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On relations and homology of the Dehn quandle

JOEL ZABLOW

Isotopy classes of circles on an orientable surface F of genus g form a quandle
Q under the operation of Dehn twisting about such circles. We derive certain
fundamental relations in the Dehn quandle and then consider a homology theory
based on this quandle. We show how certain types of relations in the quandle
translate into cycles and homology representatives in this homology theory, and
characterize a large family of 2–cycles representing homology elements. Finally
we draw connections to Lefschetz fibrations, showing isomorphism classes of such
fibrations over a disk correspond to quandle homology classes in dimension 2, and
discuss some further structures on the homology.

18G60, 57T99

1 Relations

1.1 Introduction and definitions

Throughout what follows, we shall be working on a closed orientable surface F , of
genus g , which may bound a handlebody H . This handlebody will generally be
thought of, in “standard form”, as a series of g holes arrayed consecutively along a
loaf of bread. The words “circle” or “loop” will be considered, via abuse of notation,
to mean isotopy class of circle (simple closed curve) in F , unless otherwise specified.

Let P D fisotopy classes of unoriented imbedded circles in Fg. We will let G D

MCG.F / denote the mapping class group of F .

Definition 1.1 A quandle consists of a group G acting on the right on a set S , together
with a pair of maps ; W S !G for which the following axioms hold:

(Q1) a a D a a D a for all a 2 S “idempotence”

(Q2) a b b D a b b D a for all a; b 2 S “inverses”

(Q3) x b a b D x a b for all a; b;x 2 S “conjugation”
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20 Joel Zablow

Note There are three other analogous variants of (Q3) with differing combinations of
the brackets and .

These relations, in the given order, are analogs of the Reidemeister moves I, II, III,
for knots and links. The definitions and notation for the quandle used here are taken
from Kauffman [7], and will be used throughout. Quandles are also known as crossed
G –sets or automorphic sets. The application of a bracket, right ( ) or left ( ), to an
element a 2 S , turns the element into an operator on other elements. Notice that the
operating element is always written on the right of the operand. It is sometimes useful
to write the quandle operations in a slightly different form. We write

x �R b for x b

and
x �L b for x b :

Remark 1.2 The quandle operation is non-associative, but this is somewhat mitigated
by the fact that axiom (Q3) is equivalent to a distributivity property in the quandle.
Think of distributing a conjugation over a product of elements in a group. Using the
notation above,

.x �R a/ b D x b �R a b ;

for a; b 2 P . Similar equations hold for the other combinations of brackets.

Definition 1.3 The algebraic object satisfying only the quandle relations (Q2) and
(Q3) is called a rack (see Carter and Saito [1] or Fenn and Rourke [2]) or a crystal (see
Kauffman [7]).

Examples 1.4 (1) Any group G forms a quandle under the operation of conjugation,
where for a;g 2G , we take a g D gag�1 and a g D g�1ag .

(2) The set of .n�1/–dimensional planes in Rn forms a quandle, where both the
operations x and x correspond to reflection in the hyperplane x .

(3) The rack or crystal C.K/ associated to an oriented knot diagram K , is an
invariant of regular isotopy (that is, only allowing Reidemeister moves II and
III). The knot quandle is an ambient isotopy invariant [7].

Further discussion and more detailed examples of quandles, in particular finite quandles,
may be found in [1] and [7].

Taking P as mentioned above, to be the set of isotopy classes of imbedded circles in
F , it was shown by the author [9] that the following holds:
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Proposition 1.5 The quintuple
˚
P;MCG.F /;A; ;

	
has the structure of a quandle.

Here AW G ! Aut.P / denotes the action of G DMCG.F / on the set of circles P ,
and a and a correspond respectively to right and left Dehn twists about the circle
a 2 P . So mnemonically,

bracket on right D right Dehn twist;

bracket on left D left Dehn twist:

Thus if a and b are circles in F :

b a D right Dehn twist about a; applied to b

b a D left Dehn twist about a; applied to b

For a given surface F , we call the quandle Q just described, the Dehn quandle of
F (associated to the set of circles P of F ). Axiom (Q3) corresponds to the fact that
we can conjugate a Dehn twist about one circle to a Dehn twist about another as seen
schematically in Figure 1

b

b
a

c D a b

Figure 1: Conjugating twists

1.2 Some relations

For a given surface F , and the set of circles P on F , we use the following notation
hereafter. Let x;y 2 P , such that the intersection of the circles representing the given
isotopy classes, is minimal. Let

jx\yj D minimal geometric intersection number:

We now look at some relations in the Dehn quandle. These occur among circles which
intersect a given circle once, and represent certain basic “symmetries” inherent in the
Dehn quandle Q of F . From Zablow [9], we have the following:

Proposition 1.6 (Fundamental relation F1) Let a; b 2P such that ja\bj D 1. Then
a b D b a .
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22 Joel Zablow

This relation underlies the similar, though more complicated relations to come. The
proof is a homological argument in the standard homology H1.F /. See Figure 2.

=

a

b
a b

a

b
b a

Figure 2: Fundamental relation F1

Here is a first consequence of this relation.

Theorem 1.7 (Relation F2) Let a1; a2; c 2 P such that ja1 \ cj D 1; ja2 \ cj D 1,
and ja1\ a2j D 0. Then

c a1 a2 c a1 a2 D c

Proof

c a1 a2 c D a1 c a2 c by fundamental relation with ja1\ cj D 1

D a1 a2 c by axiom (Q3) variant

D a1 c a2 by fundamental relation with ja2\ cj D 1

Da1 a2 c a2 by axiom (Q3) variant

D a1 c a2 since ja1\ a2j D 0

D c a1 a2 by fundamental relation with ja1\ cj D 1

Now apply a2 a1 on both sides. Use of (Q2) and the fact that a2 and a1 commute,
since ja1\ a2j D 0, yields the desired equation.

There is a similar, though more involved relation with three mutually disjoint circles
which each meet a fourth in a single point.

Theorem 1.8 (Relation F3) Let a1; a2; a3; c 2 P such that jai \ aj j D 0 for
i¤j ; 1�i; j�3, and jai \ cj D 1 for i D 1; : : : ; 3. Then

c a1 a2 a3 c a1 a2 a3 c a1 a2 a3 D c
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In the derivation below, let (F0) denote the commutativity relation among Dehn twists
about non-intersecting circles. Also let (F1) denote the fundamental relation as men-
tioned above, and let (F2) denote the the relation c a1 a2 c a1 a2 D c , of the
previous theorem. Recall that (Q2) and (Q3) denote the second and third quandle
axioms. Brackets Œ: : :� or parentheses .: : :/ highlight the “active” portions of the
expressions, as we move from line to line.

Proof c a1 a2 a3 c a1 a2 a3 c a1 a2 a3

D .a1 c/ a2 a3 c a1 a2 a3 c a1 a2 a3 by (F1), ja1\cj D 1

D
��

a2 a1 c
�

a3 c a1 a2

�
a3 c a1 a2 a3 by (F1), j.a1c /\a2j D 1

D
�
a3 a2 a1 c

�
c a1 a2 a3 c a1 a2 a3 by (F1), ja2 a1 c\a3j D 1

D
�
a3 c a1 c a2 c a1. c

�
c / a1 a2 a3 c a1 a2 a3 by multiple (Q3)s

D a3 c a1 c a2 c . a1 a1 / a2 a3 c a1 a2 a3 by (Q2)

D a3 c a1 . c a2 c / a2 a3 c a1 a2 a3 by (Q2)

D a3 c a1 . a2 c / a2 a3 c a1 a2 a3 by (Q3)

D a3 c a1 . c a2 / a2 a3 c a1 a2 a3 by (F1), ja2\cj D 1

D a3 c a1 a2 c . a2 a2 / a3 c a1 a2 a3 by (Q3)

D . a3 c / a1 a2 c a3 c a1 a2 a3 by (Q2)

D . c a3 / a1 a2

�
c a3 c

�
a1 a2 a3 by (F1), ja3\cj D 1

D c a1 a2

�
a3 c a3

�
c a1 a2 a3 by (F0), ja3\a1jD0Dja3\a2j

D c a1 a2

�
c a3

�
c a1 a2 a3 by (Q3)

D c a1 a2

�
a3 c

�
c a1 a2 a3 by (F1), ja3\cj D 1

D c a1 a2

�
c a3 . c

�
c / a1 a2 a3 by (Q3)

D c a1 a2 c a3 a1 a2 a3 by (Q2)

D c a1 a2 c a1 a2 a3 a3 by (F0), ja3\a1jD0Dja3\a2j

D c a1 a2 c a1 a2 by (Q2)

D c by (F2)

as required.

