
Algebraic & Geometric Topology 8 (2008) 1647–1665 1647

A class function on the mapping class group of an
orientable surface and the Meyer cocycle

MASATOSHI SATO

In this paper we define a QP1 –valued class function on the mapping class group
Mg;2 of a surface †g;2 of genus g with two boundary components. Let E be a
†g;2 –bundle over a pair of pants P . Gluing to E the product of an annulus and P

along the boundaries of each fiber, we obtain a closed surface bundle over P . We
have another closed surface bundle by gluing to E the product of P and two disks.

The sign of our class function cobounds the 2–cocycle on Mg;2 defined by the
difference of the signature of these two surface bundles over P .

57N13, 55R40; 57M07

1 Introduction

Let †g;r be a compact oriented surface of genus g with r boundary components.
The mapping class group Mg;r is �0DiffC.†g;r ; @†g;r / where DiffC.†g;r ; @†g;r /

is the group of orientation preserving diffeomorphisms of †g;r which restrict to the
identity on the boundary @†g;r . We simply denote †g WD †g;0 and Mg WDMg;0 .
Harer [4] proved that

H 2.Mg;r IZ/Š Z g � 3; r � 0;

see also Korkmaz and Stipsicz [8].

Meyer [9] defined a cocycle �g 2Z2.MgIZ/ (g � 0) called the Meyer cocycle which
represents four times generator of the second cohomology class when g � 3. Let
D1 , D2 , and D3 be mutually disjoint disks in S2 , and Int Di the interior of Di for
i D 1; 2; 3. We denote by P WDS2�q3

iD1
Int Di the pair of pants, and ˛; ˇ;  2�1.P /

be the homotopy classes as shown in Figure 1. We consider a †g;r –bundle E
'; 
g;r

on the pair of pants P which has monodromies ' ,  , . '/�1 2Mg;r along ˛ , ˇ ,
 2 �1.P /. The diffeomorphism type of E

'; 
g;r does not depend on the choice of

representatives in the mapping classes ' and  . Since E
'; 
g;r is the oriented fiber
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Figure 1

bundle, it has the canonical orientation comes from that of †g;r and P . The Meyer
cocycle is defined by

�gW Mg � Mg ! Z ;
. ' ;  / 7! Sign E

'; 
g

where Sign E
'; 
g is the signature of the compact oriented 4–manifold E

'; 
g . For k>0,

it is known as Novikov additivity that when two compact oriented 4k –manifolds are
glued by an orientation reversing diffeomorphism of their boundaries, the signature
of their union is the sum of their signature. When a pants decomposition of a closed
oriented 2–manifold is given, the signature of a †g –bundle on the 2–manifold is the
sum of the signature of the †g –bundles restricted to each pair of pants. Therefore, it is
important to study the Meyer cocycle to calculate the signature of compact 4–manifolds.
For g D 1; 2 the Meyer cocycle �g is a coboundary, and the cobounding function
of this cocycle is calculated by several authors, for instance, Meyer [9], Atiyah [1],
Kasagawa [6] and Iida [5]. The Meyer cocycle is not a coboundary if genus g � 3, but
the cocycle can be a coboundary when it is restricted to some subgroups. For example,
on the subgroup called the hyperelliptic mapping class group, the cobounding function
is calculated by Endo [2] and Morifuji [11].

Let I be the unit interval Œ0; 1�� R. By sewing a pair of disks onto the surface †g;2

along the boundary, we have †g . For h 2 DiffC.†g;2; @†g;2/, if we extend h by
the identity on the pair of disks, we have a self-diffeomorphism of †g . We denote
it by h[ id

q2
iD1

D2 . By sewing an annulus S1 � I onto the surface †g;2 along the
boundary, we have †gC1 . In the same way, if we extend h 2 DiffC.†g;2; @†g;2/ by
the identity on the annulus, we have a self-diffeomorphism h[ idS1�I .
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Define the induced homomorphism on the mapping class group by

� W Mg;2 ! Mg

Œh� 7! Œh[ id
q2

iD1
D2 �

and
�W Mg;2 ! MgC1;0:

Œh� 7! Œh[ idS1�I �:

Harer [3; 4] shows that � and � induce an isomorphism on the second homology
classes when genus g � 5, so that z�g D �

��gC1� �
��g is a coboundary. Powell [12]

proved that the first homology group H1.Mg;r IZ/ is trivial for g � 3 and r � 0, so
by the universal coefficient theorem, it follows that the cobounding function of z�g is
unique.

