Knot Floer homology and Seifert surfaces

Andras Juhasz

Let K be a knot in S^{3} of genus g and let $n>0$. We show that if rk $\widehat{H F K}(K, g)<$ 2^{n+1} (where $\widehat{H F K}$ denotes knot Floer homology), in particular if K is an alternating knot such that the leading coefficient a_{g} of its Alexander polynomial satisfies $\left|a_{g}\right|<$ 2^{n+1}, then K has at most n pairwise disjoint nonisotopic genus g Seifert surfaces. For $n=1$ this implies that K has a unique minimal genus Seifert surface up to isotopy.

57M27, 57R58

1 Introduction and preliminaries

If S_{1} and S_{2} are Seifert surfaces of a knot $K \subset S^{3}$ then S_{1} and S_{2} are said to be equivalent if $S_{1} \cap X(K)$ and $S_{2} \cap X(K)$ are ambient isotopic in the knot exterior $X(K)=S^{3} \backslash N(K)$, where $N(K)$ is a regular neighborhood of K. In [4] Kakimizu assigned a simplicial complex $M S(K)$ to every knot K in S^{3} as follows.

Definition 1.1 $M S(K)$ is a simplicial complex whose vertices are the equivalence classes of the minimal genus Seifert surfaces of K. The equivalence classes $\sigma_{0}, \ldots, \sigma_{n}$ span an n-simplex if and only if for each $0 \leq i \leq n$ there is a representative S_{i} of σ_{i} such that the surfaces S_{0}, \ldots, S_{n} are pairwise disjoint.

Scharlemann and Thompson [10] showed that the complex $M S(K)$ is always connected. In other words, if S and T are minimal genus Seifert surfaces for a knot K then there is a sequence $S=S_{1}, S_{2}, \ldots, S_{k}=T$ of minimal genus Seifert surfaces such that $S_{i} \cap S_{i+1}=\varnothing$ for $0 \leq i \leq k-1$.

The main goal of this short note is to show that for a genus g knot K and for $n>0$ the condition rk $\widehat{H F K}(K, g)<2^{n+1}$ implies $\operatorname{dim} M S(K)<n$, consequently for $n=1$ the knot K has a unique Seifert surface up to equivalence. This condition involves the use of knot Floer homology introduced by Ozsváth and Szabó in [8] and independently by Rasmussen in [9]. However, when K is alternating then this condition is equivalent to $\left|a_{g}\right|<2^{n+1}$, where a_{g} is the leading coefficient of the Alexander polynomial of K. The alternating case is already a new result whose statement doesn't involve knot Floer
homology. On the other hand, the proof of this particular case seems to need sutured Floer homology techniques, which is a generalization of knot Floer homology that was introduced by the author in [2].

The above statement does not hold for $n=0$ since every knot has at least one minimal genus Seifert surface. However, it was shown by Ni [6] and the author [3] that rk $\widehat{H F K}(K, g)<2$ implies that the knot K is fibred, and hence $M S(K)$ is a single point.

To a knot K in S^{3} and every $j \in \mathbb{Z}$ knot Floer homology assigns a graded abelian group $\widehat{H F K}(K, j)$ whose Euler characteristic is the coefficient a_{j} of the Alexander polynomial $\Delta_{K}(t)$. Ozsváth and Szabó [7] have shown that if K is alternating then $\widehat{H F K}(K, j)$ is nonzero in at most one grading, thus rk $\widehat{H F K}(K, j)=\left|a_{j}\right|$.

Next we are going to review some necessary definitions and results from the theory of sutured manifolds and sutured Floer homology. Sutured manifolds were introduced by Gabai in [1].

Definition 1.2 A sutured manifold (M, γ) is a compact oriented 3-manifold M with boundary together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$. Furthermore, the interior of each component of $A(\gamma)$ contains a suture, ie, a homologically nontrivial oriented simple closed curve. We denote the union of the sutures by $s(\gamma)$.

Finally every component of $R(\gamma)=\partial M \backslash \operatorname{Int}(\gamma)$ is oriented. Define $R_{+}(\gamma)$ (or $\left.R_{-}(\gamma)\right)$ to be those components of $\partial M \backslash \operatorname{Int}(\gamma)$ whose normal vectors point out of (into) M. The orientation on $R(\gamma)$ must be coherent with respect to $s(\gamma)$, ie, if δ is a component of $\partial R(\gamma)$ and is given the boundary orientation, then δ must represent the same homology class in $H_{1}(\gamma)$ as some suture.

A sutured manifold is called taut if $R(\gamma)$ is incompressible and Thurston norm minimizing in $H_{2}(M, \gamma)$.

The following definition was introduced in [2].

Definition 1.3 A sutured manifold (M, γ) is called balanced if M has no closed components, $\chi\left(R_{+}(\gamma)\right)=\chi\left(R_{-}(\gamma)\right)$, and the map $\pi_{0}(A(\gamma)) \rightarrow \pi_{0}(\partial M)$ is surjective.

