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On asymptotic dimension of amalgamated products
and right-angled Coxeter groups

ALEXANDER DRANISHNIKOV

We prove the inequality

asdimA�C B �maxfasdimA; asdimB; asdimC C 1g:

Then we apply this inequality to show that the asymptotic dimension of any right-
angled Coxeter group does not exceed the dimension of its Davis complex.

20F65, 20F55, 20F69

1 Introduction

Asymptotic dimension was introduced by Gromov as an invariant of finitely generated
groups [20]. It is defined for metric spaces and applied to finitely generated groups with
the word metric. Since by its definition it is quasi-isometry invariant, it does not depend
on the choice of a finite generating set. It turns out that the asymptotic dimension is
a coarse invariant in the sense of Roe [21]. Since all proper left invariant metrics on
any countable group are coarsely equivalent (see Dranishnikov and Smith [16] and
Shalom [22]), the notion of asymptotic dimension can be extended to all countable
groups.

The interest in the asymptotic dimension was sparked by Gouliang Yu’s proof of the
Novikov Higher Signature conjecture for manifolds whose fundamental group has finite
asymptotic dimension [23]. Similar progress on related conjectures was done under
the assumption of finite asymptotic dimension in the works of Bartels [1], Carlsson
and Goldfarb [9], the author [12] and the author with Ferry and Weinberger [13].

Finite asymptotic dimensionality is proven for many classes of groups. The exact
computation of asymptotic dimension of groups is a more difficult task. To the best of
my knowledge it is completed only for polycyclic groups and for hyperbolic groups. For
polycyclic groups, the asymptotic dimension equals the Hirsch length: asdim� D h.�/

(see Bell and Dranishnikov [4] for the inequality in one direction and Dranishnikov
and Smith [16] for the other direction). The asymptotic dimension of a finitely gen-
erated hyperbolic group equals the covering dimension of its boundary plus one:
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asdim� D dim @1� C 1 by Buyalo [7] and Buyalo and Lebedeva [8]. In view of
Bestvina–Mess’ formula [6] we have asdim� D vcd.�/ for those hyperbolic groups
for which the virtual cohomological dimension is defined (eg for residually finite
hyperbolic groups).

The Coxeter groups are considered a playground for many problems and conjectures in
geometric group theory. All Coxeter groups have finite asymptotic dimension since
they are isometrically embeddable in the finite product of trees by the author and
Januszkiewicz [14]. The original such embedding is due to Januszkiewicz and it gives
an estimate asdim� � jS j for a Coxeter system .�;S/. In [15] we noticed that
the Januszkiewicz technique can be pushed to bring a better estimate to asdim� �

ch.N.�// where N.�/ is the nerve of .�;S/ and ch.N.�// is the chromatic number
of the 1–skeleton of N.�/. A lower bound for the asymptotic dimension of Coxeter
groups is given by Corollary 4.11 in [11]: vcd� � asdim� . Since dim N C1� ch.N /

for every simplicial complex N and vcd.�/� dim†.�/D dim N.�/C1, it is natural
to assume that asdim� � dim N.�/C 1 where †.�/ denotes the Davis complex
of .�;S/. In this paper we prove this inequality for right-angled Coxeter groups.
Generally, the estimate asdim� � dim N.�/C 1 is not optimal. Perhaps the most
natural guess would be that asdim� D vcd� , but in view of Bestvina’s candidate
among right-angled Coxeter groups for a counterexample to the Eilenberg–Ganea
problem (see Davis [10]), this conjecture seems to be very difficult. The proposed
equality has to be checked first for � with 2–dimensional acyclic nerves N.�/.

In this paper the estimate asdim� � dim N.�/C1 is proven by induction on dimension
of the nerve. The main ingredient here is the inequality for the asymptotic dimension
of the amalgamated product

(�) asdim A�C B �maxfasdim A; asdim B; asdim C C 1g

which is proven in this paper.

This inequality was conjectured as an equality by Bell and the author [3], who proved
it when C is a finite group in [4]. Later J-P Caprice found an example among Coxeter
groups where the inequality is strict.

