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Excision for deformation K –theory of free products

DANIEL A RAMRAS

Associated to a discrete group G , one has the topological category of finite dimen-
sional (unitary) G –representations and (unitary) isomorphisms. Block sums provide
this category with a permutative structure, and the associated K–theory spectrum
is Carlsson’s deformation K–theory Kdef.G/ . The goal of this paper is to examine
the behavior of this functor on free products. Our main theorem shows the square
of spectra associated to G�H (considered as an amalgamated product over the
trivial group) is homotopy cartesian. The proof uses a general result regarding group
completions of homotopy commutative topological monoids, which may be of some
independent interest.

19D23; 55P45

1 Introduction

The category R.G/ of finite dimensional representations of a discrete group G and
G–equivariant linear isomorphisms can be given a natural topology, and block sums
of matrices provide it with the structure of a topological permutative category. The
K–theory spectrum associated to R.G/ is the (general linear) deformation K–theory
of G , first introduced by Carlsson [4, Section 4.6]. (To be precise, Carlsson’s original
definition was essentially the singular complex on R.G/. The present definition was
introduced by Tyler Lawson [8, Chapter 6].) Restricting to unitary representations and
unitary isomorphisms, one obtains unitary deformation K–theory. Since the results in
this paper are valid in both cases, we will be intentionally ambiguous in our notation,
denoting both of these spectra by Kdef.G/. The zeroth homotopy group K0

def.G/ of
Kdef.G/ may be described as follows: the representation spaces themselves form a
monoid Rep.G/ under block sum, and K0

def.G/ is the group completion of the monoid
�0.Rep.G// (Lemma 2.5).

The excision problem in deformation K–theory asks, for an amalgamated product
G �K H , whether the natural map of spectra

(1) Kdef.G �K H /
�
�! holim

�
Kdef.G/ �!Kdef.K/ �Kdef.H /

�
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is a weak equivalence. Excision may be thought of as the statement that deformation K–
theory maps (certain) co-cartesian diagrams of groups to homotopy cartesian diagrams
of spectra. The purpose of this article is to prove that deformation K–theory is excisive
on free products. Our main result is:

Theorem 5.5 Let G and H be finitely generated discrete groups. Then the diagram
of spectra

Kdef.G �H / //

��

Kdef.G/

��
Kdef.H / // Kdef.f1g/

is homotopy cartesian.

This theorem holds for both unitary and general linear deformation K–theory.

Information about the connectivity of the map � provides a relationship between the
deformation K–groups of G �K H and the deformation K–groups of the factors,
via the long exact Mayer–Vietoris sequence in homotopy associated to the homotopy
pullback square. To illustrate the usefulness of this sequence, we apply our excision
result to compute the deformation K–theory of PSL2.Z/Š Z=2�Z=3 (Proposition
5.7).

Another motivation for studying excision in deformation K–theory is that excision
results can improve our understanding of Atiyah–Segal phenomena. Classically, the
Atiyah–Segal theorem [2; 3] states that the representation ring of a compact Lie group,
after completion at the augmentation ideal, is isomorphic to the complex K–theory
ring K�.BG/. When G is an infinite discrete group, one hopes to prove analogous
theorems relating K�def.G/ and K�.BG/ (here we are thinking of unitary deformation
K–theory). This has been done in certain cases. For free groups, T Lawson [9, p 11]
has shown that Kdef.G/ is weakly equivalent, as a ku–module, to ku_†ku. For
fundamental groups of compact, aspherical surfaces M , the author has established
an isomorphism in homotopy K�def.�1M / Š K�.M /, for � > 0 [12]. (In fact, this
isomorphism holds in dimension zero when M is nonorientable.) The failure in low
degrees is an important feature of deformation K–theory: while topological K–theory
K�def.BG/ depends only on the stable homotopy type of BG , deformation K–theory
is a subtler invariant of G , closely tied to the topology of the representation spaces
Hom.G;U.n//.

We note that excision is not satisfied for all amalgamated products. The fundamental
group of a Riemann surface, described as an amalgamated product via a connected sum
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decomposition of the surface, fails to satisfy excision on �0 (we expect that the natural
map � induces an isomorphism in positive degrees, though; at least the domain and
range of � have abstractly isomorphic homotopy groups, by the main result of [12]).
For further discussion, we refer the reader to [12, Section 6].

We briefly describe our approach to the excision problem. Since deformation K–theory
arises from a permutative category R.G/, its zeroth space is (weakly equivalent to)
the group completion �B jR.G/j of the monoid jR.G/j. McDuff and Segal, in their
well-known paper [11], introduced a simple model for the homology type of the group
completion. This model arises as an infinite mapping telescope M1.m/ of the monoid
M , in which the maps come from multiplication by a fixed element m2M . Ordinarily,
starting from this homological model one tries to apply Quillen’s plus-construction to
abelianize the fundamental group and produce a space weakly equivalent to �BM .
We show that under certain simple conditions, the fundamental group of this mapping
telescope is actually abelian, and as a consequence this space is weakly equivalent to
�BM . Precisely, our main technical result is as follows.

Theorem 3.6 Let M be a homotopy commutative monoid which is stably group-like
with respect to an anchored element m 2M . Then there is a natural isomorphism

�W ��M1.m/
Š
�! ���BM;

and the induced map on �0 is an isomorphism of groups. The map � is induced by a
zig-zag of natural weak equivalences.

The term anchored is introduced in Definition 3.5. Theorem 5.5 is an application of
this general result, and this result also forms the basis for the computations in [12] of
K�def.�1.†// and �1Hom.�1†;U /=U for † a compact, aspherical surface.

The paper is organized as follows. In Section 2, we introduce deformation K–theory,
describe its zeroth space, and prove a result of T Lawson [8, Chapter 6.2] relating its
underlying monoid to homotopy orbits of representation spaces. In Section 3, we study
group completions of topological monoids, and prove our results regarding the McDuff–
Segal model for the homology of �BM . These results are applied to deformation
K–theory in Section 4. The main result regarding excision for free products appears in
Section 5, as does the computation of K�def.PSL2.Z//.
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2 Deformation K –theory

In this section, we introduce Carlsson’s deformation K–theory and discuss its basic
properties. Deformation K–theory is a contravariant functor from discrete groups to
spectra, and is meant to capture homotopy theoretical information about the representa-
tion varieties of the group in question. We will construct a connective �–spectrum
Kdef.G/ by considering the K–theory of an appropriate permutative topological cate-
gory of representations (this category was first introduced by Lawson [8, Chapter 6]).
Although we phrase everything in terms of the unitary groups U.n/, all of the con-
structions, definitions and results in this section are valid for the general linear groups
GLn.C/, and only notational changes are needed in the proofs.

For the rest of this section, we fix a discrete group G .

Definition 2.1 Associated to G we have a topological category (ie a category object
in the category of compactly generated spaces) R.G/ with object space

Ob.R.G//D
1a

nD0

Hom.G;U.n//

and morphism space

Mor.R.G//D
1a

nD0

U.n/�Hom.G;U.n//:

The domain and codomain maps are dom.A; �/ D � and codom.A; �/ D A�A�1 ,
and composition is given by .B;A�A�1/ ı .A; �/ D .BA; �/. The identity map
Ob.R.G//!Mor.R.G// sends a representation �2Hom.G;U.n// to the pair .�; In/,
where In 2U.n/ denotes the identity matrix. The representation spaces are topologized
using the compact–open topology, or equivalently as subspaces of

Q
g2G U.n/. We

define U.0/ to be the trivial group, and the single point � 2 Hom.G;U.0// will serve
as the basepoint.
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The functor ˚W R.G/�R.G/!R.G/ defined via block sums of unitary matrices is
continuous and strictly associative, and this functor makes R.G/ into a permutative
category in the sense of [10]. Explicitly, given representations � 2 Hom.G;U.n// and
 2 Hom.G;U.m//, the representation ˚.�;  / D �˚ 2 Hom.G;U.nCm// is
defined, for each g 2G , by

�˚ .g/D

�
�.g/ 0

0  .g/

�
:

The behavior of ˚ on the morphisms of R.G/ is defined similarly. We note that the
single point in Hom.G;U.0// acts as the identity under the operation ˚. The natural
commutativity isomorphism

cW �˚ 
Š
�!  ˚ �

is defined via the (unique) permutation matrices �n;m satisfying

�n;m.A˚B/��1
n;m D B˚A

for all A 2 U.n/ and B 2 U.m/. (A general discussion of the functor associated to a
collection of matrices like this one can be found in the proof of Corollary 4.4.) Each
homomorphism f W G!H induces a continuous functor f �W R.H /!R.G/, defined
on objects by � 7! � ıf and on morphisms by .�;A/ 7! .� ıf;A/. It follows from
the definitions that this functor is permutative, and that Kdef.�/ defines a contravariant
functor from the category of discrete groups and group homomorphisms to the category
of topological permutative categories and continuous, permutative functors.

May’s machine [10] constructs a (special) � –category (in the sense of [15]) associated
to any permutative (topological) category C . (We note that May’s construction requires
the identity object in C to be a nondegenerate basepoint; in our case the identity object is
the unique zero-dimensional representation and is disjoint from the rest of Ob.R.G//.)
Taking geometric realizations yields a special �–space, and Segal’s machine then
produces a connective �–spectrum K.C/, the K–theory of the permutative category
C . This entire process is functorial in the permutative category C .

Definition 2.2 Given a discrete group G , the deformation K–theory spectrum of G

is defined to be the K–theory spectrum of the permutative category R.G/, ie

Kdef.G/DK.R.G//:

This spectrum is contravariantly functorial in G .

We now describe the zeroth space of the spectrum Kdef.G/.
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Lemma 2.3 For each discrete group G , the zeroth space of Kdef.G/ is naturally
weakly equivalent to �B.jR.G/j/, where B denotes the bar construction on the
topological monoid jR.G/j.

The proof of this result is just an elaboration of the May’s proof [10, Construction 10,
Step 2] that the � –category associated to a permutative category C is special.

Next, we discuss an observation due to Lawson [8, Chapter 6.2] regarding the classifying
space of the category R.G/. For convenience of the reader, and to set notation, we
include a discussion of the simplicial constructions of the classifying space BU.n/

and the universal bundle EU.n/. This discussion is based on Segal [14, Section 3].

Associated to G we have the homotopy orbit spaces

Hom.G;U.n//hU.n/ DEU.n/�U.n/ Hom.G;U.n//;

where EU.n/ denotes the total space of a universal (right) principal U.n/–bundle,
and U.n/ acts on EU.n/�Hom.G;U.n// via .e; �/ �g D .eg;g�1�g/. We want to
define a monoid structure on the disjoint union (over n 2 N) of these spaces.

We take EU.n/ to be the classifying space of the translation category U.n/ of U.n/,
that is, the topological category whose object space is U.n/ and whose morphism
space is U.n/�U.n/. The morphism .A;B/ is the unique morphism from B to A

in U.n/, and hence composition is given by .A;B/.B;C /D .A;C /. We will write
.A;B/D B!A.

Since morphisms in U.n/ are determined by their domain and codomain, functors
into U.n/ are determined by their behavior on objects. For each g 2 U.n/, we have a
functor

rgW U.n/ �! U.n/

defined on objects by rg.A/DAg . Since rgh D rh ı rg , these functors define a right
action of U.n/ on U.n/. After geometric realization, this defines a continuous right
action of U.n/ on EU.n/D jU.n/j.

The quotient map EU.n/! EU.n/=U.n/ associated to this action is a universal,
principal U.n/–bundle (see Segal [14, Section 3]). Since the action of U.n/ on EU.n/

arises from a simplicial action of U.n/ on the simplicial space N�U.n/, the quotient
space EU.n/=U.n/ may be described as the realization of the simplicial space

k 7!
�
NkU.n/

�
=U.n/:

This simplicial space may also be described categorically, as follows. Let CU.n/ be
the topological category with a unique object � and with U.n/ as its morphism space,
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where composition is given by A ıB DAB . We define BU.n/ WD
ˇ̌
CU.n/

ˇ̌
. Consider

the functor
U.n/

�
�! CU.n/

defined on objects by A 7! � and on morphisms by .A;B/ 7! AB�1 . The induced
map N�� on nerves factors through the U.n/–action on NkU.n/, inducing a map of
simplicial spaces �

NkU.n/
�
=U.n/ �!NkCU.n/

which is a homeomorphism for each k 2 N. Hence the induced map on realizations

EU.n/=U.n/ �!
ˇ̌
CU.n/

ˇ̌
D BU.n/

is a homeomorphism. Thus EU.n/
j�j
�!BU.n/ is a universal principal U.n/–bundle.

We now turn to the monoid structure on the space
1a

nD0

Hom.G;U.n//hU.n/ WD

1a
nD0

EU.n/�U.n/ Hom.G;U.n//;

which we (abusively) denote by Rep.G/hU . The continuous block sum maps ˚W U.n/�
U.m/! U.nCm/ yield continuous functors

˚W U.n/�U.m/ �! U.nCm/

defined on objects by ˚.A;B/D A˚B . By abuse of notation, we will denote the
realizations of these functors by ˚W EU.n/�EU.m/!EU.nCm/. The multiplica-
tion on Rep.G/hU will also be denoted by ˚, and is defined as follows. Each point in
this monoid is represented some pair .e; �/, where e 2EU.n/ and � 2Hom.G;U.n//
(for some n 2 N). We set

Œe1; �1�˚ Œe2; �2�D Œe1˚ e2; �1˚ �2�:

It follows from the definitions that this map is well-defined and continuous, and yields
an associative multiplication on Rep.G/hU with the single point in dimension zero as
the identity.

We may now define a homomorphism of topological monoids

˛W Rep.G/hU

˛
�! jR.G/j

as follows. Each point in EU.n/ is represented by a pair .x; t/ 2NkU.n/��k (for
some k 2 N), where �k denotes the topological simplex of dimension k . Since
NkU.n/Š U.n/kC1 , we may write x DA0!A1! � � � !Ak for some Ai 2 U.n/.
Hence each point in Rep.G/hU is represented by a triple .A0!A1!� � �!Ak ; t; �/
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with Ai 2 U.n/, t 2 �k , and � 2 Hom.G;U.n// (for some n; k 2 N). Recall that
morphisms in R.G/ are determined by their domain (a representation �) and a unitary
matrix A. We write such a morphism as

�
A
�!A�A�1:

We now define

˛ .ŒA0!A1! � � � !Ak ; t; ��/

D ŒA0�A�1
0

A1A�1
0

�����!A1�A�1
1

A2A�1
1

�����! � � �
AkA�1

k�1
������!Ak�A�1

k ; t �:

By tracing the definitions, one may check that this map is a well-defined, continuous
homomorphism of monoids.

Lawson’s observation, then, is:

Proposition 2.4 (Lawson) The map ˛W Rep.G/hU �! jR.G/j is an isomorphism
of topological monoids.

Proof We will factor ˛ as a composition of homeomorphisms.

We begin by considering Hom.G;U.n// as a constant simplicial space, so that

EU.n/�Hom.G;U.n//Š
ˇ̌
k 7!NkU.n/�Hom.G;U.n//

ˇ̌
:

Now, combining the level-wise action of U.n/ on EU.n/ with the conjugation action
of U.n/ on Hom.G;U.n// gives the simplicial space on the right a simplicial right
action of U.n/, and we have a homeomorphism

EU.n/�U.n/ Hom.G;U.n//Š
ˇ̌
k 7!

�
NkU.n/�Hom.G;U.n//

�
=U.n/

ˇ̌
:

The continuous functions

fk W
�
NkU.n/�Hom.G;U.n//

�
=U.n/ �!NkR.G/

defined by

fk

�
ŒA0!A1! � � � !Ak ; ��

�
DA0�A�1

0

A1A�1
0

�����!A1�A�1
1

A2A�1
1

�����! � � �
AkA�1

k�1
������!Ak�A�1

k

Algebraic & Geometric Topology, Volume 7 (2007)



Excision for deformation K–theory of free products 2247

combine to form a simplicial map, which we claim is a homeomorphism on realizations.
In fact, each fk is bijective, with inverse given by

f �1
k

�
�

A1
�!A1�A�1

1

A2
�!A2A1�A�1

1 A�1
2

A3
�! � � �

Ak
�!Ak � � �A1�A�1

1 � � �A
�1
k

�
D ŒI !A1!A2A1!Ak � � �A1; ��:

Since the domain of fk is compact and the range is Hausdorff, we conclude that
each fk is a homeomorphism, and consequently the induced map on realizations is a
homeomorphism as well.

We end this section with a simple observation regarding the zeroth homotopy group of
deformation K–theory. The topological monoid Rep.G/ is defined by

Rep.G/D
1a

nD0

Hom.G;U.n//:

The monoid structure on Rep.G/ is given by block sum of representations, just as in
the definition of the permutative structure on the category R.G/. (In fact, Rep.G/
is precisely the submonoid of jR.G/j corresponding to the subcategory of identity
morphisms.) Again, U.0/ is the trivial group and the single element in Hom.G;U.0//
will act as the identity. The same construction may be applied with the general linear
groups in place of the unitary groups, and we keep the notation intentionally vague.

