuming that the yj ’s satisfy the given constraints and at least one of the ri ’s is
nonzero then X meets all the requirements. Since p is coprime to jH j, none of the
ri ’s are zero. Set s D l � v > 0 and assume that p¤ 2. According to Proposition 4.16
in the next section, only ..p� 1/s � .�1/s/=pC .�1/s of the .p� 1/s selections of
yi sum to zero. Thus at least one of the sums in Equation (37) is nonzero and it may
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be scaled to equal �1. If p D 2 and v > 1 then choose X of the following form:

X D

26664
Er1

yEr1
� � � 0 ErvC1

ErvC2
� � � Erl

0 Er1
� � � 0 ErvC1

0 � � � 0
:::

:::
: : : 0

:::
:::

: : :
:::

0 0 0 Erv ErvC1
0 � � � 0

37775 :
Since all the ri are odd then y may be chosen so that all row sums are zero and that
no column is zero.

4.4 Normalizers and conjugates

Let us describe how to compute normalizers of subgroups GL.v; Fp/�†r fixing a point.
Note that we are considering the action of GL.v; Fp/�†r on generating vectors, not the
related action Aut.G/�Aut.�/ on Teichmüller space. Suppose that .g; ˛/ normalizes
H . Then for .q.ˇ/; ˇ/ 2 H , .g; ˛/.q.ˇ/; ˇ/.g�1; ˛�1/ D .gq.ˇ/g�1; ˛ˇ˛�1/ D

.q.˛ˇ˛�1/; ˛ˇ˛�1/ 2H so we must have

˛ˇ˛�1
2H 0

gq.ˇ/g�1
D q.˛ˇ˛�1/:(38)

Thus we must already have ˛ 2 N†r
.H 0/ D N 0 . The normalizer N 0 permutes the

representations of H 0 by the formula

q˛.ˇ/D q.˛ˇ˛�1/;

so there is .g; ˛/ normalizing H if and only if q and q˛ are equivalent over Fp .
In terms of characters, ˛ must fix the character of q . Let N 00 be the subgroup
satisfying H 0 � N 00 � N 0 and fixing the character of q . If .g1; ˛/; .g2; ˛/ both
belong to the normalizer of H then Equation (38) implies g1q.ˇ/g�1

1
D q.˛ˇ˛�1/D

g2q.ˇ/g�1 or q.ˇ/D .g�1
1

g2/q.ˇ/.g
�1
1

g2/
�1 for all ˇ 2H 0: Thus, hD g�1

1
g2 2

ZDZGL.v;Fp/.q.H
0//. It follows that the normalizer of H contains Z as a subgroup

with quotient N 00 and so the normalizer has size jZjjN 00j.

Two subgroups H1 and H2 of GL.v; Fp/�†r fixing a point are conjugate if and only
H 0

2
D ˛H 0

2
a�1 and the two representations q0 and q satisfy

q0.˛ˇ˛�1/D gq.ˇ/g�1

for some g 2GL.v; Fp/.
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4.5 Fixed point subsets and strata

There are three ways we shall consider to calculate the size of fixed point subsets.
We illustrate the first two by example with v D 2, r D 4, H 0 = h.1; 2/.3; 4/i and
q..1; 2/.3; 4//D

�
1 0
0 �1

�
. The first method is by brute force and can easily be imple-

mented by computer.

Example 4.11 A typical X D
�

x1 x2 x3 x4
y1 y2 y3 y4

�
must satisfy the equations

x1Cx2Cx3Cx4 D y1Cy2Cy3Cy4 D 0

x1�x2 D x3Cx4 D y1�y2 D y3Cy4 D 0

and so X D
�

x x �x �x
y �y z �z

�
. Clearly x ¤ 0 and at least one of the six 2� 2 minors

must be nonzero, ie, one of xz;x.y � z/;x.yC z/;xy must be nonzero. It follows
that our conditions are x ¤ 0 and .y; z/ ¤ .0; 0/ and the number of valid X ’s is
.p� 1/.p2� 1/.

