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Loop structures in Taylor towers

GREGORY Z ARONE

WILLIAM G DWYER

KATHRYN LESH

We study spaces of natural transformations between homogeneous functors in Good-
willie’s calculus of homotopy functors and in Weiss’s orthogonal calculus. We give
a description of such spaces of natural transformations in terms of the homotopy
fixed point construction. Our main application uses this description in combination
with the Segal Conjecture to obtain a delooping theorem for connecting maps in the
Goodwillie tower of the identity and in the Weiss tower of BU.V / . The interest in
such deloopings stems from conjectures made by the first and the third author [4] that
these towers provide a source of contracting homotopies for certain projective chain
complexes of spectra.

55P65; 55P47, 18G55

1 Introduction and notation

In this paper, we study homogeneous functors in the sense of Weiss’s orthogonal
calculus [13]. More precisely, we calculate the space of natural transformations between
such functors, and we give a few examples and applications. Our main application is a
delooping theorem for connecting maps in the Goodwillie tower of the identity functor
for pointed spaces and in the Weiss tower of the functor V 7!BU.V /. The motivation
for this delooping theorem will be discussed later in this introduction.

To state our results, we summarize the usual notation for this context. Let F be a
functor from pointed spaces or from finite-dimensional real or complex vector spaces
to pointed spaces or spectra. Goodwillie and Weiss calculus assign to such a functor F

a “Taylor” tower of functors

� � � ! Pn F ! Pn�1 F ! � � � ;

together with a natural map from F to the homotopy inverse limit of the tower that is
often a weak homotopy equivalence. The homotopy fiber of the map Pn F ! Pn�1 F

is customarily denoted Dn F and is referred to as “the nth homogeneous layer of F ,”
while Pn F is referred to as “the nth Taylor polynomial of F .” Depending on whether
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the source category is pointed spaces (Goodwillie calculus, or “homotopy calculus”) or
finite-dimensional complex vector spaces (Weiss calculus, or “orthogonal calculus”),
the nth homogeneous layer is naturally equivalent to a functor of one of the following
forms:

X 7!�1
�
C ^†1X^n

�
zh†n

V 7!�1
�
C ^†1SnV

�
zhU.n/

Here nV is the vector space Cn˝V , the space SnV is the one-point compactification
of nV , and C is a spectrum with an action of the symmetric group †n or of the unitary
group U.n/, as appropriate. One calls C the “nth derivative” of the functor F .

Let F be a reduced functor in the context of either the homotopy calculus or the
orthogonal calculus. The fibration sequence DnC1 F ! PnC1 F ! Pn F is induced
from a natural transformation Pn F ! B DnC1 F , and we call the composite

Dn F ! Pn F ! B DnC1 F

the “nth connecting map” or the “nth structure map” in the Taylor tower. (If F is not
reduced, the connecting map can still be defined as the connecting map of the reduction
of F .)

In this paper, we prove delooping results for certain connecting maps by studying spaces
of homotopy natural transformations between homogeneous functors. To prepare the
foundation for our calculations, we give a careful construction of a space hoNat.F;G/
of homotopy natural transformations from a functor F to a functor G . The set of path
components of hoNat.F;G/ can be identified with the set of morphisms from F to
G in the homotopy category of functors. It is constructed as a derived functor of the
ordinary space of natural transformations, Nat.F;G/, using standard techniques of
Quillen model categories. This work is carried out in Section 2 and consists largely of
formalizing ideas implicitly used in the work of Weiss [13].

The starting point for most of our delooping results is Theorem 3.2 below. Let J be
the category of finite-dimensional complex vector spaces with inner product and inner-
product preserving linear maps. The theorem describes natural transformations between
homogeneous functors on J in terms of mapping spaces involving the representing
spectra C and D together with actions of their respective unitary groups. It is a
typical calculation of its kind, very much like calculations done by Goodwillie from
the inception of the calculus of functors; indeed, the result is more or less implicit in
the work of Weiss [13]. However, we have tried to give the proof in more detail than
has perhaps been done in the literature so far.
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Theorem 3.2 Let C and D be spectra with actions of U.n/ and U.k/, respectively.
Then

hoNatJ
��

C^†1SnV
�
zhU.n/

;
�
D^†1SkV

�
zhU.k/

�
'Map

�
C; .D^morJ .Cn;Ck/C/zhU.k/

�zhU.n/

Our main interest lies in examples. Our two main results (Theorems 6.1 and 7.1
below) involve finite deloopings, but we begin with the following theorem on infinite
deloopings. This result is certainly known to Goodwillie, but we record it here with
our foundational constructions as its basis.

Theorem 4.2 Let F be a space-valued functor, to which either Goodwillie calculus or
Weiss calculus applies. Suppose that there exists an n such that the Taylor tower of F

has nontrivial layers only in degrees n� i < 2n. Then F takes values in the category
of infinite loop spaces.

In the case of the Goodwillie tower of the identity, Theorem 4.2 can be thought of
as analogous to the fact if �nG is the nth term in the lower central series of G then
�nG=�2nG is an abelian group. The analogy comes because one can think of the
Goodwillie tower of the identity as a homotopy analogue of the lower central series.

The main theorems of this paper are Theorems 6.1 and 7.1. The first is a delooping
result for the structure maps in the Taylor tower of the identity functor, and the second
is a similar result for the functor V 7! BU.V / of finite-dimensional complex vector
spaces.

To set the stage for Theorems 6.1 and 7.1, consider the identity functor on pointed
spaces, or more precisely, the p–localization of this identity functor for a prime p .
For the moment, let Pn.X / and Dn.X / denote the nth Taylor polynomial and the nth
homogeneous layer of this functor. It is known from work of Arone and Mahowald [5]
that if X is an odd-dimensional sphere then Dn.X / ' � unless n D pk for some
k . (In the case p D 2, the assumption that X is odd-dimensional may be dropped.)
Let DIk.X / denote the pk th layer of the p–localized Taylor tower of the identity. It
follows that when X is an odd-dimensional sphere (any sphere, if p D 2), there is a
map in the homotopy category of spaces

(1–1) �k W DIk.X /! Ppk .X /
'
 � PpkC1�1.X /! B DIkC1.X /:

Algebraic & Geometric Topology, Volume 8 (2008)



176 Gregory Z Arone, William G Dwyer and Kathryn Lesh

Note that the map �k is well-defined only when X is a sphere (odd-dimensional,
if p is odd).1 In particular, �k is not a natural transformation of functors on the
category of pointed spaces. To overcome this difficulty, we modify our point of view
as follows: instead of thinking of spheres as the values of the identity functor from
Top� to Top� , we think of them as the values of the one-point compactification functor
from vector spaces to Top� . More precisely, let X be the functor from complex vector
spaces (resp. real vector spaces if p D 2) defined by X .V / D .S1 ^ SV /.p/ (resp.
X .V /D .SV /.2/ if pD 2), where the subscript .p/ denotes localization at p . General
calculus considerations show that the Weiss tower of X , evaluated at V , is the same as
the Goodwillie tower of the identity, evaluated at X .V /. Thus the chain of maps (1–1)
may be reinterpreted as a chain of natural transformations of functors of vector spaces

(1–2) Dpk X .V /! Ppk X .V /
'
 � PpkC1�1X .V /! B DpkC1 X .V /:

Now the middle map is a weak equivalence for all objects V in the domain category
of X . Thus the middle map is a weak equivalence of functors, and the composed map
of (1–2) may be considered as a map in the homotopy category of functors. In other
words it is, essentially, a natural transformation between homogeneous functors, and so
it can be studied using Theorem 3.2. The following theorem implies that not only can
this natural transformation be delooped, but in fact any natural transformation between
these two functors can be delooped.

Theorem 6.1 Let X be the functor from finite-dimensional vector spaces over C
(over R if p D 2) given by X .V /D .S1^SV /.p/ (resp. X .V /D .SV /.2/ if p D 2).
Then the k –fold looping map

�k
W hoNat.Bk Dpk X ;BkC1 DpkC1 X /! hoNat.Dpk X ;B DpkC1 X /

is surjective on �0 .

The main ingredient in the proof is Theorem 6.3, which depends in an essential way
on the Segal Conjecture.

There is a similar connecting map between the layers of the Weiss tower of the functor
V 7! BU.V /, or more precisely, the p–completion of this functor. In this case, the
connecting map can be thought of as a natural transformation without preliminary
fiddling. We have the following companion theorem to Theorem 6.1, without the need
for a separate case for p D 2.

1When X is not an appropriate sphere, the map Ppk .X / PpkC1�1.X / in the middle of �k is not
a weak equivalence.
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Theorem 7.1 Let k > 0. Let DUk.V / be the pk th layer of the p–completed Weiss
tower of the functor V 7! BU.V / from complex vector spaces to spaces. Then the
.k�1/–fold looping map

�k�1
W hoNat.Bk�1 DUk ;B

k DUkC1/! hoNat.DUk ;B DUkC1/

is surjective on �0 .

As an immediate consequence of the theorems above, we obtain the deloopings for the
specific Taylor towers that we actually wanted, as follows.

Corollary 6.2 Let p be a prime and let nDpk . Let X be an odd-dimensional sphere
(or any sphere, if pD 2). Let DIk.X / be the pk th layer of the p–localized Goodwillie
tower of the identity evaluated at X . Then the connecting map

�k W DIk.X /! B DIkC1.X /

admits a k –fold delooping in the homotopy category of spaces.

Corollary 7.2 Let p be a prime and let nD pk for k > 0. Let DUk.V / be the pk th
layer of the p–completed Weiss tower of BU.�/ evaluated at a finite-dimensional
complex vector space V . Then the connecting map

�k W DUk.V /! B DUkC1.V /

admits a .k�1/–fold delooping in the homotopy category of functors.

Remark 1.1 Theorem 7.1 and Corollary 7.2 require p–completion for technical
reasons. The difference between these two statements and those of Theorem 6.1 and
Corollary 6.2 is mostly illusory, since the layers of degree > 1 in both of the towers in
question have finite homotopy groups, and so for these layers p–completion is the same
as p–localization. The Goodwillie tower for the odd sphere is rationally nontrivial in
degree 1, while the Weiss tower for BU.–/ is rationally nontrivial in degrees 0 and 1.