Lemma 2.5 Let G be a discrete group. Then K0
def.G/ Š Gr.�0.Rep.G///, where

Gr denotes the group-completion of a monoid, ie its Grothendieck group.

Proof By Lemmas 2.3 and 2.4, we know that K0
def.G/ is the group completion of

the monoid �0.Rep.G//hU , so we just need to show that there is an isomorphism of
monoids �0.Rep.G//hU Š �0.Rep.G//. This follows from the fact that the monoid
maps

Rep.G/hU  �

1a
nD0

EU.n/�Hom.G;U.n// �! Rep.G/

are both fibrations, with connected fibers.

3 Group completion

The goal of this section is to provide a convenient homotopy theoretical model for the
group completion of a topological monoid satisfying certain simple properties. The
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results of this section will be applicable to deformation K–theory, and form the basis
of our excision results as well as the computations in Ramras [12].

The models for group completion that we will study arise as mapping telescopes, as in
McDuff–Segal [11]. Throughout this section M will denote a homotopy commutative
topological monoid and e 2M will denote the identity element. We write the multi-
plication in M as �, and for each m 2M we denote the n–fold product of m with
itself by mn .

Definition 3.1 For each m 2M , we denote the mapping telescope

telescope.M
�m
�!M

�m
�! � � �

�m
�!M„ ƒ‚ …

N

/

by MN .m/, and we denote the infinite mapping telescope

colim
N!1

MN .m/D telescope.M
�m
�!M

�m
�! � � � /

by M1.m/.

We denote points in these telescopes by triples .x; n; t/, where x 2M , n 2 N and
t 2 Œ0; 1/. Note that each of these spaces is functorial in the pair .M;m/, in the sense
that if M !M 0 is a map of monoids, then there are induced maps of telescopes

MN .m/ �!M 0
N .f .m//

(for each N 2N[f1g). To be precise, there is a category M� whose objects are pairs
.M;m/, where M is a monoid and m 2M is any element, and whose morphisms
.M;m/! .M 0;m0/ are homomorphisms f W M !M 0 with f .m/Dm0 ; for every
N 2 N[f1g, the assignment

.M;m/ 7! .MN .m/; .e; 0; 0//

extends to a functor from M� to the category of based spaces. We will denote the
basepoint .e; 0; 0/ 2MN .m/ simply by e .

Definition 3.2 We say that M is stably group-like with respect to an element m 2M

if the cyclic submonoid of �0.M / generated by m is cofinal. In other words, M is
stably group-like with respect to m if for every x 2M there exists y 2M and n 2N

such that x �y and mn lie in the same path component of M . We refer to such y as
stable homotopy inverses for x (with respect to m).

The reason for our terminology is the following result.
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Proposition 3.3 Let .M;�/ be a homotopy commutative monoid and let m 2M be
an element. Then there is a natural abelian monoid structure on �0.M1.m//, and M

is stably group-like with respect to m if and only if �0.M1.m// is a group under this
multiplication. If M is stably group-like with respect to m, then �0.M1/ is the group
completion of �0.M /.

Proof For components C1 and C2 in �0.M1.m//, choose representatives .x1; n1; 0/

and .x2; n2; 0/ for C1 and C2 respectively. We define C1 �C2 to be the component
containing .x1 �x2; n1C n2; 0/. To see that this operation is well-defined, one uses
the fact that if .x; n; 0/ and .x0; n0; 0/ are connected by a path, then this path lies
in some finite telescope MN .m/ (with N > n; n0 ) and one can collapse the first N

stages of the telescope to obtain a path in M from x �mN�n to x0 �mN�n0 . Since
this proposition will not be needed in the sequel, we leave the rest of the proof as an
exercise for the reader.

Example 3.4 Let .M;�/ be a homotopy commutative monoid and assume that �0.M /

is finitely generated, with generators m1; : : : ;mk 2M . Then M is stably group-like
with respect to the element mDm1 � : : :�mk : each component is represented by a
word in the mi , and we may add another word to even out the powers. More precisely,
if cDm

a1

i1
�� � ��m

ak

ik
, then let ADmaxj aj . The element c�1Dm

A�a1

i1
�� � ��m

A�ak

ik

is a stable homotopy inverse for c with respect to m. (This example appears, in spirit
at least, in McDuff and Segal [11, page 281], and will be central to our results on
excision.)

Before stating the main result of this section, we need the following definition.

Definition 3.5 Let .M;�/ be a homotopy commutative monoid. We call an element
m 2M anchored if there exists a homotopy H W M �M �I!M such that for every
m1;m2 2M , H0.m1;m2/Dm1�m2 , H1.m1;m2/Dm2�m1 , and Ht .m

n;mn/D

m2n for all t 2 I and all n 2 N.

We define the subcategory Masg
� �M� to be the full subcategory on the objects

.M;m/ such that m is anchored in M and M is stably group-like with respect to m.

Theorem 3.6 Let M be a homotopy commutative monoid which is stably group-like
with respect to an anchored element m 2M . Then there is a natural isomorphism

�W ��M1.m/
Š
�! ���BM;

and the induced map on �0 is an isomorphism of groups. The map � is induced by a
zig-zag of natural weak equivalences between functors from Masg

� to based spaces.
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We note that the final statement of the theorem is slightly stronger than saying that
M1.m/ and �BM are naturally isomorphic in the homotopy category: the naturality
diagrams for this zig-zag are strictly commutative, not just homotopy commutative.
This strict commutativity will be used in the proof of our main result, Theorem 5.5.

A number of comments are in order regarding zig-zags, basepoints, and the precise
meaning of naturality for the map �. By a zig-zag we simply mean a sequence
of spaces X1;X2; : : : ;Xk , together with maps fi between Xi and XiC1 (in either
direction). The sequence of spaces in our natural zig-zag is described in (2) below,
and involves only one auxiliary functor, denoted by hofib.qm/. A map f W X ! Y

between possibly disconnected spaces will be called a weak equivalence if and only if
it induces isomorphisms f�W ��.X;x/! ��.Y; f .x// for all x 2X .

The isomorphism � on homotopy groups will be valid for all compatible choices
of basepoint, in the following sense. The zig-zag of isomorphisms on �0 gives an
isomorphism �0W �0M1.m/! �0�BM , and we call basepoints x 2M1.m/ and
y 2 �BM compatible if �0.Œx�/ D Œy�. Now, for each pair x and y of compatible
basepoints there is in fact a canonical isomorphism

�x;y W �� .M1.m/;x/
Š
�! �� .�BM;y/ :

This isomorphism is constructed using the fact that if X is a simple space, meaning
that the action of �1.X;x/ on �n.X;x/ is trivial for every n> 1, then any two paths
between points x1;x2 2 X induce the same isomorphism ��.X;x1/! ��.X;x2/.
Since we are dealing with a zig-zag of weak equivalences ending with a simple space,
all spaces involved are simple, and hence �x;y is well-defined.

Naturality for the map � means that for each morphism f W .M;m/! .N; f .m// in
Masg
� , and for each pair of compatible basepoints x 2M1.m/ and y 2�BM , we

have

�Bf ı �x;y D f1 ı �f1.x/;.�Bf /.y/W �� .M1.m/;x/ �! �� .�BN; .�Bf /.y// ;

where f1 D f1.m/ denotes the map on telescopes induced by f . This equation
follows from the naturality of the weak equivalences involved in the zig-zag (2).