The braid relation in MCG.F / can be derived as a consequence of relation (F1) and
axiom (Q3). See [9]. The relations (F1), (F2), and (F3) are based on certain symmetries
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24 Joel Zablow

of the action of MCG.F / on circles. Figure 5 below shows an example of relation
(F3), and exhibits the underlying symmetry.

The family of relations of the type given by (F1), (F2), and (F3), obtained from a
series of mutually disjoint circles ai which each intersect a circle c once, does not
extend to a similar relation (F4). In the descriptions of the configurations yielding the
previous relations, the ai ’s were mutually disjoint, but this does not preclude taking 2
or 3 copies of the same circle as ai in relations (F2) and (F3). Let us look at what this
would entail for a relation (F4), following the pattern of (F2), (F3), if it exists, now
using 4 copies of the same circle a. If the pattern continued, the relation would be

c a1 a2 a3 a4 c a1 a2 a3 a4 c a1 a2 a3 a4 c a1 a2 a3 a4 D c

Consider the meridian m and longitude l of a torus. These intersect once and will
play the roles of a; c respectively. We look at a matrix representation of the action
of MCG.T 2/ on H1.T

2/ with coefficients in Z. We take the counterclockwise
orientation on l to be positive. Similarly, take a downward pointing arrow on m, on
the front of the torus to be positive there. Let fm; lg be the ordered basis for H1.T

2/.
If we continue to write the action of MCG.T 2/ on the right of the operand circles,
then we have the following correspondences:

(1) m,
�
1
0

�
(2) l,

�
0
1

�
(3) m ,

�
1 0
1 1

�
(4) l ,

�
1 �1
0 1

�
A Mathematica computation for the corresponding matrices yields

�
�16

9

�
¤
�
0
1

�
, so the

pattern does not continue, and such an (F4) does not exist.

2 Homology of the Dehn quandle and rack

2.1 Definitions and conventions

In the sequel, we adopt many of the notations, definitions, and conventions regarding
rack and quandle chain and homology groups from Carter and Saito [1]. For a quan-
dle Q, let C R

n .Q/ be the free abelian group generated by n–tuples .x1; : : : ;xn/ of
elements of Q. This is the rack chain group. Such a tuple will be referred to as an
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n–simplex. Note that this differs from the conventional definition where a k –simplex
involves kC 1 terms. The boundary homomorphism @nW Cn! Cn�1 is defined by

@n.x1; : : : ;xn/D

nX
iD2

.�1/i
�
.x1;x2; : : : ;xi�1; yxi ;xiC1; : : : ;xn/

� .x1 xi ;x2 xi ; : : : ;xi�1 xi ;xiC1; : : : ;xn/
�
:

We take @1W C1!C0 to be the 0 homomorphism. .C R
� .Q/; @/ forms a chain complex.

Following [1], an n–simplex which has consecutive terms xi D xiC1 , where 1� i �

n� 1, is degenerate. C D
n .Q/ is the nth degenerate chain group. As a consequence

of axiom (Q1), @W C D
n .Q/! C D

n�1
.Q/, and thus the chain complex of degenerate

chains forms a subcomplex of the rack chain complex, .C R
� .Q/; @/. The quandle chain

complex is then the quotient C�.Q/D C R
� .Q/=C D

� .Q/ where degenerate simplices
are considered to be 0. By abuse of notation, we use @, defined as above, as the
boundary operator in the quandle chain complex as well. Notationally, the rack and
degenerate groups will be adorned with R, D respectively, while the quandle groups
are unadorned. The distinction between the rack and quandle chain groups, their
subgroups and homology will become important later. Throughout the remainder of
this article, we will assume that all the groups in question, in particular the quandle
chain groups, Cn.Q/, cycle groups Zn.Q/, boundary groups Bn.Q/, and homology
groups, Hn.Q/, which arise from the quandle chain complex are taken with integer,
Z, coefficients unless otherwise stated, and Q will be the Dehn quandle of a specified
surface.

For the moment, we concentrate on the quandle chain complex and groups. Notice that
this is a cubical chain complex, in which the boundary of an n–simplex has 2n� 2

terms. For later arguments and discussion, it will be often be convenient to represent a
1–simplex as a point, 2–simplices as line segments, 3–simplices as square 2–cells,
and 4–simplices as cubical 3–cells etc. Specifically, a 2–simplex will be given as an
oriented segment, with the source endpoint being negative, and the target endpoint
being positive. A 3–simplex will be given as a square oriented in a counterclockwise
fashion, whose boundary terms are C � �C as given by the boundary formula. The
orientations of those edges of the boundary corresponding to positive terms will be taken
to agree with the overall orientation, and those corresponding to negative terms will
be opposite the orientation of the square. Cancellation of a pair of identical simplices,
having opposite signs, will be denoted by identifying the corresponding points, edges,
or faces, of the appropriate simplices (simplex). The identifications will be made so
that the orientations on the identified faces (edges) agree.
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In the case where a boundary edge or face of a simplex is 0, this will be indicated
pictorially by collapsing the appropriate edge or face. Thus a 3–simplex with a
degenerate .0/ edge in its boundary will be represented by a triangular 2–cell. Figure 3
illustrates the effect of the boundary operator on some distinct individual 3–simplices,
and shows the use of the conventions mentioned above and the identifications (when they
exist). So a general 3–chain can be represented as a surface comprised of such squares
and triangles, identified along pairs of edges which represent the same 2–simplex but
which occur with opposite signs.

 

 

@.x1;x2;x3/D .x1;x3/� .x1;x2/� .x1 x2 ;x3/C .x1 x3 ;x2 x3 /

x3

x2

x1

x3

x1

x1

x2

x1 x2 D x3

x1x2

x2x3

� � C

�.x1;x2/

�.x1x2 ;x3/
.x1;x3/

.x1x3 ;x2x3 /

�.x1;x2/

.x1x3 ;x2x3 /

.x1;x3/

here x1x3 D x1 and x2x3 D x2

x1 x2

x3

x1

x3

x1

x2

x3

x1

x2

� � C

.x1;x2;x3/

@

�.x1x2 ;x3/

.x1;x3/

Figure 3: Boundaries of 3–simplices with identifications
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2.2 Structures on the chain (sub)groups

For the quandle chain complex we have some additional initial structures on the
component groups Cn.Q/, Zn.Q/, Bn.Q/, and Hn.Q/. Let F be a fixed surface of
genus g . Let G DMCG.F /. Again, take Q to be the Dehn quandle and let Z.G/ be
the integral group-ring of G . G acts by homeomorphism on F and on circles in F ,
and we define an action on n–tuples of circles representing n–simplices of Cn .

In keeping with the notation developed for individual Dehn twists, we write an ar-
bitrary homeomorphism on the right of whatever object it is acting upon. For a
homeomorphism ˛ 2G , and .x0;x1; : : : ;xn�1/ 2 Cn , define .x0;x1; : : : ;xn�1/˛ D

..x1/˛; .x2/˛; : : : ; .xn�1/˛/. We extend this action linearly to n–chains, and linearly
in Z.G/. Since the action is induced from homeomorphisms, it preserves cycles, bound-
aries and homology classes. Then the groups Cn.Q/;Zn.Q/;Bn.Q/, and Hn.Q/ are
(right) Z.G/–modules. Analogous statements can be made for the component groups
of the rack and degeneracy complexes.

Since any homeomorphism ˛ 2 G is a composition of Dehn twists, by repeated
use of quandle axiom (Q3) which governs the distributivity of Dehn twists over one
another, one can check that the Z.G/ action defined above actually commutes with
the boundary operator. Thus, we may think of elements of Z.G/ as giving chain maps
C�.Q/! C�.Q/, and also inducing maps on homology. In particular, single Dehn
twists viewed as elements of Z.G/ with coefficient 1 give isomorphisms on the chain
and homology levels. We will make further use of this interpretation when we look at
certain “stabilization” homomorphisms later.

2.3 Cycles and homology in dimension 1

Chains, cycles, and homology from C1.Q/ are relatively simple to describe, but suggest
aspects that may be useful in analyzing the higher dimensional cases. Some basic
topological distinctions do show up in the chain C1.Q/ and homology H1.Q/ modules,
reflecting transitivity properties of the action of G DMCG.F / on circles in F .

For the Dehn quandle of a general closed surface F of genus g , the chain group
C0.Q/ D 0. C1.Q/ is generated by isotopy classes of single (nontrivial) circles in
F . Thus for all a 2 C1; @aD 0, so all 1–chains are cycles, in particular the 1–chain
represented by a single isotopically nontrivial circle is a 1–cycle.