Before we say something about the proofs, we discuss the motivation for Corollaries 6.2
and 7.2. It has been believed since the writing of Arone and Mahowald [5] that there
is a connection between the Goodwillie tower of the identity, evaluated at S1 , and
the filtration of the Eilenberg-Mac Lane spectrum H Z by the symmetric powers of
sphere spectrum. This hypothetical picture was extended in Arone and Lesh [4], where
the authors constructed a filtration of the connective K–theory spectrum bu that is
analogous to the symmetric power filtration and conjectured that there is a relationship
between this new filtration and the Weiss tower of BU.�/.
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We explain the conjectured relationship in more detail. As before, let DIk be the pk th
layer of the p–localized Goodwillie tower of the identity evaluated at S1 , and let DUk

be the pk th layer of the p–completed Weiss tower of BU.�/ evaluated at C . Let �k

be the k th connecting map in either of these towers, as in Corollaries 6.2 and 7.2. Let

fk W Bk�1 DIk �! Bk DIkC1

be a .k�1/–fold delooping of �k in the homotopy case,2 and let

gk W Bk�1 DUk �! Bk DUkC1

be a .k�1/–delooping in the unitary case. The existence of such deloopings is guar-
anteed by Corollaries 6.2 and 7.2. (In fact, in the homotopy case we are using one
delooping less than is provided by the theorem.) One can use the maps fk and gk to
construct the following two diagrams:

Z ��!�DI0

f0
��! DI1

f1
��! B DI2

f2
��! � � �

fk�1
���! Bk�1 DIk ! � � �

in the homotopy case, and

Z ��! Z�BU ��!�DU0

g0
��! DU1

g1
��! B DU2

g2
��! � � �

gk�1
���! Bk�1 DUk ! � � �

in the unitary case. The existence of these diagrams is explained in detail in [4,
Section 12] – see especially Diagram 12.4. It is important to note that all the spaces in
the above diagrams are infinite loop spaces, but the maps fk , gk between them are not
infinite loop maps. On the other hand, as is also discussed in detail in [4, Section 12],
there exist infinite loop maps

˛k W Bk DIkC1 �! Bk�1 DIk and ˇk W Bk DUkC1 �! Bk�1 DUk

pointing in the opposite direction from fk and gk . The maps ˛k and ˇk derive
from the symmetric power filtration and its bu–analogue (as per [4]). The point of
Corollaries 6.2 and 7.2 is that they provide new, concrete evidence that there may be a
direct relationship between these spectrum-level filtrations on the one hand, and the
Goodwillie-Weiss towers on the other. To make the putative relationship more explicit,
we state here the following conjecture, which is a variant of a conjecture made in [4].

Conjecture 1.2 The deloopings fk , gk above can be chosen in such a way that the
following maps are weak equivalences:

fk ı˛k C˛kC1 ıfkC1 and gk ıˇk CˇkC1 ıgkC1

2In the case k D 0 , B�1 X D�X .
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This conjecture is closely related to [4, Conjectures 12.1 and 12.5]. It says that there
exist deloopings (fk , gk ) of the connecting maps in the Taylor towers that play a role
of “contracting homotopies” for the “chain complexes” made of maps ˛k and ˇk . (See
[4] for further explanation of this terminology.) Conjecture 1.2, if true, would imply
that these chain complexes are exact. In the case of ˛k , the exactness is an old theorem
of Kuhn [9] and Kuhn–Priddy [10], but even in this case it would be interesting to have
a new proof, one that relates it to calculus. On the calculus side, the conjecture would
imply that the homotopy spectral sequences associated with the Taylor tower of S1

and of BU.C/ collapse at E2 . This is certainly believed to be true by experts, but a
proof has so far been elusive.

The advance made in this paper is that we now know that the connecting maps in
the Taylor tower are iterated loop maps of the required order. Hence the necessary
deloopings exist.

Now we discuss the proofs of Theorems 6.1 and 7.1. The main ingredients are:
Theorem 3.2, which presents a space of natural transformations as a homotopy fixed
point spectrum; the Segal conjecture, which tells us that �0 of a homotopy fixed
point spectrum can sometimes be calculated; and the results of Arone–Dwyer [3] and
Arone [2] on the derivatives of the identity functor and the BU.�/ functor. Each of
the cases presented in Theorems 6.1 and 7.1 has its own special features. Theorem 6.1
at the prime 2 is the simplest—it only requires a straightforward application of the
Segal conjecture for finite groups, and we indicate its proof in Remark 6.8. The odd
primary case of Theorem 6.1 is similar in principle, but is complicated to a surprising
extent by the fact that we need to keep to odd-dimensional spheres. The action of
the symmetric group on the derivatives is not obvious in this case, and we use some
representation theory to analyze it. In Theorem 7.1, on the other hand, we have to
come to terms with the homotopy fixed points of an action of a toral group, rather than
just a finite group, and this complicates matters in a different way and necessitates the
use of p–completion.

Section by section outline In Section 2 we recall the basic definitions of the model
structure on categories of functors. We use the model structure to define the space
hoNat.�;�/ of homotopy natural transformations and prove its basic properties. In
Section 3, we calculate hoNat.�;�/ for inputs that are homogeneous functors, in
order to prove Theorem 3.2. In Section 4, we give a first, easy delooping result by
establishing Theorem 4.2. In Section 5, we use some representation theory to establish
some technical results about the action of certain groups on certain complex Stiefel
manifolds. These results will be needed in the both of the following sections, where
we analyze spaces of homotopy natural transformations needed for Theorem 6.1 and
Theorem 7.1 and prove the theorems.
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By a subgroup of a Lie group, we always mean a closed subgroup, except in the case
of the group I 0g of Section 7.

2 Preliminaries on model categories and spaces of natural
transformations

Throughout this paper, Top denotes the category of compactly generated spaces and
Top� the category of compactly generated pointed spaces. Both of these are closed
symmetric monoidal model categories, with monoidal structure given by cartesian prod-
uct (resp. smash product), weak equivalences given by weak homotopy equivalences,
and fibrations by the Serre fibrations (see Hovey [8, 2.4.26]). The model structures are
cofibrantly generated; in the case of Top, for instance, the generating cofibrations are
the boundary inclusion maps

Sn�1 ,!Dn

and the generating acyclic cofibrations are the “�0” endpoint inclusions

Dn ,!Dn
� I :

For Top� , the generating (acyclic) cofibrations are the maps UC!VC , where U !V

is a generating (acyclic) cofibration for Top.

We will make heavy use of categories in which the morphism spaces are objects of
Top or Top� .

Definition 2.1 A category enriched over Top is a category C provided with a topology
on each one of the morphism sets morC.i; j /, in such a way that each morphism set is
an object of Top and each composition map morC.i; j /�morC.j ; k/!morC.i; k/ is
continuous.

Remark 2.2 There is a similar definition of category enriched over Top� . In this
case the morphism spaces have basepoints and the composition maps factor through
continuous maps morC.i; j /^morC.j ; k/!morC.i; k/. The forgetful functor Top�!
Top allows any category enriched over Top� to be treated as a category enriched over
Top. Likewise, an enriched category can be treated as an ordinary (discrete) category
by completely forgetting the topologies on the morphism sets.

Each of the categories Top and Top� is enriched over itself. Similarly, let Spec be one
of the standard topologically enriched closed symmetric monoidal model categories for
spectra; for instance, Spec could be the category of topological symmetric spectra or
topological orthogonal spectra (see Mandell, May, Schwede and Shipley [11]). Then
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Spec is enriched over Top� . The model structure of Spec is cofibrantly generated,
with generating (acyclic) cofibrations given by the maps

†1k K0 ,!†1k K1

where †1
k

is the k th shift-suspension functor and K0!K1 is a generating (acyclic)
cofibration in Top� .

Clearly, if C is an enriched category, then Cop is an enriched category in a natural
way. An enriched functor between two enriched categories is a functor between the
underlying discrete categories that induces a continuous map on each morphism space
(preserving basepoints when relevant). In general, we assume that functors are enriched
whenever the categories involved are enriched.

For the rest of this section, C is a small category enriched over either Top or Top� , and
D is Top, Top� , or Spec. We let DC denote the collection of (enriched) functors from
C to D . (Note that choosing DD Top only makes sense if C is enriched over Top.)

Definition 2.3 Let F;GW C �! D be two enriched functors. The space of natural
transformations NatC.F;G/ is the usual set of natural transformations between the
underlying discrete functors, topologized as the evident subspace ofY

i2Ob.C/

morD.F.i/;G.i//:

The space of natural transformations is an example of an end. Similarly, one can define
coends of enriched functors in the usual way. If F and G are enriched functors from C
to D , with F contravariant and G covariant, then the tensor product (coend) F ˝C G

is defined to be the evident quotient ofM
i2Ob.C/

F.i/˝G.i/:

Here, ˚ (resp. ˝) stands for the direct sum (resp. monoidal product) in D , so it
is disjoint union (resp. Cartesian product) if D D Top and wedge sum (resp. smash
product) if D is Top� or Spec. In constructing natural transformations and coends for
enriched functors, the topologies on the morphism spaces of C do not play a role. If C
is enriched over Top (as opposed to Top� ) then there is a constant functor 1DW C �!D
sending every object of C to the ˝–unit in D and every morphism to the identity map;
this can be treated either as contravariant or covariant. In this case it is possible to
consider NatC.1D;G/ or 1D˝C G . If D is Top or Top� the first construction gives
the (inverse) limit of G ; the second gives the colimit of G . Again, the morphism space
topologies of C play no role in constructing the limit or colimit.
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Remark 2.4 The reader is invited to observe that if C is enriched over Top� there is
in general no interesting way to define 1D as a functor on C or to define the limit or
colimit of a functor on C . However, it is possible to construct a version of 1D if C is
obtained from a category enriched over Top by adding disjoint basepoints to all of the
morphism spaces and to define limits and colimits in this case. For this reason we will
only consider limits and colimits of functors defined either on a category enriched over
Top, or on a category enriched over Top� obtained from one enriched over Top by
adding disjoint basepoints to all morphism spaces.