Example 1.4 If R is a Seifert surface of a knot K in S^{3} then we can associate to it a balanced sutured manifold $S^{3}(R)=(M, \gamma)$ such that $M=S^{3} \backslash(R \times I)$ and $\gamma=K \times I$. Observe that $R_{-}(\gamma)=R \times\{0\}$ and $R_{+}(\gamma)=R \times\{1\}$. Furthermore, $S^{3}(R)$ is taut if and only if R is of minimal genus.

Sutured Floer homology is an invariant of balanced sutured manifolds defined by the author in [2], and is a common generalization of the invariants $\widehat{H F}$ and $\widehat{H F K}$. It assigns an abelian group $\operatorname{SFH}(M, \gamma)$ to each balanced sutured manifold (M, γ). The following theorem is a special case of [3, Theorem 1.5].

Theorem 1.5 Let K be a genus g knot in S^{3} and suppose that R is a minimal genus Seifert surface for K. Then

$$
S F H\left(S^{3}(R)\right) \cong \widehat{H F K}(K, g)
$$

A sutured manifold (M, γ) is called a product if it is homeomorphic to $(\Sigma \times I, \partial \Sigma \times I)$, where Σ is an oriented surface with boundary. If (M, γ) is a product, $\operatorname{SFH}(M, \gamma) \cong \mathbb{Z}$. Let us recall [3, Theorem 1.4] and [3, Theorem 9.3].

Theorem 1.6 If (M, γ) is a taut balanced sutured manifold then $\operatorname{rk} \operatorname{SFH}(M, \gamma) \geq 1$. Furthermore, if (M, γ) is not a product then $\operatorname{rkFH}(M, \gamma) \geq 2$.

Definition 1.7 Let (M, γ) be a balanced sutured manifold. An oriented surface $S \subset M$ is called a horizontal surface if S is open, $\partial S=s(\gamma)$ in an oriented sense; moreover, $[S]=\left[R_{+}(\gamma)\right]$ in $H_{2}(M, \gamma)$, and $\chi(S)=\chi\left(R_{+}(\gamma)\right)$.

A horizontal surface S defines a horizontal decomposition

$$
(M, \gamma) \rightsquigarrow{ }^{S}\left(M_{-}, \gamma_{-}\right) \coprod\left(M_{+}, \gamma_{+}\right)
$$

as follows. Let $M_{ \pm}$be the union of the components of $M \backslash \operatorname{Int}(N(S))$ that intersect $R_{ \pm}(\gamma)$. Similarly, let $\gamma_{ \pm}$be the union of the components of $\gamma \backslash \operatorname{Int}(N(S))$ that intersect $R_{ \pm}(\gamma)$.

The following proposition is a special case of [3, Proposition 8.6].
Proposition 1.8 Suppose that (M, γ) is a taut balanced sutured manifold and let S be a horizontal surface in it. Then

$$
\operatorname{rk} S F H(M, \gamma)=\operatorname{rk} S F H\left(M_{-}, \gamma_{-}\right) \cdot \operatorname{rk} S F H\left(M_{+}, \gamma_{+}\right)
$$

The following definition can be found for example in [6].
Definition 1.9 A balanced sutured manifold (M, γ) is called horizontally prime if every horizontal surface S in (M, γ) is isotopic to either $R_{+}(\gamma)$ or $R_{-}(\gamma)$ rel γ.

2 The results

Theorem 2.1 Let (M, γ) be a taut balanced sutured manifold such that both $R_{+}(\gamma)$ and $R_{-}(\gamma)$ are connected. Suppose that there is a sequence of pairwise disjoint nonisotopic connected horizontal surfaces $R_{-}(\gamma)=S_{0}, S_{1}, \ldots, S_{n}=R_{+}(\gamma)$. Then

$$
\text { rk } S F H(M, \gamma) \geq 2^{n}
$$

Proof We prove the theorem using induction on n. If $n=1$ then (M, γ) is not a product since $R_{-}(\gamma)$ and $R_{+}(\gamma)$ are nonisotopic. Thus Theorem 1.6 implies that rk $\operatorname{SFH}(M, \gamma) \geq 2$.

Now suppose that the theorem is true for $n-1$. Since each S_{k} is connected we can suppose without loss of generality that S_{1} separates S_{i} and S_{0} for every $i \geq 2$. Let $\left(M_{-}, \gamma_{-}\right)$and $\left(M_{+}, \gamma_{+}\right)$be the sutured manifolds obtained after horizontally decomposing (M, γ) along S_{1}. Note that both $\left(M_{-}, \gamma_{-}\right)$and $\left(M_{+}, \gamma_{+}\right)$are taut. As S_{0} and S_{1} are nonisotopic, $\left(M_{-}, \gamma_{-}\right)$is not a product so as before $\operatorname{rk} \operatorname{SFH}\left(M_{-}, \gamma_{-}\right) \geq 2$. Applying the induction hypothesis to $\left(M_{+}, \gamma_{+}\right)$and to the surfaces $R_{-}\left(\gamma_{+}\right), S_{2}, \ldots, S_{n}=$ $R_{+}\left(\gamma_{+}\right)$we get that rk $S F H\left(M_{+}, \gamma_{+}\right) \geq 2^{n-1}$. So using Proposition 1.8 we see that rk $S F H(M, \gamma) \geq 2^{n}$.