Theorem 2.1 Let F be a closed orientable surface of genus g . Let Ci � Ci.QIZ/
and Hi � Hi.QIZ/, the quandle chain and homology groups for the Dehn twist
quandle Q.
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(1) Any 1–chain of odd length represents a homology class in H1 . In particular
a single nontrivial 1–simplex (that is, a single isotopically nontrivial circle)
represents a 1–homology class.

(2) Any 1–chain with an unequal number of positive and negative terms represents a
homology class in H1 .

(3) The collection of nonseparating circles in F forms a cyclic Z.G/–submodule of
C1 and also of H1 , generated by a single nonseparating circle.

(4) For pairs of integers r; s with r C s D g , the collection of all separating circles
bounding subsurfaces of genera r and s in F forms a cyclic Z.G/–submodule
in both C1 and H1 , generated by a single such circle.

(5) There is a decomposition for chains:

C1.Q/DAnonsep˚
M

rCsDg

Asep.r; s/

of the modules C1.Q/ and a similar one for H1.Q/ corresponding to equivalence
classes of circles differing by homeomorphism, and to decomposition of the
surface into pairs of homeomorphically equivalent subsurfaces.

Proof We saw above that any 1–chain is a 1–cycle. Let c2 2 C2 be a 2–chain. We
may assume any simplex in c2 with coefficient n > 1 has been written as a sum of
n simplices with coefficient 1. So c2 D .a1; b1/˙ .a2; b2/˙ : : :˙ ..ar ; br /. For a
single 2–simplex, .ai ; bi/ assuming neither ai nor bi is isotopically trivial notice that
@.ai ; bi/ D ai � ai bi D 0 if and only if ai D ai bi , if and only if jai \ bi j D 0.
Otherwise @.ai ; bi/D ai � ai bi consists of a positive/negative pair of terms, since
neither ai nor ai bi can be 0. We proceed by induction on the length (number of
terms) of the 2–chain c2 . Assume for an arbitrary such 2–chain c2 of length � r , with
@c2 ¤ 0, that the boundary consists of k � 1 such positive/negative pairs of terms.
Since any cancellation involves cancelling one positive and one negative term, @c2 ¤ 0

must have an even number of terms. Suppose we adjoin a single new 2–simplex
to get c0

2
D c2 ˙ .anC1; bnC1/ with @c0

2
¤ 0. Again, any cancellations will occur

among positive/negative pairs, so by the inductive assumption we see @c0
2

must have
its remaining terms occurring in pairs. This proves (1) and (2). In particular, a single
nontrivial circle represents a 1–homology class.

For statements (3), (4), and (5), notice that G acts transitively on all non-separating
circles in F . Also for a given pair r; s 2 Z with r C s D g , G acts transitively on
separating circles which bound subsurfaces of genera r and s in F , and the action
preserves homology classes. The set of chains of non-separating circles (resp. chains
of separating circles separating appropriate genus subsurfaces) are each closed under
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the Z.G/ action. So single circles of these respective types generate disjoint cyclic
Z.G/–submodules, in both C1 and in H1 .

2.4 Cycles in dimensions � 2

In dimensions � 2, the geometric interpretations and the algebra of cycles become
more complex and more robust. Obviously, any boundary of an n–chain is an .n� 1/

cycle. Somewhat more surprisingly we have the following:

Observation 2.2 Any single n–simplex �n D .x1; : : : ;xn/ for which all the entries
(circles in F ) are mutually disjoint, is a cycle. @�n D 0 because for each entry
x2; : : : ;xn , a twist about such a circle disjoint from all the others has no effect on the
others, and so the terms arising in the second sum of the expression for the boundary
come with opposite signs, and cancel those in the first sum. This generalizes the
nD 1 case and the generalization will be placed on a more formal footing in the later
discussion of stabilization in Section 4.1. We will refer to such a simplex as a disjoint
simplex.

We will now examine certain types of 2–cycles which seem to have a lot of structure.
Specifically, we consider linear combinations of ordered pairs of the form

z D .x1;y1/˙ .x2;y2/˙ � � �˙ .xr ;yr /:

Here, a simplex with coefficient n ¤ ˙1 is written as a sum of n simplices with
coefficients ˙1. If all coefficients are positive, xi yi D xiC1 , for 1� i � r � 1, and
xr yr D x1 . Thus, the image of the first term in a pair, under the twist by the second
term in the pair, is the first term of the next pair, with this process applying cyclically to
the terms of the pairs in the linear combination. As described in Section 2.1, negative
coefficients correspond to left twists about the second entry of a 2–simplex.

So a cycle z D .x1;y1/C .x2;y2/C � � �C .xr ;yr / corresponds to a factorization of a
homeomorphism � 2 G , as a composition of right Dehn twists � D y1 y2 : : : yr ,
having the property that .x1/� D x1 .

Generally, such cycles correspond to factorizations of reducible homeomorphisms of
the surface F , and the circle x1 is a component of the 1–dimensional submanifold of
F which is fixed by � . x1 is a “test circle” and the intermediate xi ’s form an abstract
(discrete) geometric cycle, recording it’s images under successive Dehn twists yi , or
yi in the factorization of � . For an example, see Figure 4 below. Any factorization of

a homeomorphism � fixing a circle a yields a relation and a 2–cycle starting at a. In
particular, it is easy to check the following:

Algebraic & Geometric Topology, Volume 8 (2008)



30 Joel Zablow

Proposition 2.3 The relations (F0), (F2), and (F3) yield 2–cycles, where ja\ bj D 0

and jai \ cj D 1 for all i D 1; 2; 3, and jai \ aj j D 0, for all i; j :

(F0), a b b D a, .a; b/C .a b ; b/(1)

(F2), c a1 a2 c a1 a2 D c(2)

, .c; a1/C .c a1 ; a2/

C .c a1 a2 ; c/C .c a1 a2 c ; a1/C .c a1 a2 c a1 ; a2/

(F3), c a1 a2 a3 c a1 a2 a3 c a1 a2 a3 D c(3)

, .c; a1/C.c a1 ; a2/C.c a1 a2 ; a3/C.c a1 a2 a3 ; c/

C.c a1 a2 a3 c ; a1/C.c a1 a2 a3 c a1 ; a2/

C.c a1 a2 a3 c a1 a2 ; a3/C.c a1 a2 a3 c a1 a2 a3 ; c/

C.c a1 a2 a3 c a1 a2 a3 c ; a1/C.c a1 a2 a3 c a1 a2 a3 c a1 ; a2/

C.c a1 a2 a3 c a1 a2 a3 c a1 a2 ; a3/

Figure 5 shows an example of relation (F3) and shows the particular symmetry inherent
in it. Note that the intersection conditions for relations (F2) and (F3) require mutually
disjoint circles, ai . These can be disjoint copies of the same circle. As a consequence
of the discussion above, we also have:

Proposition 2.4 Any group relation in the mapping class group MCG.F /, given by a
series of Dehn twists, corresponds to a “universal” 2–cycle in Z2.Q/.

Proof Write such a relation as a product of Dehn twists about circles, set equal to
12MCG.F /. Since the relation is true in MCG.F /, the product fixes all circles. From
above, we may use any circle as the first entry of the first simplex. The first entries
of successive simplices are its images under the twists. In the sense that the resulting
2–cycle can be built for any initial circle, it is universal.

One can represent 2–cycles via generalized knot diagrams, generalized in the sense that
the diagrams may have strands they may not close up. Carter, Kamada and Saito [1]
have a more sophisticated approach which allows them also to represent cycles of
higher dimension using quandle colored knotted surfaces and regions. They show
that for knot diagrams corresponding to 2–cycles, the diagrams represent homologous
cycles iff the diagrams differ by colored variants of Reidemeister moves or appropriate
cobordisms of such diagrams. Figure 6 gives the general naı̈ve rubric under which this
correspondence holds. See [1] for a more complete treatment.
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x0

x1

x2

x3

x4

x5

.x0;x1/ .x0 x1 x0 x2 x3 x4 x5 ;x1/

x0 x1 ;x0/
.x0 x1 x0 x2 x3 x4 x5 ;x1/

.x0 x1 x0 ;x2/ .x0 x1 x0 x2 x3 ;x4/

.x0 x1 x0 x2 x3 ;x4/

D

D

x0

x1

x2 x3

x4

x5

The homeomorphism � D x1 x0 x2 x3 x4 x5 fixing x0 corresponds to the cycle

z D .x0;x1/C .x0 x1 ;x0/C .x0 x1 x0 ;x2/C .x0 x1 x0 x2 ;x3/

C.x0 x1 x0 x2 x3 ;x4/C .x0 x1 x0 x2 x3 x4 ;x5/

Figure 4: 2–cycle

Figure 7 shows the generalized knot diagram corresponding to the cycle of the relation
(F3). Moves corresponding to the initial steps of the derivation in the proof of Theorem
1.8 are shown. The derivation began with moves modeled on the simpler diagram and
moves associated to relation (F2) and Theorem 1.7.

It seems possible that these generalized diagrams might be realized as “virtual knot
diagrams” (see Kauffman [6]) and actually become closed diagrams when viewed as
diagrams on a surface of genus � 1, instead of projected on the plane or onto S2 .
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Cycle

c a1 a2 a3 c a1 a2 a3 c a1 a2 a3 D c

c

a1 a2 a3

c

a1 a2 a3

c

a1 a2 a3

a1 a2 a3

Symmetry

Figure 5: 2–cycle from relation (F3), and symmetry

This suggests the following:

Questions (1) Which quandle 2–cycle diagrams correspond to closed knot dia-
grams (that is, to diagrams that can be realized in R2 or S2 )?

(2) For those that cannot be realized by closed diagrams in R2 or S2 , what does
the minimal genus of the surface necessary to realize the diagram tell us about
the 2–cycle? Is it some kind of invariant?
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b a

a b b

a b

b a b

a a

a a a

cycle: .a; a/ (D 0)

For ja\ bj D 0

cycle: .a; b/C .b; a b /

since b a b D b and a b D a

a b

b a b

a b b a b

For jx1\x2j D 1

cycle: .x1;x2/C .x2;x1 x2 /

C.x1 x2 ;x2 x1 x2 /

x1 x2

x2 x1 x2

x1 x2 x2 x1 x2

x2 x1 x2 D x2 x2 x1 x2

D x2 x1 x2

D x1

x1 x2 x2 x1 x2 D x1 x2 x1

D x2

Figure 6: Cycles and knot diagrams

3 Cycles, homology and module structure in dimensions � 2

3.1 Transitivity properties

We now look at some further transitivity properties of the action of MCG.F / on
circles. These will be used in the next section. Lickorish in [8] gives the following
characterizations of the transitivity of MCG.F / on non-separating circles on the surface
F .
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c
a1

a2
a3

c a1 a2 a3 c a1 a2 a3 c a1 a2 a3

c
a1

a2

a3

c
a1

a2
a3

c
a1

a2
a3

Initial moves for diagrams in the proof of the relation
c a1 a2 a3 c a1 a2 a3 c a1 a2 a3 D c

Figure 7: Generalized diagram for relation (F3) and initial moves

Proposition 3.1 (Lickorish [8]) Suppose oriented, non-separating, simple closed
curves p and q are contained in the interior of a surface F . Then there exists a
homeomorphism h 2MCG.F /, such that .p/hD q .

Corollary 3.2 (Lickorish [8]) Let p1;p2; : : : ;pn be disjoint simple closed curves
in the interior of F , the union of which does not separate F . Let q1; q2; : : : ; qn be
another set of curves with the same properties. Then there is a homeomorphism h of F

that is in the group generated by twists, so that .pi/hD qi for each i D 1; 2; : : : ; n.

Building on this we look at transitivity of MCG.F / on certain other simple configura-
tions of circles in F .

Algebraic & Geometric Topology, Volume 8 (2008)



On relations and homology of the Dehn quandle 35

c

a1 a2
a3

c

a1 a2
a3

c

a1 a2
a3

(0)

li

ai Dmi

(1)

.c0/�

ai

(2)

.c0/�

ai

(3)

.c0/�

ai

li mi mi li li mi mi li

ai ai

Figure 8: Standard position for tuples .cI a1; : : : ; at / on surface. Genus 3
example is shown.

Proposition 3.3 Let c; a1; a2; : : : ; at be circles in the interior of the surface F of
genus g , with t � g , such that jc \ ai j D 1, for all i with 1 � i � t . Also assume
jai \ aj j D 0 and ai ¤ aj for all i ¤ j with 1 � i; j ;� t . Then MCG.F / acts
transitively on tuples .cI a1; : : : ; at /.

Proof For each surface of genus g , let the curves mi denote the standard meridians,
and li be the standard longitudes. For each t � g , fix a standard tuple .cI a1; : : : ; at /

where the ai are standard successive meridians (so ai Dmi ) and c , are as shown in
Figure 8 below, in the instance of a genus 3 surface. We will also say that an image of
a curve c0 is standard locally if it meets the ai ’s as c does, and the image is standard if
the picture globally looks like one of the diagrams in the first row below. Suppose we
have a tuple .c0I a0

1
; : : : ; a0t /� F . Corollary 3.2 gives us a homeomorphism � such

that for each t with 1� t � g , we have .a0i/� D ai . Since � is a homeomorphism, it
preserves intersections, so j.c0/�\ai jD1, for all iD1 : : : ; t . So a small neighborhood
of .c0/� \ ai looks like of one of the regions shown in Figure 8, diagrams (1), (2), or
(3). We have the following cases.

(1) As seen in diagram (1) of Figure 8, .c0/� is already standard with respect to ai .

(2) As seen in diagram (2) of Figure 8, applying the Dehn twists li mi mi li
fixes ai as a set, and yields the image of .c0/� shown below. These twists also
have no effect on any other aj .
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(3) As seen in diagram (3) of Figure 8, applying the Dehn twists li mi mi li
fixes ai as a set, and yields the image of .c0/� shown below. Again the twists
have no effect on other aj s.

We may then modify the remainder of the resulting image of .c0/� for the other aj

similarly, getting the image of c0 to locally be in standard position with respect to all
the ai . Then twists in the complement of fa1; : : : ; atg get the image of c0 to globally
coincide with c . Thus any tuple .c0I a0

1
; : : : ; a0t / may be mapped to the standard tuple

.cI a1; : : : ; at /, so the action of MCG.F / on such tuples is transitive.

3.2 Module decompositions for cycles and homology

In analogy to the situation which arose in the one dimensional cycle and homology
modules, the transitivity of the MCG.F / action on various configurations of circles
in F allows us to peel off cyclic submodules in the cycle and homology modules in
higher dimensions, corresponding to these configurations.

Theorem 3.4 (1) For each n 2 Z, there exists a cyclic Z.G/ submodule, Cn.0/ of
the cycle module Zn.Q/, which corresponds to a disjoint n–simplex .x1; : : : ;xn/,
where each xi is non-separating in F . It contains all other such disjoint n–cycles.

(2) The cycles of the types found in relations (F2) and (F3) yield submodules C2.2/

and C2.3/ respectively, of Z2.Q/. The submodules are cyclic, generated respectively
by tuples of the forms .cI a1; a2/ and .cI a1; a2; a3/, corresponding to the relations.
This yields a decomposition of the cycle module in dimension 2 as

Z2.Q/D C2.0/˚C2.1/˚C2.2/˚C2.3/˚M:

In the the notation for the cyclic summands Cj .k/, the index k is meant to recall the
number of circles ai which intersect the circle c once, in the given relation.

Proof (1) Following Observation 2.2, any such n–tuple represents a cycle in Zn.Q/.
By Lickorish’s Corollary 3.2 above, for all n2Z, GDMCG.F / acts transitively on n–
tuples of mutually disjoint non-separating circles, and thus they are all equivalent under
the Z.G/ action on Zn.Q/. So one such n–tuple generates a submodule containing
all others.

(2) In a similar fashion, Proposition 3.3 says that MCG.F / acts transitively on
the configurations of circles corresponding to the relations (F0), (F2), and (F3), and
thus such configurations are equivalent under the Z.G/ action as well. Any such
configuration generates a submodule containing the others of its type, under the action,
and the configurations of relations (F0), (F2), and (F3) are distinct, so the submodules
intersect trivially.
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Even though the relations of this type do not seem continue past (F3), it seems con-
ceivable that if there exist other relations associated to other configurations of circles,
on which MCG.F / acted transitively, they would continue to yield cyclic submodules
in the same fashion. From these considerations it seems reasonable to ask

Questions (3) Does Z2.Q/ decompose completely into a sum of cyclic submodules
each corresponding to a configuration of circles yielding a relation? For instance is
Z2.Q/ semisimple as a Z.G/ module?

(4) What do “relations” look like for dimensions > 2, and if they exist, do all the
Zn.Q/ decompose into cyclic submodules corresponding to such higher relations?

(5) Do there exist relations corresponding to more complicated configurations of
circles, (in the sense of higher intersection numbers occurring) on which MCG.F /
acts transitively?

Part (1) of Theorem 3.4 does suggest, with the ability to peel off cyclic summands corre-
sponding to the disjoint simplices, that to at least a limited degree, such a decomposition
may occur in the higher dimensions.

We now come to some results giving a characterization of a large class of 2–cycles
which represent homology classes in H

Q
2
.Q/. In [1], Carter, Kamada and Saito,

invoking a split short exact sequence

0! C D
n .X /

i
! C R

n .X /
j
! C Q

n .X /! 0

and the resulting long exact homology sequence

� � �
@�
!H D

n .X WG/
i�
!H R

n .X WG/
j�

!H Q
n .X WG/

@�
!H D

n�1.X WG/! � � � ;

from an earlier paper, prove the following two theorems:

Theorem 3.5 (Carter, Kamada and Saito [1]) Let X be a quandle. The boundary
homomorphism @�H

Q
3
.X /!H D

2
.X / in the long exact sequence of quandle homology

is trivial.

Theorem 3.6 (Carter, Kamada and Saito [1]) Let X be a quandle. The boundary
homomorphism @�H

Q
4
.X /!H D

3
.X / in the long exact sequence of quandle homology

is trivial.

We will use this to show the following:
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Theorem 3.7 Any quandle 2–cycle in Z2.Q/, or quandle 3–cycle in Z3.Q/ which
involves only positive or only negative terms represents a homology class in the quandle
homology H2.Q/ or H3.Q/ respectively.

As in Theorem 3.4, these yield cyclic submodules, now in homology. First we observe
this is true for rack homology in any dimension.

Proposition 3.8 Any rack n–cycle in ZR
n .Q/ which involves unequal numbers of

positive and negative simplices represents a homology class in the rack homology
H R

n .Q/.

Proof We state the proof for rack 2–cycles. An analogous argument holds in dimension
n . Thus, in the rack chain complex, since degenerate simplices are not declared to be
0, every 3–simplex .x1;x2;x3/ has boundary consisting of four nonzero terms. (In
dimension n, @.x1; : : : ;xn/ has 2n� 2 nonzero terms)

@.x1;x2;x3/D .x1;x3/� .x1;x2/� .x1 x2 x2 ;x3/C .x1 x3 ;x2 x3 /

These occur in positive/negative pairs as shown. Any cancellation occurring when the
boundary of a 2–chain is taken eliminates positive and negative simplices in pairs. Thus
it is not possible for the chain resulting from taking the boundary to have an unequal
number of positive and negative simplices. Hence all cycles of this type represent
elements in homology.

In particular, the cycles corresponding to the relations (F1), (F2), and (F3), when con-
sidered as rack 2–cycles give a decomposition of H R

2
.Q/ as a direct sum, analogous

to that described for the quandle cycle module in Theorem 3.4

Proof of Theorem 3.7 We prove the statement for dimension 2. The proof in dimen-
sion 3 is analogous. We take X to be the Dehn quandle Q of a specified surface F .
By the first theorem above, of Carter, Kamada, and Saito, @� D 0, and the tail of the
long exact homology sequence looks like

� � � �!H
Q
3
.X /

0
�!H D

2 .X /
i�
�!H R

2 .X /
j�

�!H
Q
2
.X /

@�
�!H D

1 .X / �! � � �

but H D
1
.X /D 0 since there do not exist any degenerate 1–chains. Thus H

Q
2
.X /Š

H R
2
.X /=H D

2
.X /.

Now any nontrivial quandle 2–cycle is also a rack 2–cycle. So taking z 2 Z
Q
2
.X /

with only positive or only negative terms, we can consider it as a rack 2–cycle in
ZR

2
.X /. But by Proposition 3.8 above, all elements of ZR

2
.Q/ with unequal numbers
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of positive and negative terms represent homology classes in H R
2

. Since in the short
exact sequence above, j W C R

2
.X /!C

Q
2
.X / yields C

Q
2
.X /ŠC R

2
.X /=C D

2
.X /, and

since C D
2
.X / consists only of chains of degenerate simplices, the image of a purely

non-degenerate rack-chain such as z under j is the same nondegenerate chain viewed
as a quandle-chain. Letting Œz� denote a homology class, on the level of homology,
j�W Œz�R 7! Œz�Q ¤ 0 2H

Q
2
.Z/, since Œz�R had no degenerate simplices to begin with.

Thus such a z as above represents a nonzero class Œz�Q 2H
Q
2
.X /. A similar argument,

invoking the second theorem of Carter, Kamada, and Saito mentioned above, gives the
result in dimension 3.

Together with the results from Theorem 2.1, this gives the following:

Corollary 3.9 Individual disjoint simplices in dimensions 1,2, and 3 represent homol-
ogy classes in those dimensions.

This will have further resonance with the “stabilization” results of the next section, in
the presence of which, the obvious conjecture will arise.

4 Further structure on the quandle chain complex

4.1 Stabilization, analogies and consequences

Recall from the remarks in Section 2.2 that the action on n–simplices given by

.x1; : : : ;xn/ a D .x1 a ; : : : ;xn a /

which underlay the Z.G/–module structure on the quandle chains and homology,
commutes with the boundary operator, and can be considered as a chain map on
C�.Q/. We now introduce another family of homomorphisms on C�.Q/ which are
“compatible” with this action by Dehn twists and homeomorphisms. For a given
element a 2 Q, define maps S 0n

a
W Cn.Q/! CnC1.Q/, on a single n–simplex, by

S 0n
a
.x1; : : : ;xn/D .x1; : : : ;xn; a/, and extend by linearity. Define Sa

n D .�1/nC1 S 0n
a .

For reasons that will become more apparent from the results below, the maps Sa
n will

be called stabilizations.

Proposition 4.1 The family of Sa
n ’s give a chain homotopy between the identity on

C�.Q/ and the maps a .
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Proof Consider an n–simplex .x1; : : : ;xn/ 2 Cn.Q/. Note that in the two portions
of the sum which comprise the boundary of a simplex, the last term of the first part
and the last term of the second part always have opposite signs. Then

@nC1Sa
n .x1; : : : ;xn/D @nC1.�1/nC1.x1; : : : ;xn; a/

D .�1/nC1
�
.x1;x3; : : : ;xn; a/� .x1;x2;x4 : : : ;xn; a/C � � �

˙ .x1;x2; : : : ;xn�1; a/�.x1;x2; : : : ;xn/

� .x1x2 ;x3; : : : ;xn; a/C .x1x3 ;x2x3 ;x4; : : : ;xn; a/� � � �

� .x1xn ;x2xn ; : : : ;xn�1xn ; a/

˙ .x1a ;x2a ; : : : ;xna /
�

while

Sa
n�1@n.x1; : : : ;xn/D Sa

n�1Œ.x1;x3; : : : ;xn/� .x1;x2;x4; : : : ;xn/C � � �

˙ .x1;x2; : : : ;xn�1/� .x1x2 ;x3; : : : ;xn/

C .x1x3 ;x2x3 ;x4; : : : ;xn/� � � �

˙ .x1xn ;x2 xn ; : : : ;xn�1 xn /�

D .�1/n
�
.x1;x3; : : : ;xn; a/� .x1;x2;x4 : : : ;xn; a/C � � �

˙ .x1;x2; : : : ;xn�1; a/� .x1x2 ;x3; : : : ;xn; a/

C .x1x3 ;x2x3 ;x4; : : : ;xn; a/� � � �

� .x1xn ;x2xn ; : : : ;xn�1xn ; a/
�

adding these expressions, only the underlined terms remain, so

@nC1Sa
n .x1; : : : ;xn/CSa

n�1@n.x1; : : : ;xn/D .x1; : : : ;xn/ Œ˙.Id�a /�:

Thus, in particular we have an initial interpretation for homology of certain chains; If
two n–cycles differ by a Dehn twist (or composition thereof) they are homologous.
Then, by Corollary 3.9, all disjoint 2–simplices made of non-separating circles represent
the same homology class in H2.Q/, and similarly for non-separating circles when
viewed individually as cycles in H1.Q/. This suggests that similar behavior should
occur among disjoint simplices in any dimension. We look now at some further evidence
in this direction, involving the maps Sa

� , for a given a 2Q.

Recall that “circle” means isotopy class of a circle.

Lemma 4.2 For a given surface F , and fixed circle a 2 F , let

Ta D fx 2Q jx ¤ a; and jx\ aj D 0g:
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(1) For each a 2 F , Ta is a sub-quandle of Q.

(2) For a given a2F , the collection of chains in C�.Q/ consisting of simplices each
of whose entries is disjoint and distinct from a, forms a sub-complex C a

� .Q/,
with respect to @.