Remark 3.7 It is possible to relax the definition of “anchored” without affecting
Theorem 3.6 (and only minor changes are needed in the proof). For example, the
homotopies anchoring mn need not be the same for all n, and in fact we only need to
assume their existence for “enough” n. (In particular, it is not necessary to assume that
there is a homotopy anchoring m0 D e .) For all our applications, though, the current
definition suffices.
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We now turn to the proof of Theorem 3.6. To fix notation, we begin by describing the
McDuff–Segal approach to group completion [11]. Given a space X together with an
(left) action of a monoid M on X , one may form the topological category XM whose
object space is X and whose morphism space is M �X . Here .m;x/ is a morphism
from x to m � x , and composition is given by .n;mx/ ı .m;x/D .n �m;x/. There
is a natural, continuous functor QW XM !BM where BM denotes the topological
category with one object and with morphism space M (the geometric realization of
BM is the classifying space of M , which we also denote by BM ). On morphisms, this
functor sends .m;x/ to m. When X DM (acted on via left multiplication) the category
MM has an initial object (the identity e 2M ) and hence EM D jMM j is canonically
contractible. (Note here that MM is not the category with a unique morphism between
each pair of objects). Now, M acts on M1.m/ via x � .y; n; t/D .x � y; n; t/, and
we define .M1/M D .M1.m//M . This space has a natural basepoint, coming from
the basepoint e 2M1.m/. Observe that .M1/M is the infinite mapping telescope of
the sequence

EM
Fm
�!EM

Fm
�!� � � ;

where Fm is the functor defined by Fm.x/D x�m and Fm.n;x/D .n;x�m/. Since
EM is contractible, it follows that .M1/M is (weakly) contractible as well. Now, as
noted above we have a functor QmW .M1/M ! BM , and we denote its realization
by qm . The fiber of the map qm (over the vertex of BM ) is precisely M1.m/, and
so we have a natural map

imW M1.m/ �! hofib.qM /:

The theorem of McDuff and Segal [11, Proposition 2] states that this map induces an
isomorphism

.im/�W H�.M1.m/; .im/
�.A//

Š
�!H�.hofib.qm/;A/

in homology with local (abelian) coefficients, so long as the action of M on M1.m/

is by homology equivalences (again with abelian local coefficients). This hypothesis is
satisfied when M is stably group-like with respect to m; this is essentially an exercise
in the definitions, using the fact that homology of a mapping telescope may be computed
as a colimit (for a complete proof, see Ramras [13, Lemma 3.0.25]).

Next, since .M1/M is (weakly) contractible, we have a weak equivalence from �BM

to hofib.qM /, induced by the diagram

�
' //

��

.M1/M

qm

��
BM BM:
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Here the maps from � are the inclusions of the natural basepoints; note that �BM Š

hofib.�! BM /. Hence we have a zig-zag of natural transformations

(2) M1.m/
im
�! hofib.qm/

'
 ��BM;

and the first map induces an isomorphism in homology with local (abelian) coefficients.
(This is the full conclusion of the McDuff–Segal Theorem.)

Ordinarily, one would now attempt to show that after applying a plus-construction to
the space M1.m/, this space becomes weakly equivalent to the other two. We will
show, though, that when m is anchored in M , the fundamental group �1.M1.m/;x/

is already abelian, and hence no plus-construction is required (this holds for every
basepoint x ). This will allow us to deduce Theorem 3.6.

Remark 3.8 We note that McDuff and Segal actually work with the thick realization
k � k of simplicial spaces, meaning that the real conclusion of their theorem is that
the map M1.m/! hofibkQmk is a homology equivalence with local coefficients.
(Note that M1.m/ is the fiber of both kQmk and qm D jQmj.) In the present
application, the simplicial spaces involved are good, so the thick realization is homotopy
equivalent to the ordinary realization by Segal [15, Proposition A.1]. Hence one finds
that there is a weak equivalence hofibkqk ! hofib.q/, and since weak equivalences
induce isomorphisms in homology with local coefficients, we conclude that the map
iM W M1.m/! hofib.q/ induces isomorphisms in homology with local coefficients
as well.

We will now show that all components of M1.m/ have abelian fundamental group,
and we begin with the component containing e D .e; 0; 0/.

Proposition 3.9 Let M be a homotopy commutative monoid. If m 2M is anchored,
then �1.M1.m/; e/ is abelian.

The idea of the proof is show that the ordinary multiplication in �1.M1.m/; e/ agrees
with an operation defined in terms of the multiplication in M . This latter operation
will immediately be commutative, by our assumptions on M .

The proof will require some simple lemmas regarding loops in mapping telescopes. We
write p1 ˘p2 for composition of paths (tracing out p1 first). We begin by describing
the type of loops that we will need to use. (Our notation for mapping telescopes was
described at the start of this section.)
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N.
 /

Figure 1: A loop 
 and its normalization N.
 /

Definition 3.10 For each n, there is a canonical path 
nW I!M1.m/ starting at the
basepoint e D .e; 0; 0/ and ending at .mn; n; 0/, defined piecewise by


n.t/D

�
.mk ; k; n.t � k=n//; k

n
6 t < kC1

n
; k D 0; : : : ; n� 1


n.1/D .m
n; n; 0/:

We call a loop ˛W I !M1 normal (at level n) if it is based at e and has the form
˛D 
n ˘ z̨ ˘
�1

n , where z̨.I/�M �fng�f0g (see Figure 1). Note that if ˛ is normal,
then its “middle third” z̨ is uniquely defined. We will often think of z̨ as a loop in M

rather than in M1.m/.

Given a normal loop 
n ˘ z̨ ˘ 
�1
n , we define its k –th renormalization to be the normal

loop 
nCk ˘ z̨ �mk ˘ 
�1
nCk

.

Lemma 3.11 Let 
 W Œ0; 1�!M1.m/ be a loop based at e . Then 
 is homotopic
(rel f0; 1g) to a normal loop. Moreover, every normal loop is homotopic to all of its
renormalizations.

Proof In general, say we are given a loop 
 in the mapping cylinder Mf of a map
f W X ! Y , and say 
 is based at .x0; 0/2Mf for some x0 2X . Then if Ht denotes
a homotopy from IdMf

to the retraction r W Mf ! Y (such that Ht .x0; 0/D .x0; t/

for t < 1) we have a homotopy connecting 
 to a loop whose middle third lies in Y :


t .s/D

8̂<̂
:

H3s.x0; 0/; 06 s 6 t=3

Ht

�


�

s�t=3
1�2t=3

��
; t=36 s 6 1� t=3

H3.1�s/.x0; 0/; 1� t=36 s 6 1:

Algebraic & Geometric Topology, Volume 7 (2007)



2254 Daniel A Ramras

Now, each loop in M1.m/ lies in some finite telescope MN .m/, and applying the
above process N times produces a normal loop (up to reparametrization). Homotopies
between a normal loop and its renormalizations are then produced similarly.

Definition 3.12 Given loops z̨ and ž in M , denote their pointwise sum by p
z̨; ž

.
For normal loops ˛ D 
n ˘ z̨ ˘ 
�1

n and ˇ D 
n ˘ ž ˘ 
�1
n in M1.m/, we define ˛ �ˇ

to be the normal loop (of level 2n) given by

˛ �ˇ D 
2n ˘pz̨; ž ˘ 

�1
2n :

Lemma 3.13 For each pair of normal loops ˛ and ˇ of level n (in M1.m/), there is
basepoint preserving homotopy ˛ �ˇ ' ˇ �˛ .

Proof Since m is anchored, there is a homotopy H W M �M � I !M such that
H.x;y; 0/D x �y , H.x;y; 1/D y �x , and H.mn;mn; s/Dm2n for all s 2 I and
all n 2N. Let ˛D 
n ˘ z̨ ˘
�1

n , let ˇD 
n ˘ ž ˘
�1
n , and define hs.˛; ˇ/ to be the loop

hs.˛; ˇ/.t/DH.z̨.t/; ž.t/; s/

(note that hs.˛; ˇ/ is based at H.mn;mn; s/Dm2n ). The family of loops (based at e )
given by

ps D 
2n ˘ hs.˛; ˇ/ ˘ 
�1
2n

now provides the desired homotopy between ˛ �ˇ and ˇ �˛ .

Proof of Proposition 3.9 Let a and b be elements of �1.M1.m/; e/. By Lemma
3.11, we may choose normal representatives ˛ D 
n ˘ z̨ ˘ 
�1

n and ˇ D 
k ˘ ž ˘ 
�1
k

for a and b . Renormalizing if necessary, we can assume k D n. By Lemma 3.13, it
suffices to show that ˛ ˘ˇ ' ˛ �ˇ (rel f0,1g). Let mn denote the constant loop at mn .
Note that the n–th renormalization of ˛ is precisely ˛ � .
n ˘mn ˘ 
�1

n / (and similarly
for ˇ ). Using Lemma 3.11 and commutativity of � we now have

˛ ˘ˇ ' .˛ � .
n ˘mn ˘ 
�1
n // ˘ .ˇ � .
n ˘mn ˘ 
�1

n //

' .˛ � .
n ˘mn ˘ 
�1
n // ˘ ..
n ˘mn ˘ 
�1

n /�ˇ/

D .
2n ˘pz̨;mn ˘ 
�1
2n / ˘ .
2n ˘pmn; ž

˘ 
�1
2n /

' 
2n ˘pz̨;mn ˘p
mn; ž
˘ 
�1

2n

D 
2n ˘pz̨˘mn;mn˘ ž
˘ 
�1

2n

D .
n ˘ .z̨ ˘mn/ ˘ 
�1
n /� .
n ˘ .mn ˘ ž/ ˘ 
�1

n /:

Since z̨ ˘mn ' z̨ , we have a homotopy 
n ˘ z̨s ˘ 
�1
n from 
n ˘ .z̨ ˘mn/ ˘ 
�1

n to ˛
(we may assume each loop in this homotopy is normal) and analogously for ˇ . The
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family of loops 
n ˘ z̨s ˘ 
�1
n � 
n ˘ žs ˘ 
�1

n provides a homotopy from the family
.
n ˘ .z̨ ˘mn/ ˘ 
�1

n /� .
n ˘ .mn ˘ ž/ ˘ 
�1
n / to ˛ �ˇ , and since all homotopies involved

are basepoint preserving, this completes the proof.