A drawback to this method is that the representation must be constructed. However,
we note that it works if p divides the order of a stabilizer. The second method uses
the “diagonalized” form of the intertwining operator Y DA�1XB , and can usually be
determined by inspection of the characters of q and x� .

Example 4.12 Observe that the character of q is �0C�1 and x�D �0C 2�1 , where
�0 and �1 are the trivial and nontrivial characters of H 0 respectively. The matrices
A;B , and Y can be chosen as:

AD

�
1 0

0 1

�
; B D

2664
1 1 0 1

1 �1 0 1

0 0 1 1

0 0 �1 1

3775 ; Y D

�
x 0 0 0

0 y z 0

�
:

We need x ¤ 0 and .y; z/¤ .0; 0/ giving the same result as Example 4.11. Note that
we don’t need to know A and B explicitly to determine Y , just the characters.

The two previous methods are useful when the fixed point set has small dimension and
the nonvanishing polynomials are simple. At the other extreme we need to calculate the
fixed point set for the trivial point stabilizer. As a starting point we need to calculate
the size of �. We can calculate the number of vectors by inclusion–exclusion followed
by a specialized Möbius inversion. Let V be an arbitrary vector space of dimension v
over Fp and let

x�r .V /D fX D .X1; : : : ;Xr / 2 V r
jXi ¤ 0; i D 1; : : : ; r; X1CX2C � � �CXr D 0g

�r .V /D fX 2 x�r .V /jV D hX1; : : : ;Xr ig
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and set x�v;r D x�r .Fvp/, �
v;r D�r .Fvp/. Clearly the cardinalities of the sets depend

only on r and v D dim V .

Proposition 4.13 Let x�r .V / and �r .V / be defined as above and set

x!.v; r/D jx�r .V /j; !.v; r/D j�r .V /j:

Then we have

x!.v; r/D
.pv � 1/r � .�1/r

pv
C .�1/r(39)

!.1; r/D x!.1; r/

!.v; r/D x!.v; r/�

v�1X
lD1

nv;l!.l; r/

nv;l D
� vY

jDlC1

.pj
� 1/

�.�v�lY
jD1

.pj
� 1/

�
where

is the number of subspaces L of dimension l in V .

Proof Let

x�0 D f.X1; : : : ;Xr / 2 V r
j X1CX2C � � �CXr D 0g

x�i D f.X1; : : : ;Xr / 2 V r
jXi D 0; X1CX2C � � �CXr D 0g; i D 1; : : : ; r

x�D f.X1; : : : ;Xr / 2 V r
jXi ¤ 0; i D 1; : : : ; r; X1CX2C � � �CXr D 0g

so that x�r .V /D x�D x�0�
S
i

x�i . Then by inclusion–exclusion:

x!.v; r/D jx�j

D j x�0j �

X
i

j x�i jC

X
i<j

j x�i \
x�j j �

X
i<j<k

j x�i \
x�j \

x�k jC � � �

C .�1/r j x�i \ � � � \
x�r j

D pv.r�1/
�

�
r

1

�
pv.r�2/

C

�
r

2

�
pv.r�3/

�

�
r

3

�
pv.r�3/

C � � �

C .�1/r�1

�
r

r � 1

�
C .�1/r

D
.pv � 1/r � .�1/r

pv
C .�1/r
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Next let L be denote an arbitrary proper subspace of V of dimension l . Then

x�r .V /D�r .V /[
[

0�L�V

�r .L/:

It follows that

x!.v; r/D jx�r .V /j D j�r .V /jC

v�1X
lD1

X
dim LDl

�r .L/

D j�r .Fvp/jC

v�1X
lD1

nv;l j�
r .Fl

p/j

D !.v; r/C

v�1X
lD1

nv;l!.l; r/:

The remaining formulas in equations (39) follow immediately. Finally, by noting that
jGLv.Fp/j D