The associated cycle, boundary, and homology groups are denoted Za
�.Q/; Ba

�.Q/,
and H a

� .Q/ respectively.

Proof (1) Fix a circle a 2 F . Since the quandle operation and axioms are inherited
from Q, we need to show Ta is closed with respect to the operation. Suppose b; c 2Ta ,
so jb\ajD 0 and jc\ajD 0. Suppose, for example, jb c \aj¤ 0. Then applying c ,
we’d have jb c c \ a c j ¤ 0, since the homeomorphism c preserves intersections.
But then by (Q2) and the fact that Dehn twists by non-intersecting circles have no
effect, we’d have jb\ aj ¤ 0. Contradiction. Now suppose there exists a composition
of Dehn twists about ci ’s in Ta (without loss of generality, assume they are right
twists) c1 : : : cn of minimal length, such that b c1 : : : cn D a. By assumption,
jcn\ aj D 0, so b c1 : : : cn�1 D a cn D a. But then we have decreased the length
of the supposedly minimal composition yielding a. Contradiction.

(2) The boundary operator involves only right Dehn twists. If the elements about
which we twist and the ones on which they act, entries in the simplices of C a

� .Q/, all
belong to Ta , part 1 above insures that all the entries in the simplices which are images
under @, will also lie in Ta , thus we have @nW C

a
n .Q/! C a

n�1
.Q/.

We can now show that Sa
n promotes n–cycles disjoint from a to .nC1/–cycles.

Proposition 4.3 For a given element a 2Q, and for all n� 0, the image Sa
n .Z

a
n.Q//

lies in ZnC1.Q/, and the map is injective.

Proof Recall that the quandle boundary operator has two pieces. The first piece looks
like the standard simplicial homology boundary operator, which successively eliminates
entries in the simplices and forms and alternating sum. The second piece brings in the
quandle action, applying later elements to earlier ones, and again forms an alternating
sum of the terms.

Acting on an n–cycle z lying in Za
n.Q/, Sa

n adjoins the element a in the .nC1/st
position of each term of z . Let .zI a/ denote the image, Sa

n .z/. There are three types
of terms in @nC1.zI a/.

(1) Terms of the form .@nzI a/ which come from the portions of the boundary
operator action which don’t involve the .nC1/st term, a.
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(2) Terms of the form .zI ya/ coming from the first part of the boundary operator
@nC1 affecting the .nC1/st element a.

(3) Terms of the form .z a /, coming from the second part of @nC1 applying a to
the previous terms.

Since all the entries in the terms of z lie in Ta and hence are disjoint and distinct from
a, terms of types 2 and 3 cancel one another, due to the sign offset between the pieces
of @nC1 , and the fact that in each term, a acts trivially on all the other entries. Also,
in all the terms, the entries prior to a lie in Ta , and by Lemma 4.2 above, Ta is closed
under the quandle operations. Thus the entries arising from the later entries acting on
the earlier ones, by the quandle operation, also lie in Ta . Since these were all entries
in the terms of z , an n–cycle, their signs were such that they would have cancelled
one another out as @n was applied. As it is, they still do, the only difference being
that each such term now has an a at the end of it. Nonetheless, due to the signs on the
original terms, complete cancellation still occurs. By the definition, Sa

� is injective,
since none of the entries occurring before a in any term in the image, are changed.

Gathering together these results and some from Section 3, we have the following:

Conjecture 4.4 (1) For all n, n–cycles involving only positive or only negative
terms are homology representatives in Hn.Q/.

(2) In particular, for n� 1, a single disjoint n–simplex represents a homology class
in Hn.Q/.

(3) For all n, If zn 2Hn.Q/ is a homology representative and the circle a is disjoint
from all simplices of zn , then the stabilization maps Sa

n , promote zn to an
.nC1/–homology representative.

By Theorem 3.7 and Proposition 4.3 above, statements (1), (2), and (3) hold for n� 3.
If statement (3) holds in general, these stabilization maps would behave somewhat
like suspension isomorphisms. The ability to continue to stabilize “disjointly” would
depend on the genus of F , the dimension of the initial chain, and the specific entries
in the simplices.

Remark 4.5 One may think of a braid as describing the continuous motion, over
time, of a set of n objects (points), which are not allowed to intersect, in some space.
If instead, we take the objects to be circles on the surface F , and the motion to be
discrete, mediated by successive applications of Dehn twists, we have the Dehn quandle
action. Pure braids are those sequences of twists of strands which return an ordered
set of points to its original configuration. Quandle 2–cycles consist of sequences of
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successive Dehn twists which return a circle (or collection of circles) to its original
position. So one may think of factorizations of a reducible homeomorphisms and the
circles they fix, on which the 2–cycles are based, as corresponding to pure braids.

The quandle 2–cycles of the types mentioned here, specifically those associated to the
relations (F0), (F2), and (F3), and the other examples shown, for example, in Figure
6, are all based on right hand Dehn twists. They would correspond to strictly positive
pure braids. The positivity of the twists will be given added significance in the next
section. It is not immediately clear how to interpret higher dimensional cycles in this
context; perhaps as pure braids in higher dimensional braid groups.

The analogy to braids is strengthened by the existence of the stabilization maps Sa
n .

In the chain complex C a
� , of the chains disjoint from a given circle a, the analogy is

almost exact. Braid stabilization adds a new un-entwined strand to the given braid.
In C a

� , we modify chains by adjoining a disjoint circle, which does not interact with
the others. Generally though, in applications of Sa

n , the element a is not necessarily
disjoint from the other elements involved.

5 A connection with Lefschetz fibrations of 4–manifolds

5.1 Background

We give here the definitions and rudiments of the theory of Lefschetz fibrations. From
Fuller [3] we have

Definition 5.1 A Lefschetz fibration on a smooth, compact, connected, oriented 4–
manifold X , over a smooth compact oriented 2–manifold B , is a map � W X ! B ,
such that at each critical point of B , there is an orientation-preserving chart on which
� W C2!C is given by �.w; z/D wz .

There are a finite number of critical values, say fb1; : : : ; bng 2B . Preimages of regular
values are fibers F , all diffeomorphic to a model surface †g of fixed genus g . g is said
to be the genus of the fibration. At the critical values, the singular fibers are immersed
surfaces with a single transverse self-intersection, here assumed to be relatively minimal,
that is, containing no imbedded sphere of self-intersection -1. In the discussions below,
we will consider Lefschetz fibrations with B D D2 , the 2–disk, and B D S2 . The
critical values all lie in the interior of B .

If we consider a disk D2 in B containing a single critical value bi , the the preimage
��1.bi/ is a singular fiber of the Lefschetz fibration. It may be thought of as a copy
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of the fibering surface F , in which a specified simple closed curve (circle) ci 2 F

has been shrunk to a point. Each singular fiber has its own such specified curve, (and
each may be distinct from the others), called the vanishing cycle of the fiber. As one
approaches the singular fiber through regular fibers, the circles corresponding to the
vanishing cycle may be thought of as shrinking to a point.

The Lefschetz fibration � W X ! B can be thought of as being constructed by forming
B �†g and then attaching 2–handles along the curves corresponding to the vanishing
cycles of the singular fibers, with appropriate framing. Following Fuller [3] or Gompf
and Stipsicz [4], the topology around a singular fiber may be described as follows. Over
a small disk neighborhood D2

i of the critical value bi , we have a †g bundle, with a
single singular fiber Fi , and a nonsingular surface bundle over the circle S1 D @D2

i .
This may be thought of as a mapping torus, where the bundle †g � I is glued via the
homeomorphism of †g determined by a right handed Dehn twist ci about the circle
ci representing the vanishing cycle of the singular fiber Fi . Thus for each singular
fiber Fi associated to the critical value bi we have the restriction

��1
j@D2

i
D

†g � I

.p; 0/� ..p/ ci 1/
p 2†g:

This prescription of the glueing for the surface bundle over S1D@D2
i is the monodromy

of the singular fiber, basically giving a homomorphism �1.B �fbig/!MCG.†g/.