Using spaces of natural transformations as morphism spaces between the functors
involved endows DC with the structure of an enriched category. In many situations
this functor category also has the structure of a closed model category; we state this for
the particular cases we need.

Proposition 2.5 Let C be a small category enriched over Top or Top� , and let D be
either Top� or Spec. Then DC is a closed model category, where a morphism F �!G

is a weak equivalence (resp. a fibration) if and only if the associated map F.i/!G.i/

is a weak equivalence (resp. a fibration) in D for every object i of C .

Proof The case D D Spec is essentially the same as Schwede and Shipley [12,
Theorem 7.2]. The case D D Top� is simpler and is proved similarly. One can
also prove the proposition more directly, by verifying the conditions of Hovey [8,
Theorem 2.1.19], which gives explicit conditions for a set of maps to generate a model
structure.

Remark 2.6 The above model structure is cofibrantly generated, even finitely gener-
ated [8, 2.1.3]. In the case where C is enriched over Top and D is Top� or Spec, the
generating (acyclic) cofibrations are given by morphisms of the form

K0 ^morC.i;�/C �!K1 ^morC.i;�/C

where K0 �!K1 is a generating (acyclic) cofibration in D , and i is an object of C .
(If C is enriched over Top� , one omits the disjoint basepoints.) Note that if K 2 D
then, essentially by Yoneda’s lemma, for any object i 2 C and functor G there is a
natural homeomorphism

Nat .K ^morC.i;�/C;G/ŠmorD.K;G.i// :

If the morphism spaces in C are cofibrant, then the cofibrations in DC induce objectwise
cofibrations of spaces or spectra.
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The natural transformation spaces and coend objects defined above are not adequate
for our purposes, because they do not depend in a homotopy invariant way on the
functors involved. We need to replace them with associated spaces of homotopy natural
transformations or with homotopy coends. We do this by copying the usual technique
for constructing derived functors [8, 1.3.6]. In general, when X is an object of a model
category, we use cX (resp. fX ) to denote a cofibrant (resp. fibrant) replacement for
X [8, page 5].

Remark 2.7 All the model categories that we encounter are finitely generated [8,
2.1.17], and so the small object argument [8, 2.1.14] guarantees that these replacements
can be chosen to be functorial. The enhanced small object argument of Bousfield [6,
~5] and Farjoun [7, 1.B.1] guarantees that the replacements, when appropriate, can
even be chosen to be functorial in an enriched sense.

Definition 2.8 Let C and D be as in Proposition 2.5, and let F;GW C �! D be
functors. The space hoNat.F;G/ of homotopy natural transformations from F to G

is defined by
hoNat.F;G/ WD Nat.cF; fG/:

If F is contravariant, the homotopy coend F ˝h
C G is defined by

F ˝h
C G WD cF ˝C cG :

Because of the functorial quality of cofibrant/fibrant replacement, the construction
hoNat.�;�/ gives an enriched functor

�
DC
�op
�DC ! Top� , and the construction

�˝h
C � gives an enriched functor DCop

�DC!D . The following lemma shows that
these functors have the desired homotopy invariance property.

Lemma 2.9 Let C and D be as in Proposition 2.5, and let F1;F2;G1;G2W C!D be
functors. If ˛W F2 �! F1 and ˇW G1 �!G2 are weak equivalences of functors, then
the induced map hoNat.F1;G1/ �! hoNat.F2;G2/ is a weak equivalence of spaces.
If F1 and F2 are contravariant, then the induced map F2˝

h
C G1 ! F1˝

h
C G2 is a

weak equivalence in D .

Proof We only prove the result for homotopy natural transformations; the statement
about homotopy coends is proved in a similar way. It is enough to prove that if in addition
F1 , F2 are cofibrant and G1 , G2 are fibrant, then the induced map Nat.F1;G1/ �!

Nat.F2;G2/ is a weak equivalence of spaces. For this it is enough to show that if G is
fibrant, the functor Nat.�;G/ takes weak equivalences between cofibrant functors into
weak equivalences of spaces, and that if F is cofibrant, the functor Nat.F;�/ takes
weak equivalences between fibrant functors into weak equivalences of spaces.
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We deal with the first statement in some detail because we will refer to this argument
below. By Ken Brown’s lemma [8, 1.1.12] it is sufficient to prove that if F 0 ! F

is an acyclic cofibration between cofibrant functors, then Nat.F;G/! Nat.F 0;G/
is a weak equivalence. By a retract argument [8, 2.1.18(e)], we can assume that
F 0 ! F is a relative J –cell complex [8, 2.1.9], where J is the set of generating
acyclic cofibrations. Since the objects involved in these generating cofibrations have
an appropriate finiteness property (see [8, 2.4.2] and Remark 2.6 for DD Top� ), we
can even assume that F D colimi Fi , where F0 D F 0 and FiC1 is obtained from Fi

by a pushout diagram `
Ck ����! Fi`

gk

??y ??y`
Dk ����! FiC1

in which each map gk is a generating acyclic cofibration. Applying Nat.�;G/ trans-
forms such a pushout square of functors into a pullback square of spaces, and it
is easy to check from the form of the generating acyclic cofibrations (Remark 2.6)
that the map Nat.FiC1;G/ ! Nat.Fi ;G/ is an acyclic fibration of spaces. Since
Nat.F;G/D limi Nat.Fi ;G/, the desired result follows from the fact that the limit of
a tower of fibrations in Top� is equivalent to the homotopy limit.

The second statement above is proved similarly. The technique is to work inductively,
constructing F (up to retracts) from the initial object in terms of pushouts involving
generating cofibrations [8, 2.1.18(b)] and a concluding sequential colimit.

Almost all explicit calculations of spaces of natural transformations are based on the
following lemma. Again, we are in the situation of Proposition 2.5.

Lemma 2.10 Suppose that F is a functor of the form

F.�/DK ^morC.i;�/C;

where K is a cofibrant object of D and i is an object of C . Suppose also that G is a
fibrant functor. Then

hoNat.F;G/' Nat.F;G/ŠmorD.K;G.i//:

Proof It is a consequence of the definition of the model category structure that F

is a cofibrant functor. As in the proof of Lemma 2.9, this implies that the maps
Nat.F;G/ ! Nat.cF;G/ and Nat.cF; fG/ ! Nat.cF;G/ are weak equivalences.
The rest follows from the (enriched) Yoneda lemma (Remark 2.6).
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The above constructions can be used to obtain homotopy limits or homotopy colimits.
Let C be a category enriched over Top, let D be either Top or Top� , and let GW C�!D
be an enriched functor. Recall that 1DW C �! D is the constant “unit” functor. We
define the homotopy limit of G by the formula

holim
C

G WD hoNatC.1D;G/D Nat.c1D; fG/ :

Similarly, if D is Top, Top� or Spec we define the homotopy colimit of G by the
formula

hocolim
C

G WD 1D˝C cG D colim cG :

Remark 2.11 The reader might wonder why we did not define the homotopy colimit
of G as c1D ˝C cG . It is not hard to check, using techniques from the proof of
Lemma 2.9, that in our cases this alternative definition gives the same result up to weak
equivalence as the definition above. Our definition, which was probably first used in a
context like this by Farjoun, gives a notion that is slightly more convenient.

It is clear from Lemma 2.9 that homotopy limits and colimits respect weak equivalences.
The following lemma gives a relationship between the two constructions.

Lemma 2.12 If F is an object of DC with the property that each value F.x/ is
a cofibrant object of D , and if Y is a fibrant object of D , there is a natural weak
equivalence of spaces

morD.hocolim F;Y /' holim
x2C

morD.F.x/;Y /:

Proof This is obtained from the composite of the following chain of weak equivalences

morD.hocolim F;Y /
Š
�!morD.colim cF;Y /

Š
�! lim

x2C
morD.cF.x/;Y /

'
�! holim

x2C
morD.cF.x/;Y /

'
�! holim

x2C
morD.F.x/;Y /:

Here, the first map is an isomorphism by the definition of homotopy colimit, the
second map is an isomorphism by basic properties of limits and colimits, and the fourth
map is a weak equivalence because the map cF �! F is a weak equivalence, and
homotopy limits are homotopy invariant. It remains to show that the third map is a weak
equivalence. This is proved by an inductive argument, as in the proof of Lemma 2.9; it
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relies on building F from the initial object in terms of the generating cofibrations [8,
2.1.18(b)].

Next, we need to discuss the notion of a homotopy colimit of a diagram of functors;
this is an instance of a homotopy left Kan extension, but we choose not to develop
the general theory. Let I and C be small categories enriched over Top and Top� ,
respectively, and let D be Top� or Spec. We will use letters i; j ; k; : : : to denote
generic objects of C and x;y; z to denote objects of I . Suppose that we have a functor

F W I �!DC :

We think of F as a diagram of functors C!D , indexed by I . It is also possible to
think of F as a diagram of functors I !D , indexed by C ; in fact, for each object i

of C , there is a functor Fi W I!D given by Fi.x/D .F.x//.i/.

Definition 2.13 Let F be an I–diagram in DC . The objectwise colimit (resp. object-
wise homotopy colimit) of F is the object of DC which assigns to i 2 C the object
colimFi (resp. hocolimFi ).

The (genuine) homotopy colimit of F is given by a slightly different construction. To
begin with, let C ^ IC be the evident category whose set of objects is Ob.C/�Ob.I/
and where the space of morphisms from .i;x/ to .j ;y/ is given by morC.i; j / ^
morI.x;y/C . It is easy to see that there is an isomorphism of functor categories�

DC
� I
ŠDC^IC :

Using this isomorphism, we may endow
�
DC
� I with a model structure in an obvious

way (Proposition 2.5). This is a cofibrantly generated model structure, in which the
generating (acyclic) cofibrations are morphisms of the form

K0 ^morC.i;�/^morI.x;�/C �!K1 ^morC.i;�/^morI.x;�/C

where i is an object of C , x is an object of I , and K0 ,!K1 is a generating (acyclic)
cofibration of D .