Qv
jD1.p

j � 1/p.n
2�n/=2 , by a homogeneous space argument, letting

GLv.Fp/ act on the subspaces, we have

nv;l D
jGLv.Fp/j

jGLl.Fp/jjGLv�l.Fp/jpl.v�l/
D

� vY
jDlC1

.pj
� 1/

�.�v�lY
jD1

.pj
� 1/

�
:

Example 4.14 For later work we will need the values of j�r .Fvp/j in Table 4.

v r j�r .Fvp/j

1 2 p� 1

1 3 .p� 1/.p� 2/

1 4 .p� 1/.p2� 3pC 3/

1 5 .p� 1/.p3� 4p2C 6p� 4/

2 3 p.p� 1/.p2� 1/

2 4 p.p� 1/.p2� 1/.p2Cp� 3/

2 5 p.p� 1/.p2� 1/.p4Cp3� 3p2� 4pC 6/

3 4 p3.p� 1/.p2� 1/.p3� 1/

Table 4: Values of j�r .Fvp/j for small values of r and v

Note that, since GLv.Fp/ acts freely by left multiplication on �r .Fvp/ then j�r .Fvp/j

is always evenly divided by jGLv.Fp/j. The j�r .Fvp/j have been written to show this
fact (some can be further factored).
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Example 4.15 Assume that qW H 0!GLv.Fp/ is trivial. Then H orbits determine a
partition of r , r D r1C r2C � � � rs with 1� r1 � r2 � � � � � rs . Such a partition of r

determines
�

r
r1;:::;rs

�
partitions of f1; : : : rg with the canonical one being

ff1; : : : ; r1g; fr1C 1; : : : ; r1C r2g; : : : ; fr1C � � � rs�1C 1; : : : ; rgg:

A typical element of the stratum is obtained by selecting distinct nonzero X1; : : :Xs

satisfying

r1X1C � � �C rsXs D 0

rankŒ X1 � � � Xs �D v

and then taking in order r1 of X1; r2 of X2; : : : rs of Xs . To count the points fixed by
H we need the following generalization:

Proposition 4.16 Suppose that a1; : : : ; as are nonzero scalars in Fp . Then the cardi-
nality of the set�

X D ŒX1; : : : ;Xs � 2 Fvs
p Xi ¤ 0; i D 1; : : : ; s;

a1X1C � � �C asXs D 0; rank.X /D v

�
is j�v;sj.

Proof The map Œ X1 � � � Xs �  ! Œ a1X1 � � � asXs � is a bijection between the
given set and �v;r .

4.6 Singular primes and Galois fusion

The forgoing representation theory depends on certain divisibility properties of primes.
The first problem occurs when a prime p divides the order of H 0 . Let us call such a
prime a singular prime. The singular primes must satisfy p � r . The main problem is
that complete reducibility of the representations q and � fails. Moreover there is new
twist in that the sum over an orbit may be zero if the size of the orbit is divisible by the
prime. In this case one needs to directly compute the representations and then compute
the normalizers and fixed point set by brute force.

Another problem that can occur is that Fp may not be a splitting field for the represen-
tations H 0 . In trying to describe the representations completely in terms of characters
we will have to take characters together in Galois equivalent groupings in order that
the representations q be defined over the base field Fp . We will call this Galois fusion.
Furthermore, the formulas for the number of fixed points will have different polynomials
in the primes. To help in describing this theory we use the following notation. For
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a prime p and an integer n let Un.Fp/ be the set of primitive n0 th roots of 1 in Fp

and let ˇn.p/D jUn.Fp/j. Again, instead of developing the full theory here we will
illustrate the ideas with the sample calculations in the next subsection.

4.7 Rank 2 actions with 4 branch points

Our general approach to compute the number of orbits with given p–rank and number
of branch points takes the following steps.

(1) Determine all subgroups fixing at least one point, one representative for each
conjugacy class. List them as H1;H2; : : : ;Hs as described in Section 4.2. The
sequence of groups will depend upon the prime.

(2) Compute j�H j and jNG.H /j for each subgroup.

(3) Compute the matrix D D Œdi;j � for the sequence of groups.

(4) Compute
ˇ̌˝
V�H

˛
=G
ˇ̌

for each subgroup using formula (27) and add up the results.