If a Lefschetz fibration � W X!B has more than one singular fiber, it may be described
as an appropriate gluing up of the fibered neighborhoods arising about the individual
singular fibers, each with its specified vanishing cycle and associated local monodromy.
If b1; : : : ; bn 2B are the critical values, consider small mutually disjoint disks Di �B

about the bi ’s. Each has a Lefschetz fibration with exactly one singular fiber, and the
associated vanishing cycle and monodromy about its boundary circle. If b0 2 B is
a regular value, we may take the critical values bi to be arranged in a circle about
b0 , with the indices i appearing in order as we traverse this circle counterclockwise.
Let i be a collection of mutually disjoint arcs in B , joining the regular value b0

to each bi . Assuming a fixed identification of the the regular fiber F0 D �
�1.b0/,

with the model surface †g , the trivial bundles above the i allow transport of this
identification to regular fibers near each singular fiber. A regular neighborhood of
the entire ensemble consisting of the regular point, b0 , the arcs i , the disks Di

(each containing its critical value bi ), is then a disk D containing all the critical
values. @D deformation retracts to the product, in order, of the counterclockwise
oriented loops which go around the critical points bi , based at b0 . This then describes
the global monodromy of the Lefschetz fibration, the image of the homomorphism
�1.D� fb1; : : : ; bng/!MCG.†g/. Traversing the boundary circle @D once in the
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counterclockwise direction then corresponds to the element of MCG.F / given by the
product (in order) of the individual Dehn twists around the vanishing cycles for the
singular fibers,  D c1 � c2 � � � cn . Thus the surface bundle over the boundary
circle @D may be described by

†g � I

.p; 0/� ..p/ ; 1/
p 2†g;

and the space X can be described as

.†g �B/[

n[
iD1

.2–handles/:

The ordered list of vanishing cycles, twists about which give the global monodromy of
a Lefschetz fibration, almost determines the fibration, but not quite. Such list may be
permuted cyclically and still yield the same fibration. Also the choice of homeomor-
phism identifying the model surface †g with a typical regular fiber F may be changed.
This has the effect of conjugating each of the Dehn twists in the list corresponding to
the monodromy, by a fixed element of MCG.F /. Another possible modification of
the initial data, which still yields the same fibration is given by applying elementary
transformations. These have the effect of modifying the arcs i from the basepoint
b0 to each of the critical values bi , where i D 1 : : : n. This modification is essentially
sliding the b0 endpoint of one such arc up along another adjacent one, and back down
the other side, to the basepoint. If the n–tuple corresponding to the global monodromy
is initially given by the n–tuple of vanishing cycles Œc1; : : : ci ; ciC1; : : : ; cn�, perform-
ing such an elementary transformation yields the new n–tuple of vanishing cycles
Œc1; : : : ; ciC1; ci ciC1 ; : : : ; cn�. So the monodromy about individual singular fibers
is changed, but the global monodromy in unaltered. Two Lefschetz fibrations are
isomorphic iff the monodromy n–tuple of one can be obtained from the n–tuple of the
other by a sequence of elementary transformations (and their inverses) and conjugation
of all Dehn twists by a fixed element of MCG.†g/. See [4].

Citing theorems of Gompf and Donaldson, Fuller [3] and Gompf–Stipsicz [4] state
the requirement that the monodromy homeomorphisms be given by products of right
handed Dehn twists yields further structure on the Lefschetz fibered space X , for genus
g � 2; it carries a symplectic structure, as well.

5.2 Dehn quandle cycles, homology and Lefschetz fibrations

Having given some basics relevant to Lefschetz fibrations, we now consider some initial
connections to Dehn quandle chains and homology. Note that the requirement that
the monodromy of a Lefschetz fibration be given by a product of purely right handed

Algebraic & Geometric Topology, Volume 8 (2008)



46 Joel Zablow

Dehn twists is in keeping with the the use of such twists in the description of the Dehn
quandle boundary operator.

Following Fuller in [3], the topology of a neighborhood of an individual singular fiber
of a Lefschetz fibration is completely determined by the associated vanishing cycle
for the singular fiber. In particular the fiber neighborhoods determined by any two
non-separating vanishing cycles are diffeomorphic, due to the transitivity of the action
of MCG.F / on such non-separating curves; similarly also, for separating curves which
separate †g in to pairs of sub-surfaces of the same genera. Thus:

Observation 5.2 For a specified surface †g with specified vanishing cycles, there
is an exact correspondence between the diffeomorphism types of neighborhoods of
singular fibers and the cyclic submodules in the decomposition of H1.Q/, as described
in Theorem 2.1 above.

We now come to the main result of this section. We show a correspondence between
isomorphism classes of Lefschetz fibrations of genus g with specified monodromy,
and homology classes in H2.Q/ where Q is the Dehn quandle of the surface †g . Let
Œc1; : : : ; cn� denote the ordered sequence of circles, such that the product c1 � � � cn

represents the global monodromy of a genus g Lefschetz fibration, � W X!B . Choose
a “test” circle x2†g (whose successive images under the twists of the homeomorphism
are the first terms in successive simplices of the chain). Consider the map to quandle
2–chains fmonodromy homeomorphismsg ! C2.Q/, given by

fx W Œc1; : : : ; cn� 7! .x; c1/C .x c1 ; c2/C � � �C .x c1 � � � cn�1 ; cn/:

Here, the image of the the first entry in a given simplex, under right Dehn twisting
by the second entry, gives the first entry in the next simplex. Choice of a test circle
“anchors” the chain (cycle). We then have the following:

Theorem 5.3 Let †g be a fixed oriented surface of genus g , with circle a�†g , and
consider genus g Lefschetz fibrations over the disk, � W X !D2 .

(1) Suppose we have two monodromy n–tuples corresponding to a reducible homeo-
morphism  , with .a/ D a. If these n–tuples represent isomorphic Lefschetz
fibrations with fiber F Š†g , their images under corresponding maps fa are ho-
mologous 2–cycles in Z2.Q/, and represent the same homology class (generator)
in H2.Q/.

(2) For a specified Lefschetz fibration monodromy n–tuple, and elements a as in 1,
there is a 1–1 correspondence between the images under fa and incompressible
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tori in the mapping torus

@X D
†g � I

.p; 0/� ..p/ ; 1/
p 2†g

Proof (1) Let Œc1; : : : ; cn� be an ordered n–tuple of circles on †g representing the
global monodromy of a Lefschetz fibration over D2 . From Gompf and Stipsicz [4],
cyclic permutations of such an n–tuple can be realized, up to conjugation by elementary
transformations. Also by earlier remarks, any pair of monodromies representing
isomorphic Lefschetz fibrations differ by elementary transformations and conjugation
by elements of MCG.†g/. So we need to show that if two such n–tuples differ by
elementary transformations and conjugation, then the corresponding images under
appropriate maps, fa , are homologous cycles in Z2.Q/. We consider conjugation
first.

Recall that by abuse of notation, each element ci in a monodromy n–tuple really rep-
resents a Dehn twist ci in the given factorization of the monodromy homeomorphism
 . For simplicity, we will initially assume that the conjugating homeomorphism is a
single Dehn twist, for example, d and derive the result in this case. Recall for a circle
ci that by axiom (Q3), we have ci d D d ci d , conjugation by d .

Thus if we initially have

fa . Œc1; : : : ; cn� /D .a; c1/C .a c1 ; c2/C � � �C .a c1 � � � cn�1 ; cn/;

then after conjugation by d we have the corresponding expression

f
a d

�
Œc1 d ; : : : ; cn d �

�
D
�
a d ; c1 d

�
C .a d c1 d ; c2 d /

C .a d c1 d c2 d ; c3 d /C � � �C .a d c1 d c2 d : : : cn�1 d ; cn d /;

where a d records the effect of the conjugating homeomorphism d on the “test circle”
a. Now expanding the double brackets into conjugations, cancelling the adjacent d s
and d s, and applying the definition of the action by homeomorphisms on chains given
in Section 2.2, we get

f
a d

�
Œc1 d ; : : : ; cn d �

�
D .a d ; c1 d /C .a c1 d ; c2 d /C .a c1 c2 d ; c3 d /

C � � �C .a c1 c2 : : : cn�1 d ; cn d /

D .a; c1/ d C .a c1 ; c2/ d C .a c1 c2 ; c3/ d

C � � �C .a c1 c2 : : : cn�1 ; cn/ d

D
�
fa . Œc1; : : : ; cn� /

�
d :
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By the proof of Proposition 4.1 and the paragraph that follows it, cycles that differ by a
Dehn twist are homologous. So the cycles corresponding under the appropriate maps to
the original and conjugated monodromy n–tuples, Œc1; : : : ; cn� and Œc1 d ; : : : ; cn d �,
are homologous. If we now replace the single Dehn twist d by a homeomorphism
� which is a product of Dehn twists, a similar argument goes through. So conjugate
monodromy n–tuples yield homologous cycles.