Definition 2.14 Let F be an I–diagram in DC . The (genuine) homotopy colimit
hocolimF of F is the objectwise colimit of cF , where cF is the cofibrant replacement
of F in the model structure on

�
DC
�I .

The following lemma is left as an exercise, along the lines of the proof of Lemma 2.12.
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Lemma 2.15 Let F be an I–diagram in DC and G an object of DC . Then there is a
natural weak equivalence of spaces

hoNat.hocolimF ;G/' holim
x2I

hoNat.F.x/;G/:

Our main point here is in the following lemma.

Lemma 2.16 If F is an I–diagram in DC , then the objectwise homotopy colimit of
F is naturally weakly equivalent to the homotopy colimit of F .

Proof Observe that if hW G ! G0 is a weak equivalence between functors that are
cofibrant in the model category structure on

�
DC
�I , then h induces a weak equivalence

between the objectwise colimits of these functors. This is proved by the technique in
the proof of Lemma 2.9; it also follows from combining Lemma 2.15 with a Yoneda
argument.

Let cF be a cofibrant replacement for F in the model structure on
�
DC
� I , and c0F

the functor obtained from F by, for each i 2 C , substituting for Fi its cofibrant
replacement in the model structure on DI . The natural maps cF ! F and c0F ! F
are both weak equivalences. Now consider the chain of weak equivalences

c0cc0cF ! cc0cF ! c0cF ! cF

and apply the objectwise colimit construction  . As observed above, the composite
of the rightmost two arrows becomes a weak equivalence, while from Lemma 2.9 it
follows that the composite of the leftmost two arrows becomes a weak equivalence. As
a consequence, all three arrows become weak equivalences. By definition,  .cF/ is
the homotopy colimit of F . Again as above, the natural map  .c0cF/!  .c0F/ is a
weak equivalence, and the target is the objectwise homotopy colimit of F .

Lemmas 2.15 and 2.16 have the following consequence, which we state explicitly.

Corollary 2.17 Let I and C be categories enriched over Top and Top� , respectively,
and let D be Top� or Spec. Let F be an I–diagram in DC and F the objectwise ho-
motopy colimit of F . Then for any object G of DC there is a natural weak equivalence

hoNat.F;G/' holim
x2I

hoNat.F.x/;G/:

We next list various adjointness properties of the hoNat construction. These are proved
by routine arguments using the techniques employed above. In the first statement †1

is the suspension functor from pointed spaces to spectra, and �1 its (derived) adjoint,
the zero’th space functor.
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Lemma 2.18 Let F W C! Top� and GW C! Spec be enriched functors. Then there
is a natural weak equivalence hoNatC.†1F;G/' hoNatC.F; �1G/.

If A and B are spectra, let mapspec.A;B/ denote the (derived) mapping spectrum of
maps from A to B . The smash products in the following lemmas are derived smash
products.

Lemma 2.19 Let F; GW C ! Spec be enriched functors, and A a spectrum. Then
there is a natural weak equivalence

hoNatC.A^F;G/' hoNatC.F;mapspec.A;G// :

Lemma 2.20 Let F; GW C! Top� be enriched functors, and A a space. Then there
is a natural weak equivalence hoNatC.A^F;G/' hoNatC.F;mor.A;G//.

Finally, we need to recall the definition and basic properties of (homotopy) right Kan
extensions; again, we content ourselves with treating a special case. Let C be a category
enriched over Top, and let C0 � C be a subcategory. For simplicity, we will assume
that C0 and C have the same sets of objects, but this is not an essential assumption. In
this case, D is Top� .

Definition 2.21 Suppose that D D Top� , and let GW C0!D be an enriched functor.
The homotopy right Kan extension of G from C0 to C , denoted hoIndCC0

G , is defined
by the following formula

hoIndCC0
G.i/ WD

(
hoNatj2C0

.morC.i; j /C;G.j // DD Top�
hoNatj2C0

.†1morC.i; j /C;G.j // DD Spec

The fact that hoIndCC0
G is a functor on C depends on the fact that functors on C0 such

as morC.i;�/C can be supplied with natural cofibrant replacements, as mentioned in
Remark 2.7. The main point that we need to make about the functor hoIndCC0

W DC0 �!

DC is that it is a homotopy adjoint to the restriction functor ResCC0
W DC �!DC0 . What

this means concretely is stated in the following lemma.

Lemma 2.22 Suppose that D D Top� , and let F W C �! D and GW C0 �! D be
functors. There is a natural weak equivalence

hoNatC.F; hoIndCC0
G/' hoNatC0

.ResCC0
F;G/
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Proof Homotopy right Kan extension preserves fibrant functors, so it is enough to
show that if F is cofibrant and G is fibrant then the natural map

(2–1) NatC.F; hoIndCC0
G/ �! hoNatC0

.ResCC0
F;G/

is a weak equivalence. As in the proof of Lemma 2.9, it is enough to show that the
map is an equivalence when F is the free functor

F.�/DK ^morC.i;�/C

determined by an object i 2C and a cofibrant object K of D . In this case, it follows from
the Yoneda lemma and Lemma 2.20 that the domain of (2–1) is Map�.K; hoIndCC0

G.i//,
while the target is

hoNatj2C0
.K ^morC.i; j /C;G.j // ;

which by Lemma 2.20 and the definition of homotopy right Kan extension is equivalent
to Map�.K; hoIndCC0

G.i//. By inspection the map in question is in fact an equivalence.
This completes the proof.

3 Natural transformations of homogeneous functors

In this section, we calculate the space of (homotopy) natural transformations between
homogeneous functors in orthogonal calculus. Since our main application requires
working over complex vector spaces, this section is written in the complex setting.
However, all the work in this section can be done equally well over the reals.

Let J be the category of finite-dimensional complex vector spaces with inner product
and linear isometric inclusions. The category J is enriched over Top in a natural way,
with the morphism spaces morJ .V;W / being the appropriate complex Stiefel mani-
folds. Following Weiss [13, Section 1] we define a sequence of categories Jn , enriched
over Top� . All of the categories Jn have the same set of objects as J . To define
the morphism space morJn

.V;W / in Jn , consider the vector bundle  .V;W / over
morJ .V;W / with the total space consisting of pairs .f;x/ where f 2morJ .V;W /

and x 2 coker.f /. Let n.V;W / be the vector bundle obtained from  .V;W / by
tensoring each fiber with Cn . The morphism space morJn

.V;W / from V to W in
Jn is defined to be the Thom space of n.V;W /.

There are inclusions of categories

J0 � J1 � J2 � � � � :

Notice that J0 is the category obtained from J by adding a disjoint basepoint to each
morphism complex. In other words, morJ0

.V;W /ŠmorJ .V;W /C . Let D be Top� ,
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or Spec. There is an isomorphism of categories of enriched functors DJ ŠDJ0 , and
we will switch between these two categories without further comment.

Lemma 3.1 Let F W J �! Spec be a continuous functor. There is a natural equiva-
lence

hoNatJ
�
†1SnV ;F.V /

�
'
�
hoIndJn

J0
�1F

�
.C0/

Proof The result is implicit in the reasoning of Weiss [13, Sections 1 and 2], although
it is not made explicit there. The idea of the proof is to note that although SnV is not a
representable functor when considered as a functor on J or J0 , it is the restriction of
a representable functor on Jn . Indeed,

SnV
ŠmorJn

.C0;V /:

We obtain a sequence of natural weak equivalences,

hoNatJ0

�
†1SnV ; F.V /

�
' hoNatJ0

�
SnV ; �1F.V /

�
' hoNatJ0

�
ResJn

J0
morJn

.C0;V /; �1F.V /
�

' hoNatJn

�
morJn

.C0;V /; hoIndJn

J0
�1F.V /

�
'
�
hoIndJn

J0
�1F

�
.C0/:

Here the second equivalence follows from Lemma 2.18, the third equivalence follows
from Lemma 2.22, and the last equivalence is just the Yoneda lemma (Lemma 2.10).

Now we are ready to state and prove the general result about spaces of natural transfor-
mations between homogeneous functors. Let U.n/ denote the linear, inner-product pre-
serving automorphisms of Cn . If C is a spectrum with an action of U.n/, we let MC;n

denote the functor J ! Spec which sends a vector space V to .C ^†1SnV /zhU.n/
.

This is a homogeneous functor in the unitary calculus.

Theorem 3.2 Let C and D be spectra with actions of U.n/ and U.k/, respectively.
Then

hoNatJ .MC;n;MD;k/'Map
�
C; .D ^morJ .Cn;Ck/C/zhU.k/

�zhU.n/

Proof Using Corollary 2.17 and Lemma 2.19, we can write

hoNatJ .MC;n;MD;k/' hoNatJ
�
C ^†1SnV ; MD;k.V /

�zhU.n/

' hoNatJ
�
†1SnV ; mapspec

�
C;MD;k.V /

��zhU.n/
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We next calculate the final term without the superscript zhU.n/. By Lemma 3.1, this is
equivalent to calculating the value at V DC0 of the functor

(3–1) hoIndJn

J0
�1mapspec.C;MD;k.V //:

The key to this is contained in [13, Example 5.7]. (See also [13, Notation 2.5] for the
correspondence.) This reference contains the calculation

(3–2) hoIndJn

J0
�1MD;k.V /'

8<:� n> k

�1
�
D ^SkV

�
zhU.k�n/

0� n� k

where as usual everything is expressed as a functor of the vector-space variable V , and
U.k � n/ fixes the first n coordinates of Ck . Let F.C;D/ be the value of (3–1) at
V DC0 ; we wish to produce a weak equivalence

(3–3) F.C;D/'Map
�
C;DzhU.k�n/

�
'�1mapspec

�
C;DzhU.k�n/

�
:

It is easy to produce a map � between the two objects involved, and to observe, by
substituting V DC0 in (3–2), that � is a weak equivalence for C D S0 . Noting that
F.C;D/' F.S0;C #^D/ allows the observation to be extended to the case in which
C is a finite spectrum. Now the constructions in (3–3) convert homotopy colimits in C

to homotopy limits, so the class of spectra for which � is a weak equivalence is closed
under homotopy colimits; since the class includes all finite spectra, it must include all
spectra.

