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Fundamental groups of topological stacks
with the slice property

BEHRANG NOOHI

The main result of the paper is a formula for the fundamental group of the coarse
moduli space of a topological stack. As an application, we find simple formulas
for the fundamental group of the coarse quotient of a group action on a topological
space in terms of the fixed point data. In particular, we recover, and vastly generalize,
results of Armstrong [1; 2], Bass [3], Higgins and Taylor [7] and Rhodes [11].
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1 Introduction

The purpose of this paper is to prove a basic formula for the fundamental group of the
coarse moduli stack of a topological stack (Theorem 8.3). This result has consequences
in classical algebraic topology which seem, surprisingly, to be new. (Some special cases
have appeared previously in Armstrong [1; 2], Higgins and Taylor [7] and Rhodes [11].
Also see Section 9.10 of Brown [5] which treats a related result of Brown and Higgins.)
They give rise to simple formulas for the fundamental group of the coarse quotient
space of a group action on a topological space in terms of the fixed point data of the
action; see Theorem 9.1, Theorem 10.4 and Remark 10.7 – Corollary 10.5 should also
be of interest.

For the above results to hold, one needs a technical hypothesis which is called the slice
property (Definitions 5.1 and 5.4). As the terminology suggests, this notion is modeled
on the slice property of compact Lie group actions. Stacks which satisfy the slice
property include quotient stacks of proper Lie groupoids and stack that are (locally)
quotients of Cartan G –spaces (see Example 2 in Section 5.1), where G is an arbitrary
Lie group. The latter case includes: 1) Deligne–Mumford topological stacks, hence,
all orbifolds; 2) quotient stacks of compact Lie group actions on completely regular
spaces; 3) quotient stacks of proper Lie group actions on locally compact spaces.

Roughly speaking, the idea behind the above theorems is that, in the presence of the
slice property, the fundamental group of the coarse moduli space (or the coarse quotient
of a group action) is obtained by simply killing the loops which “trivially” die as we
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pass to the coarse space. For example, we know that under the moduli map X !Xmod

the ghost loops (or inertial loops) in �1.X / die. Theorem 8.3 says, roughly, that
�1.Xmod/ is obtained precisely by killing all the ghost loops in �1.X /.

Theorem 8.3 can be applied in a variety of situations, eg, when X is a complex-of-
groups, an orbifold, the leaf stack of a foliation, and so on. In the case where X is a
graph-of-groups, this recovers a result of Bass [3, Example 2.14].

Our strategy in proving these results is to make a systematic use of the covering theory
of topological stacks, which we developed in [9, Section 18]. This approach has the
advantage that it is neat and it minimizes the use of path chasing arguments. The major
players in the game are the maps !x W Ix ! �1.X ;x/ introduced in [9, Section 17]
which realize elements of the inertia groups Ix as ghost loops in X .

Organization of the paper To be able to make use of the formalism of Galois
categories, in the first part of Section 2 we go over prodiscrete topologies on groups
and prodiscrete completions. (A prodiscrete topology on a group is a topology which
admits a basis at the identity consisting of subgroups (not necessarily normal); pro–C–
topologies of Ribes [12] are examples of these.) This is presumably standard material.
In the second part of Section 2, we remind the reader of Grothendieck’s theory of
Galois categories.

Main examples of Galois categories arise from covering stacks, and they give rise to
prodiscrete groups. This is discussed in Section 3. In Section 4 we introduce the Galois
categories that interest us in this paper. Understanding these Galois categories is the
key in proving our results about fundamental groups of stacks.

Up to this point in the paper, everything is quite formal and we do not make any
assumptions on our stacks (other than being connected and locally path-connected).
In Section 5, we introduce topological stacks with the slice property (Definition 5.1
and Definition 5.4). In Section 6, we look at a certain class of stacks with the slice
property which satisfy a certain locally path-connectedness condition. We call them
strongly locally path-connected stacks. These are stacks whose covering theory is as
well-behaved as it can be.

The interrelationship between the various Galois categories introduced in Section 4 is
discussed in Section 7. The slice property will play an important role in relating these
Galois theories.

In Section 8, we translate the results of Section 4 in terms of fundamental groups and
obtain our first main result, Theorem 8.3.
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In Section 9 and Section 10, we apply Theorem 8.3 to the quotient stack ŒX=G� of a
group action and derive our next main results, Theorem 9.1 and Theorem 10.4.

In Section 11, we compare our results with those of Armstrong [2].

2 Some abstract Galois theory

In this section, we review Grothendieck’s theory of Galois categories, slightly modified
so we do not need the finiteness assumptions of SGA1 [6].

Throughout the paper, all group actions are on the left and are continuous.

2.1 Prodiscrete completions

To set up a Galois theory that is general enough for our purposes, we need to extend
the theory of profinite groups so that it applies to topologies generated by families of
subgroups that are not necessarily of finite index. Lack of compactness causes a bit of
technical difficulty, but it does not effect the outcome, at least as far as our applications
are concerned. The material in this subsection should be standard.

Definition 2.1 Let G be a topological group. We say that the topology of G is
prodiscrete if its open subgroups form a fundamental system of neighborhoods at the
identity.

Let G be a group, and let H be a family of subgroups of G satisfying the following
axioms:

(Top1) If H1;H2 2H , then H1\H2 2H .

(Top2) For any H 2H and any g 2G , gHg�1 is in H .

(Top3) If H 2H and H �H 0 , then H 0 2H .

In this case, there is a prodiscrete topology on G with the property that a subgroup
H � G is open if and only if H 2 H . We sometime refer to this topology as the
H–topology on G .

The H–topology is Hausdorff if and only if
T
HH D f1g. In this case, the topology is

totally disconnected. It is compact if and only if every H 2H has finite index in G . In
this case, there exists a fundamental system of neighborhoods at the identity consisting
of normal subgroups.
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Example 2.2 (1) For an arbitrary topological group G , there is a natural choice of
a prodiscrete topology on G , namely, the one where H is the collection of all
open–closed subgroups of G . We call this the canonical prodiscrete topology on
G . There is another natural topology on G generated by normal open–closed
subgroups. These two topologies are in general not the same.

(2) A given discrete group G can be endowed with several prodiscrete topologies.
For instance, the profinite, prosolvable, pronilpotent and pro–p topologies. The
discrete topology is also prodiscrete. In general, for any formation C of groups
(that is, a collection of groups closed under taking quotients and finite subdirect
products), one can consider the pro–C topology on a group G . In the pro–C

topology, H �G is open if H is normal and G=H is in C.
All these topologies have a basis consisting of normal subgroups.

(3) Given a family H of subgroups of a group G , there is a smallest prodiscrete
topology on G in which every H 2H is open. We call this the topology generated
by H . Open subgroups in this topology are subgroups K � G which contain
some finite intersection of conjugates of groups in H . When H consists of a
single normal subgroup N , then the open subgroups of the topology generated
by N are exactly the subgroups of G which contain N .

Let G be an arbitrary topological group. We define G–Set to be the category of all
continuous discrete G –sets. There is a forgetful functor FG W G–Set! Set.

Convention Throughout the paper all G–sets are assumed to be continuous and
discrete.

Definition 2.3 Let G be an arbitrary topological group. We define the prodiscrete com-
pletion of G to be G^ WDAut.FG/, where Aut.FG/ is the group of self-transformations
of the forgetful functor FG W G–Set! Set. When G is given by an H–topology, we
will also use the notation G^H .

Remark 2.4 The prodiscrete completion of a topological group G is the same as
the prodiscrete completion of G endowed with its canonical prodiscrete topology
(Example 2.2(1)). Therefore, it is natural to restrict to prodiscrete topological groups
when talking about prodiscrete completions.

There is a natural homomorphism �G W G!G^ which is characterized by the property
that, for every X 2 G–Set, the actions of G and G^ on X are compatible with each
other via �G . The map �G is injective if and only if G is Hausdorff.
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We endow G^ with a prodiscrete topology in which the open subgroups are those
subgroups of Aut.FG/DG^ which are of the form UX ;x , for X 2 G–Set and x 2X .
Here, UX ;x stands for the group of all elements in Aut.FG/ whose action on X leaves
x fixed.

Proposition 2.5 The subgroups UX ;x � G^ , where X 2 G–Set and x 2 X , are
exactly the open subgroups of a prodiscrete topology on G^ .

Proof We have to check the axioms (Top1), (Top2) and (Top3).

(Top1) This follows from the equality UX ;x \ UY;y D UX�Y;.x;y/ . The proof of
this equality is easy, but there is a tiny subtlety. The point is that, there are, a priori,
two actions of G^ on X �Y . One is the componentwise action on the product. The
other is obtained by considering X � Y as an object in G–Set and then taking the
induced action of G^ D Aut.FG/ on it; see Definition 2.3. These two actions are,
however, identical, as can be seen by considering the two (G –equivariant) projection
maps pr1W X �Y ! X and pr2W X �Y ! X and using the fact that every  2 G^ ,
being a transformation of functors, should respect pr1 and pr2 .

(Top2) For every  2G^ and every UX ;x , we have UX ;x
�1 D UX ;x .

(Top3) Note that in the definition of UX ;x , we may assume that the action of G on
X is transitive (because UX ;x D UG�x;x ). This implies that the action of G^ on X is
also transitive. Let U �G^ be a subgroup that contains UX ;x . We have to construct a
G –set Y and a point y 2 Y such that U is exactly the stabilizer of y in G^ .

Let A WD U �x �X be the orbit of x under the action of U . It is easy to see that, for
every ;  0 2G^ , either  �AD  0 �A or  �A\ 0 �AD∅; the equality happens exactly
when  and  0 are in the same left coset of U in G^ . Since the action of G^ on X

is transitive, this partitions X into translates of A. Let Y be the set of equivalence
classes. (In other words, Y is just the set G^=U .) We have an induced action of G^

on Y , hence also one of G on Y . This way, Y becomes a G–set. Under the action
of G^ , the stabilizer group of the class of A in Y is exactly U . This completes the
proof.