We now look at the effect that applying an elementary transformation to a monodomy
n–tuple has, on the corresponding quandle 2–cycles. From the description at the end
of Section 5.1, taken from Fuller [3] or Gompf and Stipsicz [4], for a monodromy
n–tuple having b and d as the i th and .iC1/st entries respectively, the elementary
transformation corresponding to sliding the .iC1/st arc, iC1 , over the i th arc, i ,
(see Section 5.1), has the following effect:

Œ: : : ; b; d; : : :� 7�! Œ: : : ; d; b d ; : : :�:

Recall for the map fx , the “test” circle x becomes the first term of the first simplex in
the image of a monodromy n–tuple. In the case at hand, this entry does not come into
play, so the subscript x will be suppressed, and the map will be written as f . Below,
a is just an arbitrary circle occurring in the n–tuple.

Let

�1 D f . Œ: : : ; b; d; : : :� /D : : :C .a; b/C .c; d/C : : : where a b D c

and
�2 D f . Œ: : : ; d; b d ; : : :� /D � � �C .a; d/C .a d ; b d /C � � �

be the image 2–chains of the monodromy n–tuples. Since the elementary transformation
only affects the i th and .iC1/st terms, all terms in �1 except the pair shown are
identical to terms in �2 , except for the pair shown. So forming the difference, we are
left with

�2��1 D .a; d/� .a; b/� .a b ; d/C .a d ; b d /

Now recall from the definition of the boundary operator on a 3–simplex, that

@.a; b; d/D .a; d/� .a; b/� .a b ; d/C .a d ; b d /;

so �2 ��1 D @.a; b; d/. So positive cycles, corresponding to monodromy n–tuples
which differ by an elementary transformation, are homologous. Thus statement (1)
of the theorem is established. Visually, the effect of an elementary transformation
can be realized by glueing in the appropriate square corresponding to the appropriate
3–simplex, with the notation and conventions described in Section 2.1.
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(2) We now address statement (2). If Œc1; : : : ; cn� corresponding to a homeomorphism
 , is a monodromy n–tuple, let F denote a regular fiber of the Lefschetz fibration
over D2 , so F Š†g . The restriction of the fibration � W X !D2 over the boundary
S1 D @D2 , is the mapping torus S1 � F . If the circle a � F is fixed by  , then
S1 � a is a torus in S1 � F . The pair .Œc1; : : : ; cn�; a/ uniquely determines such a
torus in @X , and also clearly uniquely specifies the cycle � under fa . Conversely,
given such a 2–cycle �, there is a unique way to order the simplices so that for all
the simplices, the image of the first entry of a given simplex, under he Dehn twist
specified by the second entry, is the first entry of the next simplex. The ordered list
of second entries is the monodromy n–tuple, and the first entry in the first simplex
is a. This then corresponds to a torus “anchored” at a. We now show such a torus
is incompressible in @X . To do this, we shall make use of a well known result on
incompressible surfaces in 3–manifolds. It appears in Hempel [5, Lemma 6.5] and
Jaco [6, Lemma III.9]. Using this lemma, the fiber F , is the inverse image of a regular
point ? 2 S1 , and is incompressible in S1� F . We have the description given above
in Section 5.1 of the boundary of Lefschetz fibered 4–manifold X , as

†g � I

.p; 0/� ..p/ ; 1/
;

and the space X can be described as

.†g �B/

n[
iD1

.2–handles/;

where the 2–handles are attached along the vanishing cycles ci of the singular fibers.
Thus we have

�1.X /D
�1.F �D2/

hc1; : : : ; cni
D

�1.F /

hc1; : : : ; cni
;

where hc1; : : : ; cni is the subgroup generated by the classes of the ci ’s in F .

Suppose the torus S1 � a was compressible in @X . It would then be compressible in
X , so there would exist an essential loop � � S1 � a which bounded an imbedded
disk in X . So � 2 hc1; : : : ; cni. But then, some product of the loops c1; : : : ; cn in F

is a loop bounding an imbedded disk. This contradicts the incompressibility of F in
X . So the torus S1 � a is incompressible in @X . This proves statement (2).

Remarks (1) Naı̈vely, the 2–homology classes just described provide obstructions
to a fibration being a trivial fiber bundle over the base. The 0 homology class
in H2.Q/ corresponds to a fiber bundle with monodromy D 1 2 MCG.F /,
having no singular fibers. Singular fibers, with nontrivial monodromy, clearly
correspond to nonzero 2–cycles.
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(2) Consider Lefschetz fibrations over the disk D2 , with monodromy given by a
relation in MCG.F /, that is, where we may write  D c1 � c2 � � � cn D

1MCG.F / . Then since the monodromy is the identity on @D2 , we may glue on
a second disk along @D2 , and extend the Lefschetz fibration to a Lefschetz
fibration over S2 . Following Proposition 2.4, for the 2–cycles associated to
a fibration with such monodromy, any circle a�†g is fixed by  , and could
be used as the initial circle of such a 2–cycle. So Lefschetz fibrations over S2

correspond to these “universal” 2–cycles.

(3) The families of relations of section 1, and their associated cycles from Section
2.4, (they are all purely positive Dehn twists) provide examples of possible
monodromy homeomorphisms for Lefschetz fibrations over D2 , for instance
with fibers F of genus 2 or 3. The resulting Lefschetz fibered manifolds have
symplectic structures, and their boundaries exhibit the incompressible tori asso-
ciated to the fixed circles, as specified in Theorem 5.3.

We end with the following:

Question 5.4 According to Theorem 5.3, isomorphic Lefschetz fibrations over D2

correspond, for example, to homologous 2–cycles. Do the 3–chains bounded by
pairs of such 2–cycles correspond to cobordisms between the fibrations, or to higher
dimensional analogs of Lefschetz fibrations? If so, what is the correspondence, and
can it be meaningfully generalized and interpreted with respect to higher dimensional
cycles and boundaries?

Acknowledgments I would like to thank Profs. Carter, Przytycki, and Saito for
interesting and useful conversations, and Prof. Przytycki for suggesting the .�1/nC1

factor in the definition of Sa
n .

References
[1] J S Carter, S Kamada, M Saito, Geometric interpretations of quandle homology

arXiv:math.GT/0006115

[2] R Fenn, C Rourke, Racks and links in codimension two, J. Knot Theory Ramifications
1 (1992) 343–406 MR1194995

[3] T Fuller, Lefschetz fibrations of 4–dimensional manifolds, Cubo Mat. Educ. 5 (2003)
275–294 MR2065735

[4] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathe-
matics 20, American Mathematical Society, Providence, RI (1999) MR1707327

Algebraic & Geometric Topology, Volume 8 (2008)

http://arxiv.org/abs/math.GT/0006115
http://dx.doi.org/10.1142/S0218216592000203
http://www.ams.org/mathscinet-getitem?mr=1194995
http://www.ams.org/mathscinet-getitem?mr=2065735
http://www.ams.org/mathscinet-getitem?mr=1707327


On relations and homology of the Dehn quandle 51

[5] J Hempel, 3–manifolds, AMS Chelsea Publishing, Providence, RI (2004) MR2098385

[6] W Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in
Mathematics 43, American Mathematical Society, Providence, R.I. (1980) MR565450

[7] L H Kauffman, Knots and physics, second edition, World Scientific Publishing Co.,
River Edge, NJ (1993) MR1306280

[8] W B R Lickorish, An Introduction to Knot Theory, Graduate Texts in Mathematics 175,
Springer, New York (1997) MR1472978

[9] J Zablow, Loops and disks in surfaces and handlebodies, J. Knot Theory Ramifications
12 (2003) 203–223 MR1967241

Department of Mathematics, Rochester Institute of Technology
85 Lomb Memorial Drive, Rochester NY 14623, USA

dquandle@netscape.net

Received: 4 October 2007

Algebraic & Geometric Topology, Volume 8 (2008)

http://www.ams.org/mathscinet-getitem?mr=2098385
http://www.ams.org/mathscinet-getitem?mr=565450
http://www.ams.org/mathscinet-getitem?mr=1306280
http://www.ams.org/mathscinet-getitem?mr=1472978
http://dx.doi.org/10.1142/S0218216503002391
http://www.ams.org/mathscinet-getitem?mr=1967241
mailto:dquandle@netscape.net

	1. Relations
	1.1. Introduction and definitions
	1.2. Some relations

	2. Homology of the Dehn quandle and rack
	2.1. Definitions and conventions
	2.2. Structures on the chain (sub)groups
	2.3. Cycles and homology in dimension 1
	2.4. Cycles in dimensions 2

	3. Cycles, homology and module structure in dimensions 2
	3.1. Transitivity properties
	3.2. Module decompositions for cycles and homology

	4. Further structure on the quandle chain complex
	4.1. Stabilization, analogies and consequences

	5. A connection with Lefschetz fibrations of 4--manifolds
	5.1. Background
	5.2. Dehn quandle cycles, homology and Lefschetz fibrations

	References