The proof of the theorem is completed by observing that morJ .Cn;Ck/ŠU.k/=U.k�

n/ and applying Shapiro’s lemma.

The following is a consequence of Theorem 3.2 and dualization.

Corollary 3.3 If C is a finite spectrum induced up from a K–spectrum B for some
K � U.n/, that is, C ' U.n/C ^K B , then

hoNatJ .MC;n;MD;k/'
�
B#
^
�
†1morJ .Cn;Ck/C ^D

�
zhU.k/

�zhK

where the smash product has the diagonal action of K via the actions of K on B# and
on morJ .Cn;Ck/.

Remark 3.4 Theorem 3.2 is analogous to a well–known formula (due to Goodwillie)
in the homotopy calculus of functors from spaces to spectra. Let C and D be spectra
with actions of †n and †k , respectively, and let F; GW Top�! Spec be the functors
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that assign to X the spectra .C ^X^n/zh†n
and .D ^X^k/zh†k

. Then hoNat.F;G/
is the space

(3–4) �1mapspec
�
C;
�
D ^Surj.k;n/C

�
zh†k

�zh†n :

Here Surj.k;n/ is the set of surjections from a set with k elements to a set with n

elements. As in the statement of Theorem 3.2, “mapspec” is the mapping spectrum in
the enriched category Spec.

The proof is somewhat simpler than the proof of Theorem 3.2. Indeed, standard
manipulations with adjunctions together with a smallness argument show that

hoNat
�
.C ^X^n/zh†n

; .D ^X^k/zh†k

�
is equivalent to

(3–5) �1mapspec
�
C; .D ^ hoNatspec.†1X^n; †1X^k//zh†k

�zh†n :

where “hoNatspec” denotes an appropriately defined spectrum of natural transforma-
tions between spectrum-valued functors. To show that (3–5) is equivalent to (3–4)
it is only necessary to observe that hoNatspec.†1X^n; †1X^k/ is equivalent to
†1 Surj.k;n/C , that is, every natural stable map between iterated smash powers of
X is given by (sums of) iterated diagonals. This completes the proof.

Remark 3.5 Let Ip be the fibre of the rationalization map from the p–local stable
sphere to the rational sphere; Ip is a Moore spectrum of type .Z=p1;�1/. Bousfield
localization on the category of spectra with respect to the mod p stable homotopy
functor is given by Lp.X /D mapspec.Ip;X /. This functor is idempotent (because
Ip ^ Ip ' Ip ) and agrees with Bousfield localization with respect to mod p homology
on spectra that are bounded below. The functor Lp is what is ordinarily called the
stable p–completion functor.

For the rest of this paragraph, write yX DLp.X / for the p–completion of X . In the
situation of Theorem 3.2, write E D .D ^morJ .Cn;Ck/C/zhU.k/

, so that Theorem
3.2 reads

hoNatJ .MC;n;MD;k/'Map.C;E/
zhU.n/ :

We would like to prove that

(3–6) hoNatJ . yMC;n; yMD;k/'Map. yC ; yE/
zhU.n/ :

Algebraic & Geometric Topology, Volume 8 (2008)



Loop structures in Taylor towers 193

Observe first of all that yMD;kDmapspec.Ip;MD;k/, so by Lemma 2.19 and inspection
we get

hoNatJ .MC;n; yMD;k/' hoNatJ .Ip ^MC;n;MD;k/

' hoNatJ .MIp^C;n;MD;k/

'Map.Ip ^C;E/
zhU.n/

'Map.C; yE/
zhU.n/ :

It remains to show that the p–completion map MC;n!
yMC;n induces an equivalence

on hoNatJ .–; yMD;k/, and that the p–completion map C ! yC induces an equivalence
on Map.–; yE/. The proofs are similar; we will do the first. If F is the fibre of
MC;n!

yMC;n , it is enough to prove that hoNatJ .F; yMD;k/ is contractible. But there
are weak equivalences

hoNatJ .F; yMD;k/' hoNatJ .F;mapspec.Ip; yMD;k//

' hoNatJ .Ip ^F; yMD;k/ ;

and Ip ^ F is trivial, since Ip is p–torsion and F D mapspec.S0
ZŒ1=p�;MC;n/ is

ZŒ1=p�–local.

4 Infinite delooping of functors into spaces

In this section, we prove that certain functors from spaces to spaces in fact take their
values in infinite loop spaces.

As a preliminary, we prove the following.

Theorem 4.1 Let F be a functor from Top� to Top with the property that the Taylor
tower of F consists of two layers, .DnF /.X / and .DkF /.X /, where n < k < 2n.
Then F takes values in infinite loop spaces.

Proof Suppose that we have .DnF /.X / D �1.C ^X^n/zh†n
and .DkF /.X / D

�1.D ^X^k/zh†k
. There is a natural fibration

�1.C^†1X^n/zh†n

�1.D^†1X^k/zh†k
�1.D^†1X^k/zh†k

F.X /// F.X /

�1.C^†1X^n/zh†n

��
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and the fibration is induced by a natural transformation

 .X /W �1.C ^†1X^n/zh†n
!�1.†D ^†1X^k/zh†k

;

or alternatively, taking the adjoint,

z .X /W †1�1.C ^†1X^n/zh†n
!†.D ^†1X^k/zh†k

:

The layers of the Taylor tower of the functor †1�1.C ^†1X^n/zh†n
have the form��

C ^†1X^n/
�
zh†n

�^i
zh†i

. If i > 1, this functor has degree greater than k , and there
are no nontrivial natural transformations to .†D^†1X^k/zh†k

by Remark 3.4. Thus
z factors through the projection to the lowest homogeneous layer of †1�1.C ^†n

†1X^n/, that is, through the evaluation map:

.C^†1X^n/zh†n

�
†D^†1X^k

�
zh†k

//

†1�1.C^†1X^n/zh†n

.C^†1X^n/zh†n

ev

��

†1�1.C^†1X^n/zh†n

�
†D^†1X^k

�
zh†k

z.X / //
�
†D^†1X^k

�
zh†k

�
†D^†1X^k

�
zh†k

This says precisely that  .X / is an infinite loop map, and thus F takes values in
infinite loop spaces.

By similar arguments, one obtains the following generalization.

Theorem 4.2 Let F be a functor from Top� to Top with the property that the Taylor
tower of F consists of layers .DiF /.X / for n � i < k < 2n. Let G be a functor
defined by taking the fiber of a natural transformation  W F ! �1.Ck ^†k

X^k/.
Then G takes values in infinite loop spaces.

5 Representation theory

Let p be prime. In later sections, we will be studying natural transformations of
homogeneous spectrum-valued functors on finite-dimensional complex vector spaces.
In particular, we will need to look at natural transformations from functors of degree
ipk (1< i � p ) to those of degree pkC1 , and in Section 3, we found that such natural
transformations involve the space morJ .Cipk

;CpkC1

/ of linear isometric inclusions
Cipk

!CpkC1

, along with its action of U.ipk/ (from the right) and U.pkC1/ (from
the left). Our applications actually involve coefficient spectra with actions that are
induced up to an action of a unitary group from smaller, sometimes finite groups, and
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we will then need to understand the actions of these smaller isotropy groups on spheres
formed as the one-point compactifications of complex vector spaces. This section
establishes the necessary prerequisites.

Note that †pk � U.pk/ as permutations of the standard basis vectors. Let �k �†pk

be the usual transitive elementary abelian p–subgroup, and let �k � U.pk/ be the
usual projective elementary abelian p–subgroup, an extension

1! S1
! �k ! .Z=p/2k

! 1:

(See, for example, Arone and Lesh [4, Section 10].) There is a diagram of inclusions

†pk U.pk/://

�k

†pk

��

�k �k
// �k

U.pk/:

��

We write morJ .Cipk

;CpkC1

/ as the right coset space HinU.p
kC1/, where Hi D

U.pkC1 � ipk/ � U.pkC1/ is the subgroup of U.pkC1/ that fixes the first ipk

standard basis vectors. We regard †i o�k as a subgroup of U.pkC1/ in the obvious
way, as acting on the subspace Cipk

�CpkC1

spanned by the first ipk basis vectors.
In later sections, we need to understand HinU.p

kC1/ as a space with a left action of
†i o�k��kC1 by .�;  / �HigDHi�g�1 . (Note that †i o�k �U.pkC1/ commutes
with Hi .) Suppose that Ig �†i o�k ��kC1 is the isotropy group of Hig .

Lemma 5.1 If i > 1, then the compositions

Ig ,!†i o�k ��kC1! �kC1(5–1)

Ig ,!†i o�k ��kC1!†i o�k(5–2)

are both monomorphisms, where the second map in each composition is projection to a
factor.

Proof The element .�;  /2†i o�k ��kC1 is in Ig exactly when there exists h2Hi

such the gg�1 D �h. If .�;  / is in the kernel of (5–1), then  D e , so �h D e ,
which implies that (5–1) is a monomorphism because the intersection of the subgroups
†i o�k and Hi of U.pkC1/ is trivial.

Suppose that .�;  / 2 Ig is a nonidentity element. We know that  ¤ e from the
previous paragraph. We wish to show that � ¤ e , and because � D e would imply the
existence of h 2Hi such that gg�1 D h, it is sufficient to show that no nonidentity
element  2 �kC1 can be conjugate to an element h 2Hi . We do this by comparing
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the eigenspaces of h and  , with the starting point that if h 2Hi is not the identity,
then the eigenspace of h associated to the eigenvalue 1 has dimension at least ipk

(which is strictly greater than pk ) but less than pkC1 . We will show that, by contrast,
elements of �kC1 either have p eigenspaces, each of dimension exactly pk , or else
they have a single eigenspace, of dimension pkC1 . This will finish the proof of the
lemma.

To study the eigenvalues and eigenspaces of a nonidentity element  2 �kC1 , we first
consider a special case. Let ı be the element of �kC1 corresponding to the product of
p–cycles �

1; : : : ;p
��

pC 1; : : : ; 2p
�
: : :
�
.p� 1/pk

C 1; : : : ;pkC1
�
:

Let � be a primitive p th root of unity. Direct calculation establishes that the eigenvalues
of ı are 1, � , �2 , : : :, �p�1 , each with multiplicity pk , so the eigenspaces of ı are
of dimension exactly pk .

Recall that �kC1 can be written as an extension

1! S1
! �kC1! .Z=p/2kC2

! 1:

Then all elements in the component ıS1 of �kC1 have eigenspaces of dimension exactly
pk , because multiplication by an element z 2 S1 just multiplies the eigenvalues by z .
To finish, we observe that the normalizer of �kC1 in U.pkC1/, namely Sp2kC2.Fp/,
acts transitively on the set of nonidentity components of �kC1 , and so all of the
elements of all of the nonidentity components have eigenspaces of dimension exactly
pk . On the other hand, elements of the identity component all have a single eigenspace,
of dimension pkC1 . This finishes the proof.

The action of †i o �k � �kC1 on HinU.p
kC1/ can be restricted to an action of

†i o�k ��kC1 . Let zIg �†i o�k ��kC1 be the isotropy group of Hig under this
restricted action, that is, zIg D Ig \ .†i o�k ��kC1/. From Lemma 5.1, we know
that the composite

zIg ,!†i o�k ��kC1!†i o�k

is a monomorphism; let Jg � †i o�k be its image. In Section 6, we need to know
about the representation of Jg that is obtained by restriction of the wreath product
representation of †i o�k in U.ipk/. Because the result we need is representation-
theoretic, we make the representations explicit, rather than implicit as in the earlier
part of this section.

Proposition 5.2 Let � W †i o�k ,! U.ipk/ be the embedding by the wreath product
representation. Let Jg �†i o�k be as above. Then the restriction of � to Jg is a sum
of copies of the regular representation of Jg .
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Proof Let � W �kC1!U.pkC1/ be the regular representation, and regard U.ipk/ as
the subgroup of U.pkC1/ that acts on the span of the first ipk basis vectors, while
fixing the orthogonal complement. If .�; ı/ 2 zIg , then there exists h 2Hi with

(5–3) �.�/hD g�.ı/g�1:

Note that � is the image of .�; ı/ under the isomorphism from zIg to Jg . We want
to prove that the trace of �.�/ is 0 if � ¤ e , which is sufficient to characterize the
restriction of � to Jg as being a multiple of the regular representation of Jg .

Since �.�/ is a permutation matrix, it is sufficient to prove that � acts on f1; : : : ; ipkg

without fixed points. Suppose that � D .sI�1 : : : ; �i/ where s 2†i and �1; : : : ; �i 2

�k . If s ¤ e 2†i , then we must have i D p and s is a p–cycle, because � has order
p . Thus � has no fixed points on f1; : : : ; ipkg.

On the other hand, suppose that sD e2†i , so that �D .eI�1 : : : ; �i/, and suppose that
� is not the identity. It is sufficient to establish that no �j is the identity of �k , because
every nonidentity element of �k acts on pk objects without fixed points, establishing
that � acts on f1; : : : ; ipkg without fixed points. Our strategy is to consider the two
sides of (5–3) and to show that if any �j is the identity of �k , then the dimensions
of the pointwise-fixed subspaces of �.�/h and g�.ı/g�1 acting on CpkC1

do not
match.

On the right-hand side of (5–3), we know that �.ı/ is acting on CpkC1

through the
regular representation of �kC1 . Further, because � is not the identity, ı cannot be
the identity either. Thus �.ı/ has a pointwise-fixed subspace of dimension exactly
Œ�kC1 W hıi�D pk .

On the left-hand side of (5–3), �.�/ and h act on orthogonal complements in CpkC1

.
Thus the element �.�/h 2 U.pkC1/ has a pointwise-fixed subspace of dimension at
least as large that of �.�/ acting on Cipk

ŠCpk

˚� � �˚Cpk

. Since �D .eI�1 : : : ; �i/,
the dimension of the pointwise-fixed subspace of �.�/ is just the sum of the dimensions
of the pointwise-fixed subspaces of the individual elements �j acting on their respective
summands Cpk

. But �j acts through the regular representation of �k , so nonidentity
elements �j have a pointwise fixed subspace of dimension Œ�k W hıi�D pk�1 . Thus
�.�/h has a pointwise fixed subspace of CpkC1

of dimension at least ipk�1 . If one of
the �j is actually the identity of �k , then in fact �.�/h has a pointwise-fixed subspace
of CpkC1

of dimension at least pk C .i � 1/pk�1 . Since i > 1, this is greater than
the dimension of the pointwise-fixed subspace of �.ı/, a contradiction.
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6 Delooping structure maps: the homotopy case

Let p be an odd prime. In this section, we study the connecting maps between the
layers of the Goodwillie tower of the p–localization of the identity functor on Top� .
It is proved in Arone–Mahowald [5] that when evaluated at odd spheres, the layers of
this tower are trivial except at powers of p . This gives structure maps in the tower that
connect the pk th layer directly to the pkC1 st layer. Let DIk.X / be the pk th layer of
the p–localized Taylor tower for the identity functor evaluated at X . In Arone-Lesh [4,
Conjecture 12.1] it is suggested that the structure map DIk.S

1/ ! B DIkC1.S
1/

deloops k times. In this section, we prove this conjecture, though we do not establish
the specific delooping that was suggested in [4]. The strategy is to show that the natural
transformation giving the structure map for odd spheres is a retract by natural infinite
loop maps from a natural transformation that deloops k times for very general reasons.
There are analogous results for p D 2, and in this case there is no restriction that the
dimension of the sphere be odd. Most of the section deals with the odd-primary case.
The case p D 2 is much easier, and we discuss it in Remark 6.8.

As explained in the introduction, an obvious difficulty with our strategy arises from the
fact that it is only when evaluated at appropriate spheres that the structure map for the
Taylor tower of the identity connects the pk th layer directly to the pkC1 st layer. As a
consequence, we cannot study this map by using results about natural transformations
of homogeneous functors of spaces. We need a way to study the aspects of this Taylor
tower that are natural only in odd spheres. Our approach is to precompose the identity
functor on Top� with the functor X W V 7! S1 ^SV from finite-dimensional complex
vector spaces to pointed spaces. When we evaluate the Taylor tower for the identity at
the odd-dimensional sphere S1^SV , the resulting tower is natural in V and consists of
layers that are homogeneous functors of V in the sense of Weiss’s orthogonal calculus.
General calculus reasoning establishes that the Weiss tower of X , evaluated at V , is
the same as the Goodwillie tower of the identity, evaluated at X .V /. Further, when
p–localized, the tower has the pk th layer connected directly to the pkC1 st layer.

Theorem 6.1 Let X be the functor from finite-dimensional vector spaces over C
(over R if p D 2) given by X .V /D .S1^SV /.p/ (resp. X .V /D .SV /.2/ if p D 2).
Then the k –fold looping map

�k
W hoNat.Bk Dpk X ;BkC1 DpkC1 X /! hoNat.Dpk X ;B DpkC1 X /

is surjective on �0 .

Our main interest lies in the following corollary.
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Corollary 6.2 Let p be a prime and let nDpk . Let X be an odd-dimensional sphere
(or any sphere, if pD 2). Let DIk.X / be the pk th layer of the p–localized Goodwillie
tower of the identity evaluated at X . Then the connecting map

�k W DIk.X /! B DIkC1.X /

admits a k –fold delooping in the homotopy category of spaces.

The special case X D S1 of the corollary was conjectured in [4].

Fix an odd prime p , and assume throughout that all spaces are localized at p . The
proof of Theorem 6.1 follows immediately from the following three statements. (The
case p D 2 is handled in Remark 6.8.)

Theorem 6.3 Let �k be the transitive elementary abelian p–subgroup of †pk ob-
tained by letting .Fp/

k act on itself by translation. For any nonnegative integer d , the
d –fold looping map

(6–1)

hoNat
h
Q
�
.S1 ^SV /

^pk

zh�k

�
; Q

�
.S1 ^SV /

^pkC1

zh�kC1

�i
??y

hoNat
h
�dQ

�
.S1 ^SV /

^pk

zh�k

�
; �dQ

�
.S1 ^SV /

^pkC1

zh�kC1

�i
is an epimorphism on �0 .

Lemma 6.4 For each k , the functor Dpk X .V / is a retract of the functor

�kQ
�
.S1
^SV /

^pk

zh�k

�
:

Moreover, both the inclusion and the retraction are infinite loop maps.

Lemma 6.5 Suppose that C is a small category, that zY1 and zY2 are functors from
C to Top� , and that for i D 1; 2, there are natural transformations �i W Yi !

zYi and
�i W
zYi ! Yi such that �i�i is a weak equivalence on Yi.C / for each object C in C .

Let d be a positive integer, and suppose that the d –fold looping map

hoNat
�
zY1; zY2

�
�! hoNat

�
�d zY1; �

d zY2

�
is an epimorphism on �0 . Then the same is true for the d –fold looping map.

hoNat
�
Y1;Y2

�
�! hoNat

�
�dY1; �

dY2

�
:

We will give the proofs of these three statements in reverse order.
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Proof of Lemma 6.5 Consider the maps

hoNat
�
Y1;Y2

�
�! hoNat

�
zY1; zY2

� p
��! hoNat

�
Y1;Y2

�
where the first map is induced by the maps �1 and �2 , while p is induced by �2 and �1 .
Because �i�i is a weak equivalence, the composed map above is a weak equivalence.
In particular, p is surjective on �0 . Similarly, there are maps

hoNat
�
�dY1; �

dY2

�
�! hoNat

�
�d zY1; �

d zY2

� pd
���! hoNat

�
�dY1; �

dY2

�
and pd is surjective on �0 . There is a commutative square

hoNat
�
Y1;Y2

�
hoNat

�
�dY1; �

dY2

�
:

�d

//

hoNat
�
zY1; zY2

�

hoNat
�
Y1;Y2

�p

��

hoNat
�
zY1; zY2

�
hoNat

�
�d zY1; �

d zY2

��d
// hoNat

�
�d zY1; �

d zY2

�

hoNat
�
�dY1; �

dY2

�
:

pd

��

In this diagram, the vertical maps are surjective on �0 by the above discussion, while
the top horizontal map is surjective on �0 by hypothesis. It follows that the bottom
horizontal map is surjective on �0 .