We now show that all components of M1.m/ have abelian fundamental group, not
just the component containing e .

Corollary 3.14 Let M be a homotopy commutative monoid which is stably group-
like with respect to an anchored element m2M . Then all path components of M1.m/

have abelian fundamental group.

Proof For each element .x; n; t/ 2M1.m/, we define C.x;n;t/ to be the component
of M1.M / containing this element. We need to show that �1.C.x;n;t/.M // is abelian.
Let x�1 2M be a stable homotopy inverse for x , ie an element such that for some
N , x � x�1 and mN lie in the same component of M . Note that by adding mn to
x�1 if necessary, we may assume that N > n. We will construct maps

f W .C.x;n;t/; .x; n; t//! .C.e;0;0/; .x
�1
�x;N; t//

and gW .C.e;0;0/; .x
�1
�x;N; t//! .C.x;n;t/; .x �x�1

�x; nCN; t//

and show that the composition g�ıf� is injective on �1 , from which it follows that f�
is injective. This will suffice, since the group �1.C.e;0;0/; .x

�1 �x;N; t// is abelian
by Proposition 3.9.

The maps f and g are defined by

f .y; k; s/D .x�1
�y; kC .N � n/; s/

g.y; k; s/D .x �y; kC n; s/I

note that in both cases these are continuous maps (defined, in fact, on the whole mapping
telescope M1.m/) and they map the basepoints in the manner indicated above. The
composite map is given by g ıf .y; k; t/D .x �x�1 �y; kCN; t/.

Consider an element Œ˛� 2 ker.g� ıf�/. Then ˛ lies in some finite telescope Mk.m/,
and by collapsing this telescope to its final stage, we obtain a free homotopy from ˛ to
a loop x̨ lying in M � fkg � f0g. Now, we have a free homotopy

g ıf ı˛ ' g ıf ı x̨ D x �x�1
� x̨

where the final loop lies in M � fk CN g � f0g. By assumption, there is a path in
M from x �x�1 to mN , and together with homotopy commutativity of M we find
that x � x�1 � x̨ ' mN � x̨ ' x̨ �mN : But this loop, lying in M � fk CN g � f0g,
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is homotopic (in MkCN .m/) to the loop x̨ lying in M � fkg � f0g (the homotopy is
obtained by collapsing the telescope MkCN .m/ to its final stage). By construction, x̨
is homotopic to ˛ . Thus we have a free homotopy g ı f ı˛ ' ˛ , and by assumption
g ıf ı˛ is nullhomotopic. Hence ˛ is freely nullhomotopic. But freely nullhomotopic
loops are always trivial in �1 , so g� ıf� is injective as claimed.

Proof of Theorem 3.6 Recall that by the McDuff–Segal Theorem, we have a natural
zig-zag

(3) M1.m/
im
�! hofib.qm/

'
 ��BM;

where the first map induces an isomorphism in homology for every local (abelian)
coefficient system, and the second map is a weak equivalence. By Corollary 3.14,
all components of M1.m/ have abelian fundamental group, and hence im induces
isomorphisms on �1 Š H1 (note that �1hofib.qm/ Š �1�BM is abelian since
�BM is an H –space). It is well-known that a map inducing isomorphisms on
homology with local coefficients, and on �1 , is a weak equivalence (see, for example,
Hatcher [6, p 389, Exercise 12]).

To complete the proof of Theorem 3.6, we must show that the zig-zag (3) induces an
isomorphism of groups �0.M1.m//Š�0.�BM / (the multiplication on �0.M1.m//

was described in Proposition 3.3). We already know that these maps induce a bijection,
so it suffices to check that the induced map is a homomorphism. Every component
of M1.m/ is represented by a point of the form .x; n; 0/, with x 2M and n 2 N.
Now, the fiber of qm over � 2 BM is precisely the objects of the category .M1/M ,
ie the space M1.m/, and hence we identify .x; n; 0/ with a point in q�1

m .�/. Hence
we may write im.x; n; 0/D ..x; n; 0/; c�/ 2 hofib.qm/, where c� denotes the constant
path at � 2BM . Next, recall that since BM is the realization of a category with M

as morphisms, every element y 2M determines a loop ˛y 2�BM . Let  denote
the natural map from �BM ! hofib.qm/. We claim the points  

�
˛�1

mn ˘˛x

�
and

..x; n; 0/; c�/ lie in the same path component of hofib.qm/. This implies that the map
�0.M1.m//! �0.�BM / sends the component of .x; n; 0/ to the component of
˛�1

mn ˘˛x . Since M is homotopy commutative and �0.�BM / is the group completion
of �0M , this map is a homomorphism of monoids.

We now produce the required path (in hofib.qm/) between the points ..x; n; 0/; c�/
and  .˛�1

mn ˘˛x/. By definition of the map  we have  .˛�1
mn ˘˛x/D .e; ˛

�1
mn ˘˛x/,

where e D .e; 0; 0/ 2M1.m/. There are morphisms in the category .M1/M from
the object .e; n; 0/ to .x; n; 0/ and to .mn; n; 0/, corresponding (respectively) to the
elements x and mn in M . These morphisms give paths ˇx and ˇmn in j.M1/M j
which map under qm to the paths ˛x and ˛mn , respectively. Letting ˛t

x denote the path
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˛t
x.s/D ˛x.1� t C ts/, the formula t 7! .ˇx.1� t/; ˛t

x/ defines a path in hofib.qm/

starting at ..x; n; 0/; c�/ and ending at ..e; n; 0/; ˛x/. One next constructs an analogous
path from ..e; n; 0/; ˛x/ to

�
.mn; n; 0/; ˛�1

mn ˘˛x

�
. Finally, since .mn; n; 0/ and e lie

in the same component of M1.m/ D q�1
m .�/, we have a path in hofib.qm/ from�

.mn; n; 0/; ˛�1
mn �˛x

�
to .e; ˛�1

mn �˛x/.

4 Group completion in deformation K –theory

We now apply the results of the previous section to deformation K–theory. We work
mainly in the unitary case, but all of the results are valid in the general linear case as
well (and we have noted the places in which the arguments differ).

For applications to deformation K–theory, our real interests lie in the monoid of
homotopy orbit spaces

Rep.G/hU D

1a
nD0

Hom.G;U.n//hU.n/;

but we can often work with the simpler monoid Rep.G/ instead. Note that the spaces
EU.n/ are naturally based: recall from Section 2 that EU.n/ is the classifying space
of a topological category whose object space is U.n/; the object In 2 U.n/ provides
the desired basepoint �n 2EU.n/. These basepoints behave correctly with respect to
block sums, ie �n˚�m D �nCm .

Lemma 4.1 Let G be a discrete group. Then Rep.G/ is stably group-like with respect
to  2 Hom.G;U.m// if and only if Rep.G/hU is stably group-like with respect to
Œ�m;  � 2 Hom.G;U.m//hU.m/ .

Proof Say Rep.G/ is stably group-like with respect to  2 Hom.G;U.m//. Then
given a point Œe; �� 2 Rep.G/hU (with e 2 EU.n/ and �W G ! U.n/ for some n),
we know that there is a representation ��1W G ! U.k/ such that �˚ ��1 lies in
the component of the  l (the l –fold block sum of  with itself), where l D nCk

m
.

Now, for each e0 2EU.k/, the point Œe0; ��1� is a stable homotopy inverse for Œe; ��
(with respect to  ), since there is a path in EU.nC k/�Hom.G;U.nC k// from
Œe˚ e0; �˚ ��1� to Œ�nCk ;  

l �.

