Sign refinement for combinatorial link Floer homology

Étienne Gallais

Abstract

Link Floer homology is an invariant for links which has recently been described entirely in a combinatorial way. Originally constructed with mod 2 coefficients, it was generalized to integer coefficients thanks to a sign refinement. In this paper, thanks to the spin extension of the permutation group we give an alternative construction of the combinatorial link Floer chain complex associated to a grid diagram with integer coefficients. In particular we prove that the sign refinement comes from a 2 -cohomological class corresponding to the spin extension of the permutation group.

1 Introduction

Heegaard-Floer homology (Ozsváth-Szabó [9]) is an invariant for closed oriented 3-manifolds which was extended to give an invariant for null-homologous oriented links in such manifolds called link Floer homology (Ozsváth-Szabó [8; 10], Rasmussen [11]). It gives the Seifert genus $g(K)$ of a knot K (Ozsváth-Szabó [7]), detects fibered knots (Ghiggini [2] in the case where $g(K)=1$ and Ni [6] in general) and its graded Euler characteristic gives the Alexander polynomial [8; 11]. Recently, a combinatorial description of link Floer homology was given (Manolescu-Ozsváth-Sarkar [4]) and its topological invariance was proved in a purely combinatorial way (Manolescu-Ozsváth-Sarkar-Thurston [5]). The purpose of this paper is to give an alternative description of combinatorial link Floer homology with \mathbb{Z} coefficients. This point of view was recently used by Audoux [1] to describe combinatorial Heegaard-Floer homology for singular knots.

Let first recall the context of combinatorial link Floer homology: we follow conventions of [5]. A planar grid diagram G lies in a square on the plane with $n \times n$ squares where n is the complexity of G. Each square is decorated with an X, an O or nothing in such a way that each row and each column contains exactly one X and one O. We number the X and the O from 1 to n and denote \mathbb{X} the set $\left\{X_{i}\right\}_{i=1}^{n}$ and \mathbb{O} the set $\left\{O_{i}\right\}_{i=1}^{n}$.

Given a grid diagram G, we place it in standard position on the plane as follows: the bottom left corner is at the origin and each cell is a square of length one. We construct a planar link projection by drawing horizontal segments from the O to the X in each row and vertical segments from the X to the O in each column. At each intersection point, the vertical segment is over the horizontal one. This gives an oriented link \vec{L} in S^{3} and we say that \vec{L} has a grid presentation given by G.

Figure 1: Grid presentation of the Hopf link.

We place the grid diagram on the oriented torus \mathcal{T} by making the usual identification of the boundary of the square. We endow \mathcal{T} with the orientation induced by the planar orientation. Let be the collection of the horizontal circles and the collection of the vertical ones. We associate with G a chain complex $\left(C^{-}, \partial^{-}\right)$: it is the group ring of \mathfrak{S}_{n} over $\mathbb{Z} / 2 \mathbb{Z}\left[U_{O_{1}}, \ldots, U_{O_{n}}\right]$ where \mathfrak{S}_{n} is the permutation group of n elements. A generator $\mathbf{x} \in \mathfrak{S}_{n}$ is given on G by its graph: we place dots in points $(i, x(i))$ for $i=0, \ldots, n-1$ (thus the fundamental domain of G is the square minus the right vertical segment and the top horizontal segment).

For A, B two finite sets of points in the plane we define $\mathcal{I}(A, B)$ to be the number of pairs $\left(a_{1}, a_{2}\right) \in A$ and $\left(b_{1}, b_{2}\right) \in B$ such that $a_{1}<b_{1}$ and $a_{2}<b_{2}$. Let $\mathcal{J}(A, B)=$ $(\mathcal{I}(A, B)+\mathcal{I}(B, A)) / 2$. We provide the set of generators with a Maslov degree M given by

$$
M(\mathbf{x})=\mathcal{J}(\mathbf{x}-\mathbb{O}, \mathbf{x}-\mathbb{O})+1
$$

where we extend \mathcal{J} by bilinearly over formal sums (or differences) of subsets. Each variable $U_{O_{i}}$ has a Maslov degree equal to -2 and constants have Maslov degree equal to zero. Let $M_{S}(\mathbf{x})$ be the same as $M(\mathbf{x})$ with the set S playing the role of \mathbb{O}.

We provide the set of generators with an Alexander filtration A given by $A(\mathbf{x})=$ $\left(A_{1}(\mathbf{x}), \ldots, A_{l}(\mathbf{x})\right)$ with

$$
A_{i}(\mathbf{x})=\mathcal{J}\left(\mathbf{x}-\frac{1}{2}(\mathbb{X}+\mathbb{O}), \mathbb{X}_{i}-\mathbb{O}_{i}\right)-\frac{n_{i}-1}{2}
$$

where when we number the components of \vec{L} from 1 to $\ell, \mathbb{O}_{i} \subset \mathbb{O}$ (resp. $\mathbb{X}_{i} \subset \mathbb{X}$) is the subset of \mathbb{O} (resp. \mathbb{X}) wich belongs to the i th component of \vec{L} and n_{i} is the number of horizontal segments which belongs to the i th component. We let $A\left(U_{O_{j}}\right)=(0, \ldots,-1,0, \ldots, 0)$ where -1 corresponds to the i th coordonate if O_{j} belongs to the i th component of \vec{L}.

Given two generators \mathbf{x} and \mathbf{y} and an immersed rectangle r in the torus whose edges are arcs in the horizontal and vertical circles, we say that r connects \mathbf{x} to \mathbf{y} if $\mathbf{y} . \mathbf{x}^{-1}$ is a transposition, if all four corners of r are intersection points in $\mathbf{x} \cup \mathbf{y}$, and if we traverse each horizontal boundary component of r in the direction dictated by the orientation of r induced by \mathcal{T}, then the arc is oriented from a point in \mathbf{x} to the point in \mathbf{y}. Let $\operatorname{Rect}(\mathbf{x}, \mathbf{y})$ be the set of rectangles connecting \mathbf{x} to \mathbf{y} : either it is the empty set or it consists of exactly two rectangles. Here a rectangle $r \in \operatorname{Rect}(\mathbf{x}, \mathbf{y})$ is said to be empty if there is no point of \mathbf{x} in its interior. Let $\operatorname{Rect}^{\circ}(\mathbf{x}, \mathbf{y})$ be the set of empty rectangles connecting \mathbf{x} to \mathbf{y}.

