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Relative rigidity, quasiconvexity and C –complexes

MAHAN MJ

We introduce and study the notion of relative rigidity for pairs .X;J / where

(1) X is a hyperbolic metric space and J a collection of quasiconvex sets,

(2) X is a relatively hyperbolic group and J the collection of parabolics,

(3) X is a higher rank symmetric space and J an equivariant collection of maximal
flats.

Relative rigidity can roughly be described as upgrading a uniformly proper map
between two such J to a quasi-isometry between the corresponding X . A related
notion is that of a C –complex which is the adaptation of a Tits complex to this
context. We prove the relative rigidity of the collection of pairs .X;J / as above.
This generalises a result of Schwarz for symmetric patterns of geodesics in hyperbolic
space. We show that a uniformly proper map induces an isomorphism of the corre-
sponding C –complexes. We also give a couple of characterizations of quasiconvexity
of subgroups of hyperbolic groups on the way.

20F67; 57M50, 22E40

1 Introduction

1.1 Relative Rigidity and Statement of Results

In this paper, we study a rigidity phenomenon within the framework of coarse geometry.
We call it relative rigidity. Much of the work on quasi-isometric rigidity (eg Farb–
Schwartz [9] Kleiner–Leeb [17] Eskin–Farb [6] and Mosher–Sageev–Whyte [24; 23])
contains a crucial step showing that a self quasi-isometry of a space X coarsely
preserves a family J of distinguished subsets of X . The family J again has a
coarse intersection pattern that may be combinatorially coded and these proofs of
quasi-isometric rigidity often show that the intersection pattern is preserved by a quasi-
isometry. In this note, we investigate a sort of a converse to this:
When does a uniformly proper map between two families J1 and J2 come from a quasi-
isometry � between X1 and X2 ? Does such a map preserve intersection patterns?
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We show that the answer is affirmative when

(1) the Xi are (Cayley graphs of) hyperbolic groups and the Ji correspond to cosets
of a quasiconvex subgroup,

(2) the Xi are (Cayley graphs of) relatively hyperbolic groups and the Ji correspond
to parabolic subgroups,

(3) the Xi are symmetric spaces of non-positive curvature and the Ji correspond to
lifts of a maximal torus in a compact locally symmetric space modeled on Xi .

If in addition one can show that a quasi-isometry preserving intersection patterns is
close to an isometry, we would be able to conclude that a uniformly proper map between
the Ji is induced by an isometry. This latter phenomenon has been investigated by
Mosher, Sageev and Whyte [23] and has been termed pattern rigidity. Thus, in a sense,
the notion of relative rigidity complements that of pattern rigidity.

Some further examples where a family of distinguished subsets of a space and the
resulting (combinatorial) configuration yields information about the ambient space are
the following.

(1) Collection of flats in a symmetric space of higher rank (Mostow [25]).

(2) Collection of maximal abelian subgroups of the mapping class group
(Behrstock–Drutu–Mosher [1]).

(3) Collection of hyperbolic spaces in the Cayley complex of the Baumslag–Solitar
groups (Farb–Mosher [8; 10] ; see also [11]).

(4) Quasi-isometric rigidity of sufficiently complicated patterns of flats in the uni-
versal cover of a Haken 3 manifold (Kapovich–Leeb [18]).

(5) We were most influenced by a beautiful result of Schwarz [29] which shows that
a uniformly proper map from a symmetric pattern of geodesics in Hn to another
symmetric pattern of geodesics in Hn (for n > 2) is induced by an isometry.
Again as in Mostow, there are two parts to this. A first step is to construct a
quasi-isometry of Hn inducing the given pairing. Schwarz terms this ambient
extension. The second is to construct an isometry.

Let us look at a general form of the situation that Schwarz considers. .X1; d1/; .X2; d2/

are metric spaces. Let J1;J2 be collections of closed subsets of X1;X2 respectively.
Then di induces a pseudo-metric (which, by abuse of notation, we continue to refer to
as di ) on Ji for i D 1; 2. This is just the ordinary (not Hausdorff) distance between
closed subsets of a metric space. In [29], X1 D X2 D Hn , and Ji are lifts (to the
universal cover) of finite collections of closed geodesics in two hyperbolic manifolds.
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Also, the hypothesis in Schwarz’s paper [29] is the existence of a uniformly proper
map � between symmetric patterns of geodesics J1 and J2 . A uniformly proper map
may be thought of as an isomorphism in the so-called coarse category in the sense of
John Roe [28]. Thus, we can re-interpret the first step of Schwarz’s result as saying
that an isomorphism � in the coarse category between Ji implies the existence of a
quasi-isometry from Hn to itself inducing � . In the language of [29], uniformly proper
pairings come from ambient extensions.

In Mostow’s proof of rigidity for higher rank symmetric spaces, he obtains in a crucial
step, an isomorphism of Tits complexes [25]. We would like to associate to a pair
.X;J / some such complex just as a Tits complex is associated to a higher rank locally
symmetric space and its collection of maximal parablic subgroups. We propose the
notion of a C –complex in this paper as the appropriate generalization of a Tits complex
to coarse geometry. Then what we would hope for (as a conclusion) is an isomorphism
of these C –complexes. This transition from the existence of a uniformly proper map
between the Ji to the existence of a a quasi-isometry between the Xi inducing an
isomorphism of C –complexes is what we term relative rigidity. Schwarz proves the
relative rigidity of pairs .X;J / where X is hyperbolic space and J a symmetric
collection of geodesics. Much of what he does extends to the case where X is a higher
rank symmetric space and J a symmetric collection of maximal periodic flats or a
symmmetric collection of maximal parabolic subgroups in a non-uniform lattice.

The main point of this paper is illustrated first in the context of relative rigidity of the
category of pairs .�;J /, where � is (the Cayley graph of) a hyperbolic group, and J
the set of cosets of a quasiconvex subgroup. Throughout this paper we shall assume
that the quasiconvex subgroups are of infinite index in the big groups.

Note that the upgrading of a uniformly proper map between the J to a quasi-isometry
between the � is the most we can hope for in light of the fact that the Cayley graph of
a finitely generated group is only determined up to quasi-isometry. (See Paulin [27] for
a proof of this fact.)

We start with a pair of hyperbolic groups G1;G2 with Cayley graphs �1; �2 , and
quasiconvex subgroups H1;H2 . Let ƒ1 , ƒ2 be the limit sets of H1;H2 in @G1; @G2

respectively. For convenience we consider the collection Ji of translates of Ji the
join of ƒi in �i rather than cosets of Hi . Recall that the join of ƒi is the union of
bi-infinite geodesics in �i with end-points in ƒi . This is a uniformly quasiconvex set
and lies at a bounded Hausdorff distance from the Cayley graph of the subgroup Hi

(Since H has finite index in its commensurator, only finitely many cosets of H are at a
finite Hausdorff distance from it. Since Ji is at a bounded Hausdorff distance from Hi

the same is true for elements of Ji .) The main theorems of this paper are as follows.
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Theorem (Theorem 3.5) Let � be a uniformly proper (bijective, by definition) map
from J1! J2 . There exists a quasi-isometry q from �1 to �2 which pairs the sets
J1 and J2 as � does.

The construction of the quasi-isometry q proceeds by constructing a “coarse barycen-
ter” of some infinite diameter sets (reminiscent of the celebrated measure-theoretic
barycenter method discovered by Douady and Earle, and extended greatly by Besson,
Courtois, Gallot [2]).

We prove an analogous theorem for pairs .X;J / when X is (strongly) hyperbolic
relative to the collection J .

Theorem (Theorem 3.11) Let Xi be (strongly) hyperbolic relative to collections Ji

(i D 1; 2). Let � be a uniformly proper (bijective, by definition) map from J1! J2 .
There exists a quasi-isometry q from X1 to X2 which pairs the sets J1 and J2 as �
does.

As a Corollary of Theorem 3.11 and work of Hruska and Kleiner [15], we deduce
relative rigidity for pairs .X;J / where X is a CAT(0) space with isolated flats and J
is the collection of maximal flats.

The third main theorem of this paper is an analog for higher rank symmetric spaces.

Theorem (Theorem 3.13) Let Xi be symmetric spaces of non-positive curvature,
and Ji be equivariant collections of lifts of a maximal torus in a compact locally
symmetric space modeled on Xi (i D 1; 2). Let � be a uniformly proper (bijective, by
definition) map from J1! J2 . There exists a quasi-isometry q from X1 to X2 which
pairs the sets J1 and J2 as � does.

In fact, combining Theorem 3.13 with the quasi-isometric rigidity theorem of Kleiner–
Leeb [17] and Eskin–Farb [6], we may upgrade the quasi-isometry of Theorem 3.13 to
an isometry.

Let Gi ;Hi (i D 1; 2) be hyperbolic groups and quasiconvex subgroups respectively. In
Section 1.3, we shall construct simplicial complexes (termed C –complexes) from the
incidence relations determined by the cosets of Hi . Let C.Gi ;Hi/ be the C –complexes
associated with the pairs .Gi ;Hi/. Roughly speaking, the vertices of C.Gi ;Hi/ are
the translates g

j
i ƒi of ƒi by distinct coset representatives g

j
i and the .n� 1/–cells

are n–tuples fg1
1
ƒ; : : : ;gn

1
ƒg of distinct translates such that \n

1
gi

1
ƒ¤∅.

Theorem (Theorem 3.7) Let �W J1 ! J2 be a uniformly proper map. Then �
induces an isomorphism of C.G1;H1/ with C.G2;H2/.
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On the way towards proving Theorem 3.5 and Theorem 3.7, we prove two Propositions
characterizing quasiconvexity. These might be of independent interest. The first is in
terms of the Hausdorff topology on the collection C 0

c .@G/, which is the collection of
closed subsets of @G having more than one point.

Proposition (Proposition 2.3) Let H be a subgroup of a hyperbolic group G with
limit set ƒ. Let L be the collection of translates of ƒ by elements of distinct cosets of
H (one for each coset). Then H is quasiconvex if and only if L is a discrete subset of
C 0

c .@G/.

The second characterization is in terms of strong relative hyperbolicity.

Definition 1.1 A subgroup H of a group G is said to be malnormal if for all g2GnH ,
gHg�1\H is trivial. A subgroup H of a group G is said to be almost malnormal if
for all g 2G nH , gHg�1\H is finite.

It was pointed out to us by the referee that the following result follows from work of
Farb [7], Bowditch [3, Theorem 7.11] and Drutu–Sapir [5, Lemma 4.15]. We shall
include a proof for completeness.

Theorem (Proposition 2.10 [7; 3; 5]) Let G be a hyperbolic group and H a subgroup.
Then G is strongly relatively hyperbolic with respect to H if and only if H is a
malnormal quasiconvex subgroup.

The prototypical example is that of (fundamental groups of) a closed hyperbolic
manifold with a totally geodesic embedded submanifold.

Finally, we give an intrinsic or dynamic reformulation of Theorem 3.5 and Theorem
3.7 following Bowditch [4], which makes use of the existence of a cross-ratio on the
boundary of a hyperbolic group. The cross-ratio in turn induces a pseudometric on the
collection L of translates of ƒ.

Theorem (Theorem 3.10) Let G1;G2 be uniform convergence (hence hyperbolic)

groups acting on compacta M1;M2 respectively. Also, let
ı

Ai (for i D 1; 2) be Gi –
invariant annulus systems and let .::j::/i denote the corresponding annular cross-ratios.

Let H1;H2 be subgroups of G1;G2 with limit sets ƒ1; ƒ2 . Suppose that the set Li

of translates of ƒi (for i D 1; 2) by essentially distinct elements of Hi in Gi forms a
discrete subset of C 0

c .Mi/.

Also assume that there exists a bijective function �W L1! L2 and that this pairing is
uniformly proper with respect to the cross-ratios .::j::/1 and .::j::/2 . Then
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(1) Hi is quasiconvex in Gi ,

(2) there is a homeomorphism qW M1!M2 which pairs L1 with L2 as � does.
Further, q is uniformly proper with respect to the cross-ratios .::j::/1 and .::j::/2
on M1 , M2 respectively,

(3) q (and hence also � ) induces an isomorphism of C –complexes C.G1;H1/ with
C.G2;H2/.

Acknowledgements My interest in relative hyperbolicity and quasi-isometric rigidity
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1.2 Relative hyperbolicity and electric geometry

We start off by fixing notions and notation. Let G (resp. X ) be a hyperbolic group
(resp. a hyperbolic metric space) with Cayley graph (resp. a net) � equipped with a
word-metric (resp. a simplicial metric) d .

Here a net N is a collection of distinct points xi 2X such that there exist 0<C1<C2

such that

(1) d.xi ;xj /� C1 for all i ¤ j ,

(2) for all x 2X , there exists xi 2N such that d.xi ;x/� C2 .

For the net N we construct a graph GN with edges corresponding to pairs xi ¤ xj

such that d.xi ;xj /� 4C2 . The simplicial metric on N is obtained by declaring that
each edge of GN has length one.

Let the Gromov boundary of � be denoted by @G . (cf [12]).

We shall have need for the fact that for hyperbolic metric spaces (in the sense of Gromov
[14]) the notions of quasiconvexity and qi embeddings coincide [14].

We shall now recall certain notions of relative hyperbolicity due to Gromov [14] and
Farb [7].

Let X be a path metric space. A collection of closed subsets HD fH˛g of X will be
said to be uniformly separated if there exists � > 0 such that d.H1;H2/ � � for all
distinct H1;H2 2H .

The electric space (or coned-off space) bX corresponding to the pair .X;H/ is a metric
space which consists of X and a collection of vertices v˛ (one for each H˛ 2H) such
that each point of H˛ is joined to (coned off at) v˛ by an edge of length 1

2
.
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Definition 1.2 ([7; 3]) Let X be a geodesic metric space and H be a collection of
uniformly separated subsets. Then X is said to be weakly hyperbolic relative to the
collection H , if the electric space bX is hyperbolic.

Lemma 1.3 (See Bowditch [3], generalizing Lemma 4.5 and Proposition 4.6 of Farb
[7]) Given ı;C;D there exists � such that if X is a ı–hyperbolic metric space with
a collection H of C –quasiconvex D–separated sets. then, the electric space bX is
�–hyperbolic, ie X is weakly hyperbolic relative to the collection H .

Definitions Given a collection H of C –quasiconvex, D–separated sets and a number
� we shall say that a geodesic (resp. quasigeodesic)  is a geodesic (resp. quasigeodesic)
without backtracking with respect to � neighborhoods if  does not return to N�.H /

after leaving it, for any H 2H . A geodesic (resp. quasigeodesic)  is a geodesic (resp.
quasigeodesic) without backtracking if it is a geodesic (resp. quasigeodesic) without
backtracking with respect to � neighborhoods for some � � 0.

Electric P –quasigeodesics without backtracking are said to have similar intersection
patterns if for ˇ;  electric P –quasigeodesics without backtracking both joining x;y ,
the following are satisfied.

Similar Intersection Patterns 1: if precisely one of fˇ;  g meets an �–neighborhood
N�.H1/ of an electrocuted quasiconvex set H1 2H , then the length (measured in the
intrinsic path-metric on N�.H1/ ) from the entry point to the exit point is at most D .

Similar Intersection Patterns 2: if both fˇ;  g meet some N�.H1/ then the length
(measured in the intrinsic path-metric on N�.H1/ ) from the entry point of ˇ to that
of  is at most D ; similarly for exit points.

Definition 1.4 ([7; 3]) Let X be a geodesic metric space and H be a collection of
mutually disjoint uniformly separated subsets such that X is weakly hyperbolic relative
to the collection H . If any pair of P – electric quasigeodesics without backtracking
starting and ending at the same point have similar intersection patterns with horosphere-
like sets (elements of H) then quasigeodesics are said to satisfy Bounded Penetration
and X is said to be strongly hyperbolic relative to the collection H .

Definition 1.5 ([22]) A collection H of uniformly C –quasiconvex sets in a ı–
hyperbolic metric space X is said to be mutually D–cobounded if for all Hi ;Hj 2H ,
�i.Hj / has diameter less than D , where �i denotes a nearest point projection of X

onto Hi . A collection is mutually cobounded if it is mutually D–cobounded for some
D .

Algebraic & Geometric Topology, Volume 8 (2008)
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Mutual coboundedness was proven by Farb for horoballs in finite volume Hadamard
manifolds of pinched negative curvature in [7, Lemma 4.7]. The following generaliza-
tion is due to Bowditch [3].

Lemma 1.6 (See Bowditch [3, Lemma 7.13] for a proof.) Suppose X is a ı–
hyperbolic metric space with a collection H of C –quasiconvex K–separated D–
mutually cobounded subsets. Then X is strongly hyperbolic relative to the collection
H .

Gromov gave a different definition of strong relative hyperbolicity. We give a condition
below that is equivalent to a special case of Gromov’s definition. Let X be a geodesic
metric space with a collection H of uniformly separated subsets fHig. The hyperbolic
cone cHi is the product of Hi and the non-negative reals Hi �RC , equipped with the
metric of the type 2�tds2C dt2 . More precisely, Hi � fng is given the path metric of
Hi scaled by 2�n . The RC direction is given the standard Euclidean metric. Let X h

denote X with hyperbolic cones cHi glued to it along the Hi . X h will be referred to
as the hyperbolically coned off X . This is to be contrasted with the coned off space yX
in Farb’s definition.

Definition 1.7 X is said to be strongly hyperbolic relative to the collection H in the
sense of Gromov if the hyperbolically coned off space X h is a hyperbolic metric space.

The equivalence of the two notions of strong relative hyperbolicity was proven by
Bowditch in [3].

Theorem 1.8 (Bowditch [3]) X is strongly hyperbolic relative to a collection H of
uniformly separated subsets fHig in the sense of Gromov if and only if X is strongly
hyperbolic relative to the collection H in the sense of Farb.

1.3 Height of subgroups and C –complexes

The notion of height of a subgroup was introduced by Gitik, Mitra, Rips and Sageev in
[13] and further developed by the author in [21].

Definition 1.9 Let H be a subgroup of a group G . We say that the elements fgi j1�

i � ng of G are essentially distinct if Hgi ¤ Hgj for i ¤ j . Conjugates of H by
essentially distinct elements are called essentially distinct conjugates.

Algebraic & Geometric Topology, Volume 8 (2008)
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Note that we are abusing notation slightly here, as a conjugate of H by an element
belonging to the normalizer of H but not belonging to H is still essentially distinct
from H . Thus in this context a conjugate of H records (implicitly) the conjugating
element.

Definition 1.10 We say that the height of an infinite subgroup H in G is n if there
exists a collection of n essentially distinct conjugates of H such that the intersection
of all the elements of the collection is infinite and n is maximal possible. We define the
height of a finite subgroup to be 0. We say that the width of an infinite subgroup H in
G is n if there exists a collection of n essentially distinct conjugates of H such that
the pairwise intersection of the elements of the collection is infinite and n is maximal
possible.

The main theorem of [13] follows.

Theorem 1.11 If H is a quasiconvex subgroup of a hyperbolic group G ,then H has
finite height and finite width.

In this context, a theorem we shall be needing several times is the following result from
[13] that is proved using a result of Short [31].

Theorem 1.12 [13, Lemma 2.6] Let G be a hyperbolic group and Hi (for i D

1; : : : ; k ) be quasiconvex subgroups with limit sets ƒi , i D 1; : : : ; k . Then \Hi is a
quasiconvex subgroup with limit set \ƒi .

We now proceed to define a simplicial complex C.G;H / for a group G and H a
subgroup. For G hyperbolic and H quasiconvex, we give below three equivalent
descriptions of a complex C.G;H /. In this case, let @G denote the boundary of G ,
ƒ the limit set of H , and J the join of ƒ.

(1) Vertices ( 0–cells ) are conjugates of H by essentially distinct elements, and .n�
1/–cells are n–tuples fg1H; : : : ;gnH g of distinct cosets such that
\n

1
giHg�1

i is infinite (in fact by Theorem 1.12 an infinite quasiconvex subgroup
of G ).

(2) Vertices ( 0–cells ) are translates of ƒ by essentially distinct elements and
.n � 1/–cells are n–tuples fg1ƒ; : : : ;gnƒg of distinct translates such that
\n

1
giƒ¤∅.

(3) Vertices ( 0–cells ) are translates of J by essentially distinct elements and
.n�1/–cells are n–tuples fg1J; : : : ;gnJ g of distinct translates such that \n

1
giJ

is infinite.
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We shall refer to the complex C.G;H / as the C–complex for the pair G;H . (C
stands for “coarse” or “Čech” or “cover”, since C.G;H / is like a coarse nerve of a
cover, reminiscent of constructions in Cech cochains.) Note that if h.H / denote the
height of H , then .h.H /C 1/ is the dimension of the C –complex C.G;H /. Also,
if w.H / denote the width of H , then w.H / D w is equal to the size of the largest
complete graph Kw that is embeddable in C.G;H /. If C.G;H / is connected then its
one-skeleton is closely related to the coned off space y� with an appropriately chosen
set of generators.

This definition is inspired by that of the Tits complex for a non-uniform lattice in
a higher rank symmetric space. Related constructs in the context of codimension 1
subgroups also occur in work of Sageev [30] where he constructs cubings.

2 Characterizations of quasiconvexity

Let G be a hyperbolic group. Let Cc.@G/ denote the collection of closed subsets of the
boundary @G equipped with the Hausdorff topology. Let C 0

c .@G/� Cc.@G/ denote
the subset obtained from Cc.@G/ by removing the singleton sets ffxg W x 2 @Gg. Next
fix a subgroup H � G with limit set ƒ � @G . Consider the G–invariant collection
L Df gƒ g � C 0

c .@G/ with g ranging over distinct cosets (one for each coset) of
H in G . Note that L is (strictly speaking) a multi-set as distinct elements of L may
denote the same element of C 0

c .@G/ in case two distinct translates of ƒ coincide. One
extreme case is when ƒD @G , though H is of infinite index in G (eg if H is normal
of infinite index in in G .) Then L consists of infinitely many copies of ƒ.

Definition 2.1 The join J.ƒ/ of ƒ is defined as the union of all bi-infinite geodesics
whose end-points lie in ƒ.

It is easy to see that J.ƒ/ is 2ı–quasiconvex if G is ı–hyperbolic. In fact this is true
for any subset ƒ of the boundary of a ı–hyperbolic metric space X (no equivariance
is necessary). For ƒ the limit set of H , J.ƒ/ is H –invariant. The visual diameter
dia@G.ƒ/ of a subset ƒ of @G is the same as the diameter in the metric on @G obtained
from the Gromov inner product. (See [12, Chapter 7] for details about the visual metric
on @G .)

2.1 Limit sets and quasiconvexity

The next Lemma follows directly from the fact that sets with visual diameter bounded
below contain points with Gromov inner product bounded above and conversely [12].
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Lemma 2.2 For all � > 0 there exists N such that if the diameter dia@G.ƒ/� � for a
closed subset ƒ of @G , then there exists p 2 J.ƒ/ such that d.p; 1/�N . Conversely,
for all N > 0 there exists � > 0 such that if there exists p 2 J.ƒ/ with d.p; 1/�N ,
then dia@G.ƒ/� � .

The next Proposition gives our first characterisation of quasiconvex subgroups of a
hyperbolic group.

Proposition 2.3 (Characterization of Quasiconvexity I) Let H be a subgroup of
a hyperbolic group G with limit set ƒ. Let L be the collection of translates of ƒ
(counted with multiplicity) by elements of distinct cosets of H (one for each coset).
Then H is quasiconvex if and only if L is a discrete subset of C 0

c .@G/.

Proof Suppose H is quasiconvex. We want to show that L is a discrete subset of
C 0

c .@G/. Thus it suffices to show that any limit of elements of L is a singleton set.
This in turn follows from the following.

Claim 2.4 For all � > 0, L� D fLi 2 L W dia@G.Li/� �g is finite.

Proof of Claim Let N DN.�/ be as in Lemma 2.2. Since dia@G.Li/� � , therefore
by Lemma 2.2, there exists pi 2 J.Li/ such that dG.pi ; 1/ �N . Also, there exists
K > 0 depending on ı (recall that J.Li/ is 2ı–qc) and the quasiconvexity constant of
H such that if Li D giƒ, then there exists hi 2H with dG.pi ;gihi/ �K . Hence,
dG.1;gihi/ � KCN . Since G is finitely generated, the number of such elements
gihi is finite. Since gi are picked from distinct cosets of H , we conclude that the set
L� is finite.

Conversely, suppose that H is not quasiconvex. Assume, without loss of generality,
that a finite generating set of H is contained in a finite generating set of G and that
�H ; �G are Cayley graphs with respect to these generating sets. Then there exist
pi 2 J.ƒ/ such that dG.pi ; �H /� i . Translating by an appropriate element of H , we
may assume that dG.pi ; �H /D dG.pi ; 1/� i . Further, we may assume (by passing to
a subsequence if necessary) that the sequence dG.pi ; 1/ is monotonically increasing.
Then p�1

i J.ƒ/ has limit set p�1
i ƒ. Further, as pi 2 J.ƒ/, therefore, 1 2 p�1

i J.ƒ/.
Since J.ƒ/ is 2ı–qc, so is p�1

i J.ƒ/ for all i . Hence, there exists � > 0 by Lemma
2.2 such that dia@G p�1

i J.ƒ/� � . Since dG.pi ; 1/ is monotonically strictly increasing,
we conclude that the pi lie in distinbct cosets of H . Further, since Cc.@G/ is compact,
we conclude that the collection p�1

i J.ƒ/ has a convergent subsequence, converging
to a subset of diameter greater than or equal to � . Therefore, the collection L is not a
discrete subset (strictly speaking a multiset) of C 0

c .@G/.
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We next prove a result about projections of J.Li/ on J.Lj /. We start off with an
elementary fact about hyperbolic metric spaces. See [20] for a proof.

Lemma 2.5 ([20]) Given ı > 0, there exist D;C1; k; � such that if a; b; c; d are
points of a ı–hyperbolic metric space .Z; d/, with d.a; Œb; c�/Dd.a; b/, d.d; Œb; c�/D

d.c; d/ and d.b; c/�D then Œa; b�[ Œb; c�[ Œc; d � lies in a C1 –neighborhood of any
geodesic joining a; d and is a .k; �/–quasigeodesic.

Assume that H is quasiconvex and that Lk is the limit set gkƒ of gkH . Let Pj

denote the nearest point projection of �G onto J.Lj /. Also, let Hk D gk�H be the
left translate of �H by gk .

Proposition 2.6 There exists K > 0 such that Pj .�Hi
/ lies in a K–neighborhood of

J.Li \Lj / if .Li \Lj /¤∅. Else, Pj .�Hi
/ has diameter less than K .

Proof Since J.Li/ is 2ı–qc and H is quasiconvex, it suffices to show that Pj .J.Li//

lies in a K–neighborhood of J.Li\Lj / if the latter is non-empty. By G –equivariance,
we may assume that Lj Dƒ and gi D 1. We represent Pj by P in this case.

First note that by Theorem 1.12, