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On smoothable surgery for 4–manifolds

QAYUM KHAN

Under certain homological hypotheses on a compact 4–manifold, we prove exactness
of the topological surgery sequence at the stably smoothable normal invariants. The
main examples are the class of finite connected sums of 4–manifolds with certain
product geometries. Most of these compact manifolds have non-vanishing second
mod 2 homology and have fundamental groups of exponential growth, which are
not known to be tractable by Freedman–Quinn topological surgery. Necessarily, the
�–construction of certain non-smoothable homotopy equivalences requires surgery
on topologically embedded 2–spheres and is not attacked here by transversality and
cobordism.

57R67; 57N65, 57N75

1 Introduction

1.1 Objectives

The main theorem of this paper is a limited form of the surgery exact sequence for
compact 4–manifolds (Theorem 4.1). Corollaries include exactness at the smooth
normal invariants of the 4–torus T 4 (Example 4.4) and the real projective 4–space
RP4 (Corollary 4.7). C T C Wall proved an even more limited form of the surgery
exact sequence [34, Theorem 16.6] and remarked that his techniques do not apply to
T 4 and RP4 . Although our new hypotheses depend on the L–theory assembly map,
we provide a remedy along essentially the same lines.

1.2 Results

Let .X; @X / be a based, compact, connected, topological 4–manifold with fundamental
group � D �1.X / and orientation character ! D w1.�X /W � ! Z� . The reader is
referred to Section 1.4 for an explanation of surgical language.

If X has a preferred smooth structure, consider the following surgery sequence.

(1–1) Ss
DIFF.X /

�
���!NDIFF.X /

��
���!Lh

4.ZŒ��
!/
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2118 Qayum Khan

Otherwise, let TOP0 refer to manifolds with the same smoothing invariant as X .

(1–2) Ss
TOP0.X /

�
���!NTOP0.X /

��
���!Lh

4.ZŒ��
!/

The first examples consists of orientable 4–manifolds X with torsion-free, infinite
fundamental groups, mostly of exponential growth. These include the 4–torus T 4 and
connected sums of certain aspherical 4–manifolds of non-positive curvature.

Corollary 4.3 Let � be a free product of groups of the form

� DFn
iD1ƒi

for some n > 0, where each ƒi is a torsion-free lattice in either Isom.Emi / or
Isom.Hmi / or Isom.CHmi / for some mi > 0. Suppose the orientation character
! is trivial. Then the surgery sequences (1–1) and (1–2) are exact.

The second examples consist of a generalization X of non-aspherical, orientable,
simply-connected 4–manifolds. These include the outcome of smooth surgery on the
core circle of the mapping torus of an orientation-preserving self-diffeomorphism of a
3–dimensional lens space L.p; q/. The fundamental groups have torsion.

Corollary 4.6 Let � be a free product of groups of the form

� DFn
iD1Oi

for some n > 0, where each Oi is an odd-torsion group. (Necessarily ! is trivial.)
Then the surgery sequences (1–1) and (1–2) are exact.

The third examples consist of non-aspherical, non-orientable 4–manifolds X whose
connected summands are non-orientable with fundamental group of order two. These
include the real projective 4–space RP4 .

Corollary 4.7 Suppose X is a DIFF 4–manifold of the form

X DX1# � � � #Xn#r.S2
�S2/

for some n> 0 and r � 0, and each summand Xi is either S2 �RP2 or S2 Ì RP2 or
#S1n.RP4/ for some 1� n� 4. Then the surgery sequences (1–1) and (1–2) are exact.

The fourth examples consist of orientable 4–manifolds X whose connected summands
are mostly aspherical 3–manifold bundles over the circle. The important non-aspherical
examples include #n.S3 �S1/ with free fundamental group. The aspherical examples
are composed of fibers of a specific type of Haken 3–manifolds.
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Corollary 4.8 Suppose X is a TOP 4–manifold of the form

X DX1# � � � #Xn#r.S2
�S2/

for some n> 0 and r � 0, and each summand Xi is the total space of a fiber bundle

Hi �!Xi �! S1:

Here, we suppose Hi is a compact, connected 3–manifold such that:

(1) Hi is S3 or D3 , or

(2) Hi is irreducible with non-zero first Betti number.

Moreover, if Hi is non-orientable, we assume that the quotient group H1.Hi IZ/.˛i /� of
coinvariants is 2–torsionfree, where ˛i W Hi!Hi is the monodromy homeomorphism.
Then the surgery sequence (1–2) is exact.

Finally, the fifth examples consist of possibly non-orientable 4–manifolds X with
torsion-free fundamental group. The connected summands are surface bundles over
surfaces, most of which are aspherical with fundamental groups of exponential growth.
The aspherical, non-orientable examples of subexponential growth include simple torus
bundles T 2 Ì Kl over the Klein bottle, excluded from Corollary 4.3.

Corollary 4.9 Suppose X is a TOP 4–manifold of the form

X DX1# � � � #Xn#r.S2
�S2/

for some n> 0 and r � 0, and each summand Xi is the total space of a fiber bundle

†
f
i �!Xi �!†b

i :

Here, we suppose the fiber and base are compact, connected 2–manifolds, †fi ¤ RP2 ,
and †b

i has positive genus. Moreover, if Xi is non-orientable, we assume that the fiber
†
f
i is orientable and that the monodromy action of �1.†

b
i / of the base preserves any

orientation on the fiber. Then the surgery sequence (1–2) is exact.

1.3 Techniques

Our methods employ various bits of geometric topology: topological transversality in
all dimensions (see Freedman–Quinn [9]), and the analysis of smooth normal invariants
of the Novikov pinching trick, which is used to construct homotopy self-equivalences of

Algebraic & Geometric Topology, Volume 7 (2007)



2120 Qayum Khan

4–manifolds (see Cochran–Habegger [6] and Wall [34]). Our hypotheses are algebraic-
topological in nature and come from the surgery characteristic class formulas of Sullivan–
Wall [34] and from the assembly map components of Taylor–Williams [30], as well as
control of �2 in non-orientable cases.

Jonathan Hillman has successfully employed these now standard techniques to classify
4–manifolds, up to s–cobordism, in the homotopy type of certain surface bundles over
surfaces (see [12, Section 2] and [13, Chapter 6]). Along the same lines, our abundant
families of 4–manifold examples also have fundamental groups of exponential growth,
and so, too, are currently inaccessible by topological surgery (see Freedman–Quinn
[9], Freedman–Teichner [10] and Krushkal–Quinn [18]).