As a corollary of (�) this paper gives a new proof of the free product equality

asdim A�B Dmaxfasdim A; asdim B; 1g:

The existing proof in Bell, Dranishnikov and Keesling [5] is quite long and it appeals to
the asymptotic inductive dimension theory developed by the author and Zarichnyi [17].

The author would like to thank the NSF for support.
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2 Asymptotic dimension

We recall the definition of asymptotic dimension of a metric space [20]: asdim X � n

if for every r <1 there exist uniformly bounded, r –disjoint families U0; : : : ;Un of
subsets of X such that

S
i U i is a cover of X .

Let r 2 RC be given and let X be a metric space. We will say that a family U of
subsets of X is r –disjoint if d.U;U 0/� r for every U ¤U 0 in U : Here, d.U;U 0/D

inffd.x;x0/ j x 2 U;x0 2 U 0g:

For a cover U of a metric space X we denote by L.U/D infU2U supx2X d.x;X nU /

the Lebesgue number of U . We recall that the order ordU of a cover U is the maximal
number of elements with nonempty intersection.

We say that .r; d/–dim X � n if for every r > 0 there exists a d –bounded cover U of
X with ordU � nC 1 and with the Lebesgue number L.U/ > r . We refer to such a
cover as to an .r; d/–cover of X .

Proposition 2.1 [3] For a metric space, asdim X � n if and only if there is a function
d.r/ such that .r; d.r//–dim X � n for all r > 0.

Let BR.x/ denote the closed R–ball centered at x and let NR.A/Dfx2X jd.x;A/�

Rg denotes the closed R–neighborhood of A. Thus, BR.x/DNR.fxg/.

Proposition 2.2 Suppose that X � Y is given the restricted metric and let U be an
.r; d/–cover of X . Then Nr=4.X / admits an .r=4; dCr/–cover zU with ord zU �ordU .

Proof For every U 2 U we define

xU D
[
fInt Br=2.x/ j d.x;X nU /� rg:

Clearly, Nr=2.X /�
S

U2U
xU . We show that ordf xU j U 2 Ug � ordU . Let y 2

xU1 \ � � � \
xUk . Let xi 2 Ui be such that d.xi ;y/ < r=2 and d.xi ;X n Ui/ � r .

Since d.xi ;x1/ < r and d.xi ;X nUi/ � r , it follows that x1 2 Ui for all i . Thus,
U1\ � � � \Uk ¤∅.

Let zU D xU\Nr=4.X /. Then zUDf zU g is an .r=4; dCr/–cover with ord zU �ordU .

Let K be a countable simplicial complex. There is a metric on jKj called uniform
which comes from the geometric realization of K . It is defined by embedding K into
the Hilbert space `2 D `2.K.0// by mapping each vertex v 2K.0/ to a corresponding
element of an orthonormal basis for `2 and giving K the metric it inherits as a subspace.
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A map 'W X ! Y between metric spaces is uniformly cobounded if for every R> 0,
diam.'�1.BR.y/// is uniformly bounded. We call a map 'W X ! jKj to a simplicial
complex c–cobounded, c 2RC , if diam.'�1.�// < c for all simplices ��K .

The following was proven by Gromov [20] (see also Bell and Dranishnikov [3] and
Roe [21]).

Theorem 2.3 Let X be a metric space. The following conditions are equivalent.

� asdim X � n

� For every � > 0 there is a uniformly cobounded, �–Lipschitz map 'W X !K

to a uniform simplicial complex of dimension n:

This theorem is proved by using projections to the nerves of open covers. The projection
pU W X ! Nerve.U/� `2.U/ defined by the formula

pU .x/D .�U /U2U ; �U .x/D
d.x;X nU /P

V 2U d.x;X nV /

is called canonical.

A map f W X ! Y between metric spaces is a coarse embedding if there exist non-
decreasing functions �1 and �2 , �i W RC ! RC such that �i ! 1 and for every
x;x0 2X

�1.dX .x;x
0//� dY .f .x/; f .x

0//� �2.dX .x;x
0//.