There is a tiny subtlety in the above argument that needs some explanation. Note
that Y , viewed as an object of G–Set inherits an action of Aut.FG/DG^ which, a
priori, may be different from the original action of G^ on it. However, these two action
are actually the same. This can be seen by looking at the projection map pW X ! Y ,
viewed as a morphism in G–Set, and using the fact elements of G^ D Aut.FG/ are
transformations of functors (hence respecting p ).
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The following lemma is immediate.

Lemma 2.6 The map U 7! ��1
G
.U / induces a bijection between open subgroups U

of G^ and open subgroups of G . This bijection sends normal subgroups to normal
subgroups. For every open subgroup U � G^ , we have a bijection G=��1

G
.U / ��!

G^=U . In particular, the map �G W G ! G^ is continuous. Indeed, the topology on
G^ is the finest topology that makes �G continuous. Furthermore, the natural functor
��
G
W G^–Set!G–Set is an equivalence of categories. Finally, ��

G
respects the forgetful

functors FG W G–Set! Set and FG^ W G
^–Set! Set. That is, the diagram

G^–Set
��
G //

FG^
!!B

BB
B

G–Set

FG
~~~~

~~

Set

is commutative.

The lemma implies that any continuous action of G on a set X extends uniquely to a
continuous action of G^ on X , and every G –equivariant map X!Y is automatically
G^–equivariant. The group G^ is universal among the topological groups that have
the same category of G –sets as G .

Definition 2.7 We say that a prodiscrete group G is complete if �G W G!G^ is an
isomorphism.

Proposition 2.8 For every prodiscrete group G the prodiscrete completion G^ is
complete.

Proof By Lemma 2.6, the category G^–Set is equivalent to G–Set via an equivalence
that respects the forgetful functors. This equivalence induces a natural isomorphism
between the groups of self-transformations of the two forgetful functors.

Proposition 2.9 Every discrete group is complete.

Proof Pick a self-transformation  2Aut.FG/ of the forgetful functor FG W G–Set!

Set. We have to show that there exists g 2G such that for every G –Set X the action
of  on X is the same as the action of g . It is enough to assume that X D G=H ,
for some subgroup H of G . (This is because if the actions of g and  coincide for
every transitive G –set, then they coincide for every G –set.) In fact, since G! G=H

is surjective, it is enough to assume that X DG with the left multiplication action.
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Let Gtriv be the set G with the trivial G–action. Since the action of  on a point is
trivial, its action on FG.Gtriv/ is also trivial. By considering the action of  on the
diagram of G –sets

G G �Gtriv
pr1oo

mult.
��

pr2 // Gtriv

G

it follows that the action of  respects right multiplication by every element of G .
Therefore,  must be equal to left multiplication by the element g WD  .1/ 2G .

Example 2.10 (1) Let G be a group, and let N �G be a normal subgroup. Endow
G with the prodiscrete topology in which open subgroups are exactly the ones
containing N . Then G^ ŠG=N .

(2) Let G be a finite group. Then every prodiscrete topology on G is of the form
above. To see this, take N to be the intersection of all open subgroups of G .

Given a continuous group homomorphism f W G!H , we have an induced continuous
homomorphism f ^W G^!H^ making the following square commute:

G
f //

�G
��

H

�H
��

G^
f ^

// H^

Corollary 2.11 Let f W G!H be a continuous homomorphism, where G is a prodis-
crete group and H is a discrete group. Then there is a unique extension f ^W G^!H .

Proof By functoriality of � we have a natural homomorphism f ^W G^!H^ . The
assertion follows from Proposition 2.9.

Of course, the above statement is true for any complete prodiscrete group H .

Lemma 2.12 Let G be a prodiscrete group, and let G0 be another prodiscrete group
whose underlying group is the same as G but whose topology is weaker. Note that, by
Lemma 2.6, this induces a weaker topology on G^ , which we denote by G00 . Then the
natural (continuous) homomorphism G0!G00 induces an isomorphism G0^ ��! G00^ .
(Note that when G DG0 we recover Proposition 2.8.)
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Proof The categories G0–Set and G00–Set are naturally subcategories of G–Set and
G^–Set, respectively, and the restriction of the equivalence ��

G
W G^–Set!G–Set to

G^–Set induces an equivalence G00^–Set!G0–Set (respecting the forgetful functors).
This gives us the desired isomorphism G0^ ��! G00^ .

Remark 2.13 It seems that it is not true in general that the image of �G W G!G^ is
dense, unless we assume that G has a basis consisting of normal open subgroups (see
Proposition 2.14). All we can say in general is that there is no proper open subgroup
of G^ containing �G.G/.

Proposition 2.14 Assume that G is a prodiscrete group that has a basis N D fNigi2I

(around identity) consisting of normal subgroups. Then there is a natural isomorphism

G^ Š lim
 �
N

G=Ni :

In other words, in this case our notion of completion coincides with the classical one.

Proof Denote the right hand side by zG . It is easy to check that the map G ! zG

induces an equivalence of categories zG–Set !G–Set (respecting the forgetful functors
FG and F zG ). So, it is enough to show that zG is complete, ie, � zG W

zG! Aut F zG is an
isomorphism.

This map is injective, since zG is Hausdorff. To prove the surjectivity, let ˛ 2 Aut F zG .
Fix an i 2 I and consider the zG –set G=Ni . The action of ˛ on G=Ni sends 12G=Ni

to some gi 2 G=Ni . For any h 2 G=Ni , multiplication on the right by h induces a
map of zG –sets G=Ni!G=Ni . Therefore, since the action of ˛ is functorial, its effect
on G=Ni sends h D 1h to gih. That is, ˛ acts by multiplication on the left by gi .
Again, by the functoriality of the action of ˛ , the various gi are compatible, that is,
they come from an element

g 2 lim
 �
N

G=Ni D
zG:

This proves the surjectivity.

2.2 Review of Grothendieck’s Galois theory

We review (a slightly modified version of) Grothendieck’s theory of Galois categories [6].
The difference here is that we want to apply the theory to the cases where the covering
maps are not necessarily finite, so we will remove certain finiteness assumptions.

Algebraic & Geometric Topology, Volume 8 (2008)



Fundamental groups of topological stacks with the slice property 1341

Definition 2.15 (see SGA [6] for more details) By a Galois category we mean a pair
.C;F /, where C is a category and F W C! Set is a functor, satisfying the following
axioms:1

(G1) The category C has finite projective limits (ie, C has a final object and fiber
products exist).

(G2) Direct sums (not necessarily finite) exist. In particular, an initial object exists.
Also, quotient of an object under an equivalence relation exists. In particular,
quotients under (faithful) group actions exist.

(G3) Let uW X ! Y be a morphism in C. Then u factorizes as X u0
�! Y 0 u00

�! Y ,
with u0 a strict epimorphism and u00 a monomorphism that is an isomorphism
onto a direct summand of Y .

(G4) The functor F is left exact. That is, it commutes with fiber products and takes
the final object to the final object.

(G5) The functor F commutes with direct sums, takes strict epimorphisms to epimor-
phisms and commutes with taking quotients (as in (G2)).

(G6) The functor F is conservative. That is, if uW X ! Y is a morphism in C such
that F.u/ is an isomorphism, then u is an isomorphism.

The functor F is called the fundamental functor. A functor between Galois categories
is called a Galois functor if it respects the fundamental functors. An object in a Galois
category is called connected if it can not be written as a direct sum of two objects.
An example of a Galois category is the category of continuous G–sets, where G is
an arbitrary topological group. The fundamental functor in this case is the forgetful
functor. The main theorem of Grothendieck’s Galois theory is that this is basically the
only example.

Theorem 2.16 Let .C;F / be a Galois category. Let � 0
1
.C;F / WD Aut F be the (com-

plete prodiscrete) group of automorphisms of F . Then there is a natural equivalence of
Galois categories CŠ � 0

1
.C;F /–Set.2

The above equivalence is functorial with respect to functors between Galois categories.
In other words, the category of Galois categories and Galois functors between them
is equivalent to the category of complete prodiscrete groups and continuous group
homomorphisms.

1The axioms are numbered in this way to be compatible with [6].
2The reason for using the notation � 0

1
becomes clear when we consider the Galois category associated

to a topological space X (Section 4.1), in which case � 0
1

and �1 will not in general be the same unless
we assume that X is semilocally 1–connected.
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The proof of the above theorem is just a slight modification of the proof given in [6]
and we omit it.

An object X in a Galois category .C;F / is called Galois if X=Aut X D�. This means
that the group of automorphisms of X (which we think of as the Galois group of X )
is as big as it can be. For example, in G–Set every G=N , where N is an open normal
subgroup of G , is a Galois object (and every connected Galois object is of this form).
In general, connected Galois objects are in bijection with open normal subgroups of
� 0

1
.C;F /.

Note that, in Theorem 2.16 we did not require the existence of Galois objects in C,
although it will be the case in most examples. In fact, in most situations, one can find a
cofinal family of connected Galois objects (ie, every connected object is dominated by
a connected Galois object). This is equivalent to saying that � 0

1
.C;F / has a basis at

the identity consisting of normal subgroups. In this situation, Proposition 2.14 implies
that � 0

1
.C;F / can be computed as the opposite of the inverse limit of the Galois groups

of the Galois objects. (The reason we have to take the opposite is that the group of
automorphisms of the object G=N 2 G–Set is .G=N /op .) Let us summarize this in
the following proposition.

Proposition 2.17 Let .C;F / be a Galois category, and let fXigi2I be a cofinal family
of connected Galois objects (ie, every connected object is dominated by some Xi ).
Then we have a natural isomorphism

� 01.C;F /Š lim
 �

I

.Aut Xi/
op:

3 Galois theory of covering stacks

The Galois theory of covering stacks of a topological stack X is closely related to
the group theory of its fundamental group. But, these two theories can diverge unless
we assume that X behaves nicely locally: the mouthful “semilocally 1–connected”
condition. This property, unfortunately, may not be preserved under certain natural
constructions that one makes with topological stacks (say, base extension, or passing to
the coarse moduli space). To avoid this nuisance we begin by developing a theory of
fundamental groups which is more in tune with Galois theory of covering stacks. We
then explain how it relates to the usual theory of fundamental groups.
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3.1 Review of topological stacks

We recall a few definitions from [9]. We follow the notational convention of [9] by
using calligraphic symbols X , Y , Z , : : : for stacks and script symbols X , Y , Z , : : :
for spaces.

Throughout the paper, a stack means a stack over the site Top of topological spaces;
here, Top is endowed with its standard open-cover topology. A stack X is called
topological if it is equivalent to the quotient stack of a topological groupoid ŒX1� X0�

whose source maps is a local Serre fibration in the sense of [9, Section 13.1]. An atlas3

for a topological stack X is an epimorphism pW X ! X from a topological space X .
Given such an atlas, one finds a groupoid presentation for X by taking X1 DX �X X

and X0 DX .

Every topological space X can be thought of as a topological stack, namely, the
topological stack associated to the trivial groupoid ŒX � X �. This gives a fully faithful
embedding of the category of topological spaces and continuous maps to the category
of topological stacks. Also, for every topological group G , every continuous G –space
gives rise to a topological stack ŒX=G�. Among other examples of topological stacks
we mention orbifolds, the underlying topological stacks of Artin stacks, complexes-of-
groups and leaf stacks of foliations.

The basic notions of algebraic topology (eg, homotopy, homotopy groups, generalized
homology/cohomology, fibrations, mapping spaces, loop spaces, etc.) generalize to
topological stacks.

By a point x in a stack X we mean a morphism xW � ! X of stacks. The inertia
group of a point x is the group of self-transformations of the above map. It is naturally
a topological group when X is topological, and is denoted by Ix .

To a topological stack X one associates a topological space Xmod , called the coarse
moduli space of X . There is a natural morphism � W X !Xmod that is universal among
morphisms from X to topological spaces. The map � induces a natural bijection
between the set of 2–isomorphism classes of points of X and the set of points of
Xmod . When X D ŒX0=X1� for a topological groupoid ŒX1 � X0�, Xmod is naturally
homeomorphic to the coarse quotient space X0=X1 . In particular, when X D ŒX=G�

is the quotient stack of a group action, the coarse moduli space Xmod is homeomorphic
to the coarse quotient space X=G .

3In [9] we call this a chart. Bad terminology!
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3.2 Review of covering stacks

We review a few basic facts about covering stacks of topological stacks. More details
and proofs can be found in our preprint [9, Section 18].

Definition 3.1 Let X be a topological stack. We say that X is connected if it has no
proper open–closed substack. We say X is path-connected, if for every two points x

and y in X , there is a path from x to y .

Definition 3.2 Let X be a topological stack. We say that X is locally connected
(respectively, locally path-connected, semilocally 1–connected), if there is an atlas
X ! X such that X is so.

These definitions agree with the usual definitions when X is a topological space. This
is because of the following lemma.

Lemma 3.3 Let f W Y ! X be a continuous map of topological spaces that admits
local sections. Assume that Y is locally connected (respectively, locally path-connected,
semilocally 1–connected). Then so is X .

Definition 3.4 A representable map Y!X of topological stacks is called a covering
map if for every topological space W and every map W ! X , the base extension
W �X Y!W is a covering map of topological spaces.

Proposition 3.5 Let f W Y ! X be a covering map of topological stacks. Then the
diagonal map �W Y! Y �X Y is an open–closed embedding.

An immediate corollary of this proposition is the following.

Corollary 3.6 Let f W Y!X be a covering map of topological stacks. Let pW X!X
be an atlas for X , and let qW Y ! Y be the pullback atlas for Y , where Y D Y �X X .
(Note that we can also view Y as an atlas for X via f ı qW Y ! X .) Set RD Y �Y Y

and R0D Y �X Y , and consider the corresponding groupoids ŒR� Y � and ŒR0� Y �

(so ŒY=R�Š Y and ŒY=R0�Š X ). Then ŒR� Y � is an open–closed subgroupoid of
ŒR0 � Y �.

Algebraic & Geometric Topology, Volume 8 (2008)
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3.3 C–complete fundamental groups

In this subsection we look at the topological incarnations of the notions developed in
the previous section. Let X be a connected locally path-connected topological stack,
and let x be a point in X . We will not assume yet that X is semilocally 1–connected.

To .X ;x/ we can associate various Galois categories .C;F / of covering stacks by
requiring the following:

(C1) If Y is in C and Y 0 is another covering stack of X that is dominated by Y (ie,
there is a surjection Y! Y 0 relative to X ), then Y 0 is in C.

(C2) C is closed under fiber products.

(C3) C is closed under taking disjoint unions.

(C4) If Y is in C , then every connected component of Y is also in C.

The fundamental functor F for such a category is simply the fiber functor Y 7! Yx D

��x Y . Axioms (G1)–(G6) are easy to verify. (Perhaps (G2) is a bit nontrivial. It
follows from Lemma 3.7 below.)

For a given (connected) covering stack f W Y! X , and for a choice of a basepoint y

in Y lying above x (ie, y is a point in the fiber Yx of Y over x ), we have an injection
of fundamental groups �1.Y;y/! �1.X ;x/. The image of this injection uniquely
determines .Y;y/ up to isomorphism. Changing the base point y will change this
subgroup by conjugation.

Let HC be the collection of all such subgroups of �1.X ;x/. It is easily seen that the
axioms (Top1)–(Top3) of Section 2.1 are satisfied: (Top1) follows from (C2); (Top2)
follows from the discussion of the previous paragraph about changing the base point;
(Top3) follows from (C1) and Corollary 3.8 below.

Lemma 3.7 Let .X ;x/ be a pointed topological stack, and let f W Y ! X be an
arbitrary covering stack of X .

(i) Let Z be a covering stack of X , and let Z!Y�X Y be an equivalence relation
on Y (see Axiom (G2)). Then the quotient Y 0 of this equivalence relation exists
and is a covering stack of X .

(ii) Let F 0 be a �1.X ;x/–set, and let Fx.Y/ ! F 0 be a surjective �1.X ;x/–
equivariant map, where Fx.Y/ is the fiber of f over x . Then there exists
a unique covering stack Y 0 ! X of X whose fiber is isomorphic to F 0 (as
a �1.X ;x/–set), together with a map of covering stacks Y ! Y 0 realizing
Fx.Y/! F 0 .
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Proof (i) Choose an atlas X ! X for X . Let Y ! Y and Z! Z be the pullback
atlases for Y and Z . Let ŒRX � X �, ŒRY � Y � and ŒRZ �Z� be the corresponding
groupoids. Then Z ! Y �X Y and RZ ! RY �RX

RY are equivalence relations.
Also, note that the maps Y !X , Z!X , RY !RX and RZ!RX are all covering
maps (each being the base extension of either Y ! X or Z! X ). Set Y 0 WD Y=Z

and RY 0 WD RY =RZ . It is easy to see that we have a natural groupoid structure on
ŒRY 0 � Y 0�. The quotient stack Y 0 WD ŒY 0=RY 0 � is the desired quotient of Y by Z .

(ii) Note that the statement is true for topological spaces. So, as in the previous part,
by choosing an atlas X ! X we will reduce the problem to the case of topological
spaces. Let Y , RX and RY be as in the previous part. Let x0 2 X be a lift of x ,
and let x1 2RX be the corresponding point in RX . Note that the maps Y !X and
RY !RX are base extensions of f , so both are covering maps. Furthermore, the fibers
Fx0

.Y / and Fx1
.RY / are, as sets, in natural bijection with Fx.Y/. The actions of

�1.X;x0/ and �1.RX ;x1/ on these sets are obtained from that of �1.X ;x/ on Fx.Y/
via the group homomorphisms �1.X;x0/! �1.X ;x/ and �1.RX ;x1/! �1.X ;x/,
respectively. We are now reduced to the case of topological spaces, with X replaced
by X and RX , respectively. So, we can construct a covering space Y 0 of X and a
covering space and RY 0 of RX , together with maps Y ! Y 0 and RY !RY 0 . It is
easy to see that there is a natural groupoid structure on ŒRY 0 � Y 0�. The quotient
stack Y 0 WD ŒY 0=RY 0 � is the desired covering stack of X .

Corollary 3.8 Let .X ;x/ be a connected pointed topological stack. Let f W .Y;y/!
.X ;x/ be a connected covering stack, and let H � �1.X ;x/ be the corresponding
subgroup. Let H 0 � �1.X ;x/ be a subgroup containing H . Then there exists a
(pointed) covering stack Y 0 of X corresponding to H 0 .

We summarize our discussion by saying that HC is exactly the set of open subgroups
of a prodiscrete topology on �1.X ;x/. The category C is equivalent to the category
of continuous �1.X ;x/–sets. If we denote by �1.X ;x/C the completion of �1.X ;x/
(Definition 2.3) with respect to this topology, we have proved the following:

Proposition 3.9 The notation being as above, there is an equivalence of Galois cate-
gories .C;F /Š �1.X ;x/C–Set.

We call �1.X ;x/C the C–complete fundamental group of .X ;x/.

4 Main examples of Galois categories

We list the main examples of Galois categories that we are interested in. More examples
can be produced by noting that, if C and C0 satisfy the above axioms, then so does their
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“intersection” C\ C0 . Here, by C\ C0 we mean the category of all covering stacks
Y! X that are isomorphic to a covering stack in C and a covering stack in C0 .

4.1 The Galois category Full

The category Full of all covering stacks of X satisfies the required axioms. This gives
the finest C–topology on �1.X ;x/, which we call the full topology. The corresponding
prodiscrete fundamental group �1.X ;x/Full is denoted by � 0

1
.X ;x/. There is a natural

homomorphism �1.X ;x/! � 0
1
.X ;x/. This map is not in general an isomorphism.

(This is due to the fact that the universal cover may not exist; see Example 4.1 below).
This homomorphism is, however, an isomorphism if X is connected, locally path-
connected and semilocally 1–connected, because in this case the universal cover exists
[9, Section 18] and the full topology is discrete.

Example 4.1 (Hawaiian earring) Let X be the subspace of R2 defined as the union
of circles of radius 2�n , n 2 Z, centered at the points .2�n; 0/. This space is not
semilocally 1–connected because every open set containing the origin contains all but
finitely many of the circles.

Let Y D
W

i2Z S1 be the wedge sum of countably many circles. This is a semilocally 1–
connected space. We have �1.Y /Š FZ , the free group on countably many generators
fai j i 2 Zg. Consider the prodiscrete topology on �1.Y / generated by the subgroups
Hn , where Hn is the normal subgroup generated by fai j i > ng. Let �1.Y /

^ be the
prodiscrete completion.

There is a natural continuous bijection f W Y ! X . This map induces an isomorphism
�1.Y /

^! � 0
1
.X /. More explicitly,

� 01.X /Š lim
 �
n2Z

FZ=Hn Š lim
 �
n2N

F�n;

where F�n is the free group on generators fai j i � ng and F�nC1 ! F�n is the
map that sends anC1 to 1.

4.2 The Galois category Fin

Another example is the category Fin of covering stacks of X each of whose connected
components has finite degree over X . The corresponding topology on �1.X ;x/
consists of open sets of the full topology which have finite index in �1.X ;x/. This
topology has a basis of normal subgroups. Therefore, the corresponding completion
can be computed (using Proposition 2.14) as

�1.X ;x/^Fin Š lim
 �
N
�1.X ;x/=N;

Algebraic & Geometric Topology, Volume 8 (2008)



1348 Behrang Noohi

where N is the set of all open (in the full topology) normal subgroups of finite index
of �1.X ;x/. When X is semilocally 1–connected (so full topology is discrete) this
coincides with the profinite completion of �1.X ;x/.

4.3 The Galois category FPR

Definition 4.2 Let f W Y!X be a representable morphism of stacks. Let y 2Y be a
point in Y . We say that f is fixed-point-reflecting (FPR for short) at y if the induced
map Iy! If .y/ (which is a priori injective) is an isomorphism. We say that f is FPR
if it is FPR at every point.

The following lemma will be used in Section 7.3.

Lemma 4.3 Let f W Y ! X be a representable morphism of stacks, and let x 2 X
be a point. Let Yx be the fiber of f over x . Assume that Yx is finite. Let xx 2 Xmod

be the image of x in Xmod , and let Ymod;x be the fiber of fmodW Ymod! Xmod over xx .
Then #.Ymod;x/� #.Yx/. The equality holds if and only if f is FPR at every point in
the fiber of Y over x .

Proof Easy.

It is easy to check that the category FPR of all FPR covering stacks of X satisfies the
axioms (C1)–(C4) of Section 3.3.

4.4 The Galois category Free

Let Free � FPR be the category of all FPR covering stacks Y ! X such that the
induced map Ymod! Xmod is again a covering map. Then Free satisfies the axioms.
We will only prove this in a special case where X is strongly locally path-connected
(Definition 6.1), in which case we will show that FreeD FPR (Proposition 7.7).

We will also see in Proposition 7.8 that, under some mild conditions on X , every finite
FPR covering stack is automatically free. That is, FPR\ FinD Free\ Fin.

5 Topological stacks with the slice property

In this section, we introduce an important class of topological stacks which behave
particularly well locally. We call these topological stacks with the slice property. The
slice property is the key in proving the main theorems of the paper. We believe this
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is an important property of topological stacks and expect it to be of interest in other
situations as well.

Notation Let G be a topological group acting on a space X , and let x be a point in
X . By a slight abuse of notation, we will denote the stabilizer group of x by Ix . We
will view Ix as a topological group.

Definition 5.1 (Palais [10, Section 2.1]) Let G be a topological group acting con-
tinuously on a topological space X , and let x be a point in X . A subset S of X is
called a slice at x if it has the following properties:

(S1) The subset IxS �X is open and there exists a G –equivariant map f W GS !

G=Ix whose fiber over the point Ix 2G=Ix is precisely S .

(S2) There exists an open subspace U �G=Ix and a local section �W U !G such
that .u; s/ 7! �.u/s is a homeomorphism of U �S onto an open neighborhood
of x in X .

We say that the action has the slice property at x if every open neighborhood of x

contains a slice at x . We say that a group action has the slice property if it has the slice
property at every point.

Remark 5.2 (1) It follows from [10, Proposition 2.1.3] that the natural G –equivar-
iant map G �Ix

S !GS is a homeomorphism. Here, G �Ix
S is the quotient

of G �S under the action of Ix defined by ˛ � .g;x/D .g˛�1; ˛x/.

(2) In the case where G is a Lie group (not necessarily compact), (S2) follows from
(S1). This is [10, Proposition 2.1.2].

(3) In the case where Ix is compact, existence of a slice at x implies existence
of slices that are arbitrarily small. Therefore, when the action of G on X has
compact stabilizers, to check whether the action has the slice property it is
enough to check that there exists at least one slice at every point.

Lemma 5.3 Let G be a topological group acting on a topological space X . Let x be
a point in X and S a subset containing x . Then S is a slice at x if and only if the map
of stacks ŒS=Ix �! ŒX=G� is an open embedding.

Proof We only prove the “only if” part which is what we need in the rest of the paper.
We will show that the map ŒS=Ix �! ŒX=G� identifies ŒS=Ix � with the open substack
ŒGS=G� of ŒX=G�.

Consider G � S endowed with the G � Ix action defined by .g; ˛/ � .h;x/ WD

.gh˛�1; ˛x/. Let 'W G � Ix ! Ix and f W G � S ! S be the projection maps.
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It is clear that the '–equivariant map f induces an equivalence of quotient stacks
Œ.G �S/=.G � Ix/�! ŒS=Ix �. So, it is enough to show that the map Œ.G �S/=.G �

Ix/�! ŒGS=G� is an equivalence of stacks. This map can be written as a composition
Œ.G � S/=.G � Ix/� ! Œ.G �Ix

S/=G� ! ŒGS=G�. The first map is obviously an
equivalence of stacks. The second map is an equivalence of stacks by virtue of
Remark 5.2(1).

Definition 5.4 We say that a topological stack X has the slice property, if for every
point x in X and every open substack U � X containing x , there is an open substack
V � U such that V Š ŒV =Ix �, where V is a topological space with an action of Ix

that has the slice property at x . In the case where Ix are discrete groups, such stacks
are called Deligne–Mumford topological stacks in [9, Section 14].

Lemma 5.5 Let X be a topological stack that can be covered by open substacks of the
from ŒX=G�, where G is a topological group acting on X with slice property. Then X
has the slice property.

Proof Obvious.

5.1 Examples of stacks with the slice property

We list some general classes of group actions with the slice property.

(1) The continuous action of a finite group on a topological space has the slice
property.

(2) Let G be a Lie group (not necessarily compact) acting on a topological space X .
Assume that X is a Cartan G –space in the sense of [10, Definition 1.1.2]. Then
the action has slice property [10, Theorem 2.3.3]. We recall from [10] that X is
called a Cartan G –space if for every point of X there is an open neighborhood U

such that the set fg 2G jgU \U ¤∅g has compact closure. For instance, if
X is locally compact and the action is proper (ie, G �X !X �X is a proper
map), then X is a Cartan G–space. Also, if X is completely regular and G

compact Lie, then X is a Cartan G –space.

The following proposition is immediate.

Proposition 5.6 Let X be a topological stack (which can be covered by open sub-
stacks) of the form ŒX=G� with X a Cartan G –space. Then X has the slice property.
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Lemma 5.7 Let ŒR� X � be a topological groupoid. Assume that the source map
sW R! X is open and has the property that for every open V �R the induced map
sjV W V ! s.V / admits local sections. Then for every open U �X , the induced map
ŒU=RjU �! ŒX=R� is an open embedding. Here, ŒRjU � U � stands for the restriction
of R to U , which is defined by RjU D .U �U /�X�X R.

Proof The map ŒU=RjU �! ŒX=R� is always a monomorphism (ie, fully faithful),
without any assumptions on the source map s . The extra assumption on s implies
that ŒU=RjU � is equivalent to the open substack ŒO.U /=RjO.U /� of ŒX=R�, where
O.U /D t

�
s�1.U /

�
is the orbit of U (which is open).

Every groupoid ŒR� X � in which the source map sW R!X is locally isomorphic to
the projection map Y �X !X of a product has the property required in Lemma 5.7.
These include action groupoids of topological groups acting continuously on topological
spaces. Lie groupoids also have this property.

Proposition 5.8 Let X D ŒX=R�, where ŒR� X � is a proper Lie groupoid. Then X
has the slice property.

Proof Let x 2 X be an arbitrary point. By [13, Proposition 2.4], the orbit O.x/
is a closed submanifold of X . Choose a small enough transversal † to the orbit
O.x/ at x . The map t js�1†W s

�1†!X is a submersion, so the quotient stack of the
restriction groupoid ŒRjs�1† � †� is an open substack of X by Lemma 5.7. Now,
ŒRjs�1† � †� is a Lie groupoid that has x as a fixed point. So, by [14, Theorem 2.3],
we can shrink † (as small as we want) and assume that ŒRjs�1† � †� is isomorphic
to a (linear) action groupoid of the stabilizer group Ix .

6 Strongly locally path-connected topological stacks

We begin with a definition.

Definition 6.1 A topological stack X is strongly locally path-connected if it has the
slice property and, furthermore, the topological spaces V of Definition 5.4 can be
chosen to be locally path-connected.

Lemma 6.2 Let X be a locally path-connected topological stack with the slice prop-
erty. Assume that for every x 2X the inertia group Ix is locally path-connected. Then
X is strongly locally path-connected.

Algebraic & Geometric Topology, Volume 8 (2008)



1352 Behrang Noohi

Proof We may assume that X D ŒX=G�, where G is locally path-connected. Since
X is locally path-connected, there is an atlas pW Y ! X such that Y is locally path-
connected. Set Z D Y �X X . Then Z is a G–torsor over Y . Since Y and G are
both locally path-connected, so is Z . It follows from Lemma 3.3 that X is locally
path-connected.

Proposition 6.3 Let X be a locally path-connected topological stack. Assume that
either of the following holds:

(i) X is locally isomorphic to a quotient stack ŒX=G� with G a Lie group and X a
Cartan G –space;

(ii) X is the quotient stack of a proper Lie groupoid.

Then X is strongly locally path-connected.

Proof Use Propositions 5.6, 5.8 and Lemma 6.2.

Recall from Example 2 of Section 5.1 that the Cartan condition is automatically
satisfied if any one of the following is true: 1) G is finite; 2) G is compact Lie and X

is completely regular; 3) G is an arbitrary Lie group, X is locally compact, and the
action is proper, ie, G �X !X �X is a proper map.

Proposition 6.4 Let pW Y! X be a covering map of topological stacks, and assume
that X is strongly locally path-connected. Then for every point x 2 X , there exists an
open substack x 2 U � X with the following properties:

(i) U Š ŒU=Ix �, where U is a locally path-connected topological space with an
action of Ix that fixes the (unique) lift of x to U (which we denote again by x )
and has the slice property at x ;

(ii) p�1.U/Š
`

k2K ŒU=Hk �, where Hk , for k ranging in some index set K , are
open–closed subgroups of Ix acting on U via Ix .

In particular, Y is also strongly locally path-connected.

Proof Denote Ix by G throughout the proof.

By shrinking X around x we may assume that X D ŒX=G�, where G and X satisfy (i).
Consider the corresponding atlas X ! X , and let Y ! Y be the pullback atlas for Y .
The map qW Y !X , being a pull back of p , is again a covering map. There is an open
set U �X containing x over which q trivializes. After replacing U with a smaller
open set containing x (say, by the connected component of x in U ), we may assume
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that U is G –invariant and path-connected. Set U D ŒU=G�. We claim that U has the
desired property.

Let V D p�1.U/� Y , and V D q�1.U /� Y . Then V is an atlas for V and is of the
form

V D
a
j2J

Uj ; Uj D U;

for some index set J . Set RD V �V V (so V Š ŒV =R�). Note that V can be viewed
as an atlas for U too, and if we set R0 D V �U V , then the groupoid ŒR� V � is an
open–closed subgroupoid of ŒR0 � V � (Corollary 3.6). Observe that, as a topological
space, R0 is homeomorphic to a disjoint union of J � J copies of G �U , and the
restriction of sW R0! V and t W R0! V to each of these copies factors through some
Uj � V via a map that is isomorphic to the projection G �U ! U . In particular,
sW R0! V (and also t ) has the following two properties: 1) For every W �R0 , s.W /

is open in V and the restriction sjW W W ! s.W / admits local sections; 2) If W is
also closed, then s.W / is a disjoint union of copies of U in V D

`
Uj .

Now, observe that, since ŒR � V � is an open–closed subgroupoid of ŒR0 � V �,
properties .1/ and .2/ mentioned above also hold for s; t W R! V . An immediate
consequence is that, for each Uj � V D

`
Uj , the orbit O.Uj / is a disjoint union of

copies of U in V ; in particular O.Uj / � V is open–closed. Therefore, by Lemma
5.7, ŒUj=RjUj

� is an open–closed substack of V .

Let us analyze what ŒUj=RjUj
� looks like. Recall that RjUj

D .Uj �Uj /�V�V R.
Equivalently, RjUj

D s�1.Uj /\t�1.Uj /. Note that s�1.Uj /ŠG�U . Hence, since U

is connected, s�1.Uj /\t�1.Uj /, being an open–closed subspace of s�1.Uj /ŠG�U ,
is of the form H �U , where H �G is an open–closed subspace. It is easy to see that
H is in fact a subgroup of G , so that the groupoid ŒUj=RjUj

� is simply (isomorphic
to) the action groupoid of H acting on U via G .

So, we have shown that V is a disjoint union of open–closed substacks of the form
ŒUj=RjUj

� each of which is equivalent to ŒU=H � for some open–closed subgroup
H � G . (Note that different j ’s may correspond to the same substack ŒUj=RjUj

�.)
The proof is complete.

7 Relation between various Galois theories

In this section, we take a closer look at the Galois categories introduced in Section 4.1–
Section 4.4 and study the relations between them. The most important class for us is
Free. In the next section, we interpret these results in terms of fundamental groups of
stacks and their coarse moduli spaces.
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7.1 Relation between FreeX and FullXmod

Lemma 7.1 Let X be a topological stack, and let � W X ! Xmod be its moduli map.
Let Y be a topological space. Let Y ! Xmod be a local homeomorphism, and set
Y WD Y �Xmod Xmod . Then Y is the coarse moduli space of Y . That is, the induced map
gW Ymod! Y is a homeomorphism.

Proof By the very definition of the coarse moduli space, the statement is local on Y .
That is, it is enough to prove the statement after replacing Y by an open covering. So,
we may assume that Y ! Xmod is a disjoint union of open embedding, in which case
the lemma is obvious.

Lemma 7.2 Let X be a topological stack, and let pW X !A be an arbitrary map to a
topological space A. Let gW B! A be a covering map of topological spaces. Then
the induced map f W X �A B! X is free (Section 4.4).

Proof Denote X �A B by Y . We have to show that f is FPR and that the induced
map fmodW Ymod! Xmod is a covering map.

Proof that f is FPR Choose an atlas pW X !X , and let qW Y ! Y be the pullback
atlas for Y . Denote the corresponding groupoids by ŒRX � X � and ŒRY � Y �. Let
SX ! X and SY ! Y be the relative stabilizer groups of these groupoids (that is,
SX DX �X�AX R, where X!X �A X is the diagonal). Observe that, for every point
x 2X , the fiber Sx of R!X �A X over the point .x;x/ is naturally isomorphic to
the inertia group Ip.x/ . The result now follows from the standard fact that the diagram

SY
//

��

SX

��

Y // X

is cartesian.

Proof that fmod is a covering map The map p factors through the moduli map
� W X !Xmod . Set Y 0W DB �AXmod . Then Y 0!Xmod is a covering map. Using the
fact that the diagram

Y //

��

X
���

Y 0 // Xmod
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is cartesian, together with the fact that taking coarse moduli space commutes with base
extension along covering maps (Lemma 7.1), we see that Y 0 is naturally homeomorphic
to Ymod , and the map Y 0! Xmod is naturally identified with fmod .

Lemma 7.3 Let f W Y! X be a free covering stack. Then the following diagram is
cartesian:

Y
f //

��

X

��

Ymod
fmod

// Xmod

Proof Set Y 0W D Ymod�Xmod X . Then Y 0! X is a covering stack of X , and there is
a natural map Y! Y 0 of covering stacks over X . This maps induces a bijection on
the fibers, so it is an isomorphism.

Using the above three lemmas, the following proposition is immediate.

Proposition 7.4 Let X be a topological stack. Then there is an equivalence of cate-
gories

FreeX

coarse moduli
--
FullXmod

base extension
via �

ll :

The similar statement is true for connected covering stacks. Finally, the statement
remains valid if we add the adjective “pointed”.

7.2 Description of FPR

The next proposition leads to a satisfactory description of the Galois category FPR.
Recall from [9, Section 17] that, for every x2X , there is a natural group homomorphism
!x W Ix! �1.X ;x/.

Lemma 7.5 Let .X ;x/ be a pointed connected topological stack, and let f W .Y;y/!
.X ;x/ be a pointed connected covering map. Then we have the following:

(i) f is FPR at y if and only if the corresponding subgroup H ��1.X ;x/ contains
!x.Ix/;

(ii) For every point x0 , and every path  in X from x0 to x , identify !x0.Ix0/ �

�1.X ;x0/ with a subgroup of �1.X ;x/ via the isomorphism �W �1.X ;x0/!
�1.X ;x/. Let N be the (necessarily normal) subgroup of �1.X ;x/ generated
by all these groups. Then f is FPR if and only if the corresponding subgroup
H � �1.X ;x/ contains N .
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Proof (i) By Lemma 18.16 of [9], we have a cartesian diagram:

Iy
!y //

f� ��

�1.Y;y/

f���

Ix !x

// �1.X ;x/

So, the map f�W Iy ! Ix (which is already injective because f is representable) is
an isomorphism if and only if the image of f�W �1.Y;y/! �1.X ;x/, namely H ,
contains Ix .

(ii) Lift  to a path in Y ending at y , and call the starting point y0 . Then f is FPR
at y0 if and only if H contains �.!x0.Ix0//.

Let us rephrase part (ii) of the above lemma as a proposition.

Proposition 7.6 The open subgroups of the FPR topology on �1.X ;x/ are precisely
the open subgroups of �1.X ;x/ in the full topology which contain N .

7.3 Relation between Free and FPR

The subcategory Free � FPR is not as easy to describe in general. But we have the
following results.

Proposition 7.7 If X is a strongly locally path-connected topological stack, then
every FPR covering stack is automatically free. That is, FreeD FPR.

Proof This follows immediately from Proposition 6.4.

When X is not strongly locally path-connected, we could still say something.

Proposition 7.8 Let ŒR� X � be a topological groupoid, and let X D ŒX=R� be its
quotient stack. Assume that either of the following holds:

(i) X is metrizable and s; t W R!X are closed maps;

(ii) X is Hausdorff and s; t W R!X are proper.

Then every finite covering stack of X that is FPR is automatically free. That is,
FPR\ FinD Free\ Fin.
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Proof We may assume that X is connected. Let f W Y ! X be a connected finite
FPR covering stack of degree n. We have to show that fmodW Ymod! Xmod is also a
covering map.

Consider the atlas pW X ! X , and let qW Y ! Y be the pullback atlas for Y . Let
ŒRY � Y � be the corresponding groupoid. To have consistent notation, we denote R

by RX . The map gW Y !X is a covering map of degree n. Recall [9, Example 4.13]
that Xmod is homeomorphic to the coarse quotient of X by the equivalence relation
induced from RX (and similarly for Ymod ). We have a commutative diagram:

Y
h //

g
��

Ymod

fmod��

X // Xmod

By Lemma 4.3, both vertical maps have constant degree n. Therefore, h is a fiberwise
bijection. Take a point xx 2Xmod , and pick a lift x 2X for it. Let xy1; � � � ; xyn 2Ymod be
the elements of the fiber of fmod over xx . Similarly, let y1; � � � ;yn2Y be the elements of
the fiber of g over x . Consider the orbit Bi WDO.yi/�Y of yi under the action of the
groupoid ŒRY � Y � (this is simply the fiber of hW Y !Ymod over yi ). By hypothesis,
Bi is closed. Since h is a fiberwise bijection, the restriction gjBi

W Bi!X is injective
for every i . It is also closed, because g is a finite cover. Therefore, gjBi

W Bi !A is
a homeomorphism for every i , where AD g.B1/D � � � D g.Bn/D O.x/. In other
words, the covering map gW Y !X trivializes over A�X . We claim that there exists
an open A� U such that g trivializes over U as well. By condition (i) or (ii), we can
find open sets Bi � Vi such that Vi\Vj D∅, for every i ¤ j (see Lemma 7.9 below).
By shrinking each Vi , we may assume that gjVi

W Vi ! U is a homeomorphism for
every i . It is easy to check that U WD \g.Vi/ has the desired property.

The next claim is that, after some more shrinking, we may assume that U and Vi ,
i D 1; � � � ; n, are invariant open sets for the corresponding groupoids. To do so, note
that the source and target maps of the groupoids ŒRX � X � and ŒRY � Y � are both
closed maps. This follows from the hypothesis and the fact that the diagram

RY
s //

��

Y

g
��

RX s
// X
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is cartesian. So, we may replace U by U � s
�
RX � t�1.U /

�
, and similarly, each Vi

by Vi � s
�
RY � t�1.Vi/

�
. Note that we still have A�U , Bi � Vi , and each Vi maps

homeomorphically to U . Hence, after passing to the coarse moduli spaces, we obtain
an open neighborhood of xU of xx over which fmod trivializes as an n–sheeted covering
(the sheets being xV1; � � � ; xVn ). The proof is complete.

Lemma 7.9 Let f W Y ! X be a finite covering map of topological spaces. If X is
metrizable, then so is Y

Proof This follows from the Smirnov Metrization Theorem which says that a topo-
logical space X is metrizable if and only if it is paracompact, Hausdorff and locally
metrizable. All these properties are easily seen to be stable under passing to finite
covering spaces.

For the reader who is not familiar with this version of the Smirnov Metrization Theorem,
we provide a quick proof. If X is metrizable, it is clearly locally metrizable and
Hausdorff. Paracompactness of X is Stone’s Theorem; see Nagata [8, page 153,
Corollary 1]. The converse statement follows from the corollary on page 212 of [8].

7.4 Description of Full and Fin when X is semilocally 1–connected

When X is semilocally 1–connected things are as nice as they can be, because the
(pointed) covering stacks of X are in a bijection with subgroups of �1.X ;x/; see
Section 18.2 of [9].

Proposition 7.10 Suppose that X is a connected, locally path-connected, semilocally
1–connected topological stack. Then Full corresponds to the discrete topology on
�1.X ;x/ and Fin corresponds to the profinite topology. We have � 0

1
.X ;x/D�1.X ;x/,

and �1.X ;x/^Fin D
3�1.X ;x/, the profinite completion of �1.X ;x/.

Proof The statement about Full follows from Proposition 2.9. The second statement
is obvious.

8 Fundamental group of the coarse moduli space

In this section, we translate the results of the previous section in terms of the fundamental
groups. The outcome is some formulas for the fundamental group of the coarse moduli
space of a topological stack.

Notation Throughout this section, the group N ��1.X ;x/ refers to the group defined
in Lemma 7.5.
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Proposition 8.1 Let X be a connected locally path-connected topological stack. Then
we have the following:

(i) The image of the natural map � 0�W �
0
1
.X ;x/! � 0

1
.Xmod;x/ is not contained in

any proper open subgroup of � 0
1
.Xmod;x/. In particular, if the full topology on

�1.Xmod;x/ has a basis of open neighborhoods (equivalently, every covering
space of Xmod can be dominated by a Galois covering), then � 0� has a dense
image.

(ii) There is a natural isomorphism

�1.X ;x/^Free
�
�! � 01.Xmod;x/:

(iii) If X is strongly locally path-connected, then we have a natural isomorphism

.�1.X ;x/=N /0 ��! � 01.Xmod;x/:

(The left hand side is the completion with respect to the quotient topology induced
on �1.X ;x/=N from the full topology of �1.X ;x/.)

(iv) If X is as in Proposition 7.8, then we have a natural isomorphism

.�1.X ;x/=N /^Fin
�
�! �1.Xmod;x/

^
Fin:

Proof (i) This is equivalent to saying that the pullback via � W X ! Xmod of a
connected covering space Y of Xmod remains connected. Denote this pullback by Y .
Since X is locally connected, so is Y . If Y is not connected, we can write it as a
disjoint union of two open–closed substacks Y1

`
Y2 . But then, by Lemma 7.1, we

would have a decomposition Y1;mod
`
Y2;mod of Y into open–closed subspaces, which

is impossible.

(ii) This follows from Proposition 7.4.

(iii) This follows from Part (ii) and Proposition 7.6 (also see Example 2.10(1)).

(iv) This follows from Proposition 7.8.

In general, it is desirable to work with the actual fundamental group �1.X ;x/ (ie,
the one defined using loops) rather than the fancy prodiscrete fundamental groups of
Section 4.1. But to do so one needs to assume that X is semilocally 1–connected. In
what follows we analyze what happens in the presence of this condition. Recall from
Section 7.4 that in this case the full topology on �1.X ;x/ is discrete.

Corollary 8.2 Let X be a connected locally path-connected topological stack. Assume
that Xmod is semilocally 1–connected. Then the map ��W �1.X ;x/! �1.Xmod;x/ is
surjective.
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Proof 2 Let H � �1.Xmod;x/ be the image of ��W �1.X ;x/! �1.Xmod;x/. Since
�1.X ;x/!H is continuous, there is a unique extension � 0

1
.X ;x/!H , by Corollary

2.11. This extension coincides with � 0� of Proposition 8.1(i). Therefore, H must
be dense in �1.Xmod;x/. But �1.Xmod;x/ is discrete by Proposition 7.10. So H D

�1.Xmod;x/.

Theorem 8.3 Let .X ;x/ be a connected topological stack. Assume that X and Xmod

are semilocally 1–connected.

(i) If X is strongly locally path-connected, then we have a natural isomorphism

�1.X ;x/=N �
�! �1.Xmod;x/:

(ii) Assume that X is the quotient stack of a topological groupoid ŒR � X � in
which either X is metrizable and the source map sW R! X is closed, or X

is Hausdorff and the source map sW R! X is proper. Then we have a natural
isomorphism

5�1.X ;x/=N �
�! 5�1.Xmod;x/;

where y stands for profinite completion. (The y on the left hand side is over the
whole expression.)

Proof Use Proposition 8.1(iii)–(iv) and Proposition 7.10.

Remark 8.4 It is easy to see [9, Lemma 18.4] that, if X is a topological stack which
is (locally) path-connected, then so is Xmod . The similar statement is not true for
semilocally 1–connected stacks in general. But it is true when X D ŒX=G�, where G

is a Lie group and X is a Cartan G –space. This follows from [10, Theorem 2.3.3]. In
the case where G is a compact Lie group this is Corollary 6.4 in Chapter II of [4].

Example 8.5 Let G be a graph-of-groups. It is shown in [9] that G can be realized
as a Deligne–Mumford topological stack. For each vertex v of G , let Gv denote the
corresponding group. Then we have Gv D Iv , and the homomorphism Gv! �1.G; v/
defined by Serre coincides with our map !vW Iv! �1.G; v/. The similar thing is true
for the homomorphisms Ge! �1.G; e0/, where e0 is any point on the edge e .

If we let N be the normal subgroup generated by the images of all Gv and Ge in
�1.G/, we find that the fundamental group of the underlying graph of G is isomorphic
to �1.G/=N . This is of course a well-known formula (see Bass [3, Example 2.14]).
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The similar result is valid for complexes-of-groups as well, and this should presumably
be well known too.

Example 8.6 Let X and Y be as in Example 4.1. There is a shift action of Z on
X and Y . Set X D ŒX=Z� and Y D ŒY=Z�. The coarse moduli space of Y is Y=Z,
which is S1 (with the usual topology). The coarse moduli space of X is S1 with a
topology that is the usual topology away from the base point � 2 S1 , but the only open
containing � is the entire space; this is a contractible space.

The fundamental group of Y is FZ D hai j i 2 Zi. The fundamental group of X

contains FZ , but it is considerably bigger (it is indeed uncountable). The Z–actions
on X and Y induce Z–actions on �1.X / and �1.Y /. In the case of Y , this action is
simply given by shifting the generators. In the case of X , it is also some sort of a shift,
but it is more complicated to describe. We have

�1.Y/Š FZ ÌZ; and �1.X /Š �1.X /ÌZ:

The image of the map !�W ZD I�! �1.Y; �/ is simply the factor Z of the semidirect
product (similarly for �1.X /). If we kill this subgroup of �1.Y/ we get a group that
is isomorphic to ZŠ �1.Xmod/, as predicted by Theorem 8.3. (In fact, it seems that
the same is true for Y . That is, if we kill Z in �1.X / we end up with the trivial group.
Note that this is not predicted by Theorem 8.3, as Y is not semilocally 1–connected.)

9 Application to quotients of group actions: the exact
sequence

Results of the previous section can be used to compute the fundamental group of the
coarse quotient space of a topological group action. The idea is that the fundamental
group of the quotient stack ŒX=G� of a group action is easy to compute thanks to the
fiber homotopy exact sequence of the fibration G!X ! ŒX=G�. Theorem 8.3 then
can be used to compute the fundamental group of ŒX=G�mod DX=G from the fixed
point data of the action (which manifests itself in the inertia groups of ŒX=G�).

Conventions In this and the next sections, G will be a topological group acting con-
tinuously on a connected, locally path-connected, semilocally 1–connected topological
space X . We assume that the coarse quotient X=G is also semilocally 1–connected;
see Remark 8.4. We denote the group of path components of G by G. We let I�G be
the subgroup generated by the set of elements of those path components of G which
contain at least one element g such that the action of g on X has a fixed point.
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Theorem 9.1 Let G and X be as above. Suppose that the action has slice property.
Assume that all stabilizer groups Ix of the action are locally path-connected. Fix a base
point x in X and let xx be its image in X=G . Then we have an exact sequence

�1.X;x/! �1.X=G; xx/!G=I! 1:

In particular, if X is simply connected, then we have an isomorphism

�1.X=G/ ��! G=I:

Proof Set X D ŒX=G�. By abuse of notation we denote the image of x in ŒX=G�

also by xx .

By Lemma 6.2, X is a strongly locally path-connected topological stack. Hence, we
can apply Theorem 8.3(i). To get the desired exact sequence, we computed the group
N appearing in Theorem 8.3.

Since p is a Serre fibration with fiber G , we have a fiber homotopy exact sequence

�1.X;x/! �1.X ; xx/!G! 1:

It is enough to show that the image of N in G is equal to I.

We have a natural isomorphism 'W Ixx
�
�! Ix , where Ix �G is the stabilizer group

of x . The claim is that the following diagram is commutative:

Ixx
!xx //

' Š��

�1.X ; xx/

��

Ix
� � // G

Take an element  2 Ixx . Recall that the corresponding loop z W D !xx. /W S1! X is
defined by the triple .h; �0; �1/, where hW Œ0; 1�!X is the constant path at xx , �0D id
and �1 D  (see Section 17 of [9] for definitions). We have to show that the image of
z in G is equal to '. /.

Consider the pullback T WD S1 �X X of X over S1 , where the map S1! X is the
z defined above. Note that T is naturally pointed with the point �D .�; idxx;x/ sitting
above � 2 S1 . Here, idxx is the identity transformation from z .�/D xx to p.x/D xx .

As a G –torsor over S1 , T can be described as the quotient of Œ0; 1��G by the relation
.1;g/ �

�
0;g'. /

�
. Under this identification, � corresponds to the point .0; 1G/,

where 1G is the identity element of G .
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To find the image of z in G, we have to choose a lift F in diagram

T

��

G? _oo

��
Œ0; 1� //

F

<<
0
7!
�

S1 �? _oo

and determine the path component of F.1/ 2G . But from the description of the torsor
T , it is clear that F.1/ is in the same path component as '. / 2G . This proves the
commutativity of the above square.

We can now repeat the same argument for different choices of base points x0 2X , and
then transport the situation over to x by choosing a path connecting x and x0 . This
shows that the image of N in G is I.

Remark 9.2 All the hypotheses of Theorem 9.1 are automatically satisfied if G is
a Lie group and X is a connected, locally path-connected, semilocally 1–connected
Cartan G –space. See Section 5.1 and Remark 8.4.

Example 9.3 Let G be a compact Lie group acting on Sn . If n is even, then Sn=G

is simply connected (Brouwer’s fixed point theorem). The same is true if n is arbitrary
and G is connected.

Example 9.4 Let G � PSL2.R/ be a Fuchsian group. Assume that the fundamental
domain of G is not compact. Then G Š T � F , where T is generated by torsion
elements and F is free.

To prove this, note that the action of G on the upper half-plane is properly discontinuous
and the coarse quotient of this action is a noncompact Riemann surface. Let T be the
subgroup generated by all torsion elements of G . By Theorem 9.1, G=T is isomorphic
the fundamental group F of this noncompact Riemann surface, hence it is free.

Example 9.5 The weighted projective space P .n0; � � � nk/, k � 1, is defined to be the
quotients space CnC1�f0g=C� , where � 2C� acts on CnC1�f0g via multiplication
by .�n0 ; � � � ; �nk /. It is a standard fact that P .n0; � � � nk/ is simply connected. This
easily follows from Theorem 9.1. More generally, whenever G is a compact connected
Lie group acting on a simply connected completely regular topological space X , then
X=G is simply connected. Indeed, it is true that the stack quotient ŒX=G� is simply
connected. This follows from the fiber homotopy exact sequence for the fibration
X ! ŒX=G�.
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Theorem 9.6 Assume that G is a compact topological group acting on a Hausdorff
space X . Then we have an exact sequence

1�1.X /! 3�1.X=G/! bG=I! f�g;

where y stands for profinite completion. In particular, when X is simply connected we
have an isomorphism

3�1.X=G/ ��! bG=I:

Proof The proof of Theorem 9.1 is valid up to the point that there is an exact sequence

�1.X /! �1.X /=N !G=I! 1:

However, we can not say that �1.Xmod/Š �1.X /=N . But we can say so after passing
to profinite completion (Theorem 8.3(ii)). The result now follows from the fact that
profinite completion is right exact.

10 Application to quotients of group actions: the explicit for-
mula

In this section we give a more explicit version of Theorem 9.1. Without loss of generality,
we will assume that the action has a global fixed point. Remark 10.7 explains why we
can make this assumption.

Construction Let G be a group acting continuously on a topological space X .
Assume that there is x 2 X which is fixed by the entire action. For every triple
.g;y;  /, with g 2 G , y 2 X g and  a path from x to y , define �g;y; 2 �1.X;x/

to be the loop  .g /�1 . Let K � �1.X;x/ be the subgroup generated by all such
�g;y; . This is easily seen to be a normal subgroup.

We will abuse the notation and denote the images of x in ŒX=G� and X=G both by xx .

Theorem 10.1 Let X and G be as in Theorem 9.1 (also see Remark 9.2). Assume
that there is x 2 X which is fixed by the action. Let K be the subgroup of �1.X;x/

defined in the previous paragraph. Then we have a natural isomorphism

�1.X;x/=K
�
�! �1.X=G; xx/:

Proof Set X D ŒX=G�, and let pW X ! X denote the quotient map.

First, we show that �1.X ; xx/Š �1.X;x/ÌG. Here, G stands for the group of path
components of G , and the action of G on �1.X;x/ is the obvious one. The map
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X ! X is a Serre fibration with fiber G , so it gives rise to the fiber homotopy exact
sequence

�1.G/! �1.X;x/! �1.X ; xx/!G! 1:

It is easily seen that the leftmost map is the trivial map, so we actually have a short
exact sequence

1! �1.X;x/! �1.X ; xx/!G! 1:

Since x is the fixed point of the entire action, we have Ixx D G . The map !xx W G D
Ixx! �1.X ; xx/ factors through G to produce the desired splitting of the above short
exact sequence.

If N � �1.X;x/ÌG is as in Theorem 8.3(i), we have�
�1.X;x/ÌG

�
=N Š �1.Xmod; xx/D �1.X=G; xx/:

We will show that the left hand side is isomorphic to �1.X;x/=K .

Recall from Lemma 7.5 that, to define N � �1.X ; xx/, what we do is that we pick
a point x0 2 X and identify !x0.Ix0/ with various subgroups of �1.X ; xx/ by taking
paths connecting x0 to xx . For any fixed x0 2 X , denote the subgroup generated by all
these groups by Nx0 � �1.X ; xx/. The group N is then the one generated by all Nx0 ,
x0 2 X . In fact, to generate N it is enough to take all subgroups of the form Np.y/ ,
y 2 X . Furthermore, to generate Np.y/ it suffices to join p.y/ to xx by paths of the
from p. /, where  is a path in X joining y to x .

The group Np.y/ � �1.X ;x/D �1.X;x/ÌG can now be explicitly described by

Np.y/ D
˚�

p.�g;y; /;g
�
j g 2 Iy ;  D path in X joining x to y

	
:

(This is not completely obvious. The proof requires a little bit of straightforward path
chasing that we omit here.) So, to obtain

�
�1.X;x/ÌG

�
=N we have to kill all elements

of the form
�
p.�g;y; /;g

�
in �1.X;x/ÌG. Notice that this includes all elements of the

form .1;g/, because �g;x;const: D 1. Therefore, to obtain
�
�1.X;x/ÌG

�
=N we have

to kill all elements of the from .1;g/ and all elements of the form
�
p.�g;y; /; 1

�
in

�1.X;x/ÌG. The outcome of this is exactly �1.X;x/=K . The proof is complete.

Remark 10.2 If we kill all loops of the form �g;x; in �1.X;x/ we obtain �1.X;x/G ,
the group of coinvariants of the action of G on �1.X;x/. Therefore, there is a
surjective homomorphism �1.X;x/G ! �1.X=G;x/. This map is not necessarily an
isomorphism. For instance, consider the action of Z=2Z on S1 defined by flipping
along the x–axis. In this case, �1.X;x/G D Z=2Z, whereas �1.X=G;x/ is trivial.

One may wonder if the knowledge of the action of G on �1.X;x/ is enough to
determine �1.X=G; xx/. The answer is no. For instance, in the above example we
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have G D Z=2Z, �1.X / D Z, the action is n 7! �n, and we have �1.X=G/ D 0.
Now, let X be S2 with the north and the south poles joined by a straight line. Take
G D Z=2Z, and let the action be antipodal. In this case, we have, as in the previous
example, G D Z=2Z, �1.X /D Z, and the action of G is n 7! �n. However, X=G

is homotopy equivalent to RP2 , so �1.X=G/D Z=2Z.

Indeed, it is true in general that, if G acts freely away from x , then �1.X;x/G !

�1.X=G;x/ is an isomorphism. This follows easily from Theorem 10.1. The rest of
this section is devoted to understanding the map �1.X;x/G! �1.X=G;x/ in general.

10.1 Another formulation of the explicit formula

The subgroup K appearing in Theorem 10.1 may look a bit too complicated to compute
in general, because it seems to require a detailed knowledge of the various fixed point
sets X g . In the next theorem, we build on the idea discussed in Remark 10.2 and give
a more efficient formula for �1.X=G/.

Construction For every g 2G , choose a set of paths fg;igi2�0X g with the property
that g;i starts from x and ends on the path component of X g corresponding to i .
Let �1.X;x/G be the group of coinvariants of the action of G on �1.X;x/, that
is, the largest quotient of �1.X;x/ on which G acts trivially. Denote the image of
g;i.gg;i/

�1 in �1.X;x/G by x�g;i . Let xK � �1.X;x/G be the normal subgroup
generated by fx�g;igg2G;i2�0X g (that is, the smallest normal subgroup of �1.X;x/G
that contains all x�g;i ).

Remark 10.3 The generating loops we used to define the group xK are superfluous.
Indeed, we could define xK to be the normal subgroup generated by fx�g;ig, where g

runs in G and i runs in �0X g=C.g/. Here, C.g/ stands for the centralizer of g in G .

Theorem 10.4 Let X and G be as in Theorem 9.1 (also see Remark 9.2). Assume
that there is x 2X which is fixed by the action. Let xK be the subgroup of �1.X;x/G
defined above. Then we have a natural isomorphism

�1.X;x/G= xK
�
�! �1.X=G; xx/:

Proof We will show that xK is the image of K in �1.X;x/G , where K is as in
Theorem 10.1. The first observation is that �g;y; D�g;y0; 0 , if  and  0 are homotopic
via a homotopy that is relative to both fxg and X g . Therefore, to define K it is enough
to choose a set of representative elements fyg;igi2�0X g for path components of X g

and only use paths �g;;y whose end points y belong to this representative set.
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We now fix g and y and analyze what happens if we replace the path  with another
path  0 joining x to y . Set ˛ WD  0�1 2 �1.X;x/ and ˇ WD ˛.g˛/�1 . It is easy to
check that we have the equality

�g;y; 0 D ˛�g;y;˛
�1ˇ

in �1.X;x/. Since the image of ˇ in �1.X;x/G is trivial, the images x�g;y; and
x�g;y; 0 of these loops are conjugate in �1.X;x/G . Thus, a normal subgroup that
contains one will necessarily contain the other. Therefore, as far as generating a normal
subgroup is concerned, we can choose either of x�g;y; and x�g;y; 0 . That is, the normal
subgroup of �1.X;x/G generated by the elements x�g;i used in the construction of xK
is equal to the normal subgroup generated by all x�g;y; . In other words, xK is exactly
the image of K in �1.X;x/G .

Corollary 10.5 Let X and G be as in Theorem 9.1 (also see Remark 9.2). Assume
that there is x 2 X which is fixed by the action. Also, assume that for every g 2 G ,
the fixed set X g is path-connected. (It is enough to assume that X g=C.g/ is path-
connected.) Then we have an isomorphism

�1.X;x/G
�
�! �1.X=G; xx/:

Proof Note that the fixed point set X g contains x , for every g 2G . Hence, we can
choose the paths fg;ig to be the constant paths (see the construction of xK just before
Theorem 10.4 for notation). This way, the elements x�g;i will be trivial. Therefore, the
group xK is trivial.

Example 10.6 Let G be a compact Lie group, and consider the conjugation action of
G on its classifying space BG . (Here, BG stands for the classical classifying space,
not the stack one.) Using the standard model for BG , namely, the geometric realization
of the simplicial space associated to G , we see that, for every g 2G , the fixed set of
g is homeomorphic to B.C.g//, where C.g/ is the centralizer of g . It follows that
the fixed point sets are all connected. So, by Corollary 10.5, we have

�1.BG=G/Š .�1BG/G Š .G=G0/ab
D �0.G/

ab:

Remark 10.7 Theorem 10.1 and Theorem 10.4 can be generalized to the case where
the base point x is not necessarily fixed by the entire action. For instance, we can take
Y D Cone.G �x/[G�x X with its induced G action. The tip of the cone Cone.G �x/
is now fixed by the entire action. Hence, Theorems 10.1 and 10.4 apply. Note that
Y=G Š Œ0; 1�[f0gX=G is homotopy equivalent to X=G .
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11 Relation with Armstrong’s work

In [2] Armstrong gives a formula for the fundamental group of the coarse quotient
X=G of a group G acting faithfully on a topological space X . To do so, he makes
three assumptions on the group action. We will not go over Armstrong’s result. Instead,
we translate his conditions A, B and C into stack language and deduce the stack
version of his result, generalizing the main theorem of [2].

In what follows, X is a connected locally path-connected topological stack.

(A) The moduli map � W X ! Xmod has the homotopy path lifting property. That is,
for any point x 2X and any path  initiating from its image xx 2Xmod , there is
a path z initiating at x such that �.z / is homotopic to  rel. xx .

(C) Let N � �1.X ;x/ be as in Lemma 7.5. There is a covering stack of X corre-
sponding to N , and this covering stack is free.

Proposition 11.1 Assume that (A) and (C) hold. Then we have a natural isomorphism

�1.X ;x/=N �
�! �1.Xmod;x/:

Proof First of all, note that, by (C), the prodiscrete topology Free on �1.X ;x/ is
the same as the topology generated by N . So � 0

1
.X ;x/^Free D �1.X ;x/=N . Let

f W .Y;y/! .X ;x/ be the covering stack corresponding to N . By (C), Ymod!Xmod

is a covering map. Condition (A) implies that � W Y ! Ymod also has the homotopy
path lifting property. Therefore, �1.Y;y/! �1.Ymod;y/ is surjective.

On the other hand, it follows from the commutative diagram

Y
f //

��

X

��

Ymod
fmod

// Xmod

that the image of �1.Y;y/ in �1.Ymod;y/ is trivial (note that fmod is a covering map).
This means that �1.Ymod;y/ is trivial, so Xmod has a universal cover. Therefore, the
full topology on �1.Xmod;x/ is discrete, ie, � 0

1
.X ;x/D �1.X ;x/. On the other hand,

by definition, N is open in the full topology of �1.X ;x/. The result now follows from
Proposition 8.1(ii).

In practice, conditions (A) and (C) may fail for pathological reasons. What condition
B of Armstrong requires is the existence of another topological stack X 0 together
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with a map X ! X 0 such that X 0 satisfies (A) and (C) and that the induced map
Xmod ! X 0mod is so that every fiber has trivial topology. Since Xmod ! X 0mod is a
homotopy equivalence, to compute �1.X / it is enough to compute �1.X 0/, and for
this we can apply the above proposition.

A typical example of the above situation is the following. Assume that G is a group
acting on a space X , and let X D ŒX=G�. It may happen that the group G is not nice
enough so as to be able to apply Theorems 9.1 or 9.6. However, if we can realize G

as a dense subgroup of a Lie group G0 and extend the action to G0 , then chances are
that X 0 D ŒX=G0� is a better behaved stack to which the discussion of the previous
paragraph applies.

Example 11.2 Let Q (viewed as a discrete group) act on R by, translation and let
X D ŒR=Q�. Then X 0 D ŒR=R� together with the obvious map X !X 0 has the above
property.

What happens in this example is that we can replace Q by its closure in the group
Iso.R;R/, thereby turning an awkward action of an infinite discrete group into a nice
action of a connected Lie group.

In general, when G is a subgroup of the group of isometries of a locally compact metric
space X , then the action of the closure xG (in the compact-open topology) satisfies the
above property [2, Corollary 2]. That is, the fibers of the map qW X=G!X= xG have
trivial topology (hence q is a homotopy equivalence). In this situation, Armstrong’s
trick comes handy.
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