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Representations of spaces

WOJCIECH CHACHÓLSKI

JEROME SCHERER

We explain how the notion of homotopy colimits gives rise to that of mapping
spaces, even in categories which are not simplicial. We apply the technique of model
approximations and use elementary properties of the category of spaces to be able to
construct resolutions. We prove that the homotopy category of any monoidal model
category is always a central algebra over the homotopy category of Spaces.

55U35, 18G55; 18G10

1 Introduction

Let C be a category with a chosen class of weak equivalences W (W is a collection of
morphisms in C that satisfies the “2 out of 3” property and contains all isomorphisms).
What does it mean that one can do homotopy theory on .C;W /? For us it means
three things. First, we should be able to perform basic operations in C such as push-
outs/pull-backs and more generally colimits/limits. Second, the derived versions of
these functors (hocolims and holims) should exist. Third, these derived functors should
yield a certain action of the category of simplicial sets Spaces on .C;W / and lead
to mapping spaces. Our attitude is that colimits/limits and their derived functors are
the fundamental ingredients of homotopy theory and the rest should follow from their
properties. This is an alternative to the approach of Hovey presented in [12] and more
in the spirit of what we believe we have learned from Bousfield–Kan [1] and Dwyer et
al [6].

In this paper we study the following functor:

˝l W Spaces�C! Ho.C/ K˝l X WD hocolimKcX

where Ho.C/DCŒW �1� and cX W K!C is the constant functor indexed by the simplex
category of K (see 2.6) whose value is X . We would like ˝l to be the composition
of the localization functor Spaces�C! Ho.Spaces/�Ho.C/ and a functor denoted
by the same symbol ˝l W Ho.Spaces/�Ho.C/! Ho.C/ (homotopy invariance). The
latter should be a homotopy left action (see 2.11 and 2.15), which implies in particular
that, for any X 2Ho.C/, the functor �˝l X W Ho.Spaces/!Ho.C/ has a right adjoint
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map.X;�/. This is in our view the universal characterization of what mapping spaces
should be.

How can this be realized? In order to insure the existence of the localized category
CŒW �1� and the derived functors hocolims and holims satisfying the above conditions,
we need to be able to do some homotopical algebra on .C;W /. One way of formalizing
this is to assume that .C;W / can be given a Quillen (simplicial) model structure [16].
Dwyer and Kan explained in [7] how to enrich such a category with an action of
Spaces using the so called “hammocks”. They also introduce the technique of taking
(co)simplicial resolution of the source (target), further developed by Hovey in [12], as
well as Hirschhorn in [11] to obtain mapping spaces. Alternatively one could try to find
conditions under which a model category is Quillen equivalent to a simplicial model
category, as defined by Quillen in [16, Section II.1]. This has been done by Dugger in
[5] and Rezk, Shipley, and Schwede in [17]. These approaches however do not seem
to emphasize the fundamental role of homotopy colimits and limits. In this context we
should mention also the work of Heller [10].

Since in our view hocolims and holims are so important, we need a suitable set
up in which such constructions can be effectively studied. It turns out that for that
purpose, instead of putting additional assumptions on a model category (cellularity [11],
realization axiom [17], etc), it is more advantageous to relax some of the requirements.
The aim of this paper is to explain the less restrictive approach of model approximations
as introduced in [2]. Recall the following definition.

Definition 1.1 A left model approximation of .C;W / is a pair of adjoint functors
l WM� C Wr satisfying the following conditions:

(1) M is a model category;

(2) l is left adjoint to r ;

(3) if f is a weak equivalence in C , then rf is a weak equivalence in M;

(4) if f is a weak equivalence between cofibrant objects in M, then lf is a weak
equivalence in C ;

(5) for any A 2 C and cofibrant X 2M, if X ! rA is a weak equivalence in M,
then its left adjoint lX !A is a weak equivalence in C .

A pair of adjoint functors l W C �M Wr is a right model approximation of .C;W / if
the duals r_WMop � Cop Wl_ form a left model approximation of .Cop;W /.

Model approximations have several crucial properties. A category admitting a model
approximation (left or right) can be localized with respect to weak equivalences to
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form the homotopy category Ho.C/ [2, Proposition 5.5]. Weak equivalences in such
categories are saturated, ie, a morphism in C belongs to W if and only if the induced
morphism in Ho.C/ is an isomorphism. The category Ho.C/ can be identified with a full
subcategory of Ho.M/ via the functor r or l , depending on whether the approximation
is left or right [2, Proposition 5.5]. A left model approximation l WM� C Wr leads to a
“cofibrant replacement” in C given by the adjoint lQrA!A of a cofibrant replacement
QrA! rA in M [2, Remark 5.10]. In a dual way a right model approximation leads
to a fibrant replacement. These replacements can be used to construct derived functors.
If F W C ! D is a functor for which the composition Fl sends weak equivalences
between cofibrant objects in M to isomorphisms in D , then the left derived functor
of F is given by A 7! F.lQrA/ [2, Proposition 5.9, Remark 5.10]. In the same way
right model approximations can be used to construct right derived functors. A left
model approximation l WM � C Wr induces a natural left model approximation on
the category of functors Fun.I; C/, for any small category I (see Theorem 6.5). A
cofibrant replacement of this model approximation is thus good for constructing the
total left derived functors of the colimit functor colimI W Fun.I; C/! C . Likewise one
constructs the total left derived functor of left Kan extensions, [2, Theorem 11.3(3)].
These derived functors (the homotopy colimits and the homotopy left Kan extensions)
are related to each other by various properties. At a 2–categorical level this has been
formalized by Cisinski in [3] and amounts to saying that the prederivator associated
to any model category is a Grothendieck derivator. The same applies to right model
approximations.

To make the approach of model approximations viable we need one more thing. We
need to show that a model approximation leads in a natural way to an action of Spaces.
The purpose of [2] was to introduce simple geometric techniques to study hocolims
and holims. In this paper we are going to illustrate how to use these techniques further,
which is what motivated us originally. We did not want to just state and prove some
properties of mapping spaces, but more importantly we meant to explain an approach
and provide coherent tools to study them. This will be illustrated by proving the
following theorem (see Proposition 9.4 and Theorem 10.7).

Theorem Assume that .C;W / admits a left model approximation. The functor
˝l W Spaces�C ! Ho.C/ is homotopy invariant and, for any object X 2 C ,
�˝lX W Ho.Spaces/! Ho.C/ has a right adjoint map.X;�/.

Assume that .C;W / admits both a left and a right model approximations. Then, for
any space K , the functor K˝l �W Ho.C/! Ho.C/ is left adjoint to X 7! holimKcX .
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As an application we prove a conjecture made by Hovey in [12, page 119] about the
homotopy category of a monoidal model category. This has been proved independently
by Cisinski in his work on Grothendieck derivators, [4].

The plan of the article is as follows. Section 2 is a list of basic definitions and notation.
In particular we recall what an action of Spaces on a model category is, and how to
construct derived functors. The reader might skip this section and refer to it when
needed. In Section 3 we explain that, unlike arbitrary categories, simplex categories
behave well with respect to pull-backs. A brief reminder about bounded functors
appears then in Section 4. We introduce in Section 5 a simplicial structure on bounded
diagrams indexed by a barycentric subdivision. In Section 6 we see how the geometry
of the simplex category is reflected in the homotopy theory of bounded diagrams. The
next three sections form the core of the paper. Section 7 is basically devoted to prove
an invariance property for homotopy colimits of constant diagrams. In Section 8 we
show that very little is missing for the simplicial structure to be homotopy invariant; for
homotopically constant diagrams, it is so. We are finally ready to construct mapping
spaces in Section 9. The theory is dualized in Section 10. In the final Section 11 we
illustrate our approach by giving an answer to Hovey’s question.

Acknowledgments The first author is supported in part by NSF grant DMS-0296117,
Vetenskapsrådet grant 2001-4296, and Göran Gustafssons Stiftelse, the second author
by FEDER-MEC grant MTM2004-06686 and the program Ramón y Cajal, MEC,
Spain.

2 Notation and set up

2.1 Cat denotes the category of small categories and Spaces the category of simplicial
sets. A simplicial set is also called a space.

2.2 From Section 3 on, categories denoted by the symbols C and D are assumed to
contain all colimits and limits, compare with Quillen’s axiom (MC0) [16].

2.3 A category with weak equivalences is a category C with a chosen collection of
morphisms W , called weak equivalences, which satisfies the “2 out of 3” property
and contains all isomorphisms. Elements in W are denoted by the symbol z!. The
category CŒW �1�, if it exists, is called the homotopy category and is denoted by Ho.C/.
By �C W C! Ho.C/ we denote the localization functor.

2.4 The category of all C–valued functors indexed by a small category I , with natural
transformations as morphisms, is denoted byFun.I; C/. The symbol cX W I!C denotes
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the constant functor indexed by I with value X 2 C . If .C;W / is a category with
weak equivalences, then Fun.I; C/ stands for a category with weak equivalences given
by the object-wise weak equivalences. A functor F W I ! C is called homotopically
constant if there is an object X 2 C and a weak equivalence F ! cX in Fun.I; C/.

2.5 Let I and J be small categories and f W I ! J be a functor. The left and
right adjoints to f �W Fun.J;D/! Fun.I;D/, F 7! F ı f , if they exist, are called
Kan extensions. They are denoted respectively by f k W Fun.I;D/! Fun.J;D/ and
fk W Fun.I;D/ ! Fun.J;D/. These functors can be described explicitly in terms
of the over-categories f # j and under-categories j # f (Mac Lane [15, II.6]):
.f kF /.j /D colimf #j F and .fkF /.j /D limj#f F .

2.6 The simplex category of a simplicial set K , denoted by the same letter in a bold-
face font K, is a category whose objects are simplices of K , or equivalently maps of the
form � W �Œn�!K . The morphisms in K between � W �Œn�!K and � W �Œm�!K

are those maps f W �Œn�!�Œm� for which � D �f . Subject to standard cosimplicial
identities, the morphisms in K are generated by the face and degeneracy morphisms:

�Œn�
di //

!!CC
CC

CC
CC

�ŒnC 1�

{{vvvvvvvvv

K

�ŒnC 1�
si //

##HHHHHHHHH
�Œn�

}}{{
{{

{{
{{

K

A map of spaces f W A! B induces a functor fW A! B. For any simplex � 2 B ,
the functor f # � ! A is a functor between simplex categories given by the map of

spaces lim.�Œn�
�
! B

f
 A/! A. In particular, when f is the identity, the functor

B # � ! B is induced by the map � W �Œn�! B .

2.7 The functor Spaces! Cat, K 7! K, has a right adjoint and therefore converts
colimits in Spaces into colimits in Cat, see Latch–Thomason–Wilson [14]. This
functor also takes pull-backs of spaces into pull-backs of categories. It does not
however preserve final objects and consequently neither products: the simplex category
of a point is the category of finite ordered sets �. For that reason we use the symbol
A � B to denote the simplex category of A�B . The product of the simplex categories
is denoted as usual by A � B. The natural inclusion A � B ! A � B is never an
equivalence of categories, unless A or B is the empty space.

2.8 N W Cat! Spaces denotes the nerve construction [2, Definition 6.3]. It has a left
adjoint and thus it converts limits in Cat into limits in Spaces, see [14].
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2.9 The functor Spaces! Spaces, K 7!N.K/, is called the barycentric subdivision.
It commutes with colimits since it is a left adjoint to the functor that associates to a
space L, the space whose n–simplices are morSpaces.N.Œn�/;L/, [2, 6.11], which is
very similar to the so called Kan’s Ex construction, [13].

2.10 A functor f W I ! J between small categories is called a weak equivalence if
N.f / is a weak equivalence in Spaces. A map of spaces f W A!B is a weak equiv-
alence if and only if the induced functor of simplex categories is a weak equivalence.
For any spaces A and B , the inclusion A � B! A � B is a weak equivalence of
categories.

2.11 A left action of Spaces on C is an enrichment of C over Spaces for which the
space of morphisms has a left adjoint in the first variable. A left action of Spaces on C
can be described explicitly as a functor ˝W Spaces�C! C such that:

(1) there are isomorphisms �Œ0�˝X ŠX natural in X ;

(2) there are coherent isomorphisms .K � L/˝ X Š K ˝ .L˝ X / natural in
K;L 2 Spaces and X 2 C (the explicit coherence diagrams can be found in
Hovey [12, Definition 4.1.6]);

(3) for any X 2 C , �˝X W Spaces! C has a right adjoint map.X;�/.

Note that if C is closed under taking colimits, then condition (3) can be replaced by
the requirement:

(3’) for any X 2 C , �˝X W Spaces! C commutes with arbitrary colimits.

Thus what we call in this paper a left action of the category Spaces is a special case of
what is called a left Spaces–module structure on C in [12, Definition 4.1.6], namely
one in which the tensor �˝X has a right adjoint.

2.12 An enriched functor between categories enriched over Spaces is called simplicial.
A simplicial functor between left actions on C and D can be described explicitly as a
functor �W C!D together with a natural transformation �W K˝�.X /! �.K˝X /

which satisfies the following coherence conditions:

(1) the composition �Œ0�˝�.X /
�
�!�.�Œ0�˝X /Š�.X / is the natural isomorphism

given in 2.11(1);
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(2) for any X 2 C and K;L 2 Spaces, the following diagram commutes, where the
indicated isomorphisms are induced by the coherent isomorphism in 2.11(2):

.K �L/˝�.X /
� //

Š

��

�
�
.K �L/˝X

�
Š

��
K˝

�
L˝�.X /

� K˝� // K˝�.L˝X /
� // �

�
K˝ .L˝X /

�
2.13 A right action of Spaces on C is an enrichment of C over Spaces, where the
space of morphisms has a right adjoint in the second variable. A right action of Spaces
on C can be described explicitly as a functor homW Spacesop

�C! C such that:

(1d) there are isomorphisms X Š hom.�Œ0�;X / natural in X ;

(2d) there are coherent isomorphism hom.K�L;X /Š hom
�
K; hom.L;X /

�
natural

in X 2 C and K;L 2 Spaces;

(3d) for any X 2 C , hom.�;X /W Spacesop
! C has a left adjoint map.�;X /.

Note that hom is a right action of Spaces on C if and only if homop is a left action of
Spaces on Cop .

A simplicial functor between right actions of Spaces on C and D can be described
in a explicit way as a functor �W C ! D together with a natural transformation
�
�
homC.K;Y /

�
! homD

�
K; �.X /

�
satisfying coherence conditions analogous to

those in 2.12.

2.14 A simplicial structure on C is an enrichment of C over Spaces where the space
of morphisms has a left adjoint in the first variable and a right adjoint in the second
variable. If such an enrichment has been fixed, C is called a simplicial category.

A simplicial structure can be described explicitly in two dual ways; first, as a left action
˝W Spaces�C! C which satisfies the extra condition:

(4) The functor K˝�W C! C has a right adjoint hom.K;�/ for any K .

In this case the assignment K 7!hom.K;X / can be extended to a functor Spacesop
!C

which is the right adjoint to map.�;X /. In particular hom defines a right action of
Spaces on C .

Dually a simplicial structure on C can also be described as a right action

hom.�;�/W Spacesop
�C! C

for which:
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(4d) hom.K;�/W C! C has a left adjoint K˝�, for any space K .

2.15 If instead of Spaces we take the homotopy category Ho.Spaces/ in the above
explicit descriptions of actions, then we get the notions of homotopy (left/right) actions
of Spaces on C and simplicial functors. A weak simplicial structure on C is, by
definition, a homotopy action. If such an action is fixed, C is called a weak simplicial
category.

2.16 If ˝W Ho.Spaces/� C! C is a homotopy left action, then the set of morphisms
morC.X;Y / can be identified with the set of connected components �0map.X;Y /. It
follows that a simplicial functor between homotopy left actions on C and D induces
a natural transformation mapC.X;Y / ! mapD

�
�.X /; �.Y /

�
which on the set of

connected components coincides with � . The same applies to simplicial functors of
homotopy right actions.

2.17 Let .C;W / and .D;V / be categories with weak equivalences whose homotopy
categories exist. The total left derived functor of ˆW C!D is the left Kan extension [15]
of �C W C! Ho.C/ applied to the composition of ˆ and �DW D! Ho.D/. Explicitly,
it is a functor LˆW C! Ho.D/ with a natural transformation Lˆ! �Dˆ which is
terminal among natural transformations with the range �Dˆ and whose domains are
functors factoring through �C W C! Ho.C/.

A left replacement for ˆW C ! D is a functor QW C ! C and a natural morphism
QX !X in C which is a weak equivalence such that �DˆQ! �Dˆ is the total left
derived functor of ˆ.

The total right derived functor of ˆW C!D is the right Kan extension [15] of �C W C!
Ho.C/ applied to the composition of �DW D! Ho.D/ and ˆ. A right replacement
for ˆ is a functor RW C! C and a natural morphism X !RX in C which is a weak
equivalence such that �Dˆ! �DˆR is the total right derived functor of ˆ.

2.18 We say that .C;W / can be left localized if, for any small category I , the
homotopy category of Fun.I; C/ exists and the functor colimI W Fun.I; C/! C has a
left replacement. In particular the total left derived functor of colimI exists and is
denoted by hocolimI W Fun.I; C/! Ho.C/. It is given by the formula hocolimI F D

�C.colimI QF /.

We say that .C;W / can be right localized if, for any small category I , the homotopy
category of Fun.I; C/ exists and the functor limI W Fun.I; C/! C has a right replace-
ment. In particular the total right derived functor of limI exists and is denoted by
holimI W Fun.I; C/! Ho.C/.
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2.19 Assume that .C;W / can be left localized. By the universal property, for any
F W J!C and f W I!J , there is a morphism hocolimIf

�F!hocolimJ F in Ho.C/
natural with respect to f and F . This morphism can be described in terms of left
replacements QI and QJ of colimI and colimJ . It is represented by the following
sequence of morphisms in C :

colimI .QIf
�F / z colimI .QIf

�QJ F /! colimI .f
�QJ F /! colimJ .QJ F /:

In the case J is the category with one object and one morphism, this leads to a functor:

˝l W Cat�C! Ho.C/ I ˝l X WD hocolimI cX:

Dually, when .C;W / can be right localized, by the universal property, for any F W J!C
and f W I ! J , there is a morphism holimJ F ! holimIf

�F in Ho.C/ natural with
respect to f and F . In the case J is the category with one object and one morphism,
this leads to a functor:

rhomW Catop
�C! Ho.C/ rhom.I;X / WD holimI cX:

2.20 Assume that .C;W / and .D;V / are categories that can be left localized. Let
I be a small category, F W I ! C be a functor, and QC and QD be left replacements
of colimI W Fun.I; C/! C and colimI W Fun.I;D/! D respectively. If ˆW C ! D
is a functor that sends weak equivalences in C to weak equivalences in D , then the
following sequence of morphisms in D :

colimI QDˆF z colimI QDˆQCF ! colimIˆQCF !ˆ.colimI QCF /

leads to a morphism hocolimIˆF ! ˆ.hocolimI F / in Ho.D/. This morphism is
natural in F and does not depend on the choice of the left replacements QC and QD .

Dually, let .C;W / and .D;V / be categories that can be right localized. Assume that
ˆW C!D sends weak equivalences in C to weak equivalences in D . As in the case
of hocolims, for any small category I and any functor F W I ! C , there is a natural
morphism ˆ.holimI F /! holimIˆF in Ho.D/.

3 Simplex categories

To understand actions of Spaces one can try to look at the problem locally and study
functors indexed by simplex categories 2.6. Such functors are called representations of
the indexing space. What is so special about simplex categories that enables us to say
something about their representations?
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Simplex categories have one important advantage over arbitrary small categories of
which we give now an elementary illustration. Let gW I ! X be a functor of small
categories and GW I ! C be a functor. Let us look for conditions under which the
operation G 7! gkG commutes with the base change. Explicitly, consider a pull-back
of small categories:

P
f1 //

g1

��

I

g

��
J

f // X

For any j 2J , there is a functor of over-categories g1 # j !g # f .j /. These functors
induce a natural transformation:

.gk
1f
�

1 G/.j /D colimg1#j f
�

1 G! colimg#f .j/G D .f
�gkG/.j /:

We ask: when is this natural transformation an isomorphism? If G D g�F , for some
F W X ! C , this natural transformation is of the form:

g1
kg1
�f �F D g1

kf1
�g�F ! f �gkg�F:

We could then apply f k to it and ask: when is .fg1/
k.fg1/

�F ! f kf �gkg�F an
isomorphism? In particular, when is the operation F 7! f kf �gkg�F symmetric with
respect to f and g?

Let us look at two examples.

Example 3.1 First a negative case. Consider a pull-back of categories:

∅
f1 //

g1

��

1

g

��
0

f // f0! 1g

and a functor fA! BgW f0! 1g ! Spaces. It can be verified that:

gkg�fA! Bg D f∅! Bg and f kf �fA! Bg D fA
id
!Ag:

In particular f kf �gkg�fA! Bg D f∅! ∅g does not coincide with the functor
gkg�f kf �fA! Bg D f∅!Ag in general.
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Here is a positive case. Consider a pull-back of categories:

∅
f1 //

g1

��

1

g

��
0

f // f0! 01 1g

and a functor fA! B C gW f0! 01 1g ! Spaces. In this case:

gkg�fA! B C g D f∅! C
id
 C g

f kf �fA! B C g D fA
id
!A ∅g:

In particular:
f kf �gkg�fA! B C g D f∅!∅ ∅g
gkg�f kf �fA! B C g D f∅!∅ ∅g

which agrees with .gf1/
k.gf1/

�fA! B C g.

What is so special about the second example? It turns out that it is an example of
functors indexed by simplex categories. The reason this does not work in general is
the fact that arbitrary categories can have vastly different over-categories. Simplex
categories on the other hand look the same locally. For any simplex � W �Œn�!K , the
functor from the over-category K # �!K is isomorphic to the functor induced by the
map � W �Œn�!K . Thus, locally, all simplex categories look like standard simplices.

Proposition 3.2 Let the following be a pull-back square of spaces:

P
f1 //

g1

��

A

g

��
B

f // D

For any functor GW A ! C , the natural transformation g1
kf1
�G ! f�gkG is an

isomorphism. In particular, for any figure F W D ! C , the natural transformations
g1

kg1
�f�F ! f�gkg�F and .fg1/

k.fg1/
�F ! fkf�gkg�F are isomorphisms and the

operation F 7! fkf�gkg�F is symmetric with respect to f and g .

Proof Note that for any simplex � W �Œn� ! B , the over-categories g1 # � and
g # f .�/ can be identified with the simplex category of the pull-back:

lim.�Œn�
�
! B

g1
 P /:

Moreover the functor g1 # � ! g # f .�/ is an isomorphism.
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4 Bounded functors

Simplex categories have another advantage. There are a lot of geometric constructions
that can be performed on spaces. These constructions often translate well to operations
on representations. For example, fix a functor H W I ! Spaces. The simplex category
of colimI H can be identified with the colimit of H in the category of small categories.
A covariant functor F indexed by colimI H consists of the following data:

(1) for every object i in I , a functor Fi W H.i/! C ;

(2) for every morphism ˛W i ! j in I , Fi W H.i/! C should coincide with the

composition H.i/
H.˛/
�! H.j /

Fj
�! C .

This decomposition yields an isomorphism colimcolimI HF Š colimI colimH.i/Fi , see
[2, Proposition 8.2].

By applying the above procedure inductively, we can calculate colimits using the cell
decomposition of the indexing space. Diagrams indexed by the standard simplices
�Œn� play the role of fundamental building blocks in this process. Unfortunately
representations of �Œn� are complicated. For example, the simplex category of �Œ0� is
equivalent to the category of finite ordered sets and so its representations are cosimplicial
and simplicial objects, depending on variance. For that reason we need to make
additional assumptions on the functors considered. We restrict our attention to diagrams
that reflect the geometry of the indexing space more directly. A functor F , indexed by a
simplex category A, is called bounded [2, Definition 10.1] if it assigns an isomorphism
to any morphism of the form si W �ŒnC 1�!�Œn� in A.

If S denotes the set of all these degeneracy morphisms in A, then a bounded functor
is nothing else but a functor indexed by the localized category AŒS�1�. Depending
on the variance, the categories of bounded diagrams are denoted by Funb.A; C/ and
Funb.Aop; C/.

An important observation is that the degeneracy morphisms in A do not form any
essential loop. Any bounded functor is naturally isomorphic to a functor that assigns
identities to morphisms in S [2, Proposition 10.3]. This can be therefore assumed
about any considered bounded functor.

Example 4.1 The “triviality” of S does not imply in general that the localization
functor A! AŒS�1� is a weak equivalence (see 2.10). Let:

AD colim.�Œ3�=�Œ2�
�
 ��Œ3; 1� ,!�Œ3�/
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where � W �Œ3; 1�!�Œ3�=�Œ2� is the composition of �Œ3; 1� ,!�Œ3� and the quotient
map d1W �Œ2�!�Œ3�!�Œ3�=�Œ2�. Although A is contractible, the category AŒS�1�

is not. The nerve N.AŒS�1�/ is weakly equivalent to S2 .

Let A D �Œn�=@�Œn�. For n > 1, the category AŒS�1� is equivalent to � ! � (the
category with two objects and one non-identity morphism).

It is clear that, for any map of spaces f W A! B , f�W Fun.B; C/! Fun.A; C/ takes
bounded functors to bounded functors. The same is also true for the left Kan ex-
tension fk W Fun.A; C/! Fun.B; C/ [2, Theorem 33.1]. It follows that the functors
fk W Funb.A; C/� Funb.B; C/ Wf� form an adjoint pair.

5 Subdivision

In this section we study bounded functors indexed by barycentric subdivisions. Recall
that the subdivision of A is given by the nerve N.A/ of the simplex category of a
space A (see 2.9).

A map of spaces f W A! B is called reduced if it sends non-degenerate simplices
in A to non-degenerate simplices in B [2, Definition 12.9]. Reduced maps can be
characterized using a lifting test: the map f W A! B is reduced if and only if in any
commutative diagram of the form:

�ŒnC 1�

si

��

// A

f

��
�Œn� // B

there is a lift, ie a morphism �Œn�!A for which the resulting diagram with five arrows
commutes [2, Proposition 18.5]. It follows that a pull-back of a reduced map is also
reduced.

The subdivision operation has two crucial properties. The first is the following proposi-
tion.

Proposition 5.1 [2, Example 12.10] For any map of spaces f W A! B , the induced
map N.f/W N.A/!N.B/ is reduced.

Second, the subdivision N.A/ contains enough combinatorial information to induce a
non-trivial simplicial structure on Funb

�
N.A/; C

�
(the non-triviality will follow from

Corollary 8.6). Here is the description of this structure. Choose a space K and denote

Algebraic & Geometric Topology, Volume 8 (2008)



258 Wojciech Chachólski and Jerome Scherer

by � W N.K � A/!N.A/ the subdivision of the projection pK W K�A!A onto the
second factor. Define:

K˝F WD �k��F:

This construction is natural in F and K and hence defines a functor:

˝W Spaces�Funb
�
N.A/; C

�
! Funb

�
N.A/; C

�
:

Example 5.2 In general, we do not know any explicit formula describing K ˝ F

in terms of the values of F . However if F is a composition of GW Aop ! C and
�W N.A/! Aop , �.�n! �n�1! � � � ! �0/ WD �n , then K˝F is given by:

.�n! �n�1! � � � ! �0/ 7!
a

Kj�nj

G.�n/:

This formula should be compared with the simplicial structure introduced by Quillen
on simplicial objects in [16, II.1 Proposition 2].

Proposition 5.3 For any space A, the functor ˝ defines a simplicial structure on
Funb

�
N.A/; C

�
(see 2.14 and 2.11).

Proof We need to check four conditions (see 2.14). It is clear that the natural morphism
�Œ0�˝F D idk id�F ! F is an isomorphism and so the first requirement is satisfied.

Consider two spaces K and L and a pull-back square:

N.K � L � A/
x�K //

x�L

��

N.L � A/

�L

��
N.K � A/

�K // N.A/

According to Proposition 3.2, for any F W N.A/! C , the transformation:

.K�L/˝F D .�K x�L/
k.�K x�L/

�F ! .�K /
k.�K /

�.�L/
k.�L/

�F DK˝ .L˝F /

is an isomorphism. Coherence of these isomorphisms follows directly from the coher-
ence of products in Spaces, which proves the second requirement.

To prove condition (3’), we need to show that, for a fixed F 2 Funb
�
N.A/; C

�
, the

functor �˝F commutes with arbitrary colimits. Let H W I ! Spaces be a functor.
Observe that the map colimI .H �A/! .colimI H /�A is an isomorphism of spaces
and so is the map colimI N.H�A/!N

�
.colimI H/�A

�
as the subdivision commutes

with arbitrary colimits (see 2.9). Next, choose a simplex � W �Œn�!N.A/ and define:

P .i/ WD lim
�
�Œn�

�
!N.A/

�i
 N

�
H.i/� A

��
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where �i is the subdivision of the projection pr2W H.i/�A!A. The colimit of P

can be identified with the pull-back:

colimI P Š lim
�
�Œn�

�
!N.A/

�
 N

�
.colimI H/� A

��
:

These isomorphisms yield the following identifications:�
.colimI H /˝F

�
.�/D .�k��F /.�/Š colimcolimI PF Š colimi2I colimP.i/F

D colimi2I

�
.�i/

k.�i/
�F
�
.�/D colimI .H ˝F /.�/:

Note that for a fixed K , the functor K˝� has a right adjoint as it is a composition of
two functors that admit right adjoints (here we use our general assumption that C has
all limits, see 2.2). This proves the fourth requirement.

Taking the subdivision in Proposition 5.3 is crucial. In a similar way one could define a
simplicial structure on Funb.A; C/ by K˝F WD .pK /

k.pK /
�F , where pK W K�A!A

is the projection onto the second factor. This however does not give anything interesting
as the obtained structure is trivial.

5.4 Naturality How functorial is this simplicial structure on Funb.N.A/; C/? Con-
sider the following pull-back of spaces associated with a map f W A! B and a space
K :

N.K � A/

N.id�f/
��

� // N.A/

N.f/
��

N.K � B/
�1 // N.B/

where the horizontal maps are the subdivisions of the projections. For any bounded
diagram F 2 Funb.N.B/; C/, there is a natural transformation:

K˝
�
N.f/�F

�
D �k��N.f/�F ! N.f/�.�1/

k.�1/
�F D N.f/�.K˝F /

which is an isomorphism by Proposition 3.2. Note that this isomorphism is natural
with respect to the variables K and F . Together with this isomorphism the functor
N.f/�W Funb.N.B/; C/! Funb.N.A/; C/ becomes a simplicial functor (see 2.12).

For any G 2 Funb.N.A/; C/, there is a natural transformation:

N.id � f/k��G! .�1/
�N.f/kG

which is an isomorphism again by Proposition 3.2. We can apply .�1/
k to it and get a

natural isomorphism:

N.f/k.K˝G/D .�1/
kN.id � f/k��G! .�1/

k.�1/
�N.f/kG DK˝

�
N.f/kG

�
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where we identified K˝G D �k��G and used the commutativity of the above pull-
back square. It is not difficult to see that this isomorphism is natural with respect to
K and G . The functor N.f/k W Funb

�
N.A/; C

�
! Funb

�
N.B/; C

�
, together with the

inverse of this isomorphism, becomes a simplicial functor.

Let �W C!D be a functor and K be a simplicial set. Consider the following pull-back
of spaces:

P� //

��

N.K � A/

�

��
�Œn�

� // N.A/

By the universal property of the colimit construction, for any F W N.A/! C , there is a
morphism in D :�

K˝ .�F /
�
.�/D colimP� .�F�/! �.colimP�F�/D �.K˝F /.�/:

These morphisms form a natural transformation K˝ .�F /! �.K˝F / functorial
with respect to the variables K and F . With this natural transformation, the functor
��W Funb

�
N.A/; C

�
! Funb

�
N.A/;D

�
becomes a simplicial functor.

6 Homotopy theory of bounded functors

Simplex categories are also rather special from the homotopy point of view.

Theorem 6.1 [2, Theorem 21.1] Let M be a model category. The following de-
scribes a model structure on Funb.A;M/:

� �W F ! G is a weak equivalence (fibration) if, for any simplex � 2 A,
�� W F.�/!G.�/ is a weak equivalence (fibration) in M;

� �W F ! G is an (acyclic) cofibration if, for any non-degenerate simplex
� W �Œn�!A, the morphism:

colim
�
F.�/ colim@�Œn�F ! colim@�Œn�G

�
!G.�/

is an (acyclic) cofibration in M.

The description of (acyclic) cofibrations in Theorem 6.1 can be used by induction on
the cell attachment to show the following proposition.
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Proposition 6.2 [2, Proposition 20.1] If �W F ! G is an (acyclic) cofibration in
Funb.A;M/, then, for any subspace X �A, the morphism:

colim
�
colimXG

�
 colimXF ! colimAF

�
,! colimAG

is an (acyclic) cofibration in M.

How functorial is this model structure?

Proposition 6.3 Let f W A! B be a map of Spaces.

(1) If � is an (acyclic) cofibration in Funb.A;M/, then fk� is an (acyclic) cofibra-
tion in Funb.B;M/ [2, Theorem 11.2.]. In particular colimA� is an (acyclic)
cofibration in M.

(2) If f is reduced and � is an (acyclic) cofibration in Funb.B;M/, then so is f��
in Funb.A;M/.

(3) If � is an (acyclic) cofibration in Funb.N.B/;M/, then so is N.f/�� in the
category Funb.N.A/;M/.

The model structure given in Theorem 6.1 was introduced to study homotopy invariance
of the colimit operation. The motivation was to explain the following Theorem.

Theorem 6.4 [2, Theorem 20.3, Corollary 21.4] Let �W F !G be a natural trans-
formation in Funb.A;M/. If � is a weak equivalence between cofibrant objects, then
so is colimA� .

Theorem 6.4 implies that the functor colimAW Funb.A;M/!M has a left replace-
ment (see 2.17) given by a cofibrant replacement Q in Funb.A;M/. In particu-
lar its total left derived functor denoted by ocolimAW Funb.A;M/ ! Ho.M/ as-
signs to a bounded functor F the object colimA.QF / in M [2, Proposition 14.2].
The functor ocolimA coincides with hocolimAŒS�1� (the total left derived functor of
colimAŒS�1�W Fun.AŒS�1�;M/!M). In general ocolimA is not the restriction of
the total left derived functor of colimAW Fun.A;M/!M. To construct hocolimA an
additional step is necessary: A needs to be subdivided first. This works in general for
diagrams indexed by any small category I and with values in any category that admits
a left model approximation.