Such a map is often called a coarsely uniform embedding or just a uniform embedding.
The metric spaces X and Y are coarsely equivalent if there is a coarse embedding
f W X ! Y so that there is some R such that Y �NR.f .X //.

Observe that quasi-isometric spaces are coarsely equivalent with linear �i :

Proposition 2.4 Let f W X ! Y be a coarse equivalence. Then asdim X D asdim Y:

As a corollary we obtain that asdim� is an invariant for finitely generated groups. One
can extend this definition of asdim for all countable groups by considering left-invariant
proper metrics on � . All such metrics are coarsely equivalent [16; 22].

Theorem 2.5 [16] Let G be a countable group. Then asdim GD sup asdim F where
the supremum is taken over all finitely generated subgroups F �G .

For a subset Y �X of a metric space X when we write asdim Y we assume that Y

is taken with the metric obtained by restriction.

Also we use in this paper the following two theorems from [2]:

Algebraic & Geometric Topology, Volume 8 (2008)
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Theorem 2.6 (Finite Union Theorem) For every metric space presented as a finite
union X D

S
Xi there is the formula

asdim.
S

Xi/Dmaxfasdim Xig:

Theorem 2.7 (Infinite Union Theorem) Let X D
S
˛ X˛ be a metric space where

the family fX˛g satisfies the inequality asdim X˛ � n uniformly. Suppose further that
for every r there is a Yr � X with asdim Yr � n so that d.X˛ n Yr ;X˛0 n Yr / � r

whenever X˛ ¤X˛0 : Then asdim X � n:

We recall that the family fX˛g of subsets of X satisfies the inequality asdim X˛ � n

uniformly if for every r <1 one can find a constant R so that for every ˛ there exist
r –disjoint families U0

˛ ; : : : ;Un
˛ of R–bounded subsets of X˛ covering X˛:

The following Propositions are taken from [3, Proposition 2 and Lemma 1].

Proposition 2.8 For every simplicial map gW X ! Y the mapping cylinder Mg

admits a triangulation with the set of vertices equal to the disjoint union of vertices of
X and Y .

We consider the uniform metric on Mg .

For a cover U of a metric space X we denote by b.U/D supU2U diam.U / the diameter
of U . We note that if for two covers b.V/ <L.U/ then there is a map GW V! U with
the property G.V /� U . Note that any such map GW V! U defines a simplicial map
gW Nerve.V/! Nerve.U/ of the nerves.

We use the notation @Nr .A/D fx j d.x;A/D rg for the boundary of the r –neighbor-
hood and r –Int.A/DA nNr .X nA/ for the r –interior of A.

Lemma 2.9 [3] For every n2N there is a monotone function �W RC!RC tending
to infinity with the following property: Given �>0, let W �X be a subset of a geodesic
metric space X and let �� 1=� . Then for every two covers V of N�.@W / and U of W

by open subsets of X with order �nC1; and with L.U/> b.V/>L.V/��.�/, there
is a 2b.U/–cobounded �–Lipschitz map f W W !Mg to the mapping cylinder of a
simplicial map gW Nerve.V/!Nerve.U/ between the nerves such that f j@W DpV j@W
where pV W N�.@W /! Nerve.V/�Mg is the canonical projection.

We note that the formulation of Lemma 2.9 differs slightly from Lemma 1 in [3].
Namely, Lemma 2.9 becomes Lemma 1 if one considers the case W D Nr .@W /.
Nevertheless the same formula for f and the same proof as in [3] are valid for the
general case.

Algebraic & Geometric Topology, Volume 8 (2008)
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A partition of a metric space X is a presentation as a union X D
S

i Wi such that
Int.Wi/\ Int.Wj /D∅ whenever i ¤ j .

Theorem 2.10 (Partition Theorem) Let X be a geodesic metric space. Suppose
that for every R > 0 there is d > 0 and a partition X D

S1
i Wi with asdim Wi � n

uniformly in i such that .R; d/–dim.
S

i @Wi/ � n� 1 where
S

i @Wi is taken with
the metric restricted from X . Then asdim X � n.

Proof We apply Theorem 2.3. Given � > 0 we construct a uniformly cobounded
�–Lipschitz map �W X !K . We apply the assumption with RD 4�.1=�/ where �
is taken from Lemma 2.9. Let �D 1=� . Since ��R=4 and �.t/� t , by Proposition
2.2 there is an .r=4; 2d/–cover V of N�.

S
i @Wi/ of order � n. We may assume

that it is a cover by sets that are open in X . Let Vi D Vj@Wi
be the restriction, ie,

Vi consists of those elements of V that have a nonempty intersection with @Wi . Let
Ui be a cover of Wi with L.Ui/ > 2d � b.Vi/ and with b.Ui/ < D for all i for
some fixed D . By Lemma 2.9 there is a 2D–cobounded �–Lipschitz map fi W Wi!

Mgi
to a uniform complex where Mgi

is the mapping cylinder of a simplicial map
gi W Nerve.Vi/! Nerve.Ui/ and fi coincides on @Wi with the canonical projection
to the nerve pV W

S
i @Wi! Nerve.V/. We define

K D .Nerve.V/
a a

i

Mgi
/=�

as the quotient space under identification along the complexes Nerve.Vi/. Then the
union of fi defines a map f W X ! K . Clearly, f is 2D–cobounded. Since X is
geodesic and each fi is �–Lipschitz, f is �–Lipschitz with respect to the uniform
metric on K .

3 Asymptotic dimension of amalgamated product

Let A and B be finitely generated groups and let C be a common subgroup. We
fix finite generating symmetric sets SA and SB . Let d denote the word metric on
A�C B corresponding to the generating set SA[SB . The group G DA�C B acts
on the Bass–Serre tree whose vertices are the left cosets G=A

`
G=B and the vertices

xA and xB , x 2 G , and only them are joined by edges. The edges ŒxA;xB� are
labeled by the cosets xC . We consider the action of G on the dual graph K . Thus
vertices of K are the left cosets xC . Two vertices xC and x0C are joined by an
edge if an only if the edges in the Bass–Serre tree with these labels have a common
vertex. Note that K is a tree-graded space in the sense of Drutu–Sapir [18] with pieces
�.A/ and �.B/, the 1–skeletons of the simplices spanned by A=C or B=C . Thus,

Algebraic & Geometric Topology, Volume 8 (2008)



On asymptotic dimension of amalgamated products and right-angled Coxeter groups 1287

K is partitioned into these pieces in a way that every two pieces have at most one
common vertex and the nerve of the partition is a tree (see Figure 1). The graph K

has an additional property that all vertices are the intersection points of exactly two
pieces of the different types �.A/ and �.B/. We consider the simplicial metric on K ,
ie, every edge has length one and we use the notation ju; vj for the distance between
vertices u; v 2K.0/ . For u 2K.0/ by juj we denote the distance to the vertex with
label C . Note K has the unique geodesic property for every pair of vertices. There is
a natural projection � W G!K defined by the action: �.g/D gC .

B=C

C

A=C

B=C

B=C

A=C

A=C

A=C

A=C

:::

:::

:::

� � �

:::

Figure 1

Assertion 3.1 The map � W G!K extends to a simplicial map of the Cayley graph
of G , � W C.G/!K .

Proof Let g 2 G and s 2 SA [ SB . If s 2 C , then �.g/ D �.gs/ and the edge
Œg;gs� � C.G/ is mapped to the vertex gC D gsC . With out loss of generality we
may assume that s 2A nC . We need to show that �.g/D gC and �.gs/D gsC are
joined by an edge in K . Note gA is the common vertex for the edges ŒgB;gA� and
ŒgA;gsB� in the Bass–Serre tree. So the vertices corresponding these edges are joined
by an edge in K . Thus the vertices gC and gsC are joined by an edge in K .

