The homotopy Lie algebra of the complements of subspace arrangements with geometric lattices

Gery Debongnie

Abstract

A subspace arrangement in \mathbb{C}^{l} is a finite set \mathcal{A} of subspaces of \mathbb{C}^{l}. The complement space $M(\mathcal{A})$ is $\mathbb{C}^{l} \backslash \cup_{x \in \mathcal{A}} x$. If $M(\mathcal{A})$ is elliptic, then the homotopy Lie algebra $\pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}$ is finitely generated. In this paper, we prove that if \mathcal{A} is a geometric arrangement such that $M(\mathcal{A})$ is a hyperbolic 1-connected space, then there exists an injective map $\mathbb{L}(u, v) \rightarrow \pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}$ where $\mathbb{L}(u, v)$ denotes a free Lie algebra on two generators.

55P62

1 Introduction

A subspace arrangement in \mathbb{C}^{l} is a finite set $\mathcal{A}=\left\{x_{1}, \ldots, x_{n}\right\}$ of subspaces of \mathbb{C}^{l}. If every $x_{i} \in \mathcal{A}$ is an hyperplane, it is called an arrangement of hyperplanes. The complement space is the topological space $M(\mathcal{A})=\mathbb{C}^{l} \backslash \cup_{x \in \mathcal{A}} x$. To every subspace arrangement, we can associate the lattice $L(\mathcal{A})$ of intersections, ordered by reverse inclusions. In this paper, we are mainly interested in the (rational) homotopy Lie algebra $\pi_{\star} \Omega M(\mathcal{A}) \otimes \mathbb{Q}$. In general, the homotopy Lie algebra can be defined for any commutative graded algebra.

Definition 1.1 Let A be a commutative graded algebra. The algebra $\operatorname{Ext}_{A}(\mathbb{Q}, \mathbb{Q})$ is the universal enveloping algebra $U\left(L_{A}\right)$ of a Lie algebra L_{A}. This Lie algebra is called the homotopy Lie algebra of A.

An important tool for the study of arrangements of hyperplanes is the Orlik-Solomon algebra $A(\mathcal{A})$. This algebra, which is constructed using only $L(\mathcal{A})$, is the quotient of an exterior algebra by a homogeneous ideal. Orlik and Solomon [5] showed that there is an isomorphism of graded algebras $H^{\star}(M(\mathcal{A}), \mathbb{Q}) \simeq A(\mathcal{A})$.

If \mathcal{A} is an arrangement of hyperplanes, the homotopy Lie algebra $L_{A(\mathcal{A})}$ can be complicated. For example, J Roos [6] showed the existence of arrangements such that $L_{A(\mathcal{A})}$ is not finitely generated. In some cases, $L_{A(\mathcal{A})}$ can be described more precisely. Denham and Suciu [2] showed that if \mathcal{A} is an hypersolvable arrangement of
hyperplanes (with an additional technical condition), then $L_{A(\mathcal{A})}$ splits as a semi-direct product of a Lie algebra and a free Lie algebra.

These results show that the Lie algebra $L_{A(\mathcal{A})}$ can be difficult to grasp. In this paper, we will study the more general case of subspace arrangements. For subspace arrangements, we cannot use the Orlik-Solomon algebra. Instead, we will use a rational model described by Yuzvinsky and Feichtner (see Section 2). It is a differential algebra $\left(D_{\mathcal{A}}, d\right)$ generalizing the Orlik-Solomon algebra whose cohomology satisfies $H^{\star}\left(D_{\mathcal{A}}, d\right) \simeq H^{\star}(M(\mathcal{A}), \mathbb{Q})$.

It is known that if \mathcal{A} is a subspace arrangement with a geometric lattice $L(\mathcal{A})$, then the topological space $M(\mathcal{A})$ is formal (see Yuzvinsky [7]). If \mathcal{A} is also such that $M(\mathcal{A})$ is 1 -connected (if $\operatorname{codim}(x) \geq 2$ for all $x \in \mathcal{A})$, then the homotopy Lie algebra of $H^{\star}\left(D_{\mathcal{A}}, d\right)$ has a topological interpretation:

$$
L_{H^{\star}\left(D_{\mathcal{A}}, d\right)}=\pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}
$$

Using their results for arrangements of hyperplanes, Denham and Suciu described $L_{A(\mathcal{A})}$ for a very particular class of subspace arrangements (these subspace arrangements have a geometric lattice). This description shows that $L_{A(\mathcal{A})}$ contains a free Lie algebra.
Let $\mathcal{A}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a subspace arrangement with a geometric lattice and such that $M(\mathcal{A})$ is 1 -connected. The sum $x_{1}^{\perp}+\cdots+x_{n}^{\perp}$ is a direct sum if and only if $M(\mathcal{A})$ is elliptic (see Debongnie [1]). In that case, $\pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}$ is finitely generated and abelian. Otherwise, $M(\mathcal{A})$ is hyperbolic and $\pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}$ is more complicated. The main result of this paper is the following theorem.

Theorem Let \mathcal{A} be a geometric arrangement such that for every $x \in \mathcal{A}$, we have $\operatorname{codim}(x) \geq 2$. If $M(\mathcal{A})$ is rationally hyperbolic, then there exists an injective map $\mathbb{L}(u, v) \rightarrow \pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}$.

Note that this is a particular case of a conjecture by Avramov-Félix.
Conjecture If X is finite dimensional, not \mathbb{Q}-elliptic, then the homotopy Lie algebra $\left.\pi_{\star}(\Omega X)\right) \otimes \mathbb{Q}$ contain a free Lie subalgebra on two generators.

The rational model of the space $M(\mathcal{A})$ given by Yuzvinsky and Feichtner is described in Section 2. In Section 3, the general situation is set up : a map $\varphi: \Lambda\left(e_{1}, \ldots, e_{n}\right) \rightarrow$ $H^{\star}(M(\mathcal{A}), \mathbb{Q}) ; e_{i} \mapsto\left[\left\{x_{i}\right\}\right]$ is defined and studied. This map and its kernel will play an important role in the proof. Finally, the last two sections contain the proof of the main theorem.

I would like to thank the referee for his/her comments.

2 The rational model of subspace arrangements

Let \mathcal{A} be a central arrangement of subspace in \mathbb{C}^{l}. It is known that, with the appropriate choice of the operations \vee and \wedge, the set $L(\mathcal{A})$ of non empty intersections of elements of \mathcal{A} is a lattice with a rank function. Yuzvinsky and Feichtner [3] defined the relative atomic differential graded algebra $\left(D_{\mathcal{A}}, d\right)$ associated with an arrangement as follows. Choose a linear order on \mathcal{A}. The graded vector space $D_{\mathcal{A}}$ has a basis given by all subsets $\sigma \subseteq \mathcal{A}$. For $\sigma=\left\{x_{1}, \ldots, x_{n}\right\}$, we define the differential by the formula

$$
d \sigma=\sum_{j: \vee\left(\sigma \backslash\left\{x_{j}\right\}\right)=\vee \sigma}(-1)^{j}\left(\sigma \backslash\left\{x_{j}\right\}\right)
$$

where the indexing of the elements in σ follows the linear order imposed on \mathcal{A}. With $\operatorname{deg}(\sigma)=2 \operatorname{codim} \vee \sigma-|\sigma|,\left(D_{\mathcal{A}}, d\right)$ is a cochain complex. Finally, we need a multiplication on $\left(D_{\mathcal{A}}, d\right)$. For $\sigma, \tau \subseteq \mathcal{A}$,

$$
\sigma \cdot \tau= \begin{cases}(-1)^{\operatorname{sgn} \epsilon(\sigma, \tau)} \sigma \cup \tau & \text { if codim } \vee \sigma+\operatorname{codim} \vee \tau=\operatorname{codim} \vee(\sigma \cup \tau) \\ 0 & \text { otherwise }\end{cases}
$$

where $\epsilon(\sigma, \tau)$ is the permutation that, applied to $\sigma \cup \tau$ with the induced linear order, places elements of τ after elements of σ, both in the induced linear order.

A subset $\sigma \subseteq \mathcal{A}$ is said to be independent if $\operatorname{rank}(\vee \sigma)=|\sigma|$. When \mathcal{A} is a a subspace arrangement with a geometric lattice, then $H^{\star}(M(\mathcal{A}))$ is generated by the classes $[\sigma$], with σ independent (see [3]).

3 General situation

Let $\mathcal{A}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a subspace arrangement with a geometric lattice such that every $x \in \mathcal{A}$ has $\operatorname{codim}(x) \geq 2$. We will suppose that no element x_{i} is contained in another one, because otherwise, we can omit it when we consider $M(\mathcal{A})$. We consider the morphism of graded algebras

$$
\varphi: \Lambda\left(e_{1}, \ldots, e_{n}\right) \rightarrow H^{\star}(M(\mathcal{A}), \mathbb{Q}) ; e_{i} \mapsto\left[\left\{x_{i}\right\}\right]
$$

As we will see, in some sense, the kernel of this map measure the non-ellipticity of the space $M(\mathcal{A})$. The following proposition shows a clear connection between $\operatorname{ker} \varphi$ and ellipticity.

Proposition 3.1 If the map φ is injective, then the space $M(\mathcal{A})$ is rationally elliptic.

Proof If this map is injective then, for each sequence $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq n$, we have $\left\{x_{i_{1}}\right\} \cdot\left\{x_{i_{2}}\right\} \cdots\left\{x_{i_{s}}\right\} \neq 0$ because their product is non zero in cohomology. Therefore, for an appropriate choice of sign, we have the following equality $\prod_{j=1}^{s}\left\{x_{i_{j}}\right\}= \pm\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{s}}\right\}$ and $\left[\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}\right] \neq 0$ (in cohomology). This implies that φ is surjective because, for each independent set $\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ (which generates $H^{\star}(M(\mathcal{A}))$), we have $\left[\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}\right]= \pm \prod_{i=j}^{s}\left[\left\{x_{i_{j}}\right\}\right]$, which is in the image of φ. It means that φ is an isomorphism. Therefore, $M(\mathcal{A})$ has the rational homotopy type of a product of odd dimensional spheres and [1, Theorem 5.1] implies that $M(\mathcal{A})$ is rationally elliptic.

Now, assume that the map φ is not injective. In that case, we can define the natural number $r=\max \left\{s \mid \operatorname{ker} \varphi \subset \Lambda^{\geq s} e_{i}\right\}$. It is clear that $2 \leq r \leq n$. The bigger r is, the smaller $\operatorname{ker} \varphi$ is. Also, we understand quite well $\varphi\left(\Lambda^{\leq r} e_{i}\right) \subset D_{\mathcal{A}}$.

Lemma 3.2 If $\sigma \in D_{\mathcal{A}}$ with $|\sigma| \leq r$, then $d \sigma=0$ and $\operatorname{rank} \vee \sigma=|\sigma|$.

Proof We use induction on s to prove that for $1 \leq s<r$ and for each sequence $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq n$,
(1) $d\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}=0$,
(2) $\varphi\left(e_{i_{1}} \cdots e_{i_{s}}\right)=\left[\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}\right] \neq 0$.

It is true for $s=1$. Now suppose that it is true for $s-1$. If $d\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\} \neq 0$, then $d\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ is a non zero linear combination $\sum \rho_{j}\left\{x_{j_{1}}, \ldots, x_{j_{s-1}}\right\}$ and

$$
0=\left[\sum \rho_{j}\left\{x_{j_{1}}, \ldots, x_{j_{s-1}}\right\}\right]=\varphi\left(\sum \rho_{j} e_{j_{1}} \cdots e_{j_{s-1}}\right)
$$

which is impossible because φ restricted to $\Lambda^{<r}\left(e_{1}, \ldots, e_{n}\right)$ is injective. This shows that $d\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}=0$.

The map φ is extended in a multiplicative way, therefore, by the induction hypothesis, we have:

$$
\varphi\left(e_{i_{1}} \cdots e_{i_{s}}\right)=\varphi\left(e_{i_{1}}\right) \varphi\left(e_{i_{2}} \cdots e_{i_{s}}\right)=\left[\left\{x_{i_{1}}\right\}\right]\left[\left\{x_{i_{2}} \cdots x_{i_{s}}\right\}\right] .
$$

But $s<r$, so $\varphi\left(e_{i_{1}} \cdots e_{i_{s}}\right) \neq 0$ and we have $\varphi\left(e_{i_{1}} \cdots e_{i_{s}}\right)=\left[\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}\right]$. This proves the assertion (2). This proof by induction showed that $d \sigma=0$ if $|\sigma|<r$. But the exact same reasoning can be done for $|\sigma|=r$. So, $d \sigma=0$ if $|\sigma| \leq r$.

In order to prove that rank $\vee \sigma=|\sigma|$, let's prove by induction that if $1 \leq s \leq r$, then for each sequence $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq n$, rank $\vee\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}=s$. It is obviously true for $s=1$. Assume that it is true until $s-1<r$. By the induction
hypothesis, $\vee\left\{x_{i_{1}}, \ldots, x_{i_{s-2}}\right\}<\vee\left\{x_{i_{1}}, \ldots, x_{i_{s-2}}, x_{i_{s}}\right\}$ is a maximal chain (if $s=2$, then $\left.\vee\left\{x_{i_{1}}, \ldots, x_{i_{s-2}}\right\}=\vee \varnothing=\mathbb{C}^{l}\right)$. But the lattice $L(\mathcal{A})$ is geometric. So,

$$
\vee\left\{x_{i_{1}}, \ldots, x_{i_{s-2}}\right\} \vee x_{i_{s-1}} \leq \vee\left\{x_{i_{1}}, \ldots, x_{i_{s-2}}, x_{i_{s}}\right\} \vee x_{i_{s-1}}
$$

is also a maximal chain. The first part of this lemma shows that $d\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}=0$, which implies that

$$
\vee\left\{x_{i_{1}}, \ldots, x_{i_{s-1}}\right\} \neq \vee\left\{x_{i_{1}}, \ldots, x_{i_{s-2}}, x_{i_{s-1}}, x_{i_{s}}\right\}
$$

Hence, rank $\vee\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}=\operatorname{rank} \vee\left\{x_{i_{1}}, \ldots, x_{i_{s-1}}\right\}+1=s$.
To make the next sections easier to read, we will use the following notations. For a commutative differential graded algebra (A, d), let us denote by $L_{(A, d)}$ the homotopy Lie algebra associated to its Sullivan minimal model. And for every $1 \leq i_{1}<i_{2}<$ $\cdots<i_{r+1} \leq n$, let us denote by $\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]$ the element

$$
\sum_{j=1}^{r+1}(-1)^{j} e_{i_{1}} \cdots \widehat{e_{i_{j}}} \cdots e_{i_{r+1}}
$$

4 Main result

We will study the situation described in $\operatorname{Section} 3$ with $\operatorname{ker} \varphi \neq 0$ (if $\operatorname{ker} \varphi=0$, Proposition 3.1 shows that we are in the elliptic case, which is studied in [1]). There are two slightly different cases that can arise : either $\operatorname{ker} \varphi$ contains a monomial $e_{i_{1}} \cdots e_{i_{r}}$ or $\operatorname{ker} \varphi$ does not contain such a monomial. The next two propositions shows the existence of an injective map $\mathbb{L}(u, v) \rightarrow \pi_{\star} \Omega M(\mathcal{A}) \otimes \mathbb{Q}$ in these two cases. Then, the main Theorem 4.3 is proved.

Proposition 4.1 If $\operatorname{ker} \varphi$ contains a monomial $e_{i_{1}} \cdots e_{i_{r}}$ with $1 \leq i_{1}<\cdots<i_{r} \leq n$, then there exists an injective map

$$
\mathbb{L}(u, v) \rightarrow \pi_{\star} \Omega M(\mathcal{A}) \otimes \mathbb{Q} .
$$

Proof We define $\left(A_{4}, 0\right)=\left(\frac{\Lambda\left(e_{i_{1}}, \ldots, e_{i}\right)}{e_{i_{1}} \cdots e_{i_{r}}}, 0\right)$ and we construct the map $\psi:\left(D_{\mathcal{A}}, d\right) \rightarrow$ $\left(A_{4}, 0\right)$ in the following way: if $\left\{k_{1}, \ldots, k_{t}\right\} \subseteq\left\{i_{1}, \ldots, i_{r}\right\}$ and $k_{1}<\cdots<k_{t}$, then $\psi\left(\left\{k_{1}, \ldots, k_{t}\right\}\right)=\left[e_{k_{1}} \cdots e_{k_{t}}\right]$. Otherwise, $\psi\left(\left\{k_{1}, \ldots, k_{t}\right\}\right)=0$. Since $\operatorname{ker} \varphi \cap$ $\Lambda^{<r}\left(e_{1}, \ldots, e_{n}\right)=0$, a simple check shows that ψ is multiplicative. Lemma 3.2 shows that $\psi(d \sigma)=\psi(0)=0=d \psi(\sigma)$. Hence, ψ is a morphism of differential graded algebras.

Since $e_{i_{1}} \cdots e_{i_{r}} \in \operatorname{ker} \varphi$, we can define another map $\rho:\left(A_{4}, 0\right) \rightarrow H^{\star}\left(\left(D_{\mathcal{A}}, d\right), \mathbb{Q}\right)$ by letting $\rho\left(\left[e_{i_{s}}\right]\right)=\left[\left\{x_{i_{s}}\right\}\right]$. This is a morphism of graded algebras. Now, we have the following maps :

$$
A_{4} \xrightarrow{\rho} H^{\star}\left(\left(D_{\mathcal{A}}, d\right), \mathbb{Q}\right) \xrightarrow{H^{\star} \psi} A_{4} .
$$

Those maps verify the following property: $\left(H^{\star} \psi\right) \circ \rho=\mathrm{id}$, which means that $H^{\star} \psi$ is a retraction of ρ. Since $M(\mathcal{A})$ is a formal space (proved in [3]), the Lemma 5.6 implies then the existence of an injective map $h: L_{\left(A_{4}, 0\right)} \rightarrow \pi_{\star} \Omega M(\mathcal{A}) \otimes \mathbb{Q}$. By Lemma 5.4, there is an injective map $\mathbb{L}(u, v) \rightarrow L_{\left(A_{4}, 0\right)}$. The composition of these two maps gives us the needed map.

Proposition 4.2 If $\operatorname{ker} \varphi$ does not contain a monomial $e_{i_{1}} \cdots e_{i_{r}}$, then there exists an injective map

$$
\mathbb{L}(u, v) \rightarrow \pi_{\star} \Omega M(\mathcal{A}) \otimes \mathbb{Q} .
$$

Proof Since $\operatorname{ker} \varphi \cap \Lambda^{r}\left(e_{1}, \ldots, e_{n}\right) \neq \varnothing$, there exists a non zero linear combination $\sum \lambda_{i_{1}, \ldots, i_{r}} e_{i_{1}} \ldots e_{i_{r}}$ such that $\varphi\left(\sum \lambda_{i_{1}, \ldots, i_{r}} e_{i_{1}} \cdots e_{i_{r}}\right)=0$. So,

$$
\left[\sum \lambda_{i_{1}, \ldots, i_{r}}\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}\right]=0
$$

in $H^{\star}\left(D_{\mathcal{A}}, d\right)$ and there exists a $\sigma \in D_{\mathcal{A}}$ such that $d \sigma=\sum \lambda_{i_{1}, \ldots, i_{r}}\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\} \neq$ 0 . From this, we deduce that there exists $1 \leq i_{1}<\cdots<i_{r+1} \leq n$ such that $d\left\{x_{i_{1}}, \ldots, x_{i_{r+1}}\right\} \neq 0$.

Let $X=x_{i_{1}} \vee x_{i_{2}} \vee \cdots \vee x_{i_{r+1}}$ and $B=\{x \in \mathcal{A} \mid x<X\}=\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$. Using Lemma 3.2 and the fact that $d\left\{x_{i_{1}}, \ldots, x_{i_{r+1}}\right\} \neq 0$, we observe that rank $X=r$. Also, Lemma 3.2 shows that for any subset $\sigma \subset B$ with r elements, $\operatorname{rank} \vee \sigma=r=\operatorname{rank} X$, so $\vee \sigma=X$. It implies that any $r+1$ product $\prod_{i=1}^{r+1}\left\{x_{k_{i}}\right\}=0$ for $x_{k_{i}}$ in B. It allows us to define the following map :

$$
\rho: \frac{\Lambda\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)}{\Lambda^{\geq r+1}\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)} \rightarrow H^{\star}\left(D_{\mathcal{A}}, d\right) ; e_{j} \mapsto\left[\left\{x_{j}\right\}\right] .
$$

Let us prove that $\operatorname{ker} \rho \subset \Lambda^{r}\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)$ is generated by the $\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]$ with $\left\{i_{1}, \ldots, i_{r+1}\right\} \subseteq\left\{j_{1}, \ldots, j_{m}\right\}:$

- It is clear that $\rho\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]=d\left\{x_{i_{1}}, \ldots, x_{i_{r+1}}\right\}$ (because rank $X=r, \operatorname{ker} \varphi$ does not contain any monomial of degree r and by Lemma 3.2, $\left.\operatorname{rank} \vee\left\{x_{i_{1}}, \ldots, \widehat{x}_{i_{j}}, \ldots, x_{i_{r+1}}\right\}=r\right)$.
- If $\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\left\{j_{1}, \ldots, j_{m}\right\}$ and $y \in \mathcal{A} \backslash B$, then $d\left\{x_{i_{1}}, \ldots, x_{i_{r}}, y\right\}$ is a sum with no term equal to $\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}$. Therefore, if $u \in \operatorname{ker} \rho$, then $\rho u=d \sigma$ where σ is a linear combination of $\left\{x_{i_{1}}, \ldots, x_{i_{r+1}}\right\}$ with $\left\{i_{1}, \ldots, i_{r+1}\right\} \subseteq\left\{j_{1}, \ldots, j_{m}\right\}$.

In other words, since $\operatorname{ker} \varphi$ does not contain any monomial of degree r, u is a linear combination of $\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]$, as required.

Let $A_{5}=\frac{\Lambda\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)}{\Lambda \geq r+1\left(e_{j_{1}}, \ldots, e_{j_{m}}\right) \oplus \operatorname{ker} \rho}$. The map ρ induces an injective map $\bar{\rho}$, and we define a map ψ in the opposite direction

$$
A_{5} \xrightarrow{\bar{\rho}} H^{\star}\left(D_{\mathcal{A}}, d\right) \xrightarrow{\psi} A_{5}
$$

by sending $\left\{x_{i}\right\}$ to $\left[e_{i}\right]$ if $i \in\left\{j_{1}, \ldots, j_{m}\right\}$ and zero if $i \notin\left\{j_{1}, \ldots, j_{m}\right\}$. These two maps are morphisms of graded algebras and verify the following property: $\psi \circ \bar{\rho}=\mathrm{id}$. Finally Lemma 5.5 and Lemma 5.6 give us two injective maps $\mathbb{Q}(u, v) \rightarrow L_{\left(A_{5}, 0\right)} \rightarrow$ $\pi_{\star} \Omega M(\mathcal{A}) \otimes \mathbb{Q}$.

With the two previous propositions, the next theorem is almost completely proved. We just need to put everything in place.

Theorem 4.3 Let \mathcal{A} be a geometric arrangement such that every $x \in \mathcal{A}$ hascodim $(x) \geq$ 2. Then $M(\mathcal{A})$ is rationally hyperbolic if and only if there is an injective map $\mathbb{L}(u, v) \rightarrow$ $\pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}$.

Proof Suppose that $M(\mathcal{A})$ is rationally hyperbolic. As shown at the beginning of this section, the map $\varphi: \Lambda\left(e_{1}, \ldots, e_{n}\right) \rightarrow H^{\star}(M(\mathcal{A}), \mathbb{Q})$ can not be injective, otherwise $M(\mathcal{A})$ would be elliptic. Therefore $\operatorname{ker} \varphi \neq 0$ and Proposition 4.1 and Proposition 4.2 show that there exists an injective map $\mathbb{L}(u, v) \rightarrow \pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}$.

Now, assume that such a map exists. In that case, the dimension of $\pi_{\star}(\Omega M(\mathcal{A})) \otimes \mathbb{Q}$, as a graded rational vector space, is not finite. Hence, the same is true for $\pi_{\star} M(\mathcal{A}) \otimes \mathbb{Q}$ and $M(\mathcal{A})$ is rationally hyperbolic.

5 Technical results

This section contains the technical lemmas concerning A_{4} and A_{5} used in Section 4. The aim is to prove the Lemma 5.4, Lemma 5.5 and Lemma 5.6. With that in mind,
we consider the following differential graded algebras:

$$
\begin{aligned}
\left(A_{1}, 0\right) & =\left(\Lambda\left(e_{i_{2}}, \ldots, e_{i_{r}}\right) \oplus\left(\oplus_{s \geq 1} \mathbb{Q} u_{s}\right), 0\right),\left|u_{s}\right|=\sum_{i=1}^{r}\left|e_{i_{r}}\right|+(s-1)\left|e_{i_{1}}\right|-s \\
\left(A_{2}, d\right) & =\left(\frac{\Lambda\left(e_{i_{1}}, \ldots, e_{i_{r}}, t, a\right)}{t e_{i_{1}}, \ldots, t e_{i_{r}}, t^{2}}, d\right) \text { with } d e_{i_{j}}=0, d t=e_{i_{1}} \cdots e_{i_{r}}, d a=e_{i_{1}} \\
\left(A_{3}, d\right) & =\left(\frac{\Lambda\left(e_{i_{1}}, \ldots, e_{i_{r}}, t\right)}{t e_{i_{1}}, \ldots, t e_{i_{r}}, t^{2}}, d\right) \text { with } d e_{i_{j}}=0, d t=e_{i_{1}} \cdots e_{i_{r}} \\
\left(A_{4}, 0\right) & =\left(\frac{\Lambda\left(e_{i_{1}}, \ldots, e_{i_{r}}\right)}{e_{i_{1}} e_{i_{2}} \ldots e_{i_{r}}}, 0\right) \\
\left(A_{5}, 0\right) & =\left(\frac{\Lambda\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)}{I}, 0\right)
\end{aligned}
$$

where I is the ideal of $\Lambda\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)$ generated by the elements $e_{i_{1}} \cdots e_{i_{r+1}}$ and $\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]$. In $\left(A_{1}, 0\right)$, the products $u_{s} e_{i_{j}}=0$ and $u_{s} u_{s^{\prime}}=0$ for all s, s^{\prime} and j. Remark: $\left(A_{2}, d\right)$ is equal to $\left(A_{3} \otimes \Lambda a, d\right)$ with $d a=e_{i_{1}}$.

In order to reach our goal, we will need to understand a few properties of these algebras. The proofs make heavy use of rational homotopy theory (especially Sullivan minimal models). The theory and notations are explained in Felix-Halperin-Thomas [4].

Lemma 5.1 There exists two quasi-isomorphisms $\left(A_{1}, 0\right) \xrightarrow{\simeq}\left(A_{2}, d\right)$ and $\left(A_{4}, 0\right) \xrightarrow{\simeq}$ $\left(A_{3}, d\right)$.

Proof It is clear that the inclusion $\left(A_{4}, 0\right) \rightarrow\left(A_{3}, d\right)$ is a quasi-isomorphism, because, as a vector space, $A_{3}=A_{4} \oplus V$ where V admits $e_{i_{1}} \cdots e_{i_{r}}$ and t as basis elements. Let us prove that there exists a quasi-isomorphism $\theta:\left(A_{1}, 0\right) \rightarrow\left(A_{2}, d\right)$. Consider the subalgebra $(B, d)=\left(\Lambda\left(e_{i_{1}}, \ldots, e_{i_{r}}, a\right), d\right)$ of $\left(A_{2}, d\right)$. Since $d\left(A_{2}\right) \subset B$, the differential in A_{2} / B is zero. Therefore, we have a short exact sequence of complexes:

$$
0 \rightarrow(B, d) \rightarrow\left(A_{2}, d\right) \rightarrow\left(A_{2} / B, 0\right) \rightarrow 0
$$

and a long exact sequence in cohomology with $A_{2} / B=\oplus_{s \geq 0} \mathbb{Q} t a^{s}$. By the connecting map, an element $t a^{s}$ of $H^{\star}\left(A_{2} / B, 0\right)$ is sent on the cohomology class of $d\left(t a^{s}\right)=$ $e_{i_{1}} \cdots e_{i_{r}} a^{s}$ in B. But $d\left(\frac{1}{s+1} e_{i_{2}} \cdots e_{i_{r}} a^{s+1}\right)=e_{i_{1}} \cdots e_{i_{r}} a^{s}$. Therefore, the connecting map is zero. It means that we have a short exact sequence of the cohomology algebras:

$$
0 \rightarrow H^{\star}(B, d) \rightarrow H^{\star}\left(A_{2}, d\right) \rightarrow H^{\star}\left(A_{2} / B, 0\right) \rightarrow 0
$$

The cohomology of (B, d) is obviously $\Lambda\left(e_{i_{2}}, \ldots, e_{i_{r}}\right)$ and the cohomology of $\left(A_{2} / B, 0\right)$ is A_{2} / B. Consider the map $\theta:\left(A_{1}, 0\right) \rightarrow\left(A_{2}, 0\right)$ defined by $\theta\left(e_{i_{j}}\right)=e_{i_{j}}, j=2, \ldots, n$
and $\theta\left(u_{s}\right)=\frac{a^{s}}{s} e_{i_{2}} \ldots e_{i_{r}}-a^{s-1} t$. It is a morphism of differential graded algebras. This gives us the following commutative diagram:

The 5-lemma proves that $H^{\star} \theta$ is an isomorphism, or, in other words, that θ is a quasi-isomorphism.

Lemma 5.2 Let $m:(\Lambda V, d) \rightarrow\left(A_{3}, d\right)$ and $m^{\prime}:(\Lambda W, d) \rightarrow\left(A_{2}, d\right)$ be the Sullivan minimal models of $\left(A_{3}, d\right)$ and $\left(A_{2}, d\right)$, and $f:(\Lambda V, d) \rightarrow(\Lambda W, d)$ a minimal model of the injection $\left(A_{3}, d\right) \rightarrow\left(A_{2}, d\right)$. Then $Q f: V \rightarrow W$ is surjective.

Proof Let $\left(v_{1}, v_{2}, \ldots\right)$ be a basis of V. Since $d e_{i_{1}}=0$, rational homotopy theory shows that we can construct the map m with the property that $m\left(v_{1}\right)=e_{i_{1}}$. We form then the relative Sullivan model: $(\Lambda V \otimes \Lambda a, d)$ with $d a=v_{1}$. The map $m \otimes \mathrm{id}:(\Lambda V \otimes \Lambda a, d) \rightarrow\left(A_{3} \otimes \Lambda a, d\right)$ extends the map m and makes commutative the following diagram.

Since m is a quasi-isomorphism, $m \otimes \mathrm{id}$ is also a quasi- isomorphism (see [4, Lemma 14.2]). This shows that $m \otimes$ id is a Sullivan model of the map $j \circ m$.

The relative Sullivan algebra ($\Lambda V \otimes \Lambda a, d$) is a Sullivan algebra, and almost minimal: to make it minimal, we only need to divide by the ideal generated by a and v_{1}. The projection map $p:(\Lambda V \otimes \Lambda a, d) \rightarrow\left(\Lambda\left(v_{2}, v_{3}, \ldots\right), d\right)$ is such a quasi-isomorphism. So, $\left(\Lambda\left(v_{2}, v_{3}, \ldots\right), d\right)$ is a minimal model of $\left(A_{2}, d\right)$. We conclude by letting $f=p \circ i$. The map f is such that the linear map $Q f$ is simply the projection $V \rightarrow V / v_{1}$, which is surjective.

Lemma 5.3 Let $(\Lambda V, d)$ be a minimal algebra and $f:(\Lambda V, d) \rightarrow(E, d)$ be a quasiisomorphism of differential graded algebras. If there exists $x, y \in V$ such that x and y are linearly independent, $d x=d y=0$ and $f(x y)=f\left(x^{2}\right)=f\left(y^{2}\right)=0$, then there exists two morphisms of Lie algebras $\mathbb{L}(u, v) \xrightarrow{i} L_{(\Lambda V, d)} \xrightarrow{p} \mathbb{\square}(u, v)$ such that $p \circ i=\mathrm{id}$. In particular, i is injective.

Proof Let us consider the differential graded algebra $(B, 0)=\left(\mathbb{Q} \oplus \mathbb{Q} x^{\prime} \oplus \mathbb{Q} y^{\prime}, 0\right)$ with all products equal to zero and $\left|x^{\prime}\right|=|x|,\left|y^{\prime}\right|=|y|$. We can define a morphism of differential graded algebras $\theta:(B, 0) \rightarrow(E, d)$ with $\theta\left(x^{\prime}\right)=f(x)$ and $\theta\left(y^{\prime}\right)=f(y)$.

Notice that $(B, 0)$ is a model of a wedge of two spheres. Its minimal Sullivan model $\rho:(\Lambda W, d) \rightarrow(B, 0)$ is such that $L_{(\Lambda W, d)}=\mathbb{L}(u, v)$ with $|u|=\left|x^{\prime}\right|-1$ and $|v|=$ $\left|y^{\prime}\right|-1$. Without loss of generality, we can assume that $\left|x^{\prime}\right| \leq\left|y^{\prime}\right|$.

The existence of the Sullivan minimal model is proved by an inductive process. Looking closely at this construction, we can easily (in low degree) construct a basis for W.

- If $\left|x^{\prime}\right|$ is odd or if $\left|x^{\prime}\right|=\left|y^{\prime}\right|$, then $\Lambda W=\Lambda\left(x^{\prime}, y^{\prime}, t, \ldots\right)$ with $d t=x^{\prime} y^{\prime}$. In degree less than $\left|y^{\prime}\right|, W$ has only two generators : x^{\prime}, y^{\prime}.
- If $\left|x^{\prime}\right|$ is even and if $\left|x^{\prime}\right|<\left|y^{\prime}\right|$, then $\Lambda W=\Lambda\left(x^{\prime}, y^{\prime}, t_{1}, t_{2}, \ldots\right)$ with $d t_{1}=x^{\prime 2}$ and $d t_{2}=x^{\prime} y^{\prime}$.

Let us construct a map $\psi:(\Lambda W, d) \rightarrow(\Lambda V, d)$. By the lifting lemma, such a map can be obtained by lifting $\theta \circ \rho$ along f. But we can have more: the lift ψ can be constructed inductively along a basis of W, so we can choose $\psi\left(x^{\prime}\right)=x$ and $\psi\left(y^{\prime}\right)=y$.

Now, let's see what happens for the induced map $L_{(\Lambda V, d)} \rightarrow \mathbb{Q}(u, v)$.

- If $\left|x^{\prime}\right|$ is odd or if $\left|x^{\prime}\right|=\left|y^{\prime}\right|$, then the linear map $Q \psi: W \rightarrow V$ is injective in degree $\leq\left|y^{\prime}\right|$ (it is completely described by $Q \psi\left(x^{\prime}\right)=x$ and $Q \psi\left(y^{\prime}\right)=y$). So, the dual map is surjective. It implies that $L \psi: L_{(\Lambda V, d)} \rightarrow \mathbb{\square}(u, v)$ is surjective in degree $\leq|v|$, which means that u and v are in the image of $L \psi$.
- If $\left|x^{\prime}\right|$ is even and if $\left|x^{\prime}\right|<\left|y^{\prime}\right|$, then we can do exactly the same reasoning if $\left|t_{1}\right|>\left|y^{\prime}\right|$. If $\left|t_{1}\right| \leq\left|y^{\prime}\right|$, then there is a slight difference. In that case, $x^{2}=\psi\left(x^{\prime 2}\right)=\psi\left(d t_{1}\right)=d \psi\left(t_{1}\right)$. So, x^{2} is a boundary. There is a $z \in V$ such that $x^{2}=d z$. The map $Q \psi$ in degree $\leq\left|y^{\prime}\right|$ is completely described by $Q \psi\left(x^{\prime}\right)=x, Q \psi\left(y^{\prime}\right)=y$ and $Q \psi\left(t_{1}\right)=z$. It is injective in degree $\leq\left|y^{\prime}\right|$. So, the dual map is surjective in degree $\leq|v|$, which also means that u and v are in the image of $L \psi$.

In both cases, the map $L \psi: L_{(\Lambda V, d)} \rightarrow \mathbb{L}(u, v)$ has u and v in its image. Therefore, we can choose $a, b \in L_{(\Lambda V, d)}$ such that $L \psi(a)=u$ and $L \psi(b)=v$. Let $p=L \psi$
and consider the map $i: \mathbb{L}(u, v) \rightarrow L_{(\Lambda V, d)}$ defined by $i(u)=a$ and $i(v)=b$. These two maps verify $p \circ i=\mathrm{id}$.

Now, the preliminary work is done. The main lemmas of this section can be proved.

Lemma 5.4 There exists an injective map $\mathbb{L}(u, v) \rightarrow L_{\left(A_{4}, 0\right)}$.
Proof Let $L_{1}=L_{\left(A_{1}, 0\right)}$ and $L_{2}=L_{\left(A_{4}, 0\right)}$. The proof will be done by showing the existence of two injective maps

$$
\mathbb{L}(u, v) \xrightarrow{g_{1}} L_{1} \xrightarrow{g_{2}} L_{2} .
$$

Step 1: constructing the map g_{2} By Lemma 5.1, $\left(A_{1}, 0\right) \xrightarrow{\simeq}\left(A_{2}, d\right)$ and $\left(A_{4}, 0\right) \xrightarrow{\simeq}$ $\left(A_{3}, d\right)$, so $L_{1}=L_{\left(A_{2}, 0\right)}$ and $L_{2}=L_{\left(A_{3}, d\right)}$. The Lemma 5.2 gives us a map $f:(\Lambda V, d) \rightarrow(\Lambda W, d)$ between the Sullivan minimal models of $\left(A_{3}, d\right)$ and $\left(A_{2}, d\right)$. Applying the homotopy Lie algebra functor to the map gives a map $L f: L_{1} \rightarrow L_{2}$. The surjectivity of $Q f$ implies that $L f$ is injective (see [4, Chapter 21]). Now, $g_{2}=L f$ is the required map.

Step 2: constructing the map g_{1} By Lemma 5.3, we only need to show that if $m:(\Lambda V, d) \rightarrow\left(A_{1}, 0\right)$ is a Sullivan minimal model, then there exists $x, y \in V$ such that x, y are linearly independent, $d x=d y=0$ and $m(x y)=m\left(x^{2}\right)=m\left(y^{2}\right)=0$.

Since m is a quasi-isomorphism, $H^{\star} m: H^{\star}(\Lambda V, d) \rightarrow\left(A_{1}, 0\right)$ is surjective. So, there exists $[x]$ and $[y]$ in $H^{\star}(\Lambda V, d)$ such that $H^{\star} m([x])=e_{i_{2}}$ and $H^{\star} m([y])=u_{1}$. It gives us x and y in $(\Lambda V, d)$ such that $d x=d y=0, m(x)=e_{i_{2}}$ and $m(y)=u_{1}$. But x and y can not be in $\Lambda^{\geq 2} V$ because, otherwise, $e_{i_{2}}=m(x)$ would be in $\Lambda^{\geq 2}\left(e_{i_{2}}, \ldots, e_{i_{r}}\right)$ and $u_{1}=m(y)$ would be in $\Lambda^{\geq 2}\left(u_{1}\right) / u_{1}^{2}$. Therefore, x and y are in V. Finally, the Lemma 5.3 gives us the map g_{1}.

Lemma 5.5 There exists an injective map $\mathbb{L}(u, v) \rightarrow L_{\left(A_{5}, 0\right)}$.
Proof Recall that A_{5} is the quotient of $\Lambda\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)$ by the ideal I generated by the elements $e_{i_{1}} \cdots e_{i_{r+1}}$ and $\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]$. It is clear that $A_{5}^{>r}=0$. Let us prove that a basis of A_{5}^{r} is given by the classes of the elements $e_{1} e_{j_{2}} \cdots e_{j_{r}}$ with $1<j_{2}<\cdots<j_{r} \leq m$.

- Let $e_{i_{1}} \cdots e_{i_{r}} \in A_{5}^{r}$, with $i_{1}<\cdots<i_{r}$. If $i_{1}=1$, then it is trivially a linear combination of elements $e_{1} e_{j_{2}} \cdots e_{j_{r}}$. If $i_{1}>1$, then we know that $\left[e_{1}, e_{i_{1}}, \ldots, e_{i_{r}}\right]=0$. So, it is also a linear combination of such elements. It shows that these elements generate A_{5}^{r}.
- If $1<i_{1}<\cdots<i_{r+1} \leq m$, then

$$
\begin{aligned}
\sum_{j=1}^{r+1}(-1)^{j+1}\left[e_{1}, e_{i_{1}}, \ldots, \hat{e}_{i_{j}}, \ldots, e_{i_{r+1}}\right]= & \\
\sum_{j=1}^{r+1}(-1)^{j+1}\left(-e_{i_{1}} \cdots \hat{e}_{i_{j}} \cdots e_{i_{r+1}}\right. & +\sum_{k=1}^{j-1}(-1)^{k+1} e_{1} e_{i_{1}} \cdots \hat{e}_{i_{k}} \cdots \hat{e}_{i_{j}} \cdots e_{i_{r+1}} \\
& \left.+\sum_{k=j+1}^{r+1}(-1)^{k} e_{1} e_{i_{1}} \cdots \widehat{e}_{i_{j}} \cdots \hat{e}_{i_{k}} \cdots e_{i_{r+1}}\right) \\
= & \sum_{j=1}^{r+1}(-1)^{j} e_{i_{1}} \cdots \hat{e}_{i_{j}} \cdots e_{i_{r+1}}=\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right] .
\end{aligned}
$$

It shows that the vector space generated by every $\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]$ is equal to the vector space generated by the elements $\left[e_{1}, e_{i_{2}}, \ldots, e_{i_{r+1}}\right]$ with $1<i_{2}<\cdots<$ i_{r+1}.

- Let us consider the following short exact sequence

$$
0 \rightarrow\left\langle\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]\right\rangle \rightarrow \Lambda^{r}\left(e_{j_{1}}, \ldots, e_{j_{m}}\right) \rightarrow A_{5}^{r} \rightarrow 0
$$

Let d_{1} be the dimension of the vector space generated by the elements $e_{1} e_{i_{2}} \cdots e_{i_{r}}$, with $1<i_{2}<\cdots<i_{r}$, in $\Lambda^{r}\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)$ and d_{2} be the dimension of the vector space generated by the elements $e_{i_{1}} e_{i_{2}} \cdots e_{i_{r}}$ with $1<i_{1}<\cdots<i_{r}$. We have: $\operatorname{dim} \Lambda^{r}\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)=d_{1}+d_{2}, \operatorname{dim} A_{5}^{r} \leq d_{1}, \operatorname{dim}\left\langle\left[e_{i_{1}}, \ldots, e_{i_{r+1}}\right]\right\rangle \leq$ d_{2}. So, $\operatorname{dim} A_{5}^{r}=d_{1}$, and the elements $e_{1} e_{j_{2}} \cdots e_{j_{r}}$ form a basis of A_{5}^{r}.

Let I be the set of every sequence $1<i_{1}<\cdots<i_{r+1}$ and (B, d) the differential graded algebra defined by

$$
B=\frac{\Lambda\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)}{\Lambda^{>r}\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)} \oplus\left(\oplus_{i \in I} a_{i}\right)
$$

and $d\left(a_{i}\right)=\left[e_{1}, e_{i_{2}}, \ldots, e_{i_{r+1}}\right]$. The product in B is defined by $a_{i} \cdot a_{j}=a_{i} \cdot e_{j}=0$. The ideal generated by the a_{i} et the $d a_{i}$ is acyclic, and the quotient map is a quasiisomorphism: $\varphi:(B, d) \rightarrow\left(A_{5}, 0\right)$.

Therefore, the differential graded algebras $\left(A_{5}, 0\right)$ and (B, d) have the same minimal model. Let us consider the minimal model of (B, D) given by $\theta:(\Lambda W, d) \rightarrow(B, d)$. The vector space W is generated in low degree by e_{1}, \ldots, e_{m} and $\left(a_{i}\right)_{i \in I}$ with $\theta\left(e_{i}\right)=e_{i}, \theta\left(a_{i}\right)=a_{i}$. Because $\theta\left(e_{i}^{2}\right)=\theta\left(e_{i} a_{j}\right)=\theta\left(a_{j}^{2}\right)=0$, Lemma 5.3 shows that $L_{(\Lambda W, d)}=L_{\left(A_{5}, 0\right)}$ contains a Lie subalgebra $\mathbb{L}(u, v)$.

Lemma 5.6 If $(A, 0)$ is a 1 -connected differential graded algebra, X is a formal space and if there exists two maps $f: A \rightarrow H^{\star}(X, \mathbb{Q})$ and $g: H^{\star}(X, \mathbb{Q}) \rightarrow A$ such that $g \circ f=\operatorname{id}_{A}$, then there exists two morphisms of Lie algebras $\tilde{f}: L_{X} \rightarrow L_{(A, 0)}$ and $\tilde{g}: L_{(A, 0)} \rightarrow L_{X}$ such that $\tilde{f} \circ \tilde{g}$ is an isomorphism. In particular, \tilde{g} is an injective map.

Proof Let $(\Lambda V, d) \xrightarrow{m}(A, 0)$ and $\left(\Lambda V^{\prime}, d^{\prime}\right) \xrightarrow{m^{\prime}}\left(H^{\star}(X, \mathbb{Q}), 0\right)$ be the minimal Sullivan models of ($A, 0$) and X respectively (the map m^{\prime} exists because X is a formal space). Since these maps are quasi-isomorphisms, they are surjective. The lifting lemma shows that there exists maps \bar{f} and \bar{g} such that $m^{\prime} \circ \bar{f}=f \circ m$ and $m \circ \bar{g}=g \circ m^{\prime}$.

The maps \bar{f} and \bar{g} verify $m \circ(\bar{g} \circ \bar{f})=(g \circ f) \circ m=m$. Since $g \circ f$ is an isomorphism, $\bar{g} \circ \bar{f}$ is a quasi-isomorphism between 1 -connected minimal Sullivan algebras. It implies that it is an isomorphism.

Applying the homotopy Lie algebra functor to $(\Lambda V, d) \xrightarrow{\bar{f}}\left(\Lambda V^{\prime}, d^{\prime}\right) \xrightarrow{\bar{g}}(\Lambda V, d)$ gives us the maps $\tilde{f}=L \bar{f}$ and $\tilde{g}=L \bar{g}$.

$$
L_{(A, 0)} \stackrel{\tilde{f}}{\leftrightarrows} L_{X} \stackrel{\tilde{g}}{\leftrightarrows} L_{(A, 0)} .
$$

Since L is a functor, $\tilde{f} \circ \tilde{g}=(L \bar{f}) \circ(L \bar{g})=L(\bar{g} \circ \bar{f})$ is an isomorphism.

References

[1] G Debongnie, Rational homotopy type of subspace arrangements (2007) to appear in Proc. Amer. Math. Soc.
[2] G Denham, A I Suciu, On the homotopy Lie algebra of an arrangement, Michigan Math. J. 54 (2006) 319-340 MR2252762
[3] E Feichtner, S Yuzvinsky, Formality of the complements of subspace arrangements with geometric lattices, Journal of Mathematical Sciences 140 (2007)
[4] Y Félix, S Halperin, J-C Thomas, Rational homotopy theory, Graduate Texts in Mathematics 205, Springer, New York (2001) MR1802847
[5] P Orlik, L Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980) 167-189 MR558866
[6] J Roos, The homotopy Lie algebra of a complex hyperplane arrangement is not necessarily finitely presented (2006) arXiv:math.AT/0610126v2
[7] S Yuzvinsky, Small rational model of subspace complement, Trans. Amer. Math. Soc. 354 (2002) 1921-1945 MR1881024 arXiv:math.AT/0504321

UCL, Departement de mathematique, Chemin du Cyclotron, 2
B-1348 Louvain-la-neuve, Belgium
debongnie@math.ucl.ac.be
http://www.math.ucl.ac.be/membres/debongnie/

Received: 10 May 2007 Revised: 9 October 2007