Conversely, if Rep.G/hU is stably group-like with respect to Œ�m;  �, then each element
Œe; �� 2 Hom.G;U.n//hU.n/ has a stable homotopy inverse

Œe0; ��1� 2 Hom.G;U.k//hU.k/
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(for some k ), ie there is a path in Hom.G;U.nC k//hU.nCk/ from Œe˚ e0; �˚ ��1�

to Œ�nCk ;  
l � (where again l D nCk

m
). Path-lifting for the fibration EU.nC k/ �

Hom.G;U.nC k//! Hom.G;U.nC k//hU.nCk/ produces a path in EU.nC k/�

Hom.G;U.nC k// from .e˚ e0; �˚ ��1/ to some point .�nCk �A;A
�1 lA/, with

A 2U.nCk/. The second coordinate of this path, together with connectivity of U.n/,
shows that �˚ ��1 lies in the component of  l , ie ��1 is in fact a stable homotopy
inverse for � (with respect to  ).

We will now show that in the monoid Rep.G/hU , elements are always anchored. First
we need some lemmas regarding the unitary and general linear groups, which are
probably well-known.

Lemma 4.2 Consider an element D D �1In1
˚ � � � ˚ �kInk

2 GLn.C/, where nDP
ni and the �i are distinct. Then the centralizer of D in GLn.C/ is the subgroup

GL.n1/ � � � � � GL.nk/; embedded in the natural manner. As a consequence, the
analogous statement holds for the unitary groups.

Lemma 4.3 Let K �GLn.C/ be a subgroup. Then the set of diagonalizable matrices
in the centralizer C.K/ is connected. Similarly, for each K � U.n/, the centralizer of
K in U.n/ is connected.

Proof We prove the general linear case; the argument for U.n/ is nearly identical
(since by the Spectral Theorem every element of U.n/ is diagonalizable). Let A2C.K/

be diagonalizable. We will produce a path (of diagonalizable matrices) in C.K/ from A

to the identity. Choose X 2GLn.C/ such that XAX�1D�1In1
˚� � �˚�kInk

(for some
ni with

P
ni D n). Then by Lemma 4.2 we have XKX�1 �GL.n1/�� � ��GL.nk/.

Now, choose paths �i.t/ from �i to 1, lying in C�f0g (or in the unitary case, lying
in S1 ). This gives a path of matrices Yt connecting XAX�1 to I , and for each t 2 I

we have Yt 2 C.XKX�1/. Now X�1YtX is a path from A to I lying in C.K/.

Corollary 4.4 Let G be a finitely generated discrete group such that Rep.G/ is stably
group-like with respect to a representation � 2 Hom.G;U.k//. Then there is a natural
isomorphism

��Kdef.G/Š �� telescope
�

Rep.G;U /hU

˚�
�! Rep.G;U /hU

˚�
�! � � �

�
;

where ˚� denotes block sum with the point Œ�k ; �� 2 Hom.G;U.k/hU.k/ . The analo-
gous statement holds for general linear deformation K–theory.
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Remark 4.5 Naturality here has essentially the same meaning as in Theorem 3.6, ie
these spaces are connected by a zig-zag of natural weak equivalences. The comments
after Theorem 3.6 regarding basepoints apply here as well.

Various examples of groups to which Corollary 4.4 applies directly are discussed in
the author’s thesis [13, Chapter 6]. These groups include the fundamental group of
any surface, and groups admitting similar presentations, as well as finitely generated
abelian groups.

Proof of Corollary 4.4 The result will follow immediately from Lemma 2.3, Propo-
sition 2.4, Lemma 4.1, and Theorem 3.6 once we show that the element

Œ�k ; �� 2 Hom.G;U.k//hU.k/

is anchored in the monoid Rep.G/hU D jR.G/j. We will work with jR.G/j; note that
the element Œ�k ; �� above maps to the object �2Hom.G;U.k// under the isomorphism
˛ of monoids in Proposition 2.4.

Given a collection of matrices X D fX.n;m/gn;m2N with X.n;m/ 2 U.nCm/, we
can define a functor FX W R.G/ �R.G/! R.G/ as follows. Given objects  1 2

Hom.G;U.n// and  2 2 Hom.G;U.m//, we set

FX . 1;  2/DX.n;m/. 1˚ 2/X
�1
.n;m/:

We define FX on morphisms by sending .A;B/W . 1;  2/! .A 1A�1;B 2B�1/

to the morphism

X.n;m/. 1˚ 2/X
�1
.n;m/ �!X.n;m/

�
.A 1A�1/˚ .B 2B�1/

�
X�1
.n;m/

represented by the matrix X.n;m/.A˚B/X�1
.n;m/

.

Let �n;m be the matrix �
0 Im

In 0

�
and choose paths 
n;m from InCm to �n;m in U.nCm/. When nDmD kl (l 2 N)
we may assume, by Lemma 4.3, that 
kl;kl.t/ 2 Stab.�2l/ for all t 2 I (note that
Stab.�2l/D C.Im�2l/). Let X t denote collection X t

n;mD 
n;m.t/, and let Ft DFX t

be the associated functor. Then F0 D˚ is the functor inducing the monoid structure
on jR.G/j, ie jF0j .x;y/ D x ˚ y , and jF1j .x;y/ D y ˚ x . Moreover, at every
time t we have jFt j .�

l ; �l/ D �2l . The path of functors Ft provides the desired
homotopy, proving that � 2 jR.G/j is anchored. (Note that a continuous family of
functors Gt W C! D defines a continuous functor C � I! D , where I denotes the
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topological category whose object space and morphism space are both the unit interval
Œ0; 1�, and hence yields a continuous homotopy).

Remark 4.6 We note that in the above proof there are natural isomorphisms between
F0 and F1 , given by the matrices �n;m . This is the usual way to show that a monoid
coming from a permutative category is homotopy commutative, but this homotopy does
not anchor � .

5 Excision for free products

In this section we present our results on the excision problem for free products and
discuss some resulting computations. First we describe the excision problem more
generally, in the context of amalgamated products.

Let G , H , and K be discrete groups, with homomorphisms f1W K!G and f2W K!

H . Then associated to the co-cartesian (ie pushout) diagram of groups

K
f1 //

f2

��

G

��
H // G �K H

there is a diagram of spectra

(4) Kdef.G �K H / //

��

Kdef.G/

f �
1

��
Kdef.H /

f �
2 // Kdef.K/:

We will say that the amalgamated product G�K H satisfies excision (for deformation K–
theory) if Diagram (4) is homotopy cartesian, ie if the natural map from Kdef.G �K H /

to the homotopy pullback is a weak equivalence. Note that since we are dealing with
connective �–spectra, this is the same as saying that the diagram of zeroth spaces is
homotopy cartesian.

Excision results are important from the point of view of computations, since associated
to a homotopy cartesian diagram of spaces

W
f //

g

��

X

h
��

Y
k // Z
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there is a long exact “Mayer–Vietoris” sequence of homotopy groups

(5) : : : �! �k.W /
f�˚g�
�! �k.X /˚�k.Y /

h��k�
�! �k.Z/

@
�! �k�1.W / �! : : :

which comes from combining the long exact sequences associated to the vertical maps
(see Hatcher [6, p 159]; note that the homotopy fibers of the vertical maps in a homotopy
cartesian square are weakly equivalent). It is not difficult to check that if all the spaces
involved are group-like H –spaces, and the maps are homomorphisms of H –spaces,
then the maps in this sequence (including the boundary maps) are homomorphisms
in dimension zero. Hence when applied to (the zeroth spaces of) the deformation
K–theory in an amalgamation diagram, assuming excision one obtains a long exact
sequence in K�def .

Deformation K–theory can fail to satisfy excision in low dimensions. As mentioned in
the introduction, such examples arise from connected sum decompositions of Riemann
surfaces (see Ramras [12, Section 6]). Using the results from Section 4, we will show
in Theorem 5.5 that deformation K–theory satisfies excision for free products.

The proof of Theorem 5.5 requires several lemmas.

Lemma 5.1 For all discrete groups G , H and K , the homotopy orbit space

Hom.G �K H;U.n//hU.n/

is naturally homeomorphic to the pullback

Hom.G;U.n//hU.n/ �Hom.K ;U.n//hU.n/
Hom.H;U.n//hU.n/:

The analogous statement holds for the general linear groups in place of the unitary
groups.

Proof It follows from the proof of Proposition 2.4 that for all groups L, the space
Hom.L;U.n//hU.n/ is homeomorphic to the realization of a simplicial space of the
form ˇ̌

k 7! U.n/k �Hom.L;U.n//
ˇ̌
:

The lemma now follows from the fact that geometric realization commutes with pull-
backs in the category of compactly generated spaces (see Gabriel–Zisman [5, III.3]).
The proof for GLn.C/ is identical.