Proof of Lemma 6.4 We need to recall from Arone and Dwyer [3] the description of
the spectrum associated to the infinite loop space DIk.S

1^SV /DDpk X .V /. Notice

that for any pointed space Y , the group GLk.Fp/ acts on †1
�
Y ^pk �

zh�k
because

GLk.Fp/ is the Weyl group of �k in †pk . Let �k 2 GLk.Fp/ be the Steinberg
idempotent. It is proved in [3] that if Y is an odd sphere, then

DIk.Y /'�
1
�
S�k
^ �k �†

1
�
Y ^pk �

zh�k

�
'�k �1

�
�k �†

1
�
Y ^pk �

zh�k

�
where �k � †

1
�
Y ^pk �

zh�k
denotes the summand of †1

�
Y ^pk �

zh�k
given by the

mapping telescope of �k . Note that the retraction of †1
�
Y ^pk �

zh�k
onto the summand

�k �†
1
�
Y ^pk �

zh�k
has nothing to do with Y itself, but only with the action of GLk.Fp/

on †1
�
Y ^pk �

zh�k
, which is natural in Y . Thus when we take Y D X .V /, there is a

natural retraction

�.V /W †1
�
X .V /^pk �

zh�k
�! �k �†

1
�
X .V /^pk �

zh�k

and the corresponding inclusion,

�.V /W �k �†
1
�
X .V /^pk �

zh�k
�!†1

�
X .V /^pk �

zh�k
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is also natural in V . Since �.V / and �.V / are maps of spectra, they induce infinite
loop maps on the associated infinite loop spaces.

The rest of the section is devoted to the proof of Theorem 6.3. We will need the
following standard manipulations for the proof.

Lemma 6.6 Let H �G where G is finite, let X be an H –spectrum, and let Y be a
G –spectrum. Then the following are equivalences of G –spectra.

(1) Y ^ .GC ^H X /'GC ^H .Y ^X /, where the left has the diagonal action of
G and the right has the left action of G .

(2) GC ^H X 'MapH .G;X /.

To set up the proof of Theorem 6.3, consider X .V /^pk

D .S1 ^SV /^pk

as a †pk –

space. We write it as Spk

^SpkV , where †pk acts on Spk

by permuting the factors

of Spk

' .S1/^pk

and acts on SpkV D SCpk
˝V by permuting the basis vectors of

Cpk

. To position ourselves to apply Theorem 3.2, we rearrange the target of (6–1)
using adjointness to the form

(6–2) hoNat
h
Sd
^†1�1

�
S�d
^†1Spk

^SpkV
�
zh�k

; †1
�
S1
^SV

�^pkC1

zh�kC1

i
and we manipulate the homogeneous layers of both the source and the target of (6–2)
to make the coefficient spectra apparent. This is easy for the target, which actually is a
homogeneous functor, of degree pkC1 . To find the coefficient spectrum, we need to
be looking at homotopy orbits of an action of U.pkC1/, so we induce up from �kC1

to U.pkC1/ and find that the target of (6–2) is represented by the coefficient spectrum
U.pkC1/C ^�kC1

†1SpkC1

.

However, the source of (6–2) is not a homogeneous functor, so we look at its homoge-
neous layers and calculate their coefficient spectra.

Lemma 6.7 The functor

(6–3) Sd
^†1�1

�
S�d
^†1Spk

^SpkV
�
zh�k

has nontrivial homogeneous layers only in dimensions that are multiples of pk . The
ipk th layer is represented by the spectrum

U.ipk/C ^†i o�k

�
S�.i�1/d

^†1S ipk �
where �k acts trivially on S�.i�1/d and †i acts on S�.i�1/d by the dual of the
one-point compactification of d copies of the reduced standard representation.
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Proof It is well known (see, for example, Ahearn and Kuhn [1]) that the i th homoge-
neous layer of the functor from spectra to spectra X 7!†1�1X is

�
†1X^i

�
zh†i

.
It follows that the ipk th homogeneous layer of (6–3) is

Sd
^

h�
S�d
^†1Spk

^SpkV
�
zh�k

i^i

zh†i

' Sd
^
�
S�id

^†1S ipk

^S ipkV
�
zh†i o�k

and that the other layers are trivial. Here †i o�k acts on S�id by the dual of the
one-point compactification of the action of †i o�k on Ri ˝Rd that projects †i o�k

to †i and then acts on Ri by the standard representation. The standard action of †i on
Ri splits off a one-dimensional trivial representation, and so S id is †i –equivariantly
equivalent to Sd ^S .i�1/d , where †i acts trivially on Sd and acts on S .i�1/d by the
one-point compactification of d copies of the reduced standard representation. Thus
the i th homogeneous layer of the source of (6–2) is equivalent to�

S�.i�1/d
^†1S ipk

^S ipkV
�
zh†i o�k

Finally, as before, we induce up to U.ipk/ to find the coefficient spectra, and we find
that the ipk th layer of (6–3) is represented by the spectrum

U.ipk/C ^†i o�k

�
S�.i�1/d

^†1S ipk �
:

Proof of Theorem 6.3 for odd primes We consider (6–2), and we let Z.V / denote
the cofiber of the map

(6–4)

Sd ^†1�1
�
S�d ^†1Spk

^SpkV
�
zh�k??y

S0 ^†1�1
�
S0 ^†1Spk

^SpkV
�
zh�k

that induces the adjoint form of (6–1). Noting that the source of (6–1) has the form of
the target evaluated for d D 0, we see that we need to show that

hoNat
�
†�1Z.V /; †1

�
S1
^SV

�^pkC1

zh�kC1

�
is 0–connected.

We use the homogeneous layers of Z.V / for the calculation. We define Cofi;d D

Cof
�
S0! S .i�1/d

�
, where S0 is included as the north and south poles, and we let

Cof#
i;d denote its Spanier-Whitehead dual. By applying Lemma 6.7 twice (once with

d D 0) and taking the appropriate cofiber, we find that the ipk th homogeneous layer
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of Z.V / is represented by the spectrum

U.ipk/C ^†i o�k

h
†Cof#

i;d ^†
1S ipk

i
as i runs through positive integers. (All other layers are contractible.)

Let Fi be the spectrum given by

Fi WD

h�
†�1 Cofi;d ^.S

�1/^ipk �
^
�
morJ .Cipk

;CpkC1

/C^†
1SpkC1�

zh�kC1

izh†i o�k

:

Recalling that the target of (6–2) is a homogeneous functor, and using Corollary
3.3, we find that hoNat

�
†�1Z.V /; †1

�
S1^SV

�^pkC1

zh�kC1

�
can be built up by principal

fibrations with fibers of the form �1†Fi where i � 1. In fact, morJ
�
Cipk

;CpkC1�
C

is contractible if i > p , and Cofi;d is contractible if i D 1, so it suffices to show that
Fi is .�1/–connected for 1< i � p .

Our analysis of Fi depends on understanding the interaction of the left action of
�kC1 and the right action of †i o�k on morJ .Cipk

;CpkC1

/. We use the notation of
Section 5, writing morJ .Cipk

;CpkC1

/ as the right coset space HinU.p
kC1/, where

Hi DU.pkC1� ipk/�U.pkC1/ is the subgroup of U.pkC1/ that fixes the first ipk

standard basis vectors. We study the interaction of the two group actions by defining
a left action of .†i o�k/��kC1 on HinU.p

k/ by .�; ı/ �Hig DHi�gı�1 . (Note
that †i o�k commutes with Hi .) We look at how Fi is built up according to the
equivariant cells of this action, and we show that each piece is .�1/–connected.

Let Ig � .†i o�k/ ��kC1 be the isotropy group of Hig . We need to establish
.�1/–connectedness for��

†�1 Cofi;d ^S�ipk �
^

�
SpkC1

^
.†i o�k/��kC1

Ig C

�
zh�kC1

�zh†i o�k

:

when 1 < i � p . We know that Ig injects into �kC1 (Lemma 5.1), so this can be
reduced to

(6–5)
��
†�1 Cofi;d ^S�ipk �

^
�
†i o�kC ^SpkC1�

zhIg

�zh†i o�k :

Using Lemma 6.6 we see that if i > 1 then (6–5) can be rewritten as�
†�1 Cofi;d ^S�ipk

^SpkC1�zhIg :

Here Ig acts on S�ipk

through †i o�k , and acts on SpkC1

through �kC1 . We need
to show that these “cancel out,” so that we have a finite, .�1/–connected complex
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inside the homotopy fixed point set and can apply the Segal Conjecture to obtain our
desired result.

Since Ig is acting on SpkC1

through �kC1 , which itself is acting on SpkC1

by the one-
point compactification of the regular representation, we know that Ig acts on SpkC1

by the one-point compactification of a sum of copies of the regular representation of
Ig . To finish the proof of the theorem, we need to show that the action of Ig on S ipk

through †i o�k is also the one-point compactification of a sum of copies of the regular
representation of Ig , even though †i o�k is acting on S ipk

by the wreath product
representation rather than by the regular representation of †i o�k . This is the content
of Proposition 5.2.

Therefore the Ig –equivariant cells of
�
†�1 Cofi;d ^S�ipk

^SpkC1�
start no lower

than the Ig –equivariant cells of †�1 Cofi;d , that is, in dimension 0. Application of
the Segal Conjecture then concludes the proof.

Remark 6.8 Theorem 6.3, as well as Corollary 6.2 have analogues at pD 2, in which
S1 ^ SV is replaced with SW , where W is a real vector space. The proof of the
theorem in the case p D 2 is considerably easier than in the odd-primary case, and so
we omit the details. There are two main reasons for the simpler proof when p D 2.

(1) We do not have to restrict ourselves to odd spheres, and so instead of precompos-
ing the identity functor from spaces to spaces with the functor V 7! S1 ^SV

for a complex vector space V (in order to obtain an odd-dimensional sphere),
we can precompose with W 7! SW for a real vector space W . The resulting
coefficient spectrum is simpler.

(2) The analysis of Fi at odd primes is complicated considerably by the fact that
the action of �kC1 on SpkC1

does not extend to an action of U.pk/. Because
of this, we can not make the often customary identification of spaces with an
action of U.pk/

SpkC1

^morJ
�
Cipk

;CpkC1�
Š SpkC1

^
�
HinU.p

kC1/
�
C

Š SpkC1

^Hi
U.pkC1/C

for the last space above is not even well-defined. However, the term SpkC1

came from the S1 in V 7! S1 ^SV . Thus this issue disappears entirely when
p D 2.
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7 Delooping structure maps: the unitary case

This section establishes a parallel result to Theorem 6.1, but for the p–completed
Taylor tower of V 7! BU.V / studied in work of Arone [2] and Arone–Lesh [4]. As
discussed in those works, the Taylor tower for V 7! BU.V / shares many interesting
properties with the Taylor tower of the identity functor on pointed spaces. Not only are
the layers nontrivial only at powers of p , but other analogies also hold; for example,
the spectra associated to the layers are related to partition complexes, and they are
wedge summands of suspension spectra of homotopy orbit spaces of actions on spheres.
In [4], the authors conjecture an analogue of the Whitehead Conjecture involving
the layers of the p–localized Taylor tower of V 7! BU.V /. The program proposed
involves a delooping of the structure maps in the tower, and the goal of this section
is to contribute to this circle of ideas by establishing that the structure map, which
connects the pk th layer directly to the pkC1 st layer, can be delooped k � 1 times (at
least after p–completion).

By analogy with the notation of Section 6, let DUk.V / denote the pk th layer of the
Taylor tower for V 7! BU.V / completed at p and evaluated at V . Our goal is to
prove the following theorem.

Theorem 7.1 Let k > 0. Let DUk.V / be the pk th layer of the p–completed Weiss
tower of the functor V 7! BU.V / from complex vector spaces to spaces. Then the
.k�1/–fold looping map

�k�1
W hoNat.Bk�1 DUk ;B

k DUkC1/! hoNat.DUk ;B DUkC1/

is surjective on �0 .

Corollary 7.2 Let p be a prime and let nD pk for k > 0. Let DUk.V / be the pk th
layer of the p–completed Weiss tower of BU.�/ evaluated at a finite-dimensional
complex vector space V . Then the connecting map

�k W DUk.V /! B DUkC1.V /

admits a .k�1/–fold delooping in the homotopy category of functors.

The case V DC of the corollary was conjectured in [4].

The outline for the proof of Theorem 7.1 is largely the same as that of Section 6.
However, the proof of the critical delooping result (Theorem 7.3, corresponding to
Theorem 6.3) has different aspects, including an application of the Segal Conjecture
for a nonfinite group, which is what explains the switch to p–completion. Thus in
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this section we only summarize the set-up corresponding to Section 6, but we give the
proof of Theorem 7.3 in detail.

The prerequisite results we need come from [4] and [2]. In the analogy between
the Taylor tower for the identity functor on pointed spaces and the Taylor tower for
the functor V 7! BU.V / on finite-dimensional complex vector spaces, the role of
the transitive elementary abelian subgroup �k � †pk is played by the projective
elementary abelian p–subgroup �k � U.pk/. The role of GLk.Fp/, the Weyl group
of �k in †pk , is played by the symplectic group Sp2k.Fp/, the Weyl group of �k in
U.pk/. There is a Steinberg idempotent �k in Sp2k.Fp/ playing the same role as the
Steinberg idempotent in GLk.Fp/.

Recall from Remark 3.5 that Lp is the p–completion functor. It is proved in [4] that
the infinite loop space DUk.V / has the form

(7–1) DUk.V /'�
k�1 �1

h
�k �Lp†

1
�
SV

�^pk

zh�k

i
(See [4, Theorems 11.1 and 11.2].) If we now let �k be the natural transformation
of functors from finite-dimensional complex vector spaces to pointed spaces that is
the structure map DUk.V /! B DUkC1.V /, we have the situation described in the
following diagram:

(7–2)

�k�1 �1Lp†
1
��

SV
�^pk

zh�k

�
�k�1 �1Lp†

1
��

SV
�^pkC1

zh�kC1

�
:

DUk.V /

�k�1 �1Lp†
1
��

SV
�^pk

zh�k

�
OO

�.V /

DUk.V / B DUkC1.V /
�k.V / // B DUkC1.V /

�k�1 �1Lp†
1
��

SV
�^pkC1

zh�kC1

�
:

�.V /

��

The following theorem is the fundamental delooping result for the unitary case, corre-
sponding to Theorem 6.3 for the homotopy case.

Theorem 7.3 For any nonnegative integer d , the d –fold looping map

(7–3)

hoNat
h
�1Lp†

1
�
SpkV

�
zh�k
; �1Lp†

1
�
SpkC1V

�
zh�kC1

i
??y

hoNat
h
�d�1Lp†

1
�
SpkV

�
zh�k
; �d�1Lp†

1
�
SpkC1V

�
zh�kC1

i
is an epimorphism on �0 .
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To set up the proof of Theorem 7.3, we follow Section 6 and rearrange the target
of (7–3) using adjointness to the form

(7–4) hoNatV
h
Sd
^†1�1

�
LpS�d

^†1SpkV
�
zh�k
; †1.LpSpkC1V /zh�kC1

i
:

The target of (7–4) is the p–completion of a homogeneous functor of degree pkC1 ,
whose representing spectrum is †1

�
U.pkC1/=�kC1

�
C

. In particular, the target is
pkC1 –excisive. For the source, we have the following analogue of Lemma 6.7; note
that arguments from Remark 3.5 show that the natural transformation space in (7–4) is
unaffected if the p–completion is removed from the source.

Lemma 7.4 The functor

Sd
^†1�1

�
S�d
^†1SpkV

�
zh�k

has nontrivial homogeneous layers only in dimensions that are multiples of pk . The
ipk th layer is represented by the spectrum

†1U.ipk/C ^†i o�k
S�.i�1/d ;

where �k acts trivially on S�.i�1/d and †i acts on S�.i�1/d by the dual of the
one-point compactification of d copies of the reduced standard representation.

Proof of Theorem 7.3 In this proof the spectra involved are p–completed. Following
the same reasoning as in the proof of Theorem 6.3 (but with the help of Remark 3.5
when it comes to computing natural transformations into p–completed functors) we
need to show that for 1< i � p ,

(7–5)
h
†�1 Cofi;d ^

�
HinU.p

kC1/C
�
zh�kC1

izh†i o�k

is .�1/–connected. If Ig is the isotropy group of Hig under the action of †i o�k �

�kC1 , then Lemma 6.6 tells us that (7–5) is built by cofibrations from spectra of the
form�
†�1Cofi;d ^

�
†io�k��kC1

Ig C

�
zh�kC1

�zh†i o�k

'
�
†�1 Cofi;d ^.†io�kC/zhIg

�zh†i o�k

'

h
†i o�kC ^

�
†�1 Cofi;d

�
zhIg

izh†i o�k

'
�
Map.†io�kC;†

�1Cofi;d /
zhIg
�zh†i o�k

'
�
†�1 Cofi;d

�zhIg
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To compute this last homotopy fixed point set, we need to know a little more about
the isotropy subgroup Ig as a subgroup of †i o �k . Recall that Ig D f.�;  / 2

.†i o�k/��kC1 j 9 h 2Hi s.t. gg�1 D �hg. We can think of Ig being embedded
in U.pkC1/ as .g�kC1g�1/\ .†i o�k �Hi/. By inspection of the intersection, the
central S1 of �kC1 is contained in Ig , and since Ig ,! �kC1 , we know that Ig is an
extension of S1 by an elementary abelian p–group E .

The subgroup Ig acts on Cofi;d by first projecting to †i o�k , then projecting to †i ,
and then acting through the action of †i on Cofi;d . Thus Cofi;d has a finite number of
cells as an Ig –space (because it has a finite number of cells as a †i –space), and each
cell has the form Ig=K � disk where Ig=K D � if i < p , or possibly Ig=K Š Z=p
if i D p .

Recall that Ig is an extension of the central circle S1 by an elementary abelian p–group
E . We define corresponding subgroups I 0g and .I 0g/n as follows:

1 �! S1 �! Ig �! E �! 1

1 �! Z=p1 �! I 0g �! E �! 1

1 �! Z=pn �! .I 0g/n �! E �! 1

Recall that we have p–completed Cofi;d . The map BI 0g ! BIg is an HZ=p�–
isomorphism, and therefore so is

�
Cofi;d

�zhIg
!
�
Cofi;d

�zhI 0g ;

for example by looking at the Bousfield-Kan spectral sequence for the homotopy groups
of an inverse limit.

We assert that the natural maps
�
Cofi;d

�zhI 0g
!
�
Cofi;d

�zh.I 0g/n induce a map

(7–6)
�
Cofi;d

�zhI 0g
! holim

n

�
Cofi;d

�zh.I 0g/n :
that is an HZ=p�–isomorphism. This is because

�
Cofi;d

�zh.I 0g/n
'
��

Cofi;d

�zhZ=pn�zhE
'
�
Map.BZ=pn;Cofi;d /

�zhE
;
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and so

holim
n

�
Cofi;d

�zh.I 0g/n
' holim

n

�
Map.BZ=pn;Cofi;d /

�zhE

'
�
Map.hocolim

n
BZ=pn;Cofi;d /

�zhE

'
�
Map.BZ=p1;Cofi;d /

�zhE

'
��

Cofi;d

�zhZ=p1�zhE

'
�
Cofi;d

�zhI 0g

We need to show that the right-hand side of (7–6) is 0–connected. By the Segal
Conjecture for finite groups, since Cofi;d is finite and has its first †i –cell in dimension
1, we know that �0

�
Cofi;d

�zh.I0g/n
D 0 for all n. Using the short exact sequence for the

homotopy groups of the homotopy inverse limit of a tower, we are done once we show
that lim1

n �1

�
Cofi;d

�zh.I0g/n
D 0. However, the homotopy groups of

�
Cofi;d

�zh.I0g/n are
finitely generated over the p–adic integers, and this is enough to imply triviality of
lim1 because such groups are compact.

This finishes the proof of Theorem 7.3.
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