Theorem 6.5 [2, Theorem 11.3] Let I be a small category, �W N.I/!I the forgetful
functor .in! � � � ! i0/ 7! i0 and l WM� C Wr a left model approximation. Then the
following functors form a left model approximation:

l�k
W Funb.N.I/;M

�
� Fun.I; C/ Wr��:
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Moreover, F 7! l�kQ.r��F / is a left replacement for colimI W Fun.I; C/! C .

Corollary 6.6 If .C;W / admits a left model approximation, then it can be left local-
ized (see 2.18). In particular there is a functor ˝l W Cat�C ! Ho.C/ defined by the
assignment .I;X / 7! hocolimI cX .

Proof According to Theorem 6.5, any functor F W I! C can be modified functorially
to QI F WD l�kQ.r��F / so that colimI QI F represents hocolimI F in Ho.C/.

For categories admitting left model approximations, homotopy colimits can be charac-
terized in an alternative way.

Corollary 6.7 Assume that .C;W / admits a left model approximation. The functor
hocolimI W Ho

�
Fun.I; C/

�
! Ho.C/ is then left adjoint to the constant diagram functor

cW Ho.C/! Ho
�
Fun.I; C/

�
.

Proof If M is a model category, then colimKW Funb.K;M/!M preserves (acyclic)
cofibrations (Proposition 6.3). Thus by [8, Theorem 9.7], the total derived functors
of the adjoint functors colimKW Funb.K;M/ � M W c also form an adjoint pair
ocolimKW Ho.Funb

�
K;M/

�
� Ho.M/ Wc .

Choose a left model approximation l WM�C Wr . Let F W I!C be a functor and Y an
object in C . We have the following bijections between sets of morphisms respectively
in Ho

�
Fun.I; C/

�
, Ho

�
Funb.N.I/;M/

�
, Ho.M/, and Ho.C/:

ŒF; cY �
.a/
Š Œr��F; r��cY �D Œr��F; crY �

.b/
Š ŒocolimN.I /r�

�F; rY �

.c/
Š ŒL.l/ocolimN.I /r�

�F;Y �D ŒhocolimI F;Y �

where (a) follows from the fact that l�k W Funb
�
N.I/;M

�
� Fun.I; C/ Wr�� is a left

model approximation (Theorem 6.5) and [2, Proposition 5.5], (b) is a consequence of
adjointness of ocolimN.I / and c , and the last bijection (c) follows from the following
Lemma 6.8.

Lemma 6.8 If l WM � C W r is a left model approximation, then the total derived
functors induce an adjoint pair L.l/W Ho.M/� Ho.C/ Wr .

Proof The lemma is a consequence of two facts. First r W Ho.C/!Ho.M/ is a fully-
faithful embedding [2, Proposition 5.5]. Second L.l/.rX /! X is an isomorphism in
Ho.C/, for any X .
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7 Constant functors

Assume that .C;W / admits a left model approximation. To understand how this
structure leads to an action of Spaces on C we are going to study properties of homotopy
colimits of constant functors. The fundamental observation is the following proposition.

Proposition 7.1 If f W I ! J is a weak equivalence of small categories, then, for any
X 2 C , f ˝l X W I ˝l X ! J ˝l X is an isomorphism in Ho.C/.

Corollary 7.2 If f W K! L is a weak equivalence of spaces, then, for any X 2 C ,
f˝l X W K˝l X ! L˝l X is an isomorphism in Ho.C/.

Corollary 7.2 implies that the functor .K;X / 7! hocolimKcX DK˝l X is a compo-
sition of the localization Spaces�C! Ho.Spaces/�Ho.C/ and a functor which we
denote by the same symbol:

˝l W Ho.Spaces/�Ho.C/! Ho.C/:

The aim of this paper is to understand to what extent ˝l is a homotopy action. We
start by proving that it satisfies the first two requirements of 2.16 and will show in
Proposition 9.4 that property (3) holds as well.

Corollary 7.3

(1) There are isomorphisms Œ0�˝l X ŠX in Ho.C/ natural in X 2 Ho.C/.

(2) There are coherent isomorphisms .K � L/˝l X Š K˝l .L˝l X / in Ho.C/
natural in X 2 Ho.C/ and K;L 2 Ho.Spaces/.

Proof Part (1) follows from Proposition 7.1 and the fact that the functor between the
simplex category of �Œ0� and the category with only one object and one morphism is a
weak equivalence of categories.

Recall that K � L ,!K�L is a weak equivalence of categories. Thus by Proposition
7.1, .K � L/˝l X ! .K�L/˝l X is an isomorphism in Ho.C/. According to [2,
Theorem 24.9] there is a further isomorphism in Ho.C/:

.K�L/˝l X D hocolimK�LcX Š hocolimKhocolimLcX DK˝l .L˝l X /:

The coherence of these isomorphisms is straightforward. This concludes the proof.
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Proof of Proposition 7.1 Since �W N.I/op! I; .in! � � � ! i0/ 7! in is terminal [2,
Theorem 29.1], the morphism hocolimN.I /opcX ! hocolimI cX is an isomorphism
in Ho.C/ for any X 2 C . To prove the proposition it remains to show that a weak
equivalence of spaces f W K ! L induces an isomorphism fop˝l X W Kop˝l X !

Lop˝l X in Ho.C/.

Let S be the collection of maps of spaces f W K!L such that, for any category .C;W /

admitting a left model approximation and for any X 2 C , fop˝l X is an isomorphism
in Ho.C/. We claim that:

(1) If K and L are contractible, then any f W K!L belongs to S.

(2) Maps of the form �Œn; k� ,!�Œn� belong to S.

(3) S is closed under retracts.

(4) S is closed under arbitrary sums.

(5) If an inclusion f W K ,! L belongs to S, then, for any map K! A, so does

the inclusion A ,! colim.A K
f
,!L/.

(6) If a sequence of inclusions Ki ,! KiC1 (i > 0) belong to S, then so does
K1 ,! colimi>0Ki .

(7) A one-sided inverse of an element in S belongs to S.

Note that properties (2)–(6) imply that any trivial cofibration of spaces belongs to S.
And since any weak equivalence can be factored as a trivial cofibration followed by a
left inverse of a trivial cofibration, the proposition clearly follows from property (7).
Let us thus prove the claim.

Property (1) is a consequence of [2, Corollary 29.2] and (2) is a particular case of it.
Property (3) is obvious and property (7) follows from a “two-out-of-three argument”.
Since the arguments for (4), (5), and (6) are basically the same, we present the details
of how to prove (5) only.

Set D to be colim.A K
f
,!L/ and fix a left model approximation l WM� C Wr .

For an object X 2 C , choose a cofibrant replacement QX in Funb
�
N.Dop/;M

�
of

the constant diagram crX . Consider next the following push-out square of spaces:

N.Kop/
� � N.fop/ //

��

N.Lop/

h
��

N.Aop/
� � // N.Dop/

Algebraic & Geometric Topology, Volume 8 (2008)



Representations of spaces 265

Note that all the maps in this diagram are reduced and the horizontal maps are cofi-
brations. It follows that h�QX is cofibrant in Funb

�
N.Lop/;M

�
and consequently

the morphism colimN.Kop/QX ! colimN.Lop/QX is a cofibration (Proposition 6.2).
Moreover it is an acyclic cofibration as f is assumed to be in S. This shows that
colimN.Aop/QX ! colimN.Dop/QX is also an acyclic cofibration between cofibrant
objects. The morphism l.colimN.Aop/QX /! l.colimN.Dop/QX / is therefore a weak
equivalence in C . Since it can be identified with Aop˝l X ! Dop˝l X , the claim is
proven.

8 An almost simplicial model structure

Let M be a model category and A be a space. The category Funb
�
N.A/;M

�
has

both a model structure (Theorem 6.1) and a simplicial structure (Proposition 5.3). How
compatible are they? To what extent is it a simplicial model category? How related are
the functors:

˝l W Spaces�Funb
�
N.A/;M

�
! Ho

�
Funb.N.A/;M/

�
˝W Spaces�Funb

�
N.A/;M

�
! Funb

�
N.A/;M

�
?

Example 8.1 Let us choose a simplex � W �Œ0�!N.A/. By definition it is given by
an object in A, ie, a map �Œn�! A. Let F 2 Funb

�
N.A/;Spaces

�
be a cofibrant

diagram such that F.�/ 6D∅. Note that:

lim
�
�Œ0�

�
�!N.A/

�
 �N.Œ1�� A/

�
D

a
mor.Œn�;Œ1�/

�Œ0�:

Therefore .�Œ1�˝F /.�/D�k��FD
`

mor.Œn�;Œ1�/ F.�/ which is not weakly equivalent
to F.�/. It follows that the map �Œ1�!�Œ0� does not induce a weak equivalence of
functors �Œ1�˝F !�Œ0�˝F D F .