We will need to consider certain submonoids of the topological monoid Rep.G/hU

underlying deformation K–theory. Given a topological monoid M and a submonoid
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A� �0.M /, we may define a corresponding submonoid M.A/�M by setting

M.A/D
[

C2A

C:

For every such A, we have �0M.A/DA, and M.A/ is a union of connected compo-
nents of M .

Lemma 5.2 Let .M;�/ be a homotopy commutative topological monoid, and let
m 2M be anchored. Consider a submonoid A� �0.M / containing the component of
m. Then m is anchored in the submonoid M.A/�M .

Proof If H W M �M � I ! M is a homotopy anchoring m, then we claim that
H.M.A/ �M.A/ � I/ �M.A/. Indeed, if x and y lie in M.A/, then for every
t 2 I , the points H.x;y; t/ and H.x;y; 0/ lie in the same component of M , and
H.x;y; 0/D x �y lies in M.A/ because A is a submonoid of �0M .

In order to apply the results of Section 4, we will need to filter the monoid Rep.G/hU

by submonoids which are stably group-like with respect to some representation. We
will need a lemma regarding the algebraic nature of representation spaces. This lemma
requires the group G to be finitely generated, and is the reason for this assumption in
Theorem 5.5.

Recall from Whitney [16] that a real algebraic variety V � Rn is the set of common
zeros of some collection of polynomials with real coefficients.

Lemma 5.3 Let G be a finitely generated discrete group. Then the representation
spaces Hom.G;U.n// and Hom.G;GLn.C// are homeomorphic to real algebraic
varieties.

Proof First, note that U.n/ is a real algebraic variety, since we may write

U.n/D fA 2Mn.C/Š R2n2

W AA� D Ing;

and the equation AA� D In is simply a system of polynomial equations. Similarly, we
have

GLn.C/Š f.A;B/ 2Mn.C/
2
Š R4n2

W AB D Ig:

Now if G D hg1; : : : ;gk jfrigi2Ri is a presentation for G , then we may write

Hom.G;U.n//Š f.A1; : : : ;Ak/ 2Mn.C/
k
WAj A�j D In .j D 1; : : : ; k/

and ri.A1; : : : ;Ak/D In .i 2R/g:
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The fact that this topology on Hom.G;U.n// agrees with the compact-open topology
follows from the fact that equality of two representations on a generating set implies
equality, so convergent sequences of representations are simply those converging on
the chosen generators. The situation for the general linear representation varieties is
similar.

Corollary 5.4 If G is a finitely generated discrete group, then the representation spaces
Hom.G;U.n// and Hom.G;GLn.C// have finitely many connected components.

Proof By Lemma 5.3, these spaces are real algebraic varieties, hence triangulable (see
Hironaka [7]). Hence their connected components and their path components coincide.
The unitary representation varieties are compact, since they are closed subsets of a
product of copies of U.n/. Hence they have finitely many connected components, and
also finitely many path components. More generally, Whitney’s theorem [16] states
that every real algebraic variety has finitely components, so the result follows in the
general linear case as well.

We can now prove the main result of this section.

Theorem 5.5 Let G and H be finitely generated discrete groups. Then the diagram
of spectra

Kdef.G �H / //

��

Kdef.G/

��
Kdef.H / // Kdef.f1g/

is homotopy cartesian.

Note that Kdef.f1g/ ' ku, the complex connective K–theory spectrum, since (in
the unitary case) Rep.f1g/hU D

`1
nD0 BU.n/. This also holds for general linear

deformation K–theory, because U.n/'GLn.C/.

Remark 5.6 Theorem 5.5 yields a long exact sequence in K�def , and the boundary
maps in this sequence are always zero because the map K�def.G/!K�def.f1g/ induced
by the inclusion f1g ,! G is split by the map K�def.f1g/!K�def.G/ induced by the
projection G! f1g. Hence Theorem 5.5 produces cartesian diagrams of homotopy
groups in each dimension, and in odd dimensions we have K�def.f1g/ D ��ku D 0,
meaning that K�def.G �H /DK�def.G/˚K�def.H /.
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Proof of Theorem 5.5 The proofs for the general linear and unitary cases are identical,
so we work in the unitary case. The proof involves reducing to a diagram of homotopy
orbit spaces, which will be homotopy cartesian by Lemma 5.1.

We begin by noting that since the spectra involved are all connective �–spectra, it will
suffice to show that the diagram of zeroth spaces is homotopy cartesian. In order to
apply Theorem 3.6 we need to filter the underlying monoids by submonoids which are
stably group-like with respect to compatible representations. For each nD 1; 2; : : :, we
will define submonoids Rep.G �H /

.n/

hU
� Rep.G �H /hU , Rep.G/.n/

hU
� Rep.G/hU

and Rep.H /
.n/

hU
� Rep.H /hU having the following properties:

(1) Each of these submonoids is of the form Rep.�/hU .A/ for some submonoid
A� �0Rep.G/hU (see Lemma 5.2), and Rep.�/hU D

S
n Rep.�/.n/

hU
.

(2) Under the natural maps from Rep.G �H /hU to Rep.G/hU and Rep.H /hU ,
Rep.G �H /

.n/

hU
maps to Rep.G/.n/

hU
and to Rep.H /

.n/

hU
respectively.

(3) There are representations �n of G and  n of H (of the same dimension d D

d.n/) such that the submonoid Rep.G �H /
.n/

hU
is stably group-like with respect

to Œ�d ; .�n;  n/� and Rep.G/.n/
hU

and Rep.H /
.n/

hU
are stably group-like with

respect to Œ�d ; �n� and Œ�d ;  n�, respectively.

(4) For each n, the square

Rep.G �H /
.n/

hU
//

��

Rep.G/.n/
hU

��
Rep.H /

.n/

hU
// Rep.f1g/hU

is cartesian, ie the following natural map is a homeomorphism:

Rep.G �H /
.n/

hU
�! lim

�
Rep.G/.n/

hU
! Rep.f1g/hU  Rep.H /

.n/

hU

�
:

Assuming the existence of such filtrations, we now complete the proof of Theorem 5.5.
By Lemma 2.3, it suffices to show that the diagram

(6) �B.Rep.G �H /hU / //

��

�B.Rep.G/hU /

��
�B.Rep.H /hU / // �B.Rep.f1g/hU /
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is homotopy cartesian. By Property (2) of the filtrations, the diagram

(7) �B.Rep.G �H /
.n/

hU
/ //

��

�B.Rep.G/.n/
hU
/

��
�B.Rep.H /

.n/

hU
/ // �B.Rep.f1g/hU /

is well-defined for every n. By Property (1) of the filtrations, we have Rep.�/hU D

colimn Rep.�/.n/
hU

. Now, direct unions commute with geometric realization because
both are quotient constructions, so the classifying space functor B commutes with
direct unions of topological monoids. Also, if K is compact and X1!X2! � � � is a
sequence of Hausdorff spaces, then each map from K into colimn Xn lands in one of
the Xn , so we have a homeomorphism

colim
n!1

Map.K;Xn/
Š
�!Map�.K; colim Xn/:

These two facts imply that Diagram (6) is the colimit (as n tends to infinity) of the
diagrams (7). Hence it will suffice to show that Diagram (7) is homotopy cartesian for
each n.

Now, by Property (3) we know that there are representations �nW G! U.d.n// and
 nW H ! U.d.n// such that these monoids are stably group-like with respect to
the points Œ�d.n/; .�n;  n/�, Œ�d.n/; �n� and Œ�d.n/;  n� (respectively). Furthermore,
Lemma 5.2, together with Property (1), shows that these basepoints are anchored. So
we may apply Theorem 3.6.

To simplify notation, we let X .n/ D
`1

kD0 BU.k/, Y .n/ D Rep.G/.n/
hU

, Z.n/ D

Rep.H /
.n/

hU
, and W .n/ D Rep.G �H /

.n/

hU
. Also, let

W
.n/
1 D colim

�
W .n/

˚Œ�d.n/;.�n; n/�
�����������!W .n/

˚Œ�d.n/;.�n; n/�
�����������! � � �

�
and let �W .n/

1 denote the homotopy colimit of the same sequence. We define X
.n/
1 ,

zX
.n/
1 , Y

.n/
1 , zY .n/1 , Z

.n/
1 , and zZ.n/

1 analogously; the direct system for X uses block
sum with �d.n/ 2 BU.d.n//.

With this notation, Corollary 4.4 provides a commutative zig-zag of weak equivalences
linking Diagram (7) to the diagram

(8) �W .n/
1

//

��

zY
.n/
1

��
zZ
.n/
1

// zX
.n/
1 :
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Hence for each n, Diagram (7) is homotopy cartesian if and only if Diagram (8)
is homotopy cartesian. The fact that Diagram (8) is homotopy cartesian essentially
follows from Property (4) of the filtrations together with the general fact that homotopy
pullbacks commute with directed homotopy colimits. In this case, though, we can
provide the following direct argument.

We must show that the natural map

�W .n/
1 �! holim

�
zY
.n/
1 �!

zX
.n/
1  �

zZ
.n/
1

�
is a weak equivalence. But this map fits into the commutative diagram

(9) �W .n/
1

//

'

��

holim
�
zY
.n/
1 �!

zX
.n/
1  �

zZ
.n/
1

�
'

��

W
.n/
1

Š

��

lim
�
Y
.n/
1 �!X

.n/
1  �Z

.n/
1

�
˛ // holim

�
Y
.n/
1 �!X

.n/
1  �Z

.n/
1

�
:

The maps labeled ' are weak equivalences because they arise from collapsing mapping
telescopes. Property (4) states that W .n/ Š lim.Y .n/ ! X .n/  Z.n//, and hence
(after unwinding the notation) one sees that the homeomorphism on the right comes
from interchanging a colimit and a limit. To see that the bottom map ˛ is a weak
equivalence, note that the maps Zn!Xn are Serre fibrations (in each component, this
map is just the map from a homotopy orbit space ChU.k/ to BU.k/), and a colimit
of Serre fibrations is a Serre fibration. Hence the map Z

.n/
1 ! X

.n/
1 (and similarly

Y
.n/
1 !X

.n/
1 ) is a Serre fibration. It is a well-known fact that if f W E! B is a Serre

fibration, then for each map gW A! B there is a weak equivalence

lim
�
A

g
�! B

f
 �E

�
'
�! holim

�
A

g
�! B

f
 �E

�
;

and this precisely tells us that ˛ is a weak equivalence. Since all of the other maps in
Diagram (9) are weak equivalences, so is the top map.

To complete the proof, we must construct filtrations satisfying the four properties listed
above. Let Cn.G/� �0Rep.G/hU D �0Rep.G/ denote the submonoid generated by
all representations of dimension at most n. We define Cn.G �H /� �0Rep.G �H / to
be the pullback of Cn.G/ and Cn.H / over ND�0Rep.f1g/hU . Explicitly, Cn.G�H /
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is the submonoid consisting of all components of the formh k
˚

iD1
�i ;

l
˚

jD1
 j

i
;

where all of the representations �i and  j have dimension at most n. We will show that
Cn.G�H / is finitely generated. By Corollary 5.4, Hom.G;U.n// and Hom.H;U.n//
each have finitely many connected components. Hence the monoids Cn.G/ and Cn.H /

have finite generating sets, containing representations of dimension at most n. Choose
representatives �1; : : : �r.n/ for the components of Hom.G;U.m//, mD 1; : : : ; n, and
 1; : : :  q.n/ for the components of Hom.H;U.m//, mD 1; : : : ; n.

We claim that Cn.G �H / is generated by the finite set

Fn D

nh
˚
i
�

ai

i ;˚
j
 

bj

j

i
W either ai 6 n8i ; or bj 6 n8j

o
:

(Here we have abbreviated the component associated to the point Œ�dim � ; ��2Rep.�/hU

by Œ��.) Consider a component C 2 Cn.G �H /. By definition, we may write

C D
h m
˚

lD1
�il
;

p
˚

kD1
 jk

i
where the �il

and the  jk
come from our chosen sets of representatives. We may

permute the summands of ˚m
lD1

�il
and ˚p

kD1
 jk

independently without changing
the component C , because Hom.G �H;U.n// Š Hom.G;U.n//�Hom.H;U.n//.
Hence we may write

C D
h r.n/
˚

iD1
�

ai

i ;
q.n/
˚

jD1
 

bj

j

i
for some ai ; bj 2N. If C … Fn , then there exist i and j such that ai ; bj > n, and we
may assume that i D j D 1. Writing

C D
h
�

dim 1

1
;  

dim�1

1

i
˚

��
�

a1�dim 1

1

�
˚

�
r.n/
˚

iD2
�

ai

i

�
;
�
 

b1�dim�1

1

�
˚

�
q.n/
˚

jD2
 

bj

j

��
;

we see that the first factor lies in Fn , and by induction on dimension the second factor
lies in the submonoid generated by Fn . This completes the proof that Fn generates
Cn.G �H /.

We now define Rep.�/.n/
hU
D Rep.�/hU .Cn.�//. We must check that these filtrations

satisfy Properties (1)–(4). We have explicitly defined our filtrations so that (1) is
satisfied. Property (2) follows from the fact that the monoid Cn.G �H / was defined
as a pullback. To prove Property (3), note that Rep.G �H /

.n/

hU
is automatically stably

group-like with respect to the sum of (the chosen representatives for) the elements in
the generating set Fn (see Example 3.4). Letting Œ˛n; ˇn� denote this sum, we need
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to check that Rep.G/.n/
hU

is stably group-like with respect to ˛n and similarly for H .
This follows from the fact the every �i (i D 1; : : : ; rn ) appears as a summand in ˛n

(note that some  j must be one-dimensional), and similarly for the  j . Finally, to
check Property (4) we must show that the square

(10) Rep.G �H /
.n/

hU
//

��

Rep.G/.n/
hU

��
Rep.H /

.n/

hU
// Rep.f1g/hU

is cartesian. Since Rep.f1g/hU D
`

k BU.k/, the square (10) is the disjoint union
of the subsquares Sk consisting of all points mapping to BU.k/ � Rep.f1g/hU .
Let C 0n.G/ � �0Rep.G/ denote the submonoid generated by all representations of
dimension at most n. Let Rep.G/.n/

k
D Rep.G/.C 0n.G//\Hom.G;U.k//, and define

Rep.H /
.n/

k
� Hom.H;U.k// similarly. Let

Rep.G �H /
.n/

k
D Rep.G/.n/

k
�Rep.H /

.n/

k
�Rep.G;U.k//�Rep.H;U.k//

D Rep.G �H;U.k//:

Tracing the definitions shows that Sk is in fact the square of homotopy orbit spaces
associated to the cartesian square

Rep.G �H /
.n/

k
//

��

Rep.G/.n/
k

��
Rep.H /

.n/

k
// �;

so Lemma 5.1 implies that Sk is cartesian. Hence the square (10) is a disjoint union of
cartesian squares. This completes the proof of Theorem 5.5.

As an application of Theorem 5.5, we now compute K�def.PSL2.Z// in the unitary case.
It is well known that PSL2.Z/Š Z=2�Z=3 (see Alperin [1] for a short proof). We
work with PSL2.Z/ for concreteness, although the same argument gives a computation
of K�def.G �H / for all finite groups G and H .

T Lawson [8, Chapter 6.3] has shown, using basic representation theory, that for every
finite group G , Kdef.G/'

W
k ku, where k is the number of irreducible representations

of G . Hence in particular

K�def.Z=m/D

�
0; � odd;
Zm; � even:
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By Remark 5.6, we now have (for each i > 0) K2iC1
def .Z=2�Z=3/Š 0˚0D 0 and an

exact sequence

0 �!K2i
def.Z=2�Z=3/ �! Z2

˚Z3
�! Z �! 0;

from which it follows that K2i
def.Z=2�Z=3/Š Z4 . Thus we have:

Proposition 5.7

K�def.PSL2.Z//D

�
0; � odd;
Z4; � even:

We briefly indicate Lawson’s computation of Kdef.G/ for G finite. Every representation
� of G breaks up canonically into isotypical components, and together with Schur’s
Lemma this gives a permutative functor R.G/!Vectk , which records the dimensions
of the isotypical components. Here k is the number of irreducible representations of G

and Vect is the category with N as objects and
`

n U.n/ as morphisms (we will work
in the unitary case, but the general linear case is identical). This functor is continuous,
since any two representations connected by a path are isomorphic (since G is finite,
the trace gives a continuous, complete invariant of the isomorphism type, and it can
take on only countably many values). One now checks that this functor induces a weak
equivalence on classifying spaces, and hence on K–theory spectra. This is rather like
the proof of Proposition 2.4: one sees that BR.G/ is a model for

`
�i

B .Stab.�i//,
where the �i are representatives for the isomorphism types. Now Schur’s Lemma
implies that Stab.�i/Š

Q
U.nj /, where the nj are the dimensions of the isotypical

components of �i . The comparison with B.Vectk/Š B.Vect/k Š
�`

n BU.n/
�k is

now straightforward.
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