Figure 2: Rectangles. We mark with black dots the generator \mathbf{x} and with white dots the generator \mathbf{y}. There are two rectangles in $\operatorname{Rect}(\mathbf{x}, \mathbf{y})$ but only the left one is in $\operatorname{Rect}^{\circ}(\mathbf{x}, \mathbf{y})$.

The differential $\partial^{-}: C^{-}(G) \rightarrow C^{-}(G)$ is given on the set of generators by

$$
\partial^{-} \mathbf{x}=\sum_{\mathbf{y} \in \mathfrak{S}_{n}} \sum_{r \in \operatorname{Rect}^{\circ}(\mathbf{x}, \mathbf{y})} U_{O_{1}}^{O_{1}(r)} \ldots U_{O_{n}}^{O_{n}(r)} \cdot \mathbf{y}
$$

where $O_{i}(r)$ is the number of times O_{i} appears in the interior of r.

Theorem 1.1 (Manolescu-Ozsváth-Sarkar [4]) $\left(C^{-}(G), \partial^{-}\right)$is a chain complex for $C F^{-}\left(S^{3}\right)$ with homological degree induced by M and filtration level induced by A which coincides with the link filtration of $C F^{-}\left(S^{3}\right)$.

In [5], the authors define a sign assigment for empty rectangles \mathbf{S} : $\operatorname{Rect}^{\circ} \rightarrow\{ \pm 1\}$. Then, by considering $C^{-}(G)$ the group ring of \mathfrak{S}_{n} over $\mathbb{Z}\left[U_{O_{1}}, \ldots, U_{O_{n}}\right]$ and the
differential $\partial^{-}: C^{-}(G) \rightarrow C^{-}(G)$ given by

$$
\partial^{-} \mathbf{x}=\sum_{\mathbf{y} \in \mathfrak{S}_{n}} \sum_{r \in \operatorname{Rect}^{\circ}(\mathbf{x}, \mathbf{y})} \mathbf{S}(r) \cdot U_{O_{1}}^{O_{1}(r)} \ldots U_{O_{n}}^{O_{n}(r)} \cdot \mathbf{y}
$$

they obtain the following result.
Theorem 1.2 (Manolescu-Ozsváth-Szabó-Thurston [5]) Let \vec{L} be an oriented link with ℓ components. We number the \mathbb{O} so that O_{1}, \ldots, O_{ℓ} correspond to the different components of \vec{L}. Then the filtered quasi-isomorphism type of $\left(C^{-}(G), \partial^{-}\right)$over $\mathbb{Z}\left[U_{O_{1}}, \ldots, U_{O_{\ell}}\right]$ is an invariant of the link.

In this paper, we give a way to refine the complex over \mathbb{Z} thanks to $\widetilde{\mathfrak{S}}_{n}$ the spin extension of \mathfrak{S}_{n} which is a non-trivial central extension of \mathfrak{S}_{n} by $\mathbb{Z} / 2 \mathbb{Z}$. In Section 2 we define the spin extension $\widetilde{\mathfrak{S}}_{n}$ and make some algebraic calculus. Let z be the unique non-trivial central element of $\widetilde{\mathfrak{S}}_{n}$ and $\Lambda=\mathbb{Z}\left[U_{O_{1}}, \ldots, U_{O_{n}}\right]$. In Section 3 we define a filtered chain complex $\left(\widetilde{C}^{-}(G), \tilde{\partial}^{-}\right)$where $\widetilde{C}^{-}(G)$ is the quotient module of the free Λ-module with generating set $\widetilde{\mathfrak{S}}_{n}$ by the submodule generated by $\{z+1\}$. Finally, in Section 4, we prove that our chain complex defines a sign assignment in the sense of [5] and that $\left(\tilde{C}^{-}(G), \tilde{\partial}^{-}\right)$is filtered quasi-isomorphic to $\left(C^{-}(G), \partial^{-}\right)$with coefficients in \mathbb{Z}.

2 Algebraic preliminaries

Let \mathfrak{S}_{n} be the group of bijections of a set with n elements numbered from 0 to $n-1$. It is given in terms of generators and relations where the set of generators is $\left\{\tau_{i}\right\}_{i=0}^{n-2}$ with τ_{i} the transposition which exchanges i and $i+1$ and relations are

$$
\begin{array}{rl}
\tau_{i}^{2}=\mathbf{1} & 0 \leq i \leq n-2 \\
\tau_{i} \cdot \tau_{j}=\tau_{j} \cdot \tau_{i} & |i-j|>1, \\
\tau_{i} \cdot \tau_{i+1} \cdot \tau_{i}=\tau_{i+1} \cdot \tau_{i} \cdot \tau_{i+1} & 0 \leq i, j \leq n-2 \\
0 \leq n-3 .
\end{array}
$$

Theorem 2.1 The group given by generators and relations

$$
\begin{array}{lll}
\widetilde{\mathfrak{S}}_{n}=<\widetilde{\tau}_{0}, \ldots, \widetilde{\tau}_{n-2}, z \mid & z^{2}=\widetilde{\mathbf{1}}_{1}, z \tilde{\tau}_{i}=\tilde{\tau}_{i} z, \widetilde{\tau}_{i}^{2}=z, & 0 \leq i \leq n-2 ; \\
& \widetilde{\tau}_{i} \cdot \widetilde{\tau}_{j}=z \widetilde{\tau}_{j}, \widetilde{\tau}_{i}|i-j|>1, & 0 \leq i, j \leq n-2 ; \\
& \widetilde{\tau}_{i}, \widetilde{\tau}_{i+1} \cdot \widetilde{\tau}_{i}=\widetilde{\tau}_{i+1}, \widetilde{\tau}_{i}, \widetilde{\tau}_{i+1} & 0 \leq i \leq n-3>
\end{array}
$$

is a non-trivial central extension $(n \geq 4)$ of \mathfrak{S}_{n} by $\mathbb{Z} / 2 \mathbb{Z}$ called the spin extension of \mathfrak{S}_{n}.

Remark 2.2 A proof of this theorem can be found in Karpilovsky [3, Theorem 2.12.3]. To see that it is a non-trivial extension, one can notice the following: let \mathbb{Q}_{8} be the subgroup of $\widetilde{\mathfrak{S}}_{n}$ generated by $\widetilde{\tau}_{0}, \widetilde{\tau}_{2}, z$. Then \mathbb{Q}_{8} is isomorphic to the unit sphere in the space of quaternions intersected with the lattice \mathbb{Z}^{4} by a morphism Φ such that $\Phi\left(\widetilde{\tau}_{0}\right)=i, \Phi\left(\widetilde{\tau}_{2}\right)=j, \Phi\left(\widetilde{\tau}_{0}, \widetilde{\tau}_{2}\right)=k$ and $\Phi(z)=-1$. Therefore $\widetilde{\mathfrak{S}}_{n}$ is non-trivial.

Remark 2.3 Cases $n=2$ and $n=3$ are not interesting in our situation: the only knot which can be represented by a grid diagram of complexity 2 or 3 is the trivial knot. Nevertheless, the group given by generators and relations above still exists: in the case $n=2$, it is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$, in the case $n=3$, it is isomorphic to a subgroup of $G L(2, \mathbb{C})$ (see [3, Lemma 2.12.2]).

For $i<j$, define

$$
\tilde{\tau}_{i, j}=\tilde{\tau}_{i} \cdot \tilde{\tau}_{i+1} \ldots, \tilde{\tau}_{j-2} \cdot \tilde{\tau}_{j-1} \cdot \tilde{\tau}_{j-2} \ldots, \tilde{\tau}_{i+1} \cdot \tilde{\tau}_{i}
$$

and $\widetilde{\tau}_{j, i}=z \widetilde{\tau}_{i, j}$.
Let $\varepsilon: \mathfrak{S}_{n} \rightarrow\{0,1\}$ be the signature morphism.

Lemma 2.4 Let $\widetilde{\mathbf{x}}=\widetilde{\tau}_{i_{1}}, \widetilde{\tau}_{i_{2}} \ldots . \widetilde{\tau}_{i_{k}}$ be an element in $\widetilde{\mathfrak{S}}_{n}$ and $\mathbf{x}=p(\widetilde{\mathbf{x}}) \in \mathfrak{S}_{n}$. Then for any $0 \leq i \neq j \leq n-1$

$$
\widetilde{\mathbf{x}} \cdot \tilde{\tau}_{i, j} \cdot \widetilde{\mathbf{x}}^{-1}=z^{\varepsilon(\mathbf{x})} \tilde{\tau}_{\mathbf{x}(i), \mathbf{x}(j)}
$$

Proof Since $\widetilde{\mathbf{x}}=\widetilde{\tau}_{i_{1}}, \widetilde{\tau}_{i_{2}} \ldots . \widetilde{\tau}_{i_{k}}, \widetilde{\mathbf{x}}^{-1}=z^{\varepsilon(\mathbf{x})} \widetilde{\tau}_{i_{k}} \ldots . . \widetilde{\tau}_{i_{1}}$. We prove by induction on $k \geq 1$ that for any $i, j \in\{0, \ldots, n-1\}$ we have $\tilde{\mathbf{x}} \cdot \tilde{\tau}_{i, j} \cdot \widetilde{\mathbf{x}}^{-1}=z^{\varepsilon(\mathbf{x})} \tilde{\tau}_{\mathbf{x}(i), \mathbf{x}(j)}$.

- Initialization Let $\widetilde{\mathbf{x}}=\tilde{\tau}_{l}$ and $0 \leq i<j \leq n-1$. So $\tilde{\tau}_{l}^{-1}=z \tilde{\tau}_{l}$ and $\varepsilon(\mathbf{x})=1$. There are several cases.
- Case 1: $l<i-1$ or $l>j \quad \tilde{\mathbf{x}} . \tilde{\tau}_{i, j} . z \tilde{\mathbf{x}}=z \tau_{i, j}$.
- Case 2: $l=i-1 \quad \widetilde{\mathbf{x}} \cdot \tilde{c}_{i, j} \cdot z \tilde{\mathbf{x}}=z \tilde{\tau}_{i-1} \cdot \widetilde{\tau}_{i, j} \cdot \widetilde{\tau}_{i-1}=z \widetilde{\tau}_{i-1, j}$ by definition.
- Case 3: $l=i \quad \tilde{\tau}_{i} \cdot \tilde{\tau}_{i, j} \cdot z \tilde{\tau}_{i}=z \tilde{\tau}_{i+1, j}$.
- Case 4: $i<l<j-1 \quad$ We prove by induction on $l-i \geq 1$ for i, j fixed that $\tilde{\tau}_{l} \cdot \tilde{\tau}_{i, j} \cdot z \tilde{\tau}_{l}=z \tilde{\tau}_{\tau(i), \tau(j)}$. For $l=i+1$ then we have

$$
\begin{aligned}
\tilde{\tau}_{i+1} \cdot \widetilde{\tau}_{i, j} \cdot z \tilde{\tau}_{i+1} & =z \tilde{\tau}_{i} \cdot \tilde{\tau}_{i+1} \cdot \tilde{\tau}_{i} \cdot \tilde{\tau}_{i+2, j} \cdot \tilde{\tau}_{i} \cdot \tilde{\tau}_{i+1} \cdot \tilde{\tau}_{i} \\
& =z \tilde{\tau}_{i} \cdot \tilde{\tau}_{i+1} \cdot \tilde{\tau}_{i+2, j} \cdot \widetilde{\tau}_{i+1} \cdot \tilde{\tau}_{i} \\
& =z \tilde{\tau}_{i, j} .
\end{aligned}
$$

Suppose it is proved until rank $(l-1)-i$. Then for $\widetilde{\mathbf{x}}=\tilde{\tau}_{l}$ with $l<j-1$ we have

$$
\begin{aligned}
\tilde{\mathbf{x}}^{\tilde{\tau}_{i} \cdot z \overline{\mathbf{x}}} & =z \tilde{\tau}_{l} \cdot \tilde{\tau}_{i, j} \cdot \tilde{\tau}_{l} \\
& =z\left(\tilde{\tau}_{i} \ldots \ldots \cdot \tilde{\tau}_{l-2}\right) \cdot\left(\tilde{\tau}_{l} \cdot \tilde{\tau}_{l-1} \cdot \tilde{\tau}_{l}\right) \cdot \tilde{\tau}_{l-1, j} \cdot\left(\tilde{\tau}_{l} \cdot \tilde{\tau}_{l-1} \cdot \tilde{\tau}_{l}\right) \cdot\left(\tilde{\tau}_{l-2} \ldots \ldots \tilde{\tau}_{i}\right) \\
& =z\left(\tilde{\tau}_{i} \ldots \ldots \cdot \tilde{\tau}_{l-2}\right) \cdot\left(\tilde{\tau}_{l-1} \cdot \tilde{\tau}_{l} \cdot \tilde{\tau}_{l-1}\right) \cdot \tilde{\tau}_{l-1, j} \cdot\left(\tilde{\tau}_{l-1} \cdot \tilde{\tau}_{l} \cdot \tilde{\tau}_{l-1}\right) \cdot\left(\tilde{\tau}_{l-2} \ldots \ldots \cdot \tilde{\tau}_{i}\right) \\
& =z\left(\tilde{\tau}_{i} \ldots \ldots \tilde{\tau}_{l-1} \cdot \tilde{\tau}_{l}\right) \cdot \tilde{\tau}_{l-1, j} \cdot\left(\tilde{\tau}_{l} \cdot \tilde{\tau}_{l-1} \ldots \ldots \cdot \tilde{\tau}_{i}\right) \text { by induction } \\
& =z\left(\widetilde{\tau}_{i} \ldots \ldots \tilde{\tau}_{l-1}\right) \cdot \tilde{\tau}_{l, j} \cdot\left(\tilde{\tau}_{l-1} \ldots \ldots \tilde{\tau}_{i}\right) \text { by induction } \\
& =z \tilde{\tau}_{i, j} \text { by case } 2 .
\end{aligned}
$$

- Case 5: $l=j-1$

$$
\begin{aligned}
\tilde{\tau}_{j-1} \cdot \tilde{\tau}_{i, j} \cdot z \tilde{\tau}_{j-1} & =z\left(\tilde{\tau}_{i} \ldots . \tilde{\tau}_{j-3}\right) \cdot \tilde{\tau}_{j-1} \cdot \tilde{\tau}_{j-2} \cdot \tilde{\tau}_{j-1} \cdot \tilde{\tau}_{j-2} \cdot \tilde{\tau}_{j-1} \cdot\left(\tilde{\tau}_{j-3} \ldots \ldots . \tilde{\tau}_{i}\right) \\
& =z \tilde{\tau}_{i, j-1}
\end{aligned}
$$

- Case 6: $l=j$

$$
\begin{aligned}
\tilde{\tau}_{j} \cdot \tilde{\tau}_{i, j} \cdot z \tilde{\tau}_{j} & =z\left(\tilde{\tau}_{i} \ldots . \cdot \tilde{\tau}_{j-2}\right) \cdot \tilde{\tau}_{j} \cdot \tilde{\tau}_{j-1} \cdot \tilde{\tau}_{j} \cdot\left(\tilde{\tau}_{j-2} \ldots \ldots . \tilde{\tau}_{i}\right) \\
& =z \widetilde{\tau}_{i, j+1}
\end{aligned}
$$

- Heredity Suppose the property is true until rank k. Let $\widetilde{\mathbf{x}}=\tilde{\tau}_{i_{1}}, \tilde{\tau}_{i_{2}} \ldots \ldots \tilde{\tau}_{i_{k}}$ and $\widetilde{\tau}_{i, j}$ be two elements in $\widetilde{\mathfrak{S}}_{n}$. Denote $\tilde{\mathbf{y}}=\tilde{\tau}_{i_{2}} \ldots . . \widetilde{\tau}_{i_{k}}$. Then $\widetilde{\mathbf{x}} \cdot \widetilde{\tau}_{i, j} \cdot \tilde{\mathbf{x}}^{-1}=$ $\tilde{\tau}_{i_{1}} \cdot \tilde{\mathbf{y}} \cdot \tilde{\tau}_{i, j} \cdot \tilde{\mathbf{y}}^{-1} . z \tilde{\tau}_{i_{1}}$. By induction hypothesis,

$$
\tilde{\mathbf{y}} \cdot \tilde{\tau}_{i, j} \cdot \tilde{\mathbf{y}}^{-1}=z^{\varepsilon(\mathbf{y})} \cdot \tilde{\tau}_{\mathbf{y}(i), \mathbf{y}(j)}
$$

So, $\tilde{\mathbf{x}} \cdot \tilde{\tau}_{i, j} \cdot \tilde{\mathbf{x}}^{-1}=\tilde{\tau}_{i_{1}} \cdot z^{\varepsilon(\mathbf{y})} \cdot \tilde{\tau}_{\mathbf{y}(i), \mathbf{y}(j)} . z \tilde{\tau}_{i_{1}}$. By induction hypothesis one more time,

$$
\tilde{\mathbf{x}} \cdot \tilde{\tau}_{i, j} \cdot \tilde{\mathbf{x}}^{-1}=z^{\varepsilon(\mathbf{y})+1} \tilde{\tau}_{\tau_{i_{1}}} \cdot \mathbf{y}(i), \tau_{i_{1}} \cdot \mathbf{y}(j)=z^{\varepsilon(\mathbf{x})} \cdot \tilde{\tau}_{\mathbf{x}(i), \mathbf{x}(j)}
$$

The group $\widetilde{\mathfrak{S}}_{n}$ has another presentation in terms of generators and relations. Take $\left\{z^{\prime}\right\} \cup\left\{\tilde{\tau}_{i, j}^{\prime}\right\}_{i \neq j}$ where $0 \leq i, j \leq n-1$ as the set of generators with the following relations:
(2-1) $\quad z^{\prime} . z^{\prime}=\tilde{\mathbf{1}}^{\prime} \quad z^{\prime} \tilde{\tau}_{i, j}^{\prime}=\tilde{\tau}_{i, j}^{\prime} z^{\prime} \quad \tilde{\tau}_{i, j}^{\prime}=z^{\prime} \tilde{\tau}_{j, i}^{\prime} \quad \tilde{\tau}_{i, j}^{\prime} . \tilde{\tau}_{i, j}^{\prime}=z^{\prime} \quad$ for any i, j
(2-2) $\quad \tilde{\tau}_{i, j}^{\prime} \cdot \tilde{\tau}_{k, l}^{\prime}=z^{\prime} \tilde{\tau}_{k, l}^{\prime} \cdot \tilde{\tau}_{i, j}^{\prime} \quad$ for any i, j, k, l if $\{i, j\} \cap\{k, l\}=\varnothing$
$(2-3) \quad \tilde{\tau}_{i, j}^{\prime} \cdot \tilde{\tau}_{j, k}^{\prime} \cdot \tilde{\tau}_{i, j}^{\prime}=\tilde{\tau}_{j, k}^{\prime} \cdot \tilde{\tau}_{i, j}^{\prime} \cdot \tilde{\tau}_{j, k}^{\prime}=\tilde{\tau}_{i, k}^{\prime} \quad$ for any i, j, k.
Proof Let $\widetilde{\mathfrak{S}}_{n}$ the group with z and $\widetilde{\tau}_{i}$ as generators and $\widetilde{\mathfrak{S}}_{n}^{\prime}$ the other one. Define $\phi: \widetilde{\mathfrak{S}}_{n} \rightarrow \widetilde{\mathfrak{S}}_{n}^{\prime}$ given on generators by $\phi\left(\widetilde{\tau}_{i}\right)=\widetilde{\tau}_{i, i+1}^{\prime}, \phi(z)=z^{\prime}$. For $i<j$, let $\phi\left(\tilde{\tau}_{i, j}\right)=\tilde{\tau}_{i, j}^{\prime}$. By definition, $(2-1)$ is verified. Lemma 2.4 gives equations (2-2) and (2-3). So the map ϕ extends to a group isomorphism.

In what follows, we drop the prime exponent and only refer to $\tilde{\tau}_{i, j}$ and $z\left(\tilde{\tau}_{i}\right.$ means $\left.\tilde{\tau}_{i, i+1}\right)$.

3 The chain complex

Let G be a grid presentation with complexity n of the link \vec{L}. Let Λ denote the ring $\mathbb{Z}\left[U_{O_{1}}, \ldots, U_{O_{n}}\right]$. We define $\widetilde{C}^{-}(G)$ to be the free Λ-module with generating set $\widetilde{\mathfrak{S}}_{n}$ quotiented by the submodule generated by $\{z+1\}$ ie

$$
\left.\widetilde{C}^{-}(G)=\Lambda\left[\widetilde{\mathfrak{S}}_{n}\right] /<z+1\right\rangle .
$$

Considered as module, $\widetilde{C}^{-}(G)$ coincides with the free Λ-module with generating set \mathfrak{S}_{n}. But we can also consider the structure of algebra of $\widetilde{C}^{-}(G)$ over Λ. In this case, one can think of $\widetilde{C}^{-}(G)$ as the group algebra of \mathfrak{S}_{n} over Λ where the product is twisted by a non-trivial 2-cocycle (see Section 4).

We endow the set of generators with a Maslov grading M and an Alexander filtration A given by $M(\widetilde{\mathbf{x}})=M(\mathbf{x})$ and $A(\widetilde{\mathbf{x}})=A(\mathbf{x})$.

Let $\widetilde{\mathbf{x}}$ be an element of $\widetilde{\mathfrak{S}}_{n}$ and let $\operatorname{Rect}(\widetilde{\mathbf{x}})$ be the set of rectangles starting at $\widetilde{\mathbf{x}}$: by definition it is the set $\left\{\tilde{\tau}_{i, j}\right\}_{0 \leq i \neq j \leq n-1}$. If we consider the set $\operatorname{Rect}(\widetilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of rectangles connecting \mathbf{x} to \mathbf{y} (where $\mathbf{y}=\mathbf{x} \cdot \tau_{i, j}$) as in [5], either it is the empty set, or it consists of two rectangles. We interpret the rectangle $\tilde{\tau}_{i, j}$ in the oriented torus \mathcal{T} as the rectangle whose bottom left corner belongs to the i th vertical circle. So in the case where $\operatorname{Rect}(\mathbf{x}, \mathbf{y})=\left\{r_{1}, r_{2}\right\}$ the two corresponding rectangles are $\widetilde{\tau}_{i, j}$ and $\widetilde{\tau}_{j, i}$ Let r be the rectangle of $\operatorname{Rect}(\mathbf{x}, \mathbf{y})$ corresponding to \tilde{r}. A rectangle $\tilde{r} \in \operatorname{Rect}(\widetilde{\mathbf{x}})$ is said to be empty if the corresponding rectangle $r \in \operatorname{Rect}(\mathbf{x}, \mathbf{y})$ is empty. The set of empty rectangles starting at $\widetilde{\mathbf{x}}$ is denoted $\operatorname{Rect}^{\circ}(\widetilde{\mathbf{x}})$.

We endow $\widetilde{C}^{-}(G)$ with a differential $\tilde{\partial}^{-}$given on elements of $\widetilde{\mathfrak{S}}_{n}$ by:

$$
\widetilde{\partial}^{-} \widetilde{\mathbf{x}}=\sum_{\tilde{r} \in \operatorname{Rect}^{0}(\widetilde{\mathbf{x}})} U_{O_{1}}^{O_{1}(\tilde{r})} \ldots U_{O_{n}}^{O_{n}(\tilde{r})} \cdot \tilde{\mathbf{x}} \cdot \tilde{r}
$$

where $O_{k}(\widetilde{r})$ is the number of times O_{k} appears in the interior of r.
Proposition 3.1 The differential $\tilde{\partial}^{-}$drops the Maslov degree by one and respect the Alexander filtration.

Proof It is a straightforward consequence of calculus done in [5].

Figure 3: Rectangles. Black dots represent \mathbf{x} and white dots \mathbf{y}. The two hatched regions correspond to rectangles $\tilde{\tau}_{0,2} \in \operatorname{Rect}(\widetilde{\mathbf{x}})$ and $\tilde{\tau}_{2,0} \in \operatorname{Rect}(\widetilde{\mathbf{x}})$. The rectangle $\tilde{\tau}_{0,2}$ is an empty rectangle while $\tilde{\tau}_{2,0}$ is not.

Proposition 3.2 The endomorphism $\tilde{\partial}^{-}$of $\widetilde{C}^{-}(G)$ is a differential, ie

$$
\tilde{\partial}^{-} \circ \tilde{\partial}^{-}=0
$$

Proof Let $\widetilde{\mathbf{x}}=s(\mathbf{x}) \in \widetilde{\mathfrak{S}}_{n}$, viewed as a generator of $\widetilde{C}^{-}(G)$. Then

$$
\tilde{\partial}^{-} \circ \tilde{\partial}^{-}(\widetilde{\mathbf{x}})=\sum_{\tilde{r}_{2} \in \operatorname{Rect}^{\circ}\left(\tilde{\mathbf{x}} \cdot \tilde{r}_{1}\right)} \sum_{\tilde{r}_{1} \in \operatorname{Rect}^{\circ}(\widetilde{\mathbf{x}})} U_{O_{1}}^{O_{1}\left(\widetilde{r}_{1}\right)+O_{1}\left(\tilde{r}_{2}\right)} \ldots U_{O_{n}}^{O_{n}\left(\widetilde{r}_{1}\right)+O_{n}\left(\tilde{r}_{2}\right)} \cdot \tilde{\mathbf{x}} \cdot \tilde{r}_{1} \cdot \tilde{r}_{2}
$$

There are different cases which are illustrated by Figure 4.
Cases 1,2 The rectangles corresponding to $\tilde{\tau}_{i, j}$ and $\tilde{\tau}_{k, l}$ give the elements $\widetilde{\mathbf{z}}_{1}=$ $\widetilde{\mathbf{x}} \cdot \tilde{\tau}_{k, l} \cdot \widetilde{\tau}_{i, j}$ and $\widetilde{\mathbf{z}}_{2}=\widetilde{\mathbf{x}} \cdot \tilde{\tau}_{i, j} \cdot \tilde{\tau}_{k, l}$. By equation (2-2) contribution to $\tilde{\partial}^{-} \circ \tilde{\partial}^{-}(\widetilde{\mathbf{x}})$ is null.

Case 3 Supports of the rectangles have a common edge. The two corresponding elements are $\widetilde{\mathbf{z}}_{1}=\tilde{\mathbf{x}} \cdot \tilde{\tau}_{i, j} \cdot \tilde{\tau}_{j, k}$ and $\widetilde{\mathbf{z}}_{2}=\widetilde{\mathbf{x}} . \tilde{\tau}_{i, k} \cdot \tilde{\tau}_{i, j}$ with $i<j<k$. By equation (2-3), $\widetilde{\mathbf{z}}_{1}=z \widetilde{\mathbf{z}}_{2}$ and so the contribution is null. Other cases work in a similar way.

Case 4 The vertical annulus is of width 1 and corresponds to $\widetilde{\mathbf{z}}_{1}=U_{O_{m}} \cdot \widetilde{\mathbf{x}} \cdot \tilde{\tau}_{i} \cdot \tilde{\tau}_{i}$ (it is a consequence of the condition on rectangles to be empty).

To this vertical annulus corresponds the horizontal annulus of height 1 which contains O_{m}. This horizontal annulus contributes for $U_{O_{m}} \cdot \tilde{\mathbf{x}} \cdot \tilde{\tau}_{l, k} \cdot \tilde{\tau}_{k, l}=U_{O_{m}} \cdot \tilde{\mathbf{x}}$ for a pair $k<l \in\{0, \ldots, n-1\}$. So, the contribution of each vertical annulus is canceled by the corresponding horizontal annulus. The global contribution to $\tilde{\partial}^{-} \circ \tilde{\partial}^{-}(\widetilde{\mathbf{x}})$ is null.

Figure 4: $\tilde{\partial}^{-} \circ \tilde{\partial}^{-}=0$.

4 Sign assignment induced by the complex

In this section we prove that the chain complex $\widetilde{C}^{-}(G)$ coincides with the chain complex $C^{-}(G)$ over \mathbb{Z} after a choice of a sign assignment.

Definition 4.1 A sign assigment is a function $\mathbf{S}:$ Rect $^{\circ} \rightarrow\{ \pm 1\}$ such that (Sq) for any distincts $r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime} \in \operatorname{Rect}^{\circ}$ such that $r_{1} * r_{2}=r_{1}^{\prime} * r_{2}^{\prime}$ we have

$$
\mathbf{S}\left(r_{1}\right) \cdot \mathbf{S}\left(r_{2}\right)=-\mathbf{S}\left(r_{1}^{\prime}\right) \cdot \mathbf{S}\left(r_{2}^{\prime}\right)
$$

(V) if $r_{1}, r_{2} \in$ Rect $^{\circ}$ are such that $r_{1} * r_{2}$ is a vertical annulus then

$$
\mathbf{S}\left(r_{1}\right) \cdot \mathbf{S}\left(r_{2}\right)=-1
$$

(H) if $r_{1}, r_{2} \in$ Rect $^{\circ}$ are such that $r_{1} * r_{2}$ is a horizontal annulus then

$$
\mathbf{S}\left(r_{1}\right) \cdot \mathbf{S}\left(r_{2}\right)=+1 .
$$

Let $s: \mathfrak{S}_{n} \rightarrow \widetilde{\mathfrak{S}}_{n}$ be a section of the map p that is $p \circ s=\mathrm{id}_{\mathfrak{S}_{n}}$.

To define the sign assignment we need the 2 -cocycle $c \in C^{2}\left(\mathfrak{S}_{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$ associated to the map s given by

$$
\begin{equation*}
s(\mathbf{x}) . s(\mathbf{y})=(i \circ c(\mathbf{x}, \mathbf{y})) s(\mathbf{x} \cdot \mathbf{y}) \tag{4-1}
\end{equation*}
$$

The cohomological class of c measures how s fails to be a group morphism. In particular, it is non-trivial $(n \geq 4)$ since $\widetilde{\mathfrak{S}}_{n}$ is a non-trivial central extension of \mathfrak{S}_{n} by $\mathbb{Z} / 2 \mathbb{Z}$.

We say that a rectangle r is horizontally torn if given the coordinates $\left(i_{b l}, j_{b l}\right)$ of its bottom left corner and $\left(i_{t r}, j_{t r}\right)$ of its top right corner then $i_{b l}>i_{t r}$. Otherwise, r is said to be not horizontally torn.

Lemma 4.2 The complex $\left(\widetilde{C}^{-}(G), \widetilde{\partial}^{-}\right)$induces a sign assignment in the sense of Definition 4.1: for all $(\mathbf{x}, \mathbf{y}) \in \mathfrak{S}_{n}^{2}$ and all $r \in \operatorname{Rect}^{\circ}(\mathbf{x}, \mathbf{y})$

$$
\begin{equation*}
\mathbf{S}(r)=\varepsilon(r) \cdot c\left(\mathbf{x}^{-1} \cdot \mathbf{y}, \mathbf{x}\right) \tag{4-2}
\end{equation*}
$$

where $\varepsilon(r)=+1$ if r is a rectangle not horizontally torn and $\varepsilon(r)=-1$ otherwise.

Remark The sign assignment in the sense of Definition 4.1 is unique up to a $1-$ coboundary: if \mathbf{S}_{1} and \mathbf{S}_{2} are two sign assignments then there exists an application $f: \mathfrak{S}_{n} \rightarrow\{ \pm 1\}$ such that for all rectangles $r \in \operatorname{Rect}^{\circ}(\mathbf{x}, \mathbf{y}), \mathbf{S}_{1}(r)=f(\mathbf{x}) . f(\mathbf{y}) \cdot \mathbf{S}_{2}(r)$. It is a consequence of the fact that the central extension corresponds to a 2 -cohomological class in $H^{2}\left(\mathfrak{S}_{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$ (compare with [5, Theorem 4.2]). Here, we construct explicitely a map $s: \mathfrak{S}_{n} \rightarrow \widetilde{\mathfrak{S}}_{n}$ such that $p \circ s=$ id which means making a choice of a representative of this class, another choice must differ by a 1 -coboundary.

Proof Since c is 2-cocycle we have $\delta c=1$ ie for all $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathfrak{S}_{n}^{3}$

$$
\delta c(\mathbf{x}, \mathbf{y}, \mathbf{z})=c(\mathbf{y}, \mathbf{z}) \cdot c(\mathbf{x} \cdot \mathbf{y}, \mathbf{z}) \cdot c(\mathbf{x}, \mathbf{y} \cdot \mathbf{z}) \cdot c(\mathbf{x}, \mathbf{y})=1
$$

By definition we have $c(\mathbf{x}, \mathbf{1})=c(\mathbf{1}, \mathbf{x})=1$ and $c\left(\tau_{i, j}, \tau_{i, j}\right)=-1$. Let's prove that \mathbf{S} satisfy properties $(\mathrm{Sq}),(\mathrm{V})$ et (H).
(Sq) Let any four distincts rectangles $\mathrm{S} r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime} \in \operatorname{Rect}^{\circ}$ such that $r_{1} * r_{2}=r_{1}^{\prime} * r_{2}^{\prime}$. Suppose $\tilde{\tau}_{i, j}=\tilde{r}_{1} \in \operatorname{Rect}^{\circ}(\tilde{\mathbf{x}})$ corresponds to r_{1} and $\tilde{\tau}_{k, l}=\tilde{r}_{2} \in \operatorname{Rect}{ }^{\circ}\left(\tilde{\mathbf{x}} . \tilde{\tau}_{i, j}\right)$ corresponds to r_{2}. Then $\tilde{r}_{1}^{\prime}=\tilde{\tau}_{k, l} \in \operatorname{Rect}{ }^{\circ}(\widetilde{\mathbf{x}})$ corresponds to r_{1}^{\prime} and $\widetilde{r}_{2}^{\prime}=\tilde{\tau}_{i, j} \in$
$\operatorname{Rect}^{\circ}\left(\widetilde{\mathbf{x}} . \tilde{\tau}_{k, l}\right)$ corresponds to r_{2}^{\prime}. There are several cases to verify, as for the proof of $\widetilde{\partial}^{-} \circ \tilde{\partial}^{-}=0$ but all cases can be verified in a similar way. We verify the case $i<j<k<l$. We calculate $\delta c\left(\tau_{k, l}, \tau_{i, j}, \mathbf{x}\right)$ and $\delta c\left(\tau_{i, j}, \tau_{k, l}, \mathbf{x}\right)$. With equalities $c\left(\tau_{i, j} \cdot \tau_{k, l}, \mathbf{x}\right)=c\left(\tau_{k, l} \cdot \tau_{i, j}, \mathbf{x}\right)$ and $c\left(\tau_{i, j}, \tau_{k, l}\right)=-c\left(\tau_{k, l}, \tau_{i, j}\right)$ we get

$$
\mathbf{S}\left(r_{1}\right) \cdot \mathbf{S}\left(r_{2}\right)=-\mathbf{S}\left(r_{1}^{\prime}\right) \cdot \mathbf{S}\left(r_{2}^{\prime}\right) .
$$

(V) Let $r_{1}, r_{2} \in$ Rect ${ }^{\circ}$ such that $r_{1} * r_{2}$ is a vertical annulus. Suppose that $\widetilde{r}_{1}=\widetilde{\tau}_{i} \in$ $\operatorname{Rect}{ }^{\circ}(\widetilde{\mathbf{x}})$ corresponds to r_{1} and $\widetilde{r}_{2}=\widetilde{\tau}_{i} \in \operatorname{Rect}^{\circ}\left(\widetilde{\mathbf{x}} . \widetilde{\tau}_{i}\right)$ corresponds to r_{2}. We calculate $\delta c\left(\tau_{i}, \tau_{i}, \mathbf{x}\right)$ and with equalities $c(\mathbf{x}, \mathbf{1})=1, c\left(\tau_{i}, \tau_{i}\right)=-1$ we get

$$
\mathbf{S}\left(r_{1}\right) \cdot \mathbf{S}\left(r_{2}\right)=-1 .
$$

(H) Let $r_{1}, r_{2} \in$ Rect $^{\circ}$ such that $r_{1} * r_{2}$ is a horizontal annulus (of height one). Suppose $\widetilde{r}_{1}=\tilde{\tau}_{i, j} \in \operatorname{Rect}{ }^{\circ}(\widetilde{\mathbf{x}})$ corresponds to r_{1} and $\widetilde{r}_{2}=\tilde{\tau}_{j, i} \in \operatorname{Rect}\left(\tilde{\mathbf{x}}^{\circ} \tilde{\tau}_{i, j}\right)$ corresponds to r_{2}. We calculate $\delta c\left(\tau_{i, j}, \tau_{i, j}, \mathbf{x}\right)$ and with equalities $c(\mathbf{x}, \mathbf{1})=1$, $c\left(\tau_{i, j}, \tau_{i, j}\right)=-1$ we get

$$
\mathbf{S}\left(r_{1}\right) \cdot \mathbf{S}\left(r_{2}\right)=+1 .
$$

Proposition 4.3 The filtered chain complex $\left(\widetilde{C}^{-}(G), \widetilde{\partial}^{-}\right)$is filtered isomorphic to the filtered chain complex $\left(C^{-}(G), \partial^{-}\right)$.

Proof The map $s: \mathfrak{S}_{n} \rightarrow \widetilde{\mathfrak{S}}_{n}$ extends linearly with respect to $\mathbb{Z}\left[U_{1}, \ldots, U_{n}\right]$ uniquely to a map $s: C^{-}(G) \rightarrow \widetilde{C}^{-}(G)$ which is an isomorphism of modules. It commutes with the differentials ie $s \circ \partial^{-}=\widetilde{\partial}^{-} \circ s$ where the sign assignment \mathbf{S} is given by equation (4-2). By definition, s respects the Alexander filtration and the Maslov grading. So s defines a filtered isomorphism between the complexes $\left(C^{-}(G), \partial^{-}\right)$and $\left(\widetilde{C}^{-}(G), \widetilde{\partial}^{-}\right)$.

A consequence of the above proposition and [5, Theorem 1.2] is the following.
Corollary 4.4 Let \vec{L} be an oriented link with ℓ components. We number the \mathbb{O} so that O_{1}, \ldots, O_{ℓ} correspond to the different components of \vec{L}. Then the filtered quasi-isomorphism type of $\left(\widetilde{C}^{-}(G), \partial^{-}\right)$over $\mathbb{Z}\left[U_{O_{1}}, \ldots, U_{O_{\ell}}\right]$ is an invariant of the link.

Remark The proof of this theorem can also be done by adaptating the original proof in [5], sometimes with slightly simplified arguments.

References

[1] B Audoux, Heegaard-Floer homology for singular knots (2007) arXiv: math.GT/0705. 2377
[2] P Ghiggini, Knot Floer homology detects genus-one fibred knots (2006) arXiv: math/0603445
[3] G Karpilovsky, The Schur multiplier, London Mathematical Society Monographs. New Series 2, The Clarendon Press Oxford University Press, New York (1987) MR1200015
[4] C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology (2006) arXiv:math.GT/0607691
[5] C Manolescu, P Ozsváth, Z Szabó, D Thurston, Floer homology, gauge theory, and low-dimensional topology, from: "Proceedings of the Clay Institute Summer School (Budapest, 2004)", (D Ellwood, P Ozsváth, A Stipsicz, Z Szabó, editors), Clay Mathematics Proceedings 5, Amer. Math. Soc. (2006) x+297 MR2233609
[6] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577-608 MR2357503
[7] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311-334 MR2023281
[8] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58-116 MR2065507
[9] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed threemanifolds, Ann. of Math. (2) 159 (2004) 1027-1158 MR2113019
[10] P Ozsváth, Z Szabó, Holomorphic disks and link invariants (2005) arXiv: math.GT/0512286
[11] J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) arXiv:math.GT/0306378

Laboratoire de Mathématiques Jean Leray (LMJL), UFR Sciences et Techniques 2 rue de la Houssinière - BP 92208, 44322 Nantes Cedex 3, France

Etienne.Gallais@univ-nantes.fr
http://www.math.sciences.univ-nantes.fr/~gallais/
Received: 4 July 2007 Revised: 30 May 2008