Thus the operation �˝ F does not preserve weak equivalences, and consequently
Funb

�
N.A/;Spaces

�
is not a simplicial model category. Further, since the functor

�˝l F preserves weak equivalences (see Corollary 7.2), the objects �Œ1�˝F and
Œ1�˝l F are not isomorphic in Ho

�
Funb.N.A/;Spaces/

�
.

Despite this negative example, we are going to show that only half of Quillen’s axiom
(SM7) [16] does not hold for Funb

�
N.A/;M

�
to be a simplicial model category.

Moreover we are going to prove that, for any homotopically constant and cofibrant
F 2 Funb

�
N.A/;M

�
, colimN.A/.K˝F / and ocolimN.A/.K˝l F / (see the remark
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after Theorem 6.4) are isomorphic in Ho.M/, although K˝F and K˝l F might
fail to be so in Ho

�
Funb.N.A/;M/

�
.

Let �W F!G be a morphism in Funb
�
N.A/;M

�
and f W K!L be a map of spaces.

Define:
H WD colim.L˝F

f˝F
 ���K˝F

K˝�
���!K˝G/:

Let  W H!L˝G in Funb
�
N.A/;M

�
be induced by f , � , and the universal property

of the colimit. The following proposition shows that half of Quillen’s axiom (SM7)
[16] holds for the simplicial structure introduced in Section 5.

Proposition 8.2 If f W K ,!L is an inclusion of spaces and �W F!G is an (acyclic)
cofibration in Funb

�
N.A/;M

�
, then  W H ! L˝G is an (acyclic) cofibration in

Funb
�
N.A/;M

�
.

Proof We need to show that, for a non-degenerate � W �Œn�!N.A/, the morphism:

i W colim
�
H.�/ colim@�Œn�H ! colim@�Œn�.L˝G/

�
�! .L˝G/.�/

is an (acyclic) cofibration in M (Theorem 6.1). To identify both sides of this morphism
consider the following commutative diagram, where all the squares are pull-backs:

@P
� � //

� _

��

P //
� _

��

N.K � A/
� _

��
@Q

� � //

��

Q //

p

��

N.L � A/

��
@�Œn�

� � // �Œn�
� // N.A/

All the vertical maps in this diagram are reduced, as they are pull-backs of reduced
maps (Proposition 5.1). Moreover, since @Q ,!Q and P ,!Q are inclusions, the map
R WD colim.@Q @P !P /!Q is a monomorphism. The fact that pW Q!�Œn� is
reduced, implies that the only non-degenerate simplices in Q n @Q are of dimension n

and p sends them to the only non-degenerate simplex of dimension n in �Œn�. As �
is non degenerate in N.A/ and .Q nR/� .Q n @Q/, it follows that the composition
�p takes non-degenerate simplices in Q nR to non-degenerate simplices in N.A/.

The spaces in this diagram can be used to make the following identifications:

colim@�Œn�.L˝F / D colim@QF .L˝F /.�/ D colimQF

colim@�Œn�.L˝G/ D colim@QG .L˝G/.�/ D colimQG

colim@�Œn�.K˝F / D colim@PF .K˝F /.�/ D colimPF

colim@�Œn�.K˝G/ D colim@PG .K˝G/.�/ D colimPG:
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Thus the left hand side of the morphism i coincides with the colimit of the cube:

colim@PF //

��

wwppppppppppp
colimPF

xxqqqqqqqqqq

��

colim@PG //

��

colimPG

colim@QF //

xxppppppppppp
colimQF

colim@QG

Note that:

colim
�
colim@QF  colim@PF ! colimPF

�
D colimRF

colim
�
colim@QG colim@PG! colimPG

�
D colimRG:

Thomason’s [2, Theorem 26.8] permits in general to decompose the (ho)colimit over a
Grothendieck construction into simpler (ho)colimits. In the particular case of a cube as
above, [2, Example 38.2] shows that the colimit can be also expressed as a pushout
(see also Goodwillie [9, Claim 2.8]):

colim.colimQF  colimRF ,! colimRG/:

Moreover i can be identified with the morphism induced by the inclusion R�Q and
the natural transformation �W F !G :

colim.colimQF  colimRF ,! colimRG/! colimQG:

We can now apply Proposition 6.2 to conclude that this morphism is an (acyclic)
cofibration in M.

Although in general the operation K 7!K˝F is not homotopy invariant (Example
8.1), it behaves well on homotopically constant diagrams.

Proposition 8.3 Let F 2 Funb
�
N.A/;M

�
be homotopically constant, 2.4, and cofi-

brant. Then:

(1) For any a weak equivalence of spaces f W K ! L, the induced morphism
colimN.A/.f ˝F /W colimN.A/.K˝F /! colimN.A/.L˝F / is a weak equiva-
lence in M.
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(2) There is an isomorphism colimN.A/.K˝F /Š ocolimN.A/.K˝l F / in Ho.M/,
for any space K .

Proof Choose a weak equivalence F ! cX in Funb
�
N.A/;M

�
. Let � be the

subdivision of the projection K � A ! A and note that there is an isomorphism
colimN.A/.K˝F / Š colimN.K�A/�

�F . Since � is reduced, the bounded diagram
��F is cofibrant in Funb

�
N.K � A/;M

�
. It follows that there is an isomorphism

colimN.A/.K˝F /Š .K�A/˝l X in Ho.M/. By the same argument, the morphism
.f�A/˝l X W .K�A/˝l X! .L�A/˝l X can be identified with colimN.A/.f ˝F /.
Since f �A is a weak equivalences, according to Corollary 7.2, .f � A/˝l X is an
isomorphism in Ho.M/ and so colimN.A/.f ˝F / is a weak equivalence in M. This
shows the first statement.

To prove the second statement consider the following sequence of isomorphisms in
Ho.M/:

colimN.A/.K˝F /Š .K � A/˝l X
.a/
Š .K�A/˝l X

.b/
Š .A�K/˝l X

.c/
Š A˝l .K˝l X /Š ocolimN.A/.K˝l F /

where .a/ and .b/ are isomorphisms because of Corollary 7.2 and .c/ is an isomorphism
because of [2, Theorem 24.9].

How do these properties of the operation ˝ in Funb
�
N.A/;M

�
translate to the mapping

spaces introduced in Proposition 5.3?

Corollary 8.4 If � is a weak equivalence between cofibrant objects and  is a weak
equivalence between fibrant objects in Funb

�
N.A/;M

�
, then map.�;  / is a weak

equivalence of spaces.

Proof By standard K Brown lemma type of arguments [8, Lemma 9.9], without loss
of generality, we can assume in addition that � is an acyclic cofibration and  is an
acyclic fibration. In this case the corollary follows from Proposition 8.2 and the usual
adjointness argument.

The mapping space functor satisfies also the following duality property.

Proposition 8.5 If H 2Funb
�
K;Funb.N.A/;M/

�
is a cofibrant functor whose values

are homotopically constant functors in Funb
�
N.A/;M

�
and Z is fibrant in M, then

map.H; cZ/ is fibrant in Funb.Kop;Spaces/ [2, Section 31.3].
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Proof We need to show that, for a non-degenerate simplex � W �Œn�!K , we have a
fibration of spaces

map.H.�/; cZ/! lim.@�Œn�/opmap.H; cZ/Dmap.colim@�Œn�H; cZ/:

To do that one needs to construct certain lifts. By adjointness this problem reduces to
showing that, for a push-out square of the form:

�Œk; l �˝ .colim@�Œn�H / //

˛

��

�Œk; l �˝H.�/

��
�Œk�˝ .colim@�Œn�H / // P .�/ // �Œk�˝H.�/

any natural transformation P ! cZ factors through P ! �Œk� ˝ H.�/. Since
cZ is a constant functor and Z is fibrant, it is enough to prove that the morphism
colimN.A/P ! colimN.A/

�
�Œk�˝H.�/

�
is an acyclic cofibration in M. Cofibrancy

is a consequence of Proposition 8.2 and Proposition 6.3.(1). Using Proposition 8.3,
acyclicity would follow if colimN.A/˛ is an acyclic cofibration in M. Since H is
cofibrant, the same is true for colim@�Œn�H and so ˛ is a cofibration by Proposition 8.2.
This implies that colimN.A/˛ is also a cofibration. It remains to show that colimN.A/˛

is a weak equivalence.

Note that, for any L, L ˝ H is cofibrant in Funb
�
K;Funb.N.A/;M/

�
(another

consequence of Proposition 8.2). The values of H are cofibrant and homotopi-
cally constant. We can therefore apply Proposition 8.3 to conclude that the natural
transformation colimN.A/.�Œk; l �˝H / ! colimN.A/.�Œk�˝H / is a weak equiva-
lence between cofibrant objects in Funb.K;M/ [2, Proposition 24.2]. Consequently
colimKcolimN.A/.�Œk; l �˝H /! colimKcolimN.A/.�Œk�˝H / is a weak equivalence
in M. As this last morphism can be identified with colimN.A/˛ , the proposition is
proven.

This implies that the connected components of certain mapping spaces coincide as
expected with homotopy classes of morphisms.

Corollary 8.6 If Z is fibrant in M and F is homotopically constant and cofibrant
in Funb

�
N.A/;M

�
, then map.F; cZ/ is Kan. Moreover there is a bijection, natural

in F and Z , between the set of components �0map.F; cZ/ and the set of morphism
ŒF; cZ� in Ho.Funb

�
N.A/;M/

�
.

Proof The first part is a particular case of Proposition 8.5 when K D �Œ0�. To
prove the second part, we will show that the map which assigns to the component of
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a morphism �W F ! cZ in map.F; cZ/ the homotopy class of � in ŒF; cZ�, is a
bijection.

Since F is cofibrant, the natural transformation @�Œ1�˝F !�Œ1�˝F , induced by
the inclusion @�Œ1� ,! �Œ1�, is a cofibration. Consider two natural transformations
�0W F ! cZ and �1W F ! cZ , choose a cylinder object H for F , and consider the
following commutative diagram:

@�Œ1�˝F

id
`

id
��

� s

&&MMMMMMMMMM

�0

`
�1 // cZ

F �Œ1�˝F
� _

��
H

z

ffNNNNNNNNNNNNNN

We claim that there is a natural transformation �Œ1�˝F! cZ which makes the above
diagram commutative if and only if there is a natural transformation H ! cZ with the
same property. Since the target cZ is a constant functor any such map �Œ1�˝F! cZ

is induced by a morphism colimN.A/.�Œ1�˝F /!Z in M. From Proposition 8.3 and
Proposition 6.3(1) we infer that the morphisms colimN.A/.�Œ1�˝F /! colimN.A/F

and colimN.A/H ! colimN.A/F are weak equivalences. It follows that the morphism
colimN.A/.�Œ1�˝F /! colimN.A/H is an acyclic cofibration in M and our claim is
proven, as Z is assumed to be fibrant. This argument shows that �0 and �1 are left
homotopic if and only if they are in the same component of map.F; cZ/.

9 Resolutions and mapping spaces

A standard way of studying derived or homotopical properties of various operations is
by considering resolutions. This resolution principle is playing a significant role in our
approach to mapping spaces too. In our setting it is stated as a model approximation.

Proposition 9.1 Let M be a model category. If A is a contractible space, then the pair
of adjoint functors colimN.A/W Funb

�
N.A/;M

�
�M Wc is a left model approximation

of M.

Proof Conditions (1), (2), and (3) of Definition 1.1 are obviously satisfied. Condition
(4) is a consequence of Theorem 6.4. To prove (5) consider a weak equivalence F! cX

in Funb
�
N.A/;M

�
with a cofibrant domain. According to Theorem 6.5, colimN.A/F

is isomorphic to A˝l X in Ho.M/. Since A is contractible, the functor from the
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simplex category of A to the category with only one object and one morphism is a
weak equivalence. Thus, by Proposition 7.1, A˝l X ! X is also an isomorphism in
Ho.M/ and so colimN.A/F !X is a weak equivalence in M.

Taking the subdivision of A is a crucial assumption in the statement of Proposition
9.1. It is not true in general that if A is contractible, then the pair of adjoint functors
colimAW Funb.A;M/ � M W c forms a left model approximation. Take M to be
Spaces and A to be the space defined in Example 4.1. Consider a weak equivalence
F! c�Œ0� in Funb.A;Spaces/ with a cofibrant domain. The space colimAF is weakly
equivalent to hocolimAŒS�1��Œ0� ' S2 , which is not weakly contractible. Thus the
requirement (5) of Definition 1.1 is not satisfied.

How to construct mapping spaces in a category C that admits a left model approxima-
tion? Here is the recipe:

� choose a left model approximation l WM� C Wr ;

� choose a contractible space A;

� choose a cofibrant replacement Q in Funb
�
N.A/;M

�
and a fibrant replacement

R in M;

� define a functor mapW Cop � C! Spaces by the formula:

map.X;Y / WDmap
�
Qcr.X /; cRr.Y /

�
where the mapping space on the right comes from the simplicial structure on
Funb

�
N.A/;M

�
introduced in Proposition 5.3.

These mapping spaces have the following properties.

Proposition 9.2

(1) For any X and Y in C , map.X;Y / is Kan.

(2) There is a bijection, natural in X and Y in C , between the set of connected
components �0map.X;Y / and the set of morphism ŒX;Y � in Ho.C/.

(3) If ˛W X0!X1 and ˇW Y0! Y1 are weak equivalences in C , then

map.˛; ˇ/W map.X1;Y0/!map.X0;Y1/

is a weak equivalence of spaces.
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Proof Statement (1) is a direct consequence of the first part of Corollary 8.6.

According to the second part of this corollary there is a natural bijection between the
set of connected components �0map.X;Y / and the set of morphism Œcr.X /; cr.Y /�

in Ho
�
Funb.N.A/;M/

�
. Since A is contractible, Proposition 9.1 implies that the

pair lcolimN.A/W Funb
�
N.A/;M

�
� C Wcr forms a left model approximation of C . It

follows that there is a bijection between the set of morphisms ŒX;Y � in Ho.C/ and
Œcr.X /; cr.Y /� in Ho

�
Funb.N.A/;M/

�
[2, Proposition 5.5], which shows (2).

Statement (3) is a direct consequence of Corollary 8.4.

Remark 9.3 Assume that, in the above recipe for constructing mapping spaces, we
chose a model category M which has a functorial cofibrant-fibrant replacement. This
induces in turn a functorial cofibrant-fibrant replacement in Funb

�
N.A/;M

�
. For any

X in C define eX to be this replacement for the constant functor cr.X /. Such choice
leads not only to a functor map.X;Y / WDmap

� eX ; eY �, but also to a strictly associative
composition

map.X;Y /�map.Y;Z/ �!map.X;Z/

which comes from the simplicial enrichment introduced in Proposition 5.3.

Part (3) of Proposition 9.2 implies that the mapping space functor induces a functor on
the level of homotopy categories, denoted by the same symbol:

mapW Ho.C/op
�Ho.C/! Ho.Spaces/:

How dependent is this functor on the choices we have made: the model approximation
l WM� C Wr , the contractible space A, and the cofibrant and fibrant replacements? It
can be characterized by the following universal property.

Proposition 9.4 Let X 2 C . The functor map.X;�/W Ho.C/! Ho.Spaces/ is right
adjoint to � ˝l X W Ho.Spaces/ ! Ho.C/. In particular it does not depend on the
choices of the model approximation l WM� C Wr , the contractible space A, and the
cofibrant and fibrant replacements.

Proof Consider the following sequence of adjoint functors:

Spaces
�˝QcrX //

Funb
�
N.A/;M

�
map.QcrX ;�/

oo
colimN.A/ // M

c
oo

l // C
r

oo :
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According to Propositions 6.3, 8.2, and 8.3, the functor colimN.A/.�˝QcrX / preserves
cofibrations and acyclic cofibrations. Thus, by [8, Theorem 9.7], the total derived
functors also form adjoint pairs (see also Lemma 6.8):

Ho.Spaces/
L.colimN.A/.�˝QcrX //

// Ho.M/
R.map.QcrX ;c�//

oo
L.l/ // Ho.C/

r
oo :

Note that the composition of L.colimN.A/.�˝QcrX // and L.l/ can be identified
with K 7! .K � A/˝l X (see the proof of Proposition 8.3), and the composition
of r and R.map.QcrX; c�// with map.X;�/W Ho.C/! Ho.Spaces/. Since A is
assumed to be contractible, the morphism .K � A/˝l X !K˝l X , induced by the
projection � W K �A!K , is an isomorphism in Ho.C/ (Corollary 7.2).

Corollary 9.5 Assume that .C;W / admits a left model approximation. The functor
˝l W Ho.Spaces/�Ho.C/! Ho.C/ is then a homotopy left action 2.15.

How natural is this homotopy left action? Let .C;W / and .D;V / admit left model
approximations and ˆW C!D be a functor that sends weak equivalences in C to weak
equivalences in D . The universal property of the total left derived functor hocolimI

yields a morphism hocolimIˆF ! ˆ.hocolimI F / in Ho.D/ natural in F W I ! C
(see 2.20). For X 2 C and K 2 Spaces, define:

K˝l ˆ.X /!ˆ.K˝l X /

to be the morphism hocolimKcˆ.X /!ˆ.hocolimKcX / in Ho.D/.

Corollary 9.6 Assume that .C;W / and .D;V / admit left model approximations
and ˆW C! D is a functor that sends weak equivalences in C to weak equivalences
in D . Then the induced functor ˆW Ho.C/! Ho.D/ together with the morphisms
K˝l ˆ.X /!ˆ.K˝l X / is a simplicial functor (2.16).

We prove finally the classical property relating mapping spaces out of a homotopy
colimit with the corresponding homotopy limit of mapping spaces, see Bousfield–Kan
[1, XII Proposition 4.1] and Hirschhorn [11, Theorem 19.4.4].

Proposition 9.7 Assume that .C;W / admits a left model approximation. Con-
sider an object Y in C and F W I ! C a functor. Then there is an isomorphism
map.hocolimI F;Y /Š holimI opmap.F;Z/ in Ho.Spaces/ natural in Y and F .

Proof Let us choose a left model approximation l WM � C Wr and a contractible
space A. Apply then Proposition 8.5 to a fibrant replacement Z 2M of rY and
a cofibrant replacement H 2 Funb

�
N.I/;Funb.N.A/;M/

�
of the bounded diagram

N.I/
�
�! I

F
�! C r

�!M c
�! Funb.N.A/;M/.
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10 Right model approximations and duality

In this section we study categories admitting both a left and a right model approxi-
mations. These structures lead to homotopy left and right actions. How related are
these actions? We prove below in Theorem 10.7 that the corresponding simplicial
structures on Ho.C/ are isomorphic (and in particular the mapping spaces induced by
the homotopy left and right actions are isomorphic). We need first some dual statements
to those we have proven so far for left model approximations. They can be restated by
simply taking the opposite categories.

10.1 One can define a simplicial structure on Funb
�
N.A/op; C

�
by identifying it with

Funb
�
N.A/; Cop

�
and applying Proposition 5.3. Explicitly, this simplicial structure is

given by a functor:

homW Spacesop
�Funb

�
N.A/op; C

�
! Funb

�
N.A/op; C

�
described as follows. Denote by �k W Funb

�
N.K � A/op; C

�
! Funb

�
N.A/op; C

�
the

right adjoint of ��W Funb
�
N.A/op; C

�
! Funb

�
N.K � A/op; C

�
, where as before

� W N.K � A/! N.A/ stands for the subdivision of the projection onto the second
factor. Define then hom.K;F / WD �k�

�F .

10.2 Assume that .C;W / admits a right model approximation. Then it can be right
localized. For any small category I , holimI W Ho

�
Fun.I; C/

�
! Ho.C/ is right adjoint

to cW Ho.C/!Ho
�
Fun.I; C/

�
. The assignment .I;X / 7! holimI cX defines a functor

rhomW Catop
�C!Ho.C/. This functor is homotopy invariant: if f W I ! J is a weak

equivalence of small categories, then rhom.f;X / is an isomorphism in Ho.C/ for any
X 2 C (compare with Proposition 7.1).

10.3 If f W K ! L is a weak equivalence of spaces, then the induced morphism
rhom.f;X /W rhom.L;X /! rhom.K;X / is an isomorphism in Ho.C/, for any X 2 C .
The functor rhomW Spacesop

�C!Ho.C/ is therefore a composition of the localization
Spacesop

�C ! Ho.Spaces/op � Ho.C/ and a functor denoted by the same symbol
rhomW Ho.Spaces/op �Ho.C/! Ho.C/. This functor is a homotopy right action 2.16,
ie, it has the following properties, dual to those in Corollary 7.3 and Proposition 9.4:

(1d) there are isomorphisms X ! rhom.Œ0�;X / in Ho.C/ natural in X ;

(2d) there are coherent isomorphisms rhom.K � L;X /Š rhom
�
K; rhom.L;X /

�
in

Ho.C/ natural in X 2 Ho.C/ and K;L 2 Ho.Spaces/op ;

(3d) for any X 2 Ho.C/, rhom.�;X /W Ho.Spaces/op ! Ho.C/ has a left adjoint
map.�;X /W Ho.C/! Ho.Spaces/op .
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10.4 Let .C;W / and .D;V / be categories that admit right model approximations and
ˆW C!D be a functor that sends weak equivalences in C to weak equivalences in D .
This and the universal property of holim, as a total right derived functor, implies that,
for any F W I ! C , there is a morphism ˆ.holimI F /! holimIˆF in Ho.D/ natural
in F (see 2.20). For X 2 C and K 2 Spaces, define ˆ

�
rhom.K;X /

�
! rhom.K; ˆF /

to be the morphism ˆ.holimKcX /! holimKcˆX in Ho.D/. In this way the functor
ˆW Ho.C/!Ho.D/ together with the morphism ˆ

�
rhom.K;X /

�
! rhom.K; ˆF / is

a simplicial functor.

10.5 The functor map.�;X /W Ho.C/! Ho.Spaces/op , defined in 10.3, can be rigidi-
fied as follows:

� choose a right model approximation l W C �M Wr ;
� choose a contractible space A;
� choose a fibrant replacement R in Funb

�
N.A/op;M

�
and a cofibrant replace-

ment Q in M;
� define a functor mapW Cop � C! Spaces by the formula:

map.X;Y / WDmap
�
cQl.X /;Rcr.Y /

�
where the mapping space on the right comes from the simplicial structure on
Funb

�
N.A/op;M

�
.

The functor mapW Cop � C ! Spaces, defined by the above procedure, is homotopy
invariant and its values are Kan spaces. The induced functor on the level of homotopy
categories is naturally isomorphic to the functor described in 10.3 and therefore it
does not depend on the choice of the right model approximation l W C �M Wr , the
contractible space A, and the fibrant and cofibrant replacements.

10.6 The mapping space into a homotopy limit satisfies a property analogous to
Proposition 9.7. Let Y 2 C and F W I ! C be a functor. Then there is an isomorphism
map.Y; holimI F /Š holimI map.Z;F / in Ho.Spaces/ natural in Y and F .

We are now ready to compare the homotopy left and right actions arising from left and
right model approximations.

Theorem 10.7 Assume that .C;W / admits both a left and a right model approxima-
tions. Then, for any space K , the functor K˝l �W Ho.C/! Ho.C/ is left adjoint to
rhom.K;�/W Ho.C/!Ho.C/. The weak simplicial structures on Ho.C/ 2.15, induced
by the homotopy actions ˝l and rhom, are isomorphic. In particular the induced
mapping spaces are also isomorphic.
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Proof According to Corollary 6.7, we have the following adjoint pairs:

Ho.C/
c // Ho

�
Fun.K; C/

�
holimK

oo
hocolimK // Ho.C/

c
oo

Since, by definition, hocolimKcX D K ˝l X and holimKcX D rhom.K;X / the
theorem is proven.

11 Monoidal model categories

Recall that a monoidal model category is a model category M together with a “compat-
ible” monoidal structure M˝M!M, see [12, Definition 4.2.6]. Hovey asks whether
the homotopy category of such a monoidal model category always forms a central
algebra over Ho.Spaces/, ie if there is a monoidal functor i W Ho.Spaces/! Ho.M/

and natural isomorphisms t W i.K/˝ X ! X ˝ i.K/ satisfying certain coherence
conditions introduced in [12, Definition 4.1.10]. We show this is indeed so.

Proposition 11.1 Let M be a monoidal model category. Then the functor

˝l W Ho.Spaces/�Ho.M/! Ho.M/

describes a central algebra over Ho.Spaces/.

Proof Let us denote by ˝MWM�M!M the monoidal structure in M and by
S 2M the unit. By definition, for any cofibrant X 2M, the operations X ˝M� and
�˝MX preserve cofibrations. Consequently, for any such X , if F 2 Funb.A;M/ is
cofibrant, then so are the functors X ˝M F and F ˝M X .

Let F W I !M be a functor and QF 2 Funb
�
N.I/;M

�
be a cofibrant replacement

of the composition of �W N.I/ ! I and F . The above remark implies that, for a
cofibrant X , QF˝MX and X ˝MQF are cofibrant replacements of F�˝MX and
X ˝M F� respectively. Since ˝M commutes with colimits we have isomorphisms in
M:

colimN.I /.QF ˝M X /Š .colimN.I /QF /˝M X

colimN.I /.X ˝M QF /ŠX ˝M .colimN.I /QF /:

The corresponding isomorphisms in Ho.M/ are easily seen to be natural in F W I!M
and X 2 Ho.M/:

hocolimI .F ˝M X /Š .hocolimI F /˝M X

hocolimI .X ˝M F /ŠX ˝M .hocolimI F /:
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It is now straightforward to check that the following isomorphism t :

.K˝l S/˝M X D .hocolimKcS/˝M X hocolimKc.S ˝M X /oo

��
hocolimKcX

X ˝M .K˝l S/DX ˝M .hocolimKcS/ hocolimKc.X ˝M S/oo

OO

satisfies the coherence conditions for Ho.M/ to be central, where the monoidal functor
i is defined by i.K/DK˝l S .
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