The reader should be aware that the topological transversality used in Section 4 produces
5–dimensional TOP normal bordisms W !X ��1 which may not be smoothable,
although the boundary @W D @�W [ @CW is smoothable. In particular, W may not
admit a TOP handlebody structure relative to @�W . Hence W may not be the trace
of surgeries on topologically embedded 2–spheres in X . Therefore, in general, W

cannot be produced by Freedman–Quinn surgery theory, which has been developed
only for a certain class of fundamental groups �1.X / of subexponential growth. In
this way, topological cobordism is superior to surgery.

1.4 Language

For any group � , we shall write Wh0.�/ WD zK0.ZŒ��/ for the projective class group
and Wh1.�/ WD zK1.ZŒ��/=h�i for the Whitehead group.

Let CAT be either the manifold category TOP or PL D DIFF in dimensions < 7.
Suppose .X; @X / is a based, compact, connected CAT 4–manifold. Let us briefly
introduce some basic notation used throughout this paper. The fundamental group
� D �1.X / depends on a choice of basepoint; a basepoint is essential if X is non-
orientable. The orientation character ! D w1.X /W �! Z� is a homomorphism that
assigns C1 or �1 to a loop �W S1!X if the pullback bundle ��.�X / is orientable
or non-orientable. Recall that any finitely presented group � and arbitrary orientation
character ! can be realized on some closed, smooth 4–manifold X by a straightforward
surgical construction. A choice of generator ŒX � 2H4.X; @X IZ

!/ is called a twisted
orientation class.

Let us introduce the terms in the surgery sequence investigated in Section 4. The simple
structure set Ss

CAT.X / consists of CAT s–bordism classes in R1 of simple homotopy
equivalences hW Y !X such that @hW @Y !@X is the identity. Here, simple means that
the torsion of the acyclic ZŒ��–module complex Cone.zh/ is zero, for some preferred
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finite homotopy CW-structures on Y and X . Indeed, any compact topological manifold
.X; @X / has a canonical simple homotopy type, obtained by cleanly embedding X

into euclidean space (see Kirby–Siebenmann [15, Theorem III.4.1]). Therefore, for
any abelian group A and n> 1, pulling back the inverse of the Hurewicz isomorphism
induces a bijection from ŒX=@X;K.A; n/�0 to H n.X; @X IA/. This identification shall
be used implicitly throughout the paper.

Denote Gn as the topological monoid of homotopy self-equivalences Sn�1! Sn�1 ,
and G WD colimn Gn as the direct limit of fGn! GnC1 g. The normal invariant set
NCAT.X / Š ŒX=@X;G=CAT�0 consists of CAT normal bordism classes in R1 of
degree one, CAT normal maps f W M ! X such that @f W @X ! @X is the identity;
we suppress the normal data and define X=¿DX t pt. Denote yf W X=@X ! G=CAT
as the associated homotopy class of based maps. Indeed, transversality in the TOP
category holds for all dimensions and codimensions (see Kirby–Siebenmann [15]
and Freedman–Quinn [9]). The normal invariants map �W Ss

CAT.X /!NCAT.X / is a
forgetful map. The surgery obstruction group Lh

4
.ZŒ��!/ consists of Witt classes of

nonsingular quadratic forms over the group ring ZŒ�� with involution .g 7! !.g/g�1/.
The surgery obstruction map �h

� W NCAT.X /! Lh
4
.ZŒ��!/ vanishes on the image of

�. The basepoint of the former two sets is the identity map 1X W X ! X , and the
basepoint of the latter set is the Witt class 0.

1.5 Invariants

The unique homotopy class of classifying maps uW X ! B� of the universal cover
induces homomorphisms

u0W H0.X IZ
!/ �!H0.� IZ

!/

u2W H2.X IZ2/ �!H2.� IZ2/:

Next, recall that the manifold X has a second Wu class

v2.X / 2H 2.X IZ2/D Hom.H2.X IZ2/;Z2/

defined for all a 2H 2.X; @X IZ2/ by
˝
v2.X /; a\ ŒX �

˛
D
˝
a[a; ŒX �

˛
. This unoriented

cobordism characteristic class is uniquely determined from the Stiefel–Whitney classes
of the tangent microbundle �X by the formula

v2.X /D w1.X /[w1.X /Cw2.X /:

Observe that v2.X / vanishes if X is a TOP Spin-manifold.
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Finally, let us introduce the relevant surgery characteristic classes. Observe

(1–3) H0.� IZ
!/D Z=

˝
!.g/� 1 j g 2 �

˛
D

(
Z if ! D 1

Z2 if ! ¤ 1:

The 0th component of the 2–local assembly map A� (see Taylor–Williams [30]) has
an integral lift

I0W H0.� IZ
!/ �!Lh

4.ZŒ��
!/:

The image I0.1/ equals the Witt class of the E8 quadratic form (see Davis [7, Re-
mark 3.7]). The 2nd component of the 2–local assembly map A� [30] has an integral
lift

�2W H2.� IZ2/ �!Lh
4.ZŒ��

!/:

Let f W M ! X be a degree one, TOP normal map. According to René Thom [31],
every homology class in H2.X; @X IZ2/ is represented by g�Œ†� for some compact,
possibly non-orientable surface † and TOP immersion gW .†; @†/! .X; @X /. The
codimension two Kervaire–Arf invariant

kerv.f /W H2.X; @X IZ2/ �! Z2

assigns to each two-dimensional homology class g�Œ†� the Arf invariant of the degree
one, normal map g�.f /W f �.†/! †. The element kerv.f / 2 H 2.X; @X IZ2/ is
invariant under TOP normal bordism of f ; it may not vanish for homotopy equivalences.
If M and X are oriented, then there is a signature invariant

sign.f / WD .sign.M /� sign.X //=8 2H0.X IZ/;

which does vanish for homotopy equivalences. For any compact topological manifold
X , the Kirby–Siebenmann invariant ks.X / 2H 4.X; @X IZ2/ is the sole obstruction
to the existence of a DIFF structure on X �R or equivalently on X #r.S2 �S2/ for
some r � 0. Furthermore, the image of ks.X /\ ŒX � in Z2 under the augmentation
map X ! pt is an invariant of unoriented TOP cobordism (see Freedman–Quinn [9,
Section 10.2B]). Define

ks.f / WD f�.ks.M /\ ŒM �/� .ks.X /\ ŒX �/ 2H0.X IZ2/:

In Section 4, we shall use Sullivan’s surgery characteristic class formulas as geometri-
cally identified in dimension four by J F Davis [7, Proposition 3.6]:

yf �.k2/\ ŒX �D kerv.f /\ ŒX � 2H2.X IZ2/(1–4)

yf �.`4/\ ŒX �D

(
sign.f / 2H0.X IZ/ if ! D 1

ks.f /C .kerv.f /2\ ŒX �/ 2H0.X IZ2/ if ! ¤ 1:
(1–5)
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Herein is used the 5th stage Postnikov tower (see Kirby–Siebenmann [15] and Wall [34])

k2C `4W G=TOPŒ5�
'
���!K.Z2; 2/�K.Z; 4/:

The two expressions in (1–5) agree modulo two [15, Annex 3, Theorem 15.1]:

(1–6) ks.f /D
�
red2. yf /

�.`4/� . yf /
�.k2/

2
�
\ ŒX � 2H0.X IZ2/:

2 Smoothing normal bordisms

Let .X; @X / be a based, compact, connected, DIFF 4–manifold. We start with group-
theoretic criteria on the existence and uniqueness of smoothing the topological normal
bordisms relative @X from the identity map on X to itself.

Proposition 2.1 With respect to the Whitney sum H –space structures on the CAT
normal invariants, there are exact sequences of abelian groups:

0 �! Tor1.H0.� IZ
!/;Z2/ �!NDIFF.X /

redTOP
����!NTOP.X /

ks
���!H0.� IZ2/ �! 0

and

0 �! Tor1.H1.� IZ
!/;Z2/ �!NDIFF.X ��

1/

redTOP
����!NTOP.X ��

1/
ks
���!H1.� IZ

!/˝Z2 �! 0:

Proof Since X is a CAT manifold, by CAT transversality and Cerf’s result that
PL=O is 6–connected (see Kirby–Siebenmann [15] and Freedman–Quinn [9]), we can
identify the based sets

NDIFF.X /D ŒX=@X;G=PL�0
NTOP.X /D ŒX=@X;G=TOP�0

NDIFF.X ��
1/D ŒS1

^ .X=@X /;G=PL�0
NTOP.X ��

1/D ŒS1
^ .X=@X /;G=TOP�0:

Furthermore, each right-hand set is an abelian group with respect to the H –space
structure on G=CAT given by Whitney sum of CAT microbundles.

For any based space Z with the homotopy type of a CW-complex, there is the
Siebenmann–Morita exact sequence of abelian groups [15, Annex 3, Theorem 15.1]:

0�!Cok
�
red.3/

2

�
�! ŒZ;G=PL�0

redTOP
����! ŒZ;G=TOP�0

ks
���! Im

�
red.4/

2
CSq2

�
�! 0:

Algebraic & Geometric Topology, Volume 7 (2007)



2124 Qayum Khan

Here, the stable cohomology operations

red.n/
2
W H n.ZIZ/ �!H n.ZIZ2/ and Sq2

W H 2.ZIZ2/ �!H 4.ZIZ2/

are reduction modulo two and the second Steenrod square. The homomorphism ks is
given by the formula ks.a; b/D red.4/

2
.a/�Sq2.b/, as stated in (1–6), which follows

from Sullivan’s determination (3–1) below.

Suppose ZDX=@X . By Poincaré duality and the universal coefficient sequence, there
are isomorphisms

Cok
�
red.3/

2

�
Š Cok

�
red2W H1.X IZ

!/!H1.X IZ2/
�
Š Tor1.H0.X IZ

!/;Z2/

Im
�
red.4/

2

�
Š Im

�
red2W H0.X IZ

!/!H0.X IZ2/
�
DH0.X IZ2/:

Therefore we obtain the exact sequence for the normal invariants of X .

Suppose Z D S1 ^ .X=@X /. By the suspension isomorphism †, Poincaré duality,
and the universal coefficient sequence, there are isomorphisms

Cok
�
red.3/

2

�
Š Cok

�
red.2/

2
W H 2.X; @X IZ/!H 2.X; @X IZ2/

�
Š Cok

�
red2W H2.X IZ

!/!H2.X IZ2/
�
Š Tor1.H1.X IZ

!/;Z2/:

Note, since the cohomology operations red.4/
2

and Sq2 are stable, that

.†�1
ı ks/.†a; †b/D red.3/

2
.a/�Sq2.b/D red.3/

2
.a/

for all a 2H 3.X; @X IZ/ and b 2H 1.X; @X IZ2/. Then, by Poincaré duality and the
universal coefficient sequence, we have

Im.ks/Š Im
�
red.3/

2
W H 3.X; @X IZ/!H 3.X; @X IZ2/

�
Š Im

�
red2W H1.X IZ

!/!H1.X IZ2/
�
DH1.� IZ

!/˝Z2:

Therefore we obtain the exact sequence for the normal invariants of X ��1 .

3 Homotopy self-equivalences

Recall Sullivan’s determination (see Madsen–Milgram [20] and Wall [34])

(3–1) k2C 2`4W G=PLŒ5�
'
���!K.Z2; 2/�ı.Sq2/K.Z; 4/:

The homomorphism ıW H 4.K.Z2; 2/IZ2/!H 5.K.Z2; 2/IZ/ is the Bockstein asso-
ciated to the coefficient exact sequence 0! Z

2
�!Z! Z2! 0, and the element Sq2 is

the 2nd Steenrod square. The cohomology classes k2 and 2`4 map to a generator of
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the base K.Z2; 2/ and of the fiber K.Z; 4/. Moreover, the cohomology class 2`4 of
G=PL is the pullback of the cohomology class `4 of G=TOP under the forgetful map
redTOPW G=PL! G=TOP. The above homotopy equivalence gives

red2.2`4/D .k2/
2
2H 4.G=PLIZ2/I

compare [20, Theorem 4.32, Footnote]. There exists a symmetric L–theory twisted
orientation class ŒX �L� 2H4.X; @X IL�!/ fitting into a commutative diagram (Figure
3.1), due to Sullivan–Wall [34, Theorem 13B.3] and Quinn–Ranicki [24, Theorem 18.5].

NPL.X /
�� // Lh

4
.ZŒ��!/

ŒX=@X;G=PL�0 //

redTOP

��

z�SPL
4
.B�C^G=PL; !/

44iiiiiiiiiiiiiiiii

redTOP

��

H0.� IZ
!/˚H2.� IZ2/

A�h1i

OO

ŒX=@X;G=TOP�0 // zH4.B�C^G=TOPIMSTOP!/
act� // H4.B� IG=TOP!/

H 0.X; @X IG=TOP/
\ŒX �L�

// H4.X IG=TOP!/

u�

44iiiiiiiiiiiiiiiii

Figure 3.1: Factorization of the smoothable surgery obstruction

Here, the identification NPL.X /D ŒX=@X;G=PL�0 only makes sense if ks.X /D 0. It
follows that the image y�.g/ 2H4.� IG=TOP!/, through the scalar product act1, of a
normal invariant gW X=@X ! G=PL consists of two characteristic classes:

y�.g/D u0

�
g�.2`4/\ ŒX �

�
˚u2

�
g�.k2/\ ŒX �

�
;

which are determined by the TOP manifold-theoretic invariants in Section 1.5.

We caution the reader that `4 62H 4.G=PLIZ/; the notation 2`4 is purely formal.

Definition 3.1 Let .X; @X / be any based, compact, connected TOP 4–manifold.
Define the stably smoothable subsets

NTOP0.X / WD ff 2NTOP.X / j ks.f /D 0 g

Ss
TOP0.X / WD

˚
h 2 Ss

TOP.X / j ks.h/D 0
	
:

1 L:h1iDG=TOP is a module spectrum over the ring spectrum L�DMSTOP via Brown representation.
Refer to [24, Remark B9] and [34, Theorem 9.8] on the level of homotopy groups or to Sullivan’s original
method of proof in his thesis [29].
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Recall X has fundamental group � and orientation character ! .

Hypothesis 3.2 Let X be orientable. Suppose that the homomorphism

�2W H2.� IZ2/ �!Lh
4.ZŒ��

!/

is injective on the subgroup u2.Ker v2.X //.

Hypothesis 3.3 Let X be non-orientable such that � contains an orientation-reversing
element of finite order, and if CAT D DIFF, then suppose that orientation-reversing
element has order two. Suppose that �2 is injective on all H2.� IZ2/, and suppose that
Ker.u2/� Ker.v2/.

Hypothesis 3.4 Let X be non-orientable such that there exists an epimorphism �!!

Z� . Suppose that �2 is injective on the subgroup u2.Ker v2.X //.

Proposition 3.5 Let f W M !X be a degree one, normal map of compact, connected
TOP 4–manifolds such that @f D 1@X . Suppose Hypothesis 3.2 or 3.3 or 3.4. If
��.f / D 0 and ks.f / D 0, then f is TOP normally bordant to a homotopy self-
equivalence hW X !X relative to @X .

Proof Since ks.f /D 0, there is a (formal) based map gW X=@X ! G=PL such that

redTOP ıg D yf W X=@X ! G=TOP:

So g has vanishing surgery obstruction:

0D ��.f /D .I0C �2/.y�.g// 2Lh
4.ZŒ��

!/:

Case 1 Suppose X is orientable; that is, ! D 1. Then the inclusion 1C ! �! is
retractive and induces a split monomorphism Lh

4
.ZŒ1�/! Lh

4
.ZŒ��/ with cokernel

defined as zLh
4
.ZŒ��/. So the above sum of maps is direct:

0D .I0˚ �2/.y�.g// 2Lh
4.ZŒ1�/˚

zLh
4.ZŒ��/:

Then both the signature and the square of the Kervaire–Arf invariant vanish (1–6):

0D g�.2`4/D g�.k2/
2:

So . yf /�.k2/ \ ŒX � 2 Ker v2.X /. Therefore, since �2 is injective on the subgroup
u2.Ker v2.X //, we have . yf /�.k2/\ ŒX � 2 Ker.u2/. So, by the Hopf exact sequence

�2.X /˝Z2
Hur
��!H2.X IZ2/

u2
���!H2.� IZ2/ �! 0;
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there exists ˛ 2 �2.X / such that our homology class is spherical:

. yf /�.k2/\ ŒX �D .red2 ıHur/.˛/:

Case 2 Suppose X is non-orientable; that is, ! ¤ 1. Let x 2 � be an orientation-
reversing element: !.x/ D �1. First, consider the case that x has finite order. By
taking an odd order power, we may assume that x has order 2N for some N > 0.
Then the map induced by 1C! �! has a factorization through .C2N /� :

Lh
4.ZŒ1�/ �!Lh

4.ZŒC2N ��/
x�
����!Lh

4.ZŒ��
!/:

The abelian group in the middle is zero by Wall [33, Theorem 3.4.5, Remark]. Then,
since I0W H0.� IZ

!/! Lh
4
.ZŒ��!/ factors through Lh

4
.ZŒ1�/Š Z, generated by the

Witt class ŒE8�, we must have I0 D 0. So

0D ��.f /D �2.y�.f // 2Lh
4.ZŒ��

!/;

and since �2 is injective on all H2.� IZ2/, we have

0D y�.f /D u2

�
. yf /�.k2/\ ŒX �

�
:

Then . yf /�.k2/\ ŒX � 2 Ker.u2/� Ker.v2/ by hypothesis, and the class is spherical.

Next, consider the case there are no orientation-reversing elements of finite order.
Then, by hypothesis, there is an epimorphism pW �! ! Z� , which is split by a
monomorphism with image generated by some orientation-reversing infinite cyclic
element y 2 � . Define L

h

4.ZŒ��
!/ as the kernel of p� . Then y� induces a direct sum

decomposition

Lh
4.ZŒ��

!/DLh
4.ZŒZ�

�/˚L
h

4.ZŒ��
!/:

The abelian group of the non-orientable Laurent extension in the middle is isomorphic
to Z2 , generated by the Witt class ŒE8�, according to the quadratic version of Milgram–
Ranicki [21, Theorem 4.1] with orientation uD�1. Then the map I0W H0.� IZ

!/!

Lh
4
.ZŒ��!/ factors through the summand Lh

4
.ZŒZ��/ by an isomorphism; functorially,

�2 has zero projection onto that factor. So the sum of maps is direct, similar to the
oriented case:

0D .I0˚ �2/.y�.g// 2Lh
4.ZŒZ�

�/˚L
h

4.ZŒ��
!/:

A similar argument, using the smooth normal invariant g , shows that

0D . yf /�.`4/D . yf /
�.k2/

2:

Hence . yf /�.k2/\ ŒX � 2 Ker v2.X /. Since �2 is injective on u2.Ker v2.X //, we also
have . yf /�.k2/\ ŒX � 2 Ker.u2/, thus the class is spherical.
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General case Let us return to the general case of X without any condition on ori-
entability. For any ˛ 2�2.X /, there is a homotopy operation, called the Novikov pinch
map, defined by the homotopy self-equivalence

hW X
pinch
���!X _S4 1X_†�

�����!X _S3 1X_�
����!X _S2 1X_˛

����!X:

Here, �W S3! S2 and †�W S4! S3 are the complex Hopf map and its suspension
that generate the stable homotopy groups �s

1
and �s

2
.

For the normal invariant of the self-equivalence hW X !X associated to our particular
˛ , there is a formula in the simply-connected case due to Cochran and Habegger [6,
Theorem 5.1] and generalized to the non-simply connected case by Kirby and Taylor [16,
Theorem 18, Remarks]:

.yh/�.k2/D
�
1C

˝
v2.X /; . yf /

�.k2/\ ŒX �
˛�
� . yf /�.k2/D . yf /

�.k2/

.yh/�.`4/D 0D . yf /�.`4/:

Here, we have used . yf /�.k2/\ŒX �2Ker v2.X / and, if X is non-orientable, ks.f /D0

in (1–5). Therefore f W M ! X is TOP normally bordant to the homotopy self-
equivalence hW X !X relative to the identity @X ! @X on the boundary.

4 Smoothable surgery for 4–manifolds

Terry Wall asked if the smooth surgery sequence is exact at the normal invariants for the
4–torus T 4 and real projective 4–space RP4 ; see the remark after [34, Theorem 16.6].
The latter case of RP4 was affirmed implicitly in the work of Cappell and Shaneson [4].
The main theorem of this section affirms the former case of T 4 and extends their circle
sum technique for RP4 to a broader class of non-orientable 4–manifolds, using the
assembly map and smoothing theory.

Theorem 4.1 Let .X; @X / be a based, compact, connected, CAT 4–manifold with
fundamental group � D �1.X / and orientation character ! D w1.X /W �! Z� .

(1) Suppose Hypothesis 3.2 or 3.3. Then the surgery sequence of based sets is exact
at the smooth normal invariants:

(4–1) Ss
DIFF.X /

�
���!NDIFF.X /

��
���!Lh

4.ZŒ��
!/:

(2) Suppose Hypothesis 3.2 or 3.3 or 3.4. Then the surgery sequence of based sets is
exact at the stably smoothable normal invariants:

(4–2) Ss
TOP0.X /

�
���!NTOP0.X /

��
���!Lh

4.ZŒ��
!/:
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The above theorem generalizes a statement of Wall [34, Theorem 16.6] proven correctly
by Cochran and Habegger [6] for closed, oriented DIFF 4–manifolds.

Corollary 4.2 (Wall) Suppose the orientation character ! is trivial and the group
homology vanishes: H2.� IZ2/D 0. Then the surgery sequence (4–1) is exact.

A fundamental result from geometric group theory is that any torsion-free, finitely
presented group � is of the form � DFn

iD1
�i for some n� 0, where each �i is either

Z or a one-ended, finitely presented group. Geometric examples of such �i are torsion-
free lattices of any rank. The Borel/Novikov Conjecture (that is, the Integral Novikov
Conjecture) would imply that �2 is injective for all finitely generated, torsion-free
groups � and all ! (see Davis [7]). At the moment, we have:

Corollary 4.3 Let � be a free product of groups of the form

� DFn
iD1ƒi

for some n > 0, where each ƒi is a torsion-free lattice in either Isom.Emi / or
Isom.Hmi / or Isom.CHmi / for some mi > 0. Suppose the orientation character
! is trivial. Then the surgery sequences (4–1) and (4–2) are exact.

Example 4.4 Besides stabilization with connected summands of S2 �S2 , the pre-
ceding corollary includes the orientable manifolds X D T 4 D

Q
4.S1/ and X D

#n.S1 � S3/ and X D #n.T 2 � S2/ for all n > 0. Also included are the compact,
connected, orientable 4–manifolds X whose interiors X � @X admit a complete
hyperbolic metric. In addition, the corollary applies to the total space of any orientable
fiber bundle S2!X !† for some compact, connected, orientable 2–manifold † of
positive genus.

Remark 4.5 Many surgical theorems on TOP 4–manifolds require � to have subex-
ponential growth (see Freedman–Quinn [10] and Krushkal–Quinn [18]) in order to find
topologically embedded Whitney discs. Currently, the Topological Surgery Conjecture
remains open for the more general class of discrete, amenable groups. In our case,
observe that all crystallographic groups 1! Zm! �! f i ni te! 1 have subexpo-
nential growth for all m> 0. On the other hand, observe that all torsion-free lattices
� in Isom.Hm/ and all free groups � D Fn have exponential growth if and only if
m; n> 1.

Indeed, taking all Emi D R, we obtain the finite-rank free groups � D Fn . Thus we
partially strengthen a theorem of Krushkal and Lee [17] if X is a compact, connected,
oriented TOP 4–manifold with fundamental group Fn . They only required X to be
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a finite Poincaré complex of dimension 4 (@X D¿) but insisted that the intersection
form over ZŒ�� of their degree one, TOP normal maps f W M ! X be tensored
up from the simply-connected case ZŒ1�. Now, our shortcoming is that exactness
is not proven at NTOP.X /. This is because self-equivalences do not represent the
homotopy equivalences with ks¤ 0, such as the well-known non-smoothable homotopy
equivalences �CP2

! CP2 and �RP4
! RP4 .

Consider examples of infinite groups with odd torsion and trivial orientation. The
original case nD 1 below was observed by S Cappell [3, Theorem 5]. Observe that
the free products below have exponential growth if and only if n> 1.

Corollary 4.6 Let � be a free product of groups of the form

� DFn
iD1Oi

for some n > 0, where each Oi is an odd-torsion group. (Necessarily ! is trivial.)
Then the surgery sequences (4–1) and (4–2) are exact.

Consider non-orientable 4–manifolds X whose fundamental group � DFn.C2/ is
infinite and has 2–torsion. We denote S2 Ì RP2 the total space of the 2–sphere bundle
classified by the unique homotopy class of non-nullhomotopic map RP2

! BSO.3/.
This total space was denoted as the sphere bundle S. ˚ ˚R/ in the classification of
Hambleton, Kreck and Teichner [11], where  is the canonical line bundle over RP2 .

Corollary 4.7 Suppose X is a DIFF 4–manifold of the form

X DX1# � � � #Xn#r.S2
�S2/

for some n> 0 and r � 0, and each summand Xi is either S2 �RP2 or S2 Ì RP2 or
#S1n.RP4/ for some 1� n� 4. Then the surgery sequences (4–1) and (4–2) are exact.

In symplectic topology, the circle sum M #S1N is defined as .M �
ı

E/[@E .N �
ı

E/,
where E is the total space of a 3–plane bundle over S1 with given embeddings in
the 4–manifolds M and N . The preceding corollary takes circle sums along the
order-two generator RP1 of �1.RP4/; the normal sphere bundle @E D S2 Ì RP1 is
non-orientable. Observe that all the free products � in Corollary 4.7 have exponential
growth if and only if n> 2.

Next, consider non-orientable 4–manifolds X whose fundamental groups � are infinite
and torsion-free. Interesting examples have � in Waldhausen’s class Cl of groups with
vanishing Whitehead groups Wh�.�/ [32, Section 19], such as Haken 3–manifold
bundles over the circle.
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Corollary 4.8 Suppose X is a TOP 4–manifold of the form

X DX1# � � � #Xn#r.S2
�S2/

for some n> 0 and r � 0, and each summand Xi is the total space of a fiber bundle

Hi �!Xi �! S1:

Here, we suppose Hi is a compact, connected 3–manifold such that:

(1) Hi is S3 or D3 , or

(2) Hi is irreducible with non-zero first Betti number.

Moreover, if Hi is non-orientable, we assume that the quotient group H1.Hi IZ/.˛i /� of
coinvariants is 2–torsionfree, where ˛i W Hi!Hi is the monodromy homeomorphism.
Then the surgery sequence (4–2) is exact.

Finally, consider certain surface bundles over surfaces, which have fundamental group
in the same class Cl. Let Kl D RP2#RP2 be the Klein bottle, whose fundamental
group �! D ZC Ì Z� has the indicated orientation. Observe that any non-orientable,
compact surface of positive genus admits a collapse map onto Kl .

Corollary 4.9 Suppose X is a TOP 4–manifold of the form

X DX1# � � � #Xn#r.S2
�S2/

for some n> 0 and r � 0, and each summand Xi is the total space of a fiber bundle

†
f
i �!Xi �!†b

i :

Here, we suppose the fiber and base are compact, connected 2–manifolds, †fi ¤ RP2 ,
and †b

i has positive genus. Moreover, if Xi is non-orientable, we assume that the fiber
†
f
i is orientable and that the monodromy action of �1.†

b
i / of the base preserves any

orientation on the fiber. Then the surgery sequence (4–2) is exact.

4.1 Proofs in the orientable case

Proof of Theorem 4.1 for orientable X Suppose X satisfies Hypothesis 3.2. Let
f W M ! X be a degree one, normal map of compact, connected, oriented TOP 4–
manifolds such that: @f D 1@X on the boundary, f has vanishing surgery obstruction
��.f /D0, and f has vanishing Kirby–Siebenmann stable PL triangulation obstruction
ks.f /D 0.
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Then, by Proposition 3.5, f is TOP normally bordant to a homotopy self-equivalence
hW X !X relative to @X . Thus exactness is proven at NTOP0.X /.

Note, since X is orientable (1–3), that

Tor1.H0.� IZ
!/;Z2/D Tor1.Z;Z2/D 0:

Then, by Proposition 2.1, redTOP induces an isomorphism from NDIFF.X/ to NTOP0.X/.
Thus exactness is proven at NDIFF.X /.

Proof of Corollary 4.2 The result follows immediately from Theorem 4.1, since

�2W H2.� IZ2/D 0 �!Lh
4.ZŒ��/

is automatically injective.

Proof of Corollary 4.3 By Theorem 4.1, it suffices to show �2 is injective by induction
on n. Suppose nD 0. Then it is automatically injective:

�2W H2.1IZ2/D 0 �!Lh
4.ZŒ1�/D Z:

Let ƒ be a torsion-free lattice in either Isom.Em/ or Isom.Hm/ or Isom.CHm/. Since
isometric quotients of the homogeneous2 spaces Em or Hm or CHm have uniformly
bounded curvature matrix (hence A–regular), by Farrell–Jones [8, Proposition 0.10],
the connective (integral) assembly map is split injective:

Aƒh1iW H4.ƒIG=TOP/DH0.ƒIZ/˚H2.ƒIZ2/ �!Lh
4.ZŒƒ�/:

The decomposition of the domain follows from the Atiyah–Hirzebruch spectral sequence
for the connective spectrum G=TOPD L:h1i. Therefore the integral lift of the 2–local
component is injective:

�2W H2.ƒIZ2/ �!Lh
4.ZŒƒ�/:

Suppose for some n>0 that �2 is injective for �nDFn�1
iD1

ƒi . Let ƒn be a torsion-free
lattice in either Isom.Emn/ or Isom.Hmn/. Write � WD�n�ƒn . By the Mayer–Vietoris
sequence in K–theory (see Waldhausen [32]), and since

Wh1.1/DWh0.1/D 0DeNil0.ZŒ1�IZŒ�n� 1�;ZŒƒn� 1�/;

note Wh1.�/DWh1.�n/˚Wh1.ƒn/. Also, since the trivial group 1 is square-root
closed in the torsion-free groups � and ƒn , we have

UNilh4.ZŒ1�IZŒ�n� 1�;ZŒƒn� 1�/D 0

2Homogeneous: the full group of isometries acts transitively on the riemannian manifold.
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by a corollary of Cappell [2, Corollary 4], which was proven in [3, Lemmas II.7, 8, 9].
So

Lh
4.ZŒ��/D

zLh
4.ZŒ�n�/˚Lh

4.ZŒ1�/˚
zLh

4.ZŒƒn�/

H2.� IZ2/DH2.�nIZ2/˚H2.1IZ2/˚H2.ƒnIZ2/

by the Mayer–Vietoris sequences in L–theory [2, Theorem 5(ii)] and group homology
(see Brown [1, Section VII.9]). Therefore, since �2 factors through the summand
zLh

4
.ZŒ��/, we conclude that

�2 D

�
�2 0 0
0 �2 0
0 0 �2

�
W H2.� IZ2/ �!Lh

4.ZŒ��/

is injective. The corollary is proven for n factors, thus completing the induction.