Corollary 2.2 If (M, γ) is a taut balanced sutured manifold and rk $\operatorname{SFH}(M, \gamma)<4$ then (M, γ) is horizontally prime. More generally, if $n>0$ and $\operatorname{rk} S F H(M, \gamma)<2^{n+1}$ then (M, γ) can be cut into horizontally prime pieces by less than n horizontal decompositions.

Proof Suppose that $\operatorname{rk} \operatorname{SFH}(M, \gamma)<2^{n+1}$. If (M, γ) is not horizontally prime then there is a surface S_{1} in (M, γ) which is not isotopic to $R_{ \pm}(\gamma)$. Decomposing (M, γ) along S_{1} we get two sutured manifolds $\left(M_{-}, \gamma_{-}\right)$and $\left(M_{+}, \gamma_{+}\right)$. If they are not both horizontally prime then repeat the above process with a nonprime piece and obtain a horizontal surface S_{2}, etc. This process has to end in less than n steps according to Theorem 2.1.

Theorem 2.3 Let K be a knot in S^{3} of genus g and let $n>0$. If rk $\widehat{H F K}(K, g)<$ 2^{n+1} then K has at most n pairwise disjoint nonisotopic genus g Seifert surfaces, in other words, $\operatorname{dim} M S(K)<n$. If $n=1$ then K has a unique Seifert surface up to equivalence.

Proof Suppose that R, S_{1}, \ldots, S_{n} are pairwise disjoint nonisotopic Seifert surfaces for K. According to Theorem 1.5 we have $\widehat{H F K}(K, g) \cong S F H\left(S^{3}(R)\right)$. Let $S^{3}(R)=$
(M, γ). If $R_{+}(\gamma)$ and $R_{-}(\gamma)$ were isotopic then (M, γ) would be a product and S_{1} and R would be equivalent. So the surfaces $R_{-}(\gamma)=S_{0}, S_{1}, \ldots, S_{n}, S_{n+1}=R_{+}(\gamma)$ satisfy the conditions of Theorem 2.1, thus $\operatorname{rk} \operatorname{SFH}\left(S^{3}(R)\right) \geq 2^{n+1}$, a contradiction.

In particular, if $n=1$ then $\operatorname{dim} M S(K)=0$. But according to [10] the complex $M S(K)$ is connected, so it consists of a single point.

Corollary 2.4 Suppose that K is an alternating knot in S^{3} of genus g and let $n>0$. If the leading coefficient a_{g} of its Alexander polynomial satisfies $\left|a_{g}\right|<2^{n+1}$ then $\operatorname{dim} M S(K)<n$. If $\left|a_{g}\right|<4$ then K has a unique Seifert surface up to equivalence.

Proof This follows from Theorem 2.3 and the fact that for alternating knots the equality rk $\widehat{H F K}(K, g)=\left|a_{g}\right|$ holds.

Remark In [5] Kakimizu classified the minimal genus Seifert surfaces of all the prime knots with at most 10 crossings. The $n=1$ case of Corollary 2.4 is sharp since the knot 7_{4} is alternating, the leading coefficient of its Alexander polynomial is 4 , and has 2 inequivalent minimal genus Seifert surfaces. On the other hand, the Alexander polynomial of the alternating knot 9_{2} is also 4 , but has a unique minimal genus Seifert surface up to equivalence.

Also note that [3, Theorem 1.7] implies that if the leading coefficient a_{g} of the Alexander polynomial of an alternating knot K satisfies $\left|a_{g}\right|<4$ then the knot exterior $X(K)$ admits a depth ≤ 2 taut foliation transversal to $\partial X(K)$. Indeed, for alternating knots $g=g(K)$ and $\left|a_{g}\right|=$ rk $\widehat{H F K}(K, g) \neq 0$, so the conditions of [3, Thorem 1.7] are satisfied.

Acknowledgements I would like to thank Zoltán Szabó for his interest in this work and Ko Honda and Tamás Kálmán for inspiring conversations.

References

[1] D Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503 MR723813
[2] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429-1457 MR2253454
[3] A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299350
[4] O Kakimizu, Finding disjoint incompressible spanning surfaces for a link, Hiroshima Math. J. 22 (1992) 225-236 MR1177053
[5] O Kakimizu, Classification of the incompressible spanning surfaces for prime knots of 10 or less crossings, Hiroshima Math. J. 35 (2005) 47-92 MR2131376
[6] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577-608 MR2357503
[7] P Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225-254 MR1988285
[8] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58-116 MR2065507
[9] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) arXiv:math.GT/0306378
[10] M Scharlemann, A Thompson, Finding disjoint Seifert surfaces, Bull. London Math. Soc. 20 (1988) 61-64 MR916076

Department of Mathematics, Princeton University Princeton, NJ 08544, USA
ajuhasz@math.princeton.edu

Received: 7 December 2007 Revised: 25 February 2008