As a corollary we obtain that � is 1–Lipschitz.
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The base vertex C separates K into two parts KA n fC g and KB n fC g. Let xd denote
the graph metric on K . We denote by BA

r the r –ball, r 2N , in KA centered at C .
There is a partial order on vertices of K defined as follows: v � u if and only if v
lies in the geodesic segment ŒC;u� joining the base vertex with u. For u 2K.0/ of
nonzero level and r > 0 we denote by

Ku
D fv 2K.0/

j v � ug; Bu
r D fv 2Ku

j jvj � jujC rg:

For every vertex u 2 K.0/ represented by a coset gC with juj even we have the
equalities Bu

r D gBA
r , Ku D gKA and hence the equalities ��1.Bu

r /D g��1.BA
r /

and ��1.Ku/D g��1.KA/.

We say that a set F �G separates two subsets H1 and H2 in G if it separates them
in the Cayley graph C.G/, that is every path in C.G/ with the endpoints in H1 and
H2 meets F .

Let DR D fx 2 G j d.x;C /DRg be the boundary of the R–neighborhood of C in
��1.KA/, R 2N . For u 2K.0/ we denote Du

R
D gu.DR/, gu 2G , where the coset

guC represents u. Note that �.Du
R
/� Bu

R
.

Proposition 3.2 For every vertex u 2 K with even juj and for every v 2 K.0/

incomparable with u or satisfying v < u, the set Du
R

separates ��1.v/ and ��1.u0/

in A�C B whenever u< u0 and ju0j � juj>R.

Proof Since G acts by isometries, it suffices to show that DR separates ��1.KB/

and ��1.u0/ with ju0j >R and u0 2KA . In view of the fact that � is 1–Lipschitz,
d.C; ��1.u0//>R. Hence DR separates C and ��1.u0/. By Assertion 3.1 the image
of a path in C.G/ is a path in K . Since every path in K from KA to KB hits the vertex
C , it follows that every path in the Cayley graph from ��1.KA nC / to ��1.KB nC /

hits the set C D��1.fC g/. Hence every path from ��1.u0/ to ��1.KB/ hits DR .

Proposition 3.3 If R � r=4, then d.gDR;g
0DR/ � 2R for g;g0 2 G with jgC j;

jg0C j 2 nr , n 2N , and gC ¤ g0C .

Proof We use the notation uDgC and u0Dg0C for the vertices in K . First consider
the case when juj ¤ ju0j. Since �.gDR/�Bu

R
, xd.Bu

R
;Bu0

R
/� r �R� 3R, and � is

1–Lipschitz, we obtain that d.gDR;g
0DR/� 3R.

Let juj D ju0j and let x 2 gDR and y 2 g0DR . Since every path in K between �.x/
and �.y/ goes through the vertices u and u0 and a path in the Cayley graph C.G/

is projected to a path in K (see Assertion 3.1), a geodesic from x to y in C.G/

passes through gC and g0C . Since d.x;gC /DR and d.y;g0C /DR we obtain the
inequality d.x;y/� 2R.
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We fix two set-theoretic sections sAW A=C ! A and sBW B=C ! B of �A and �B

and denote by X D im.sA/ n C and Y D im.sB/ n C . These sections give rise the
normal presentation of elements in A�C B . Namely, every element  2A�C B can be
presented uniquely in the following form  D z1 : : : zkc where c 2C , zi 2X [Y , and
zi are alternating in a sense that if zi 2X then ziC1 2 Y and if zi 2 Y then ziC1 2X .
Denote by l.z1 : : : zkc/Dk the length of the normal presentation. Clearly, l. /DjC j

where C is treated as a vertex of K . If X 0 and Y 0 is a different choice of represen-
tatives and  D z1 : : : zkc and  D z0

1
: : : z0

k
c0 are corresponding normal presentations,

then z0
1
D z1c1 , z0

2
D c�1

1
z2c2 , : : : , z0i D c�1

i�1
zici , : : : , z0

k�1
D c�1

k�2
zk�1ck�1 and

z0
k
c0 D c�1

k�1
zkc where ci 2 C , i D 1; : : : ; k .

Assertion 3.4 Let  2A�C B . Then kk � d.ˇkc;C / for the normal presentation
 D ˇ1 : : : ˇkc for any choice of representatives X and Y .

Proof Let kk be the word-length of  with respect to the generating set of A�C B

and let  D t1 : : : tn , nD kk, be a shortest presentation. Then the word t1 : : : tn can
be partitioned into a normal presentation (for some choice of X and Y )  D ˛1 : : : ˛k ,
˛i 2 A (or ˛i 2 B/, with k D l. /. Then kk � k˛kk D d.˛k ; 1/ � d.˛k ;C /. If
X 0 and Y 0 is a different choice of representatives and  D ˇ1 : : : ˇkc are correspond-
ing normal presentations, then ˇ1 D ˛1c1 , ˇ2 D c�1

1
˛2c2 , : : : , ˇi D c�1

i�1
˛ici , : : : ,

ˇk�1 D c�1
k�2

˛k�1ck�1 and ˇkc0 D c�1
k�1

˛k where ci 2 C , i D 1; : : : ; k .

Thus, ˇkc0 D c˛k . This implies that kk � d.ˇkc;C /.

Lemma 3.5 Let asdim A; asdim B � n. Then asdim.AB/m � n for all m where
.AB/m DAB : : :AB �A�C B .

Proof We prove that asdim AB : : :A.B/�n by induction on the length of the product
k . The inequality is a true statement for kD 1. Assume that it holds for k . For the sake
of concreteness assume that k is odd. Thus, asdim F1 : : :Fk �n where F2i�1DA and
F2i DB . We show that asdim F1 : : :FkB � n. Consider the family fwB j l.w/D kg.
Since all sets wB are isometric to B , asdimwB � n uniformly.

Given r we define Yr DABAB : : :ABACBr � .AB/.kC1/=2 D F1 : : :FkC1 where
Br is the r –ball in B . Note that Yr is quasi-isometric to the k –alternating product
AB : : :ABA and hence asdim Yr � n by the induction assumption. We show that
d.wB n Yr ; w

0B n Yr / � r whenever wB is not equal to w0B . Let b; b0 2 B nCBr .
Then d.b;C / � r and d.b0;C / � r . Since w�1w0 … B , the normal presentation of
b�1w�1w0b0 ends with c0b0 for c0 2 C . Then by Assertion 3.4, kb�1w�1w0b0k �

d.c0b0;C / � r . Then by the Infinite Union Theorem (Theorem 2.7) we obtain that
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asdim.F1 : : :Fk \Lk/B � n where Lk is the set of all elements w 2 A �C B with
l.w/D k , Fi DA.B/ are alternating, and F1DA. Let L<k be the set of all elements
w 2A�C B with l.w/ < k . The inequality asdim.F1 : : :Fm\L<m/B � n follows
from induction assumption and the Finite Union Theorem (Theorem 2.6).

This Lemma first appeared in [2]. We present it here with a proof since the argument
in [2] contains a gap in the proof of Proposition 3.

Theorem 3.6 For any finitely generated groups A and B and a common subgroup C

there is the inequality

asdim A�C B �maxfasdim A; asdim B; asdim C C 1g:

Proof Let n D maxfasdim A; asdim B; asdim C C 1g and let � W A �C B ! K D

KA [KB be the projection to the graph dual to the Bass–Serre tree. In view of the
Finite Union Theorem (Theorem 2.6) it suffices to show that asdim��1.KA/� n and
asdim��1.KB/� n. We prove the first.

We apply the Partition Theorem (Theorem 2.10). Let R> 0 be given. Take r > 4R.

In view of Proposition 3.2 G D XC [X� with XC \X� D DR such that XC �

��1.KA/, ��1.KB/�X� and DR separates XCnDR and X�nDR . For every vertex
u 2KA we fix an element gu 2G such that the coset guC represents u. We denote
by X u

˙
D gu.X˙/ and define Vr D XC \ .

T
jujDr X u

�/. Note that �.Vr / � BrCR .
Let V u

r denote gu.Vr /. Consider the partition

��1.KA/D
[

jujDnr;n2NC

V u
r [N A

R .C /

where N A
R
.C /DNR.C /\�

�1.KA/.

Clearly, if V u
r \V w

r ¤∅, then either u<w and jwjDjujCr or w<u and jujDjwjCr .
If V u

r \V w
r ¤∅ and u<w then V u

r \V w
r DDw

R
where Dw

R
D gwDR .

Thus Z D
[

jujDnr;n2NC

@V u
r D

[
jujDnr;n2NC

Du
R:

We show that .R; d/–asdim Z�n�1 for some d >0. Since DR is coarsely equivalent
to C , we have asdim DR � n� 1. Hence there is d > 0 and an .R; d/–cover U of
DR with ordU � n. In view of Proposition 3.3, zU D

S
jujDnr;n2NC

gu.U/ is an
.R; d/–cover of Z .

Since ��1.Bs/ � .AB/sC1 , by Lemma 3.5 we have asdim��1.Bs/ � n. Hence
asdim��1.BrCR/� n and so, asdim V u

r � n uniformly. Note that asdim N A
R
.C /� n

(in fact, it is � n� 1).
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By the Partition Theorem (Theorem 2.10), asdim��1.KA/� n.

4 Asymptotic dimension of right-angled Coxeter groups

A symmetric matrix M D .mss0/s;s02S is called a Coxeter matrix if mss0 2N [f1g,
and mss D 1 for all s 2 S . A group � with a generating set S is called a Coxeter
group if there is a Coxeter matrix M D .mss0/s;s02S such that � admits a presentation

hS j .ss0/mss0 ; s; s0 2 Si:

A Coxeter group � is called even if all finite nondiagonal entries of M are even. It is
called right-angled if all finite nondiagonal entries equal 2.

Every subset W � S defines a subgroup �W � � which will be called parabolic. Let
.�;S/ be a Coxeter group with a generating set S and with a presentation given by
means of a Coxeter S �S matrix M . The nerve N.�/ is a simplicial complex with
the set of vertices S where a subset W � S spans a simplex if and only if the group
�W is finite. Thus, s; s0 2 S , s ¤ s0 , form an edge if and only if mss0 ¤1. We call
the number mss0 a label of the edge Œss0�. By N 0 we denote the barycentric subdivision
of N . The cone C D ConeN 0 over N 0 is called a chamber for � . The Davis complex
†D†.�;S/ is the image of a simplicial map qW ��C !† defined by the following
equivalence relation on the vertices: a�v� � b�v� provided a�1b 2�� where � is a
simplex in N and v� is the barycenter of � . We identify C with the image q.e �C /.
The group � acts properly and simplicially on † with the orbit space equivalent to
the chamber. Thus, the Davis complex is obtained by gluing the chambers C ,  2 �
along their boundaries. The main feature of † is that it is contractible (see Davis [10]).

Theorem 4.1 For every right-angled Coxeter group asdim� � dim N.�/C 1.

Proof We prove this inequality by induction on the dimension of the nerve N D

N.�/. If dim N D 0, then � is virtually free group (possibly of zero rank) and hence
asdim� � 1D dim N C 1.

Let dim N D n and let N be finite. We prove the inequality asdim� � nC 1 by
induction on the number of vertices in N . If this number is minimal, ie, nC 1, the
inequality holds since the group � in this case is finite. We assume that there is a vertex
v 2N such that the star st.v;N / does not contain all other vertices of N . If there is
no such v , then the 1–dimensional skeleton N .1/ coincides with the 1–skeleton of a
simplex �. Since the group is right-angled, N D�, and the group is finite, so this
case has been already considered. We take K to be the link Lk.v;N / of such vertex
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v and take N1 to be the star st.v;N / of this vertex. We define N2 DN nOst.v;N /

where Ost.v;N / is the open star of v .

Then � D �N1
��K

�N2
. By the induction assumption, asdim�K � n. By the internal

induction, asdim�Ni
�nC1, i D 1; 2. Then Theorem 3.6 implies asdim� �nC1.

Corollary 4.2 For every right-angled Coxeter group asdim� � dim†.�/ where
†.�/ is the Davis complex.

In view of recent result of Dymara and Schick [19] we obtain:

Corollary 4.3 For a right-angled building X , asdim X � dim X .

Remark In order to extend Theorem 4.1 to all Coxeter groups one needs to show the
inequality asdim� � dim N C1 in the case when N .1/ is the 1–skeleton of a simplex.
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