Proof of Corollary 4.6 Since each Oi is odd-torsion, a transfer argument [1] shows
that H2.Oi IZ2/D 0. Then, by the Mayer–Vietoris sequence in group homology [1,
Section VII.9] and induction, we conclude H2.Fn

iD1
Oi IZ2/ D 0. Therefore �2 is

automatically injective.

4.2 Proofs in the non-orientable case

Proof of Theorem 4.1 for non-orientable X Suppose X satisfies Hypothesis 3.3.
Let f W M!X be a degree one, TOP normal map such that ��.f /D0 and ks.f /D0.
Then, by Proposition 3.5, f is TOP normally bordant to a homotopy self-equivalence
hW X !X relative to @X . Thus exactness is proven at NTOP0.X /.

Further suppose the non-orientable 4–manifold X is smooth. Since in this case we
assume that � has an orientation-reversing element of order two, by Cappell and
Shaneson [4, Theorem 3.1], there exists a closed DIFF 4–manifold X1 and a simple
homotopy equivalence h1W X1!X such that �DIFF.h1/¤ 0 and �TOP.h1/D 0. The
above argument of Proof 4.1 in the orientable case shows for non-orientable X that
the kernel of NDIFF.X /!NTOP.X / is cyclic of order two. Note

�DIFF.h ı h1/D �DIFF.h/C h� �DIFF.h1/¤ �DIFF.h/

�TOP.h ı h1/ D �TOP.h/C h� �TOP.h1/D �TOP.h/

by the surgery sum formula given in Proposition 4.10 and Ranicki [23, Proposition 4.3].
Therefore f is DIFF normally bordant to either the simple homotopy equivalence
hW X !X or hıh1W X1!X relative to @X . Thus exactness is proven at NDIFF.X /.

Suppose X satisfies Hypothesis 3.4. Let f W M !X be a degree one, TOP normal
map such that ��.f /D0 and ks.f /D0. Then, by Proposition 3.5, f is TOP normally
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bordant to a homotopy self-equivalence hW X !X relative to @X . Thus exactness is
proven at NTOP0.X /.

The following formula generalizes an analogous result of J. Shaneson [28, Proposi-
tion 2.2], which was stated in the smooth case.

Proposition 4.10 Suppose M;N;X are compact PL manifolds. Let f W M ! N

be a degree one, PL normal map such that @f W @M ! @N is the identity map. Let
hW N !X be a homotopy equivalence such that @hW @N ! @X is the identity. Then
there is a sum formula for PL normal invariants:

1h ıf D �.h/C h�. yf / 2 ŒX=@X;G=PL�0:

Proof Any element of the abelian group ŒX=@X;G=PL�0 is the stable equivalence
class of a pair .�; t/, where � is a PL fiber bundle over X=@X with fiber .Rn; 0/ for
some n, and t W � ! "n D .X=@X /� .Rn; 0/ is a fiber homotopy equivalence of the
absolute fiber Rn�f 0 g ' Sn�1 . The abelian group structure on ŒX=@X;G=PL�0 is
the �0 of the Whitney sum H –space structure on the �–set Map0.X=@X;G=PL/
defined rigorously in Rourke [25, Proposition 2.3].

Let �M be the PL normal .Rn; 0/–bundle of the unique isotopy class of embedding
M ,! SnCdim.M / , where n > dim.M /C 1. For a certain stable fiber homotopy
trivialization s induced by the embedding of M and the normal map f , the normal
invariant of the degree one, PL normal map .f; �/W M !N is defined by

1.f; �/ D .� � �N ; s/:

For the homotopy equivalence hW N !X with homotopy inverse hW X !N and any
PL bundle � over N , define the pushforward bundle h�.�/ WD .h/

�.�/ over X . Let
r be the stable fiber homotopy trivialization associated to the degree one, PL normal
map .h; h�.�N //. Then note

1h ıf D .h�.�/� �X ; r C h�.s//

D .h�.�N /� �X ; r/C .h�.�/� h�.�N /; h�.s//D �.h/C h�. yf /:

Here, the addition is the Whitney sum of stable PL bundles with fiber .Rn; 0/ equipped
with stable fiber homotopy trivializations.

Proposition 4.11 (López de Medrano) The following map is an isomorphism:

�2W H2.C2IZ2/ �!Lh
4.ZŒC2�

�/:
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Note that the source and target of �2 are isomorphic to Z2 (see Wall [34, Theo-
rem 13A.1]).

Proof Observe that the connective assembly map

A�h1iW H˚.� IG=TOP!/ �!Lh
˚.ZŒ��

!/

is a homomorphism of L�.Z/–modules. Then, by action of the symmetric complex
��.CP2/ 2 L4.Z/, there is a commutative diagram (Figure 4.1) where the vertical

H2.C2IZ2/ Lh
8
.ZŒC2�

�/
�
.8/

2

//

H2.C2IZ2/

H2.C2IZ2/

.1I˝��.CP2//

��

H2.C2IZ2/ Lh
4
.ZŒC2�

�/
�2 // Lh

4
.ZŒC2�

�/

Lh
8
.ZŒC2�

�/

˝��.CP2/

��

Š

��

Š

��

Figure 4.1: Periodicity for �2

maps are isomorphisms by decorated periodicity (see Sullivan [29]). So it is equivalent
to show that �.8/

2
is non-trivial.

Consider the commutative diagram of Figure 4.2. The PL surgery obstruction map ��

NPL.RP8/

Lh
8
.ZŒC2�

�/:

��

))RRRRRRRRRRRRRR
NPL.RP8/ H2.C2IZ2/H2.C2IZ2/

Lh
8
.ZŒC2�

�/:

�
.8/

2

uullllllllllllll

H 0.RP8
IG=TOP/ H8.RP8

IG=TOP�/
\ŒRP8�L:

//

NTOP.RP8/

H 0.RP8
IG=TOP/

transv
��

NTOP.RP8/ H2.RP8
I�6.G=TOP/�/H2.RP8
I�6.G=TOP/�/

H8.RP8
IG=TOP�/

OO

proj

redTOP
��

u2

OO

Figure 4.2: Calculation of �.8/
2

for RP8 was shown to be non-trivial in López de Medrano [19, Theorem IV.3.3] and
given by a codimension two Kervaire–Arf invariant. So the map �.8/

2
is non-trivial.

Therefore �2 is an isomorphism.
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Proof of Corollary 4.7 We proceed by induction on the number n > 0 of free C2

factors in � to show that �2W H2.� IZ2/!Lh
4
.ZŒ��!/ is injective.

Suppose nD 1. Then

�2W H2.C2IZ2/ �!Lh
4.ZŒC2�

�/

is an isomorphism by Proposition 4.11.

Suppose the inductive hypothesis is true for n> 0. Write

�n WDF.n� 1/.C2/; �! D .�n/
!n � .C2/

�:

By the Mayer–Vietoris sequence in group homology (see Brown [1, Section VII.9]),
we have

H2.� IZ2/DH2.�nIZ2/˚H2.C2IZ2/:

By the Mayer–Vietoris sequence in Lh
�–theory (see Cappell [2, Theorem 5(ii)]), using

the Mayer–Vietoris sequence in K–theory (see Waldhausen [32]) for h–decorations,
we have

Lh
4.ZŒ��

!/DLh
4.ZŒ�n�

!n/˚Lh
4.ZŒC2�

�/˚UNilh4.ZIZŒ�n� 1�!n ;Z�/:

Since �2 is natural in groups with orientation character, we have

�2 D

�
�2 0 0
0 �2 0

�
W H2.� IZ2/ �!Lh

4.ZŒ��
!/:

Therefore, by induction, we obtain that �2 is injective for the free product �! .

Let i > 0. If Xi DS2�RP2 or Xi DS2 ÌRP2 , then a Leray–Serre spectral sequence
argument shows that

Ker.u2/D Z2ŒS
2�� Z2ŒS

2�˚Z2ŒRP2�D Ker.v2/:

If Xi D Pj #S1Pk , then a Mayer–Vietoris and Poincaré duality argument shows that

Ker.u2/D Z2.ŒRP2
j �C ŒRP2

k �/D Ker.v2/:

Hence Theorem 4.1 applies for both sets of Xi .

4.3 Proofs in both cases of orientability

Proof of Corollary 4.8 Write ƒi as the fundamental group and !i as the orientation
character of Xi . Then the connective assembly map

Aƒi
h1iW H4.Bƒi IG=TOP!i / �!Lh

4.ZŒƒi �
!i /

is an isomorphism, as follows. Note ƒi D �1.Xi/D �1.Hi/Ì Z.
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Suppose Hi has type (1). Then, by Wall [34, Theorem 13A.8], the map Aƒi
h1i is an

isomorphism in dimension 4, given by signature (mod 2 if !i ¤ 1).

Suppose Hi has type (2). Then, by Roushon [27, Theorem 1.1(1)] if @Hi is non-empty
and by Roushon [26, Theorem 1.2] if @Hi is empty, the connective assembly map
A�1.Hi /h1i is an isomorphism in dimensions 4 and 5. Since �1.Hi/, hence ƒi , is a
member of Waldhausen’s class Cl [32, Proposition 19.5(6,8)], we obtain Wh�.ƒi/D 0

by [32, Proposition 19.3]. So, by the Ranicki–Shaneson sequence in Lh
�–theory [22,

Theorem 5.2], and by the five-lemma, we obtain that the connective assembly map
Aƒi
h1i is an isomorphism in dimension 4.

Therefore, for both types, the integral lift �2 of the 2–local component of Aƒi
h1i is

injective. So, by the inductive Mayer–Vietoris argument of Corollary 4.3, we conclude
that �2 is injective for the free product � DFn

iD1
ƒi .

If X is orientable, then X satisfies Hypothesis 3.2. Otherwise, suppose X is non-
orientable. Then consider all Xi which are non-orientable. If Hi is orientable, then
the monodromy homeomorphism ˛i W Hi ! Hi must reverse orientation. So there
is a lift �1.Xi/! �1.S

1/
1
�!Z of the orientation character. Otherwise, if Hi is non-

orientable, then H1.Xi/DH1.Hi/.˛i /��Z by the Wang sequence and is 2–torsionfree
by hypothesis. So there is a lift �1.Xi/!H1.Xi/! Z of the orientation character.
Hence there is an epimorphism .ƒi/

!i !Z� . Thus there is an epimorphism �!!Z� .
So X satisfies Hypothesis 3.4. Therefore, in both cases of orientability of X , Theorem
4.1 is applicable.

Proof of Corollary 4.9 Write ƒi as the fundamental group and !i as the orientation
character of Xi .

Suppose †fi DS2 . Since �1.Xi/D�1.†
b
i / is the fundamental group of an aspherical,

compact surface, by the proof of a result of J Hillman [12, Lemma 8], the connective
assembly map Aƒi

h1i is an isomorphism in dimension 4.

Suppose †fi ¤ S2 . Since †fi and †b
i are aspherical, Xi is aspherical. By a result of

J Hillman [12, Lemma 6], the connective assembly map Aƒi
h1i is an isomorphism in

dimension 4.

Indeed, in both cases, the Mayer–Vietoris argument extends to fiber bundles where the
surfaces are aspherical, compact, and connected, which are possibly non-orientable and
with non-empty boundary (see Cavicchioli, Hegenbarth and Spaggiari [5, Theorem 2.4]
for details).

Then the integral lift of the 2–local component of A�i
h1i is injective:

�2W H2.ƒi IZ2/ �!Lh
4.ZŒƒi �

!i /:
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So, by the Mayer–Vietoris argument of Corollary 4.3, we conclude that �2 is an injective
for the free product � DFn

iD1
ƒi .

If X is orientable, then X satisfies Hypothesis 3.2. Otherwise, suppose X is non-
orientable. Then consider all Xi which are non-orientable. By hypothesis, the fiber
†
f
i is orientable and the monodromy action of �1.†

b
i / on H2.†

f
i IZ/, induced by

the bundle †fi ! Xi ! †b
i , is trivial. We must have that the surface †b

i is non-
orientable. So, since †b

i is the connected sum of a compact orientable surface and
non-zero copies of Klein bottles Kl , by collapsing to any Kl –summand, there is
a lift �1.Xi/! �1.†

b
i /! �1.Kl/! Z of the orientation character. Hence there

is an epimorphism .ƒi/
!i ! Z� . Thus there is an epimorphism �! ! Z� . So X

satisfies Hypothesis 3.4. Therefore, in both cases of orientability of X , Theorem 4.1 is
applicable.
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