In this paper we define a QP1 –valued class function m on the mapping class group
Mg;2 in an explicit way by using information of the first homology group of a mapping
torus of Œh� 2Mg;2 . For Œp W q� 2 QP1 , we define the sign of Œp W q� by sign .Œp W
q�/ WD sign .pq/. We prove that the sign of the function m cobounds the cocycle
z�g D �

��gC1� �
��g . In particular, it turns out that the cocycle z�g is coboundary for

any g � 0.

This function makes a little bit easy to evaluate the Meyer cocycle on the subgroups
consists of mapping classes that fix a curve on the surface. For example, consider the
case gD 1; 2. We denote by �1 and �2 the cobounding functions of �1 and �2 . Since
H1.Mg;2IQ/D 0, the equation ���gC1D �

��gCım means ���gC1D �
��gCm for

g D 1; 2. In particular, the function �1 is described explicitly in Meyer [9]. Therefore,
our function m helps to describe the cobounding function of the Meyer cocycle for
genus 2 and 3 on the subgroup.

In Section 2, we construct a class function m, prove some properties of this function,
and calculate the image of the function. In Section 3, we prove that the sign of
this function cobounds the difference z�g D �

��gC1 � �
��g . By the definition of the

Meyer cocycle �g , z�g.';  / is just the difference Sign E
�.'/;�. /
gC1

� Sign E
�.'/;�. /
g ,

so that we calculate the difference by using the sign of the function m. Moreover
we compute the other differences of signature Sign .E'; 

g;2
/� Sign .E�.'/;�. /

g / and

Sign .E�.'/;�. /
gC1

/�Sign .E'; 
g;2

/ by the function m.

2 Class function mWMg;2!QP1

In this section we define the class function on the mapping class group Mg;2 stated in
the introduction and describe some properties of the function including the nontriviality.
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For Œp W q�, Œr W s� 2QP1 , we define an addition in QP1 by

Œp W q�C Œr W s�D

(
Œpr W psC qr �; if Œp W q�¤ Œ0 W 1� or Œr W s�¤ Œ0 W 1�

Œ0 W 1�; if Œp W q�D Œr W s�D Œ0 W 1�:

The projective line QP1 forms an additive monoid under this operation with Œ1 W 0� the
zero element.

In this section, all (co)homology groups are with Q coefficients.

2.1 Construction of the class function

Before constructing the function, we prepare a fact about homology groups of compact
3–manifolds. Let Y be a compact oriented connected 3–manifold with boundary @Y
and i W @Y ,! Y the inclusion map. Consider the commutative diagram

H 1.Y /
i�

����! H 1.@Y /
ı�

����! H 2.Y; @Y /??y\ŒY � ??y\Œ@Y �

??y\ŒY �
H2.Y; @Y /

@�
����! H1.@Y /

i�
����! H1.Y /;

where the upper and lower rows are the exact sequences of a pair .Y; @Y /, and the
vertical maps are the cap products with the (relative) fundamental classes of Y and
@Y . By the diagram and Poincaré Duality, it follows that the image of i� is just its
own annihilator with respect to the cup product of H 1.@Y /

Im i� D Ann .Im i�/:

In particular, we have

dim Ker i� D dim Im i� D
1

2
dim H1.@Y /:

We define the mapping torus of ' D Œh� 2Mg;r by

X '
WD†g;r � I=�; .x; 1/� .h.x/; 0/;

and � W X ' ! I=@I D S1 by the projection �.Œx; t �/D Œt �, where Œx; t � 2 X ' is the
equivalent class of .x; t/2†g;r �I , and Œt �2 I=@I DS1 the equivalent class of t 2 I .

The diffeomorphism type of the mapping torus X ' does not depend on the choice of
the representative h. We fix the orientation on X ' given by the product orientation
on †g;r � I . Let i' W @X

' ,!X ' be the inclusion map. In this subsection we denote
† WD†g;2 , and if we fix ' 2Mg;2 , then we write simply X WDX ' and i WD i' . Let
S1 and S2 be the two boundary components of †, and ŒSk � .k D 1; 2/ the image
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The mapping class group of an orientable surface and the Meyer cocycle 1651

under the inclusion homomorphism H1.Sk/!H1.†/ of the fundamental homology
class.

We consider † as a subspace of X by the embedding �W † ,! X by x 7! Œx; 0�.
We choose points p1 2 S1 , p2 2 S2 , and p 2 S1 , and orientation-preserving home-
omorphisms �1W S1 ! S1 and �2W S1 ! S2 . We define singular chains fk W I !