We will illustrate the steps by giving complete details for p–rank 2 and 4 branch points.
For Step 1 we use a computer algebra system such as Magma [12] or GAP [14] to do
the following:

� Determine a representative H 0of each conjugacy class of †4 .

� Determine the character table of H 0 .

� Decompose the reduced natural representation of H 0 into irreducibles over C.

� Determine all compatible representations of H 0 and how they reduce over Fp .

Remark 4.17 For each modular representation of an arbitrary group G defined over
Fp there is complex valued Brauer character defined on the p–regular elements of G

(order coprime to p ). In the case p − jGj each Brauer character is an ordinary character
and the modular representations of G can be completely described by the irreducible
characters. Thus in the discussion below we describe the modular characters by sums
of irreducible ordinary characters from the character table of G .

Step 1 There are 11 conjugacy classes of subgroups of †4 . Using Magma [12], the
orbits, and the decomposition of the reduced permutation (in terms of the characters
of the subgroup), and the degrees of the representation are computed. The column
in Table 5 giving the reduced permutation representation is written in terms of the
characters of the subgroup using the order in the character table produced by Magma
[12]. The list of the degrees is in the order given by the character table. The following
notation is used: †k ;Ak denote respectively the symmetric and alternating groups
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H 0 jH 0j orbits red. perm. rep. degrees
†4

1
1 f1g; f2g; f3g; f4g 3�1 1

†2 �†
2
1

2 f1; 2g; f3g; f4g 2�1C�2 1; 1

C2;2 2 f1; 2g; f3; 4g �1C 2�2 1; 1

A3 �†1 3 f1; 2; 3g; f4g �1C�2C�3 1; 1; 1

†2 �†2 4 f1; 2g; f3; 4g �1C�3C�4 1; 1; 1; 1

V4 4 f1; 2; 3; 4g �2C�3C�4 1; 1; 1; 1

C4 4 f1; 2; 3; 4g �2C�3C�4 1; 1; 1; 1

†3 �†1 6 f1; 2; 3g; f4g �1C�3 1; 1; 2

D4 8 f1; 2; 3; 4g �3C�5 1; 1; 1; 1; 2

A4 12 f1; 2; 3; 4g �4 1; 1; 1; 3

†4 24 f1; 2; 3; 4g �4 1; 1; 2; 3; 3

Table 5: Subgroups of †4

on k points, Ck1;:::;ks
the cyclic group with cycle structure .k1; : : : ; ks/, Dk dihedral

group on k points and V4 denotes the Klein 4 group.

Next we determine representatives of conjugacy classes of subgroups fixing a point,
given in Table 6. Using Proposition 4.10, a stabilizer can be specified by a compatible
character if one exists. Note that here we need to take away a one-dimensional character
from the reduced representation to form q . This automatically eliminates †4 , A4 and
†3 �†1 . If there is a fixed point of H 0 then q must contain the trivial representation
�1 . This eliminates †3 �†1 and taking �1 away from the reduced representation of
A3�†1 . Also in the A3�†1 case, since we can take only one �2 or �3 then Fp must
contain primitive cube roots of 1. Different characters may lead to conjugate stabilizers.
By the discussion in Section 4.4 if ˛ normalizes H 0 , and g 2 GL.2; Fp/ then the
subgroup H 0 and gq˛g�1 determines a conjugate subgroup. The NH 0 �–orbits
column in Table 6 lists the nontrivial orbits of characters under conjugation. If two
linear combinations of characters are equivalent under the normalizer then conjugate
stabilizers are determined and so we need only write one down. Furthermore, depending
on the number of roots of unity in Fp some representations may not reduce completely.
In that case the characters have to be taken together as a group, namely the set of all
Galois conjugate characters. The nontrivial Galois orbits are noted in the Galois fusion
column. Cases 11 and 11a are the same subgroup but are distinguished because j�Hi j

(see Table 7) depends on the value of ˇ4.p/.
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Case H 0 q NH 0 �–orbits Galois Fusion restrictions
1 †4

1
2�1

2 †2 �†
2
1

2�1

3 †2 �†
2
1
�1C�2

4 C2;2 �1C�2

5 C2;2 2�2

6 A3 �†1 �1C�2 f�2; �3g ˇ3.p/D 2

7 †2 �†2 �1C�3 f�3; �4g

8 †2 �†2 �3C�4 f�3; �4g

9 K4 �2C�3 f�2; �3; �4g

10 C4 �2C�3 f�2; �4g ˇ4.p/D 2

11 C4 �2C�4 f�2; �4g f�2; �4g ˇ4.p/D 0

11a C4 �2C�4 f�2; �4g ˇ4.p/D 2

13 D4 �5

Table 6: Subgroups fixing a point, p ¤ 2; 3

Step 2 Next we list jNG.Hi/j and the j�Hi j. Each calculation of j�Hi j was con-
firmed by using the brute force method using Maple [29]. The results are given in
Table 7.

Case jH 0j NG.Hi/ j�Hi j

1 1 24p.p� 1/.p2� 1/ p.p� 1/.p2� 1/.p2Cp� 3/

2 2 4p.p� 1/.p2� 1/ p.p� 1/.p2� 1/

3 2 4.p� 1/2 .p� 1/.p2� 1/

4 2 8.p� 1/2 .p� 1/.p2� 1/

5 2 8p.p� 1/.p2� 1/ p.p� 1/.p2� 1/

6 3 3.p� 1/2 .p� 1/2

7 4 4.p� 1/2 .p� 1/2

8 4 8.p� 1/2 .p� 1/2

9 4 8.p� 1/2 .p� 1/2

10 4 4.p� 1/2 .p� 1/2

11 4 8.p� 1/2 p2� 1

11a 4 8.p2� 1/ .p� 1/2

12 10 8.p� 1/ p� 1

Table 7: Fixed point data for †4 , p ¤ 2; 3
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Step 3 To compute the di;j ’s, let us first look at the case where all roots of unity
are available ˇ3.p/D ˇ4.p/D 2. The other cases may be derived from this case. In
Table 8, we present the di;j ’s, in matrix form with this ordering of the groups.

i 1 2 3 4 5 6

Case 1 2 3 4 5 6

H 0i †4
1

†2 �†
2
1
†2 �†

2
1

C2;2 C2;2 A3 �†1

qi 2�1 2�1 �1C�2 �1C�2 2�2 �1C�2

i 7 8 9 10 11 12

Case 7 8 9 10 11a 12

H 0i †2 �†2 †2 �†2 K4 C4 C4 D4

qi �1C�3 �3C�4 �2C�3 �2C�3 �3C�4 �5

Table 8: Subgroup ordering

The values of di;j D jD.Hi ;Hj /j can be computed as follows. Using Magma [12] or
GAP [14], find all the subgroup classes of H 0j . For each subgroup class hKi, K �H 0j
find the corresponding Hi ’s such that H 0i is conjugate to K . Transport the character qj

of Hj to H 0i to determine the subgroup Hi . The entry for di;j is then jhKij (computed
in H 0j ).

Example 4.18 Here is the matrix D for the set of subgroups given in Table 8:26666666666666666666664

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

H1 1 1 1 1 1 1 1 1 1 1 1 1

H2 1 0 0 0 0 1 0 0 0 0 0

H3 1 0 0 0 1 2 0 0 0 2

H4 1 0 0 1 0 2 1 0 2

H5 1 0 0 1 1 0 1 1

H6 1 0 0 0 0 0 0

H7 1 0 0 0 0 0

H8 1 0 0 0 1

H9 1 0 0 1

H10 1 0 0

H11 1 1

H12 1

37777777777777777777775
Step 4 Finally we compute the number of orbits according to formula (27). We have
Oı D TD�1N�1L where T and N are the diagonal matrices formed from columns
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2 and 3 of Table 7, respectively, and L is the vector formed from column 4 of Table 7.
Accordingly we obtain the vector of orbits and the total number of orbits:

Oı D
h

p2�8pC7
24

0 p�3
2

p�5
4

0 1 1 0 0 1 0 1

i>
j�=Gj D

p2C 10pC 37

24

We may check that all the numbers are integers by substituting in p D 12kC 1, since
12 divides p� 1.

There are a total of 4 families of primes which depend upon whether ˇ4.p/ D 0; 2

and ˇ3.p/ D 0; 2. For p > 3 these families depend on the congruence class of
p mod 12. For each family certain subgroup cases from Table 5 are excluded. The
corresponding matrices D are obtained from the sample matrix above by deleting the
row(s) and column(s) corresponding to the excluded subgroups. Depending on whether
ˇ4.p/ D 0; 2 one chooses the same subgroup H10 but with a different normalizer
and fixed point data given by cases 11 and 11a. The excluded subgroups are given in
Table 9.

ˇ3.p/ ˇ4.p/ p mod 12 excluded subgroups j�=Gj

0 0 11 H6;H10
1

24
.p2C 6pC 9/

2 0 7 H10
1

24
.p2C 6pC 25/

0 2 5 H6
1

24
.p2C 6pC 31/

2 2 1 none 1
24
.p2C 6pC 37/

Table 9: Rank 2 actions with 4 branch points

The complete results for 3 and 4 branch points are given in Table 10.

5 Examples

To finish, we illustrate our results through a number of interesting examples. To
emphasize the explicit results which can be obtained, the first example we consider
is very specific. Following this, we shall present some general examples which hold
independent of the prime p .

Example 5.1 Let G be an elementary abelian group of order 25. Using the Riemann–
Hurwitz formula, it can be shown that there are exactly two different signatures for
� for a surface of genus 26 which give rise to subgroups of M26 isomorphic to G –
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the signatures .2I �/ and .1I 5; 5; 5/. To find the total number of conjugacy classes of
subgroups of M26 isomorphic to G , we need to find the number of classes induced
by each of these signatures.

For the signature .2I �/, a direct application of Corollary 3.2 gives two different classes
of subgroups. For the signature .1I 5; 5; 5/, there are two possibilities for the group Gh ,
either trivial or cyclic of order 5. If Gh is trivial, Ge DG , so Proposition 4.1 implies
there is just one epimorphism from � onto G . Else, the image is cyclic of order 5. In
this case, we apply Corollary 2.9. For the hyperbolic part, observe that Corollary 3.2
tells us there will be a single epimorphism arising from � with signature .1I �/ onto
Gh . For the elliptic part, Example 5.2 below shows that all epimorphisms from �

with signature .0I 5; 5; 5/ onto Ge are equivalent. Thus there is just one epimorphism
arising from the elliptic part. Therefore, in total, there are 2C1C1�1D 4 conjugacy
classes of subgroups isomorphic to G in M26 .

Example 5.2 We can use our results to enumerate the equivalence classes of totally
ramified actions for 3 or 4 branch points. Complete results for these cases are given in
the Table 10.

r v primes congruence #equiv. classes
3 1 2 0

3 1 3 1

3 1 ˇ3.p/D 0 p D 5 mod 6 1
6
.pC 1/

3 1 ˇ3.p/D 2 p D 1 mod 6 1
6
.pC 5/

3 2 all 1

4 1 2; 3 1

4 1 ˇ4.p/D 0 p D 7; 11 mod 12 1
24
.p2C 6pC 5/

4 1 ˇ4.p/D 2 p D 1; 5 mod 12 1
24
.p2C 6pC 17/

4 2 3 2

4 2 ˇ3.p/D 0; ˇ4.p/D 0 p D 11 mod 12 1
24
.p2C 10pC 9/

4 2 ˇ3.p/D 2; ˇ4.p/D 0 p D 7 mod 12 1
24
.p2C 10pC 25/

4 2 ˇ3.p/D 0; ˇ4.p/D 2 p D 5 mod 12 1
24
.p2C 10pC 21/

4 2 ˇ3.p/D 2; ˇ4.p/D 2 p D 1 mod 12 1
24
.p2C 10pC 37/

4 3 all 1

Table 10: Calculations for 3 and 4 branch points. Here r is the number of
branch points and v is the p–rank
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The techniques and results developed in the previous examples allow us to develop
some further results for general families of signatures and groups.

Example 5.3 Suppose � has signature .�Ip;p;p/ with p > 3 for any � > 0 (see
below for �D 0), and let G denote an elementary abelian group of order p2 . In this
case, Gh is either trivial or has order p . We first consider the case when Gh has order
p . By Example 5.2, there will be .pC 1C 2ˇ3.p//=6 totally ramified epimorphisms
onto Cp and Corollary 3.2 implies there is a unique hyperbolic epimorphism onto Cp

giving a total of 1� .pC1C2ˇ3.p//=6. If Gh is trivial, then Proposition 4.1 implies
there exists a unique elliptic epimorphism. Thus there is a total of

pC 7C 2ˇ3.p/

6

conjugacy classes of groups induced by this signature.

The results we have obtained for elementary abelian subgroups can in certain special
cases be extended to provide information about other groups. We illustrate with the
following two examples.

Example 5.4 By Proposition 4.1, there is a unique conjugacy class of elementary
abelian subgroups of order p2 in M.p�1/.p�2/=2 with signature .0Ip;p;p/. In fact,
this can be derived explicitly by showing that any two epimorphisms �1; �2W �!G

from � with signature .0Ip;p;p/ differ by an automorphism ˛ 2 Aut .G/, �1 D

˛ ı �2 . The kernel Ker .�1/ is in fact a uniformizing surface group for the p th Fermat
curve with defining equation xp C yp D 1 (see for example Wootton [34]). The
full automorphism group of the p th Fermat curve is isomorphic to the semidirect
product S3 Ë .Cp � Cp/ Š �1=Ker .�1/ where �1 has signature .0I 2; 3; 2p/. By
the uniqueness of Ker .�1/ and the uniqueness of the elementary abelian subgroup of
S3 Ë .Cp �Cp/, it follows that any two epimorphisms �1; �2W �1! S3 Ë .Cp �Cp/

must differ by an automorphism ˛ 2Aut .S3 Ë .Cp �Cp//. In particular, there will be a
unique conjugacy class of subgroups of M.p�1/.p�2/=2 isomorphic to S3Ë .Cp�Cp/

induced by � with signature .0I 2; 3; 2p/.

Example 5.5 Let G be an elementary abelian group of order p2 where p � 5 and
suppose that � has signature .0Ip;p;p;p/. In Wootton [34] it is shown that there exists
a unique epimorphism �1 from �1 with signature .0I 2; 2p; 4/ onto HDD4Ë.Cp�Cp/

(up to the action of Aut .H /) which restricts to an epimorphism �1j� W �!Cp�Cp . In
particular, this implies there exists a unique class of subgroups of M.p�1/2 isomorphic
to H with signature .0I 2; 2p; 4/. Alternatively, this can also be seen on the level of
generating vectors of the restriction �1j� . Specifically, it can be shown that if x and y
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generate G , then all generating vectors for epimorphisms which extend to epimorphisms
from �1 to H are Aut .G/ �Aut .�/ equivalent to .x;x�1;y;y�1/. This implies
there exists a unique class of groups isomorphic to G in M.p�1/2 contained in a class
of subgroups isomorphic to H . Then, by the uniqueness of G � H , it follows that
there exists a unique class of groups isomorphic to H with signature .0I 2; 2p; 4/ in
M.p�1/2 .

Observe that the generating vector in Example 5.5 is highly symmetric and this sym-
metry is reflected by the fact that G is contained in a larger subgroup of M.p�1/2 . It
seems plausible that if a generating vector is highly symmetric, then the corresponding
conjugacy class of subgroups of the MCG will be contained in a class of larger finite
subgroups of the MCG. This could lead to a new way to determine and enumerate
classes of subgroups of the MCG which are not abelian using the methods we have
developed for abelian subgroups.
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