.S1qS2/�S1 D @X .k D 1; 2; 3; 4/ by

f1.t/D .�1.t/;p/; f2.t/D .�2.t/;p/; f3.t/D .p1; t/ and f4.t/D .p2; t/ respectively:

Let ek 2 H1.@X / be the homology class of fk .k D 1; 2; 3; 4/. Then the set
fe1; e2; e3; e4g forms a basis for H1.@X /, and the intersection number

ei � ej D

(
1 if j D i C 2;

0 otherwise;

for i D 1; 2 and j D 3; 4. Now we describe the kernel of the homomorphism
i�W H1.@X /!H1.X /. Since e1 and e2 lie in the kernel of .�j@X /� and ��.e3/D

��.e4/D ŒS
1� 2H1.S

1/, we have

Ker i� � Ker .��i�/DQe1˚Qe2˚Q.e3� e4/:

By the definition of the map fk , .i ıfk/�ŒS
1�D ��ŒSk �, and so i�.e1Ce2/D ��.ŒS1�C

ŒS2�/2H1.X /. Since S1[S2 is the boundary of †, we have ŒS1�C ŒS2�D 02H1.†/.
Hence

Q.e1C e2/� Ker i�:

As we saw at the beginning of this subsection, dim Ker i� D
1
2

dim H1.@X /D 2. It
follows that Ker i�DQ.e1Ce2/˚Q.p.e3�e4/Cqe1/ for some p , q 2Q. Now we
can define a class function.

Definition 2.1 For ' 2Mg;2 , we take p; q 2Q such that Ker i'� DQ.e1C e2/˚

Q.p.e3� e4/C qe1/.

We define mWMg;2!QP1 by m.'/D Œp W q�.

Lemma 2.2 For '; 2Mg;2 ,

m. ' �1/Dm.'/:

Proof Define ‰W X ' ! X ' �1

by ‰.x; t/ D . .x/; t/. Then ‰ maps ei as
defined in H1.X

'/ to the corresponding ei as defined in H1.X
 ' �1

/, and the
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following diagram commutes

H1.@X
'/

i'�
����! H1.X

'/??y‰� ??y‰�
H1.@X

 ' �1

/
i
 ' �1�

������! H1.X
 ' �1

/:

As we see from the diagram, ‰� gives the natural isomorphism between the kernels
Ker .H1.@X

'/! H1.X
'// and Ker .H1.@X

 ' �1

/! H1.X
 ' �1

//. Hence we
have m. ' �1/Dm.'/.

2.2 Some properties and the nontriviality of the class function

By the Serre spectral sequence of the †–bundle � W X ! S1 , we have the exact
sequence

0 ����! Coker .'�� 1/
��
����! H1.X /

��
����! H1.S

1/ ����! 0;

where Coker .'��1/ is the cokernel of the homomorphism '��1W H1.†/!H1.†/.

Then we have a unique homomorphism j' W Qe1˚Qe2˚Q.e3�e4/!Coker .'��1/

such that the diagram with exact rows

0 ����! Qe1˚Qe2˚Q.e3� e4/ ����! H1.@X /
��
����! H1.S

1/ ����! 0??yj'

??yi�


0 ����! Coker .'�� 1/

��
����! H1.X /

��
����! H1.S

1/ ����! 0

commutes. By the diagram, we have

Ker i� D Ker j' and

j'.e1/D�j'.e2/D ŒS1� 2 Coker .'�� 1/:

Now we introduce a cochain !l 2 C 1.Mg;2IH1.†// defined by Kawazumi [7]. On
the fiber †D ��1.0/� X , pick a path l such that l.0/ 2 S2 and l.1/ 2 S1 . Define
!l by

!l.'/ WD Œ'.l/� l � 2H1.†/:

Then we have the following lemma.

Lemma 2.3
j'.e3� e4/D Œ!l.'/� 2 Coker .'�� 1/:
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Proof Define a 2–chain LW I � I ! X by L.s; t/D Œl.s/; t �. Its boundary is given
by �i�.e3/C'.l/C i�.e4/� l 2 B1.X /. Hence,

i�.e3� e4/D ��.Œ'.l/� l �/ 2H1.X /

Since �� is injective, the lemma follows.

From the lemma, we see the homology class Œ!l.'/� 2 Coker .'�� 1/ is independent
of the choice of the path l . If !l.'/D 0, then j'.e3� e4/D 0.

Remark 2.4 If there exists a path l from a point in S2 to a point in S1 which has no
common point with the support of a representative of ' 2Mg;2 , then m.'/D Œ1 W 0�.
In particular, m.id/D Œ1 W 0�, the zero element of the monoid QP1 .

Define the subgroups I 0 WDKer .Mg;2!Aut .H1.†g;2IZ// and I WDKer .Mg;2!

Aut .H1.†g;2; @†g;2IZ//. For ' 2 I 0 , m.'/ D Œp W q� means p.'.l/� l/C qe1 D

0 2H1.†g;2IZ/. This shows that m is homomorphic on I 0 . For ' 2 I , !.'/D 0 2

H1.†g;2IZ/. This shows that m.'/D Œ1 W 0� for all ' 2 I .

Remark 2.5 The restriction of m on I is trivial, and the restriction of m on I 0 is a
nontrivial monoid homomorphism.

At the beginning of this section, we defined the commutative monoid structure on QP1 .
So integral multiples of m.'/ are well-defined.

Proposition 2.6 If ' 2Mg;2 and k 2 Z, then

m.'k/D km.'/:

Proof The proposition is trivial for k D 0 and k D 1. Assume k � 2.

Let m.'/D Œp W q�. By the definition of j' , pj'.e3� e4/D�qŒS1� 2 Coker .'�� 1/.
Hence, there exists v 2H1.†/ such that

pŒ'.l/� l �D�qŒS1�C .'�� 1/v 2H1.†/:

Apply 'i (i D 0; 1; : : : ; k � 1) to the both sides of the equation and sum over i . Then

k�1X
iD0

pŒ'iC1.l/�'i.l/�D

k�1X
iD0

f�qŒS1�C .'
iC1
� .v/�'i

�.v//g;

that is
pŒ'k.l/� l �D�kqŒS1�C .'

k
� � 1/v:
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Hence, m.'k/D Œp W kq�D km.'/ for k � 0.

By applying '�1 to the equation pŒ'.l/� l �D�qŒS1�C .'�� 1/v , we have

pŒ'�1.l/� l �D qŒS1�C .'
�1
� � 1/v 2H1.†/:

Hence, m.'�1/D Œp W �q�D�m.'/. Since m.'�k/D�m.'k/D�km.'/ for k > 0,
the proposition follows for the case k < 0.

Now we compute the image of the function m. In particular, we see that m is nontrivial.

Proposition 2.7 For g � 1, m is surjective. For g D 0, Im .m/D Œ1 W Z�.

� � � l l0
� �0� S1

S2

1

Figure 2

Proof Suppose g�1. We choose oriented simple closed curves ˛ , ˛0 , and ˇ and paths
l and l 0 as shown in Figure 2. We denote the Dehn twists along a simple closed curve
C �† by tC , and the homology class of C by ŒC � . Then Œ˛�C Œ˛0�C Œˇ�D 02H1.†/

since they bound a 2–chain. For p 2 Z, if we denote ' WD t
p
˛ t˛0 t

�1
ˇ

, then

j'..pC 1/.e3� e4//D !l.'/Cp!l 0.'/

D Œ.tp
˛ t˛0 t

�1
ˇ /.l/� l �CpŒ.tp

˛ t˛0 t
�1
ˇ /.l 0/� l 0�

D p.Œ˛�C Œ˛0�C Œˇ�/C Œˇ�D Œˇ�D ŒS1�:

Hence, j'..pC 1/.e3� e4/� e1/D 0, so that

m.'/D ŒpC 1 W �1�:

By Proposition 2.6, we have

m.'�q/D�qŒpC 1 W �1�D

�
ŒpC 1 W q�; if p ¤�1

Œ0 W 1�; if p D�1:
.q 2 Z/
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Since p and q can run over all integers, we see m is surjective for g � 1.

For g D 0, M0;2 is the infinite cyclic group generated by tˇ . Since m.t
�q

ˇ
/D Œ1 W q�,

we have Im .m/D Œ1 W Z�.

3 The difference of two Meyer cocycles ���gC1 and ���g

In this section (co)homology groups are with Z coefficient unless specified.

Let g � 0 be a positive integer. In the introduction, we defined the homomorphisms
�WMg;2!MgC1;0 and � WMg;2!Mg to be the induced maps by sewing a pair
of disks and by sewing an annulus onto the surface †g;2 along their boundaries
respectively. We denote the Meyer cocycle on the mapping class group of genus g

closed orientable surface Mg by �g 2Z2.Mg/ and define z�g 2Z2.Mg;2/ to be the
difference between the Meyer cocycles

z�g WD �
��gC1� �

��g:

Let P WD S2�q3
iD1

D2 . In this section, we prove the main theorem and calculate the
changes of signature associated with sewing a pair of trivial disk bundles P �q2

iD1
D2

and sewing a trivial annulus bundles P � .S1 � I/ onto †g;2 –bundle on the pair of
pants P along their boundaries. To state the main theorem, we define the sign of
Œp W q� 2QP1 by

sign .Œp W q�/ WD sign .pq/D

8̂<̂
:

1 if pq > 0;

0 if pq D 0;

�1 if pq < 0:

Theorem 3.1 For '; 2Mg;2 , we define

z�g.'/ WD sign .m.'//:

Then z�g cobounds the difference z�g between the Meyer cocycles ���gC1 and ���g

z�g.';  /D ı z�g.';  /

D sign .m.'//C sign .m. //C sign .m..' /�1//:

Remark 3.2 Let k be an integer. By Lemma 2.2 and Proposition 2.6, z�g has the
properties

z�g. ' 
�1/D z�g.'/ and

z�g.'
k/D sign .k/z�g.'/

Algebraic & Geometric Topology, Volume 8 (2008)



1656 Masatoshi Sato

for any g � 0.

3.1 Proof of Main Theorem

In this subsection we prove Theorem 3.1.

In the introduction, we defined compact oriented 4–manifold E
'; 
g;r as a †g;r –bundle

on the pair of pants P which has monodromies ' ,  , and . '/�1 2Mg;r along
˛ , ˇ , and  2 �1.P / respectively, and in Section 2.1, we defined compact oriented
3–manifold X

'
g;r by the mapping torus of †g;r � I=� where .x; 1/� .h.x/; 0/ for

' D Œh� 2Mg;r .

Gluing to E
�.'/;�. /
g;2

the trivial annulus bundle on P along the boundaries of each
fiber, we obtain

E
�.'/;�. /
gC1

DE
'; 
g;2
[ .�S1

� I �P /:

Similarly, glue to X
�.'/
g;2

the trivial annulus bundle on S1 . Then we have

X
�.'/
gC1
DX

'
g;2
[ .�S1

� I �S1/:

Define
GW @D2 � I ! f1g �S1 � I:

.x; t/ 7! .1;x; 1Ct
3
/:

By the map G , we can glue D2 � I to I �S1 � I as shown in Figure 3.

D2 � I I � S1 � I
0� S1 � I1� S1 � I

1

Figure 3: Gluing map G

Glue D2�I �P to I �E
�.'/;�. /
gC1

D .I �E
'; 
g;2

/[.�I �S1�I �P / with the gluing
map G � idP W @D

2� I �P !f1g�S1� I �P . In the same way, glue D2� I �S1

Algebraic & Geometric Topology, Volume 8 (2008)
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to I �X
�.'/
gC1
D .I �X

'
g;2
/[ .�I � S1 � I � S1/ with G � idS1@D2 � I � S1 !

f1g �S1 � I �S1 . Namely, we construct two manifolds

zE'; 
WD .I �E

�.'/;�. /
gC1

/[G�idP
.D2
� I �P /

and
zX '
WD .I �X

�.'/
gC1

/[G�id
S1
.D2
� I �S1/:

Fix the orientations of these manifolds induced from the product orientations of I �

E
�.'/;�. /
gC1

and I �X
�.'/
gC1

. To prove main theorem, it suffices to prove Lemma 3.3
and Lemma 3.4 below.

Lemma 3.3

.���gC1��
��g/.';  /DSign zX '

CSign zX 
CSign zX .' /�1

for '; 2Mg;2; g�0:

Lemma 3.4
Sign zX '

D sign .m.'// for ' 2Mg;2; g � 0:

Proof of Lemma 3.3 Note that

zX '
D zE'; 

j@D1
:

Then we can see

@ zE'; 
D . zE'; 

j@D1
[ zE'; 

j@D2
[ zE'; 

j@D3
/[E�.'/;�. /

g [�E
�.'/;�. /
gC1

D . zX '
[ zX 

[ zX . '/�1

/[E�.'/;�. /
g [�E

�.'/;�. /
gC1

:

Since the Signature is a bordism invariant (for example, see Milnor and Stasheff [10,
Lemma 17.3]), we have Sign @ zE'; D 0. By Novikov Additivity, we see that

Sign .E�.'/;�. /
gC1

/�Sign .E�.'/;�. /
g /D Sign zX '

CSign zX 
CSign zX . '/�1

:

Notice that zX . '/�1

is diffeomorphic to zX .' /�1

, so that Sign zX . '/�1

DSign zX .' /�1

.
By the definition of the Meyer cocycle, we have

Sign .E�.'/;�. /
gC1

/D ���gC1.';  /, and Sign .E�.'/;�. /
g /D ���g.';  /:

Define z�.'/D Sign . zX '/; then we have ı z�D ���gC1��
��g . We get the cobounding

function z� .
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Proof of Lemma 3.4 Write simply X WD X
�.'/
gC1

, X 0 WD X
'
g;2

, and Y WD zX ' D

.I �X /[G�id
S1
.D2 � I �S1/.

For i D 0; 1, define
ji W X ! I �X ,! Y;

x 7! .i;x/

where I �X ,! Y is a natural embedding. We will prove there is a exact sequence

H2.X
0/

j0�Dj1�
������! H2.Y / ����! Ker .H1.@X

0/!H1.X
0// ����! 0:

Define the submanifolds Y1 WD I � X 0 and Y2 WD Y � Int Y1 D .�I � S1 � I �

S1/[G�S1 .D2 � I �S1/. Then we see that

Y1 'X 0;Y2 ' S1;Y1\Y2 ' @X
0
D .S1qS2/�S1:

By the Meyer–Vietoris exact sequence, we have the exact sequence

H2.Y1/˚H2.Y2/ ����! H2.Y /
@�
����! H1.Y1\Y2/ ����! H1.Y1/˚H1.Y2/:

jj jj jj

H2.X
0/˚ 0 H1.@X

0/ H1.X
0/˚H1.S

1/:

Denote the map H1.@X
0/ ! H1.X

0/ ˚ H1.S
1/ in the above diagram by h. the

projection H1.@X
0/!H1.S

1/ to the second entry of h is the composite of inclusion
homomorphism H1.@X

0/!H1.X
0/ and ��W H1.X

0/!H1.S
1/. Therefore,

Ker .H1.@X
0/!H1.X

0/˚H1.S
1//D Ker .H1.@X

0/!H1.X
0//:

So the sequence is exact.

Next, we will construct the splitting

H2.Y IQ/D ji�H2.X
0
IQ/˚Ker .H1.@X

0
IQ/!H1.X

0
IQ//:

Note that there exist p , q 2Q such that

Ker .H1.@X
0
IQ/!H1.X

0
IQ//DQ.e1C e2/˚Qfp.e3� e4/C qe1g

as in Section 2. To construct the splitting, we choose elements of inverse images of
e1C e2 , p.e3� e4/C qe1 under H2.Y /!H1.@X

0/. Define �Y W †gC1! Y by

†gC1 ! X ! I �X ,! Y:

x 7! .x; 0/ 7! .0;x; 0/:
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By the Meyer–Vietoris exact sequence as above, we have

H2.Y / ! H1.Y1\Y2/ ! H1.@X
0/;

�Y �Œ†gC1� 7! @��Y �Œ†gC1� 7! e1C e2

so we choose �Y �Œ†gC1� as an element of the inverse image of e1C e2 .

Next, we choose an element of the inverse image of p.e3�e4/Cqe1 . Since p.e3�e4/C

qe1 2Ker .H1.@X
0IQ/!H1.X

0IQ//, there exists a singular 2–chain s 2 C2.X
0IQ/

such that
@s D p.f3�f4/C qf1 2 B1.X

0
IQ/:

For i D 0; 1, define s0
0i
W I �S1! I �S1 � I �S1 ,! Y2 by s0

0i
.t;u/D .i; 0; t;u/.

Then we see that
Œ@s00i �D Œjif3� jif4� 2H1.Y1\Y2IQ/:

Image of s010 Image of s011
(I � S1 � I � 0) [G�idS1 (D2 � I � 0) (I � S1 � I � 0) [G�idS1 (D2 � I � 0)

1

Figure 4: Images of s0
10

and s0
11
� Y2 .

Define s0
1i
W D2! Y2 D .�I �S1 � I �S1/[G�S1 .D2 � I �S1/� Y as shown in

Figure 4 by

s010.x/D

8̂<̂
:
.6x; 1; 0/ 2D2 � I �S1 .jjxjj � 1

6
/;

.2� 6jjxjj; x
jjxjj

; 2
3
; 0/ 2 I �S1 � I �S1 .1

6
� jjxjj � 1

3
/;

.0; x
jjxjj

; 1� jjxjj; 0/ 2 I �S1 � I �S1 .1
3
� jjxjj � 1/;

s011.x/D

(
.3

2
x; 0; 0/ 2D2 � I �S1 .jjxjj � 2

3
/;

.1; x
jjxjj

; 1� jjxjj; 0/ 2 I �S1 � I �S1 .2
3
� jjxjj � 1/:

Then, we have Œ@s0
1i
�D Œjif1� 2H1.Y1\Y2IQ/.

The chain s0i WD ps0
0i
C qs0

1i
satisfies

Œ@s0i �D Œji.p.f3�f4/C qf1/� 2H1.Y1\Y2IQ/;
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so that we have Œ@.jis� s0i/�D 0 2H1.Y1\Y2IQ/.

We see
H2.Y IQ/ ! H1.Y1\Y2IQ/ ! H1.@X

0IQ/;
Œjis� s0i � 7! @�Œjis� s0i � 7! p.e3� e4/C qe1

so that we can choose Œjis�s0i � as an element of the inverse image of p.e3�e4/Cqe1 .

Now we calculate the intersection form of H2.Y IQ/. Define the subspace X 00
1
D

j1.X /[G�id
S1
.D2 � 0�S1/� Y . Then we see that X 00

1
is a deformation retract of

Y . Hence, every element of H2.Y IQ/ is represented by a cycle in X 00
1

. Therefore, a
homology class is included in the annihilator of intersection form in H2.Y IQ/ if it is
represented by a cycle which has no common point with X 00

1
. We see

j0.X
0/\X 001 D∅ and �Y .†gC1/\X 001 D∅;

so that the preimage of Q.e1C e2/ and j0�H2.X
0IQ/ are included in the annihilator

of intersection form in H2.Y IQ/.

To describe the signature of Y , it suffices to calculate the self-intersection number of
Œjis� s0i �D p.e3� e4/C qe1 . The cycle jis� s0i satisfies

Im .j0s/\ .Im .j1s/[ Im .s001/[ Im .s011//D∅
Im .s000/\ .Im .j1s/[ Im .s001/[ Im .s011//D∅

Im .s010/\ .Im .j1s/[ Im .s011//D∅;

so that

.j0s� s00/ � .j1s� s01/D .j0s� .ps000C qs010// � .j1s� .ps001C qs011//

D qs010 �ps001:

If necessary, perturb the chain s0
01

. Then we see that s0
01

and s0
10

intersect only once
positively. Hence, we have Sign .Y /D sign .pq/D sign .m.'//.

3.2 Wall’s non-additivity formula

In the introduction, we stated the Novikov additivity of Signature. Wall derives a
formula from this additivity in a more general case, when two compact oriented smooth
4k –manifolds are glued along common submanifolds of their boundaries. We will give
the specific case of his formula for k D 1.

Let Z be a closed oriented smooth 2–manifold, X� , X0 , XC compact oriented
smooth 3–manifolds with the boundaries @X� D @X0 D @XC D Z , and Y� , YC
compact oriented smooth 4–manifolds with the boundaries @Y� D X� [Z .�X0/,
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@YC DX0[Z .�XC/. Here we denote by M [B .�N / the union of two manifolds
M and N glued by orientation reversing diffeomorphism of their common boundaries
@M D @N D B . Let Y D Y� [X0

YC be the union of Y� and YC glued along
submanifolds X0 of their boundaries. Suppose Y is oriented by the induced orientation
of Y� and YC .

Write V DH1.ZIR/; let A, B , and C be the kernels of the maps on first homology
induce by the inclusions of Z in X� , X0 and XC respectively.

We define

W WD
B \ .C CA/

.B \C /C .B \A/
;

and a bilinear form ‰ by

‰W W � W ! R:
.b ; b0/ 7! b � c0:

Here c0 is an element of C such that there exists an element a0 2 A such that a0C

b0C c0 D 0, and b � c0 denotes the intersection product of b and c0 . It is known that
‰ is independent of the choice of c0 and well-defined on W . Denote the signature
of the bilinear form ‰ by Sign .V IBCA/ and the signature of the compact oriented
4–manifold M by Sign M . We are now ready to state the formula.

Theorem 3.5 (Wall [13]) Sign Y D Sign Y�CSign YC�Sign .V IBCA/.

3.3 The differences Sign Eg �Sign Eg;2 and Sign EgC1�Sign Eg;2

In this subsection, we calculate the difference of signature associated with sewing the
trivial Disk bundles onto the †g;2 –bundle.

In the introduction, we defined E
'; 
g;r as a oriented †g;r –bundle on P which has

monodromies '; ; . '/�1 2Mg;r along ˛; ˇ;  2 �1.P /. If we fix '; 2Mg;2 ,
we denote simply

Eg;2 WDE
'; 
g;2

; Eg WDE�.'/;�. /
g ; and EgC1 WDE

�.'/;�. /
gC1

.g � 0/:

Proposition 3.6 Sign .Eg/�Sign .Eg;2/D�sign .m.'/Cm. /Cm..' /�1// for
g � 0.

Proof Eg is the union of Eg;2 and ED WD .D2 q D2/ � P glued along their
boundaries. Using Non-additivity formula Theorem 3.5, we calculate Sign .Eg/�

Sign .Eg;2/.
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Define Y� , YC , X� , X0 , XC , and Z by

Y� WD .q
2
jD1D2/�P; YC WDEg;2;

X� WD .q
2
jD1D2/� @P; XC WDEg;2j@P ; X0 WD .q

2
jD1@D

2/�P;

and Z WD.q2
jD1@D

2/� @P; respectively:

Here, by the notation stated in Section 2.1,

XC DEg;2j@P ŠX '
qX 

qX . '/�1

; Z Š @X '
q @X 

q @X . '/�1

:

Define V , A, B , and C as stated in Section 3.1.

Since X ' D X D X . '/�1

D S1 �S1 , we can choose the bases of H1.@X
' IR/,

H1.@X
 IR/, and H1.@X

. '/�1

IR/ as stated in Section 2.1. Denote their bases by
fe11; e12; e13; e14g, fe21; e22; e23; e24g, and fe31; e32; e33; e34g respectively.

Since Z D @X 'q @X q @X . '/�1

, we think of eij as an element of H1.ZIR/.

Denote m.'/D Œa1 W b1�, m. /D Œa2 W b2�, and m.. '/�1/D Œa3 W b3� respectively.
Then we have

V DH1.Z;R/D
3M

iD1

4M
jD1

Reij ;

AD Re11˚Re21˚Re31˚Re12˚Re22˚Re32;

B D R.e11� e21/˚R.e11� e31/˚R.e12� e22/˚R.e12� e32/

˚R.e13C e23C e33/˚R.e14C e24C e34/;

C D

3M
iD1

�
R.ei1C ei2/˚R.ei3� ei4Cmiei1/ if ai ¤ 0

Rei1˚Rei2 if ai D 0:

Here we denote mi WD
bi

ai
. Hence,

B \AD R.e11� e21/˚R.e12� e22/˚R.e11� e31/˚R.e12� e32/;
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B \C D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

R.e11� e21C e12� e22/˚R.e11� e31C e12� e32/˚

R.e13C e23C e33� e14� e24� e34Cm1e11Cm2e21Cm3e31/

if ai ¤ 0 for i D 1; 2; 3 and m1Cm2Cm3 D 0;

R.e11� e21C e12� e22/˚ R.e11� e31C e12� e32/

if ai ¤ 0 for i D 1; 2; 3 and m1Cm2Cm3 ¤ 0;

R.e11� e21C e12� e22/˚R.e11� e31C e12� e32/

if a1 D 0; a2 ¤ 0; a3 ¤ 0;

R.e11� e21/˚R.e12� e22/˚R.e11� e31C e12� e32/

if a1 D a2 D 0; a3 ¤ 0;

R.e11� e21/˚R.e12� e22/˚R.e11� e31/˚R.e12� e32/

if ai D 0 for i D 1; 2; 3;

B \ .C CA/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

R.e11� e21/˚R.e12� e22/˚R.e11� e31/˚R.e12� e32/

˚R.e13C e23C e33� e14� e24� e34/

if ai ¤ 0 for i D 1; 2; 3;

R.e11� e21/˚R.e12� e22/˚R.e11� e31/˚R.e12� e32/

otherwise:

By computing the signature of ‰ , we have

Sign .V IBCA/D

�
sign .m1Cm2Cm3/ if ai ¤ 0 for i D 1; 2; 3;

0 otherwise:

For example, consider the case when ai ¤ 0 for i D 1; 2; 3 and m1Cm2Cm3 ¤ 0.
Then, the space W is generated by the element represented by

b WD e13C e23C e33� e14� e24� e34 2 B \ .C CA/:

Choose the elements

a WDm1e11Cm2e21Cm3e31 2A and c WD �

3X
iD1

.ei3� ei4Cmiei1/ 2 C:

Then we see that aC bC c D 0 and obtain ‰.b; b/D b � c Dm1Cm2Cm3 . This
shows that Sign .V IBCA/D sign .m1Cm2Cm3/. The other cases follow in similar
ways.

Hence, we obtain

Sign .V IBCA/D sign .m.'/Cm. /Cm..' /�1//:
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By the non-additivity formula, we have

Sign .Eg/D Sign .ED/CSign .Eg;2/�Sign .V IBCA/:

Since ED is a trivial bundle .D2qD2/�P , we have Sign .ED/D 0.

This completes the proof of the proposition.

By Theorem 3.1 and Proposition 3.6, we can calculate the difference of signature
Sign .Eg/�Sign .Eg;2/.

Corollary 3.7 For g � 0,

Sign .EgC1/�Sign .Eg;2/D sign .m.'//C sign .m. //C sign .m..' /�1//

� sign .m.'/Cm. /Cm..' /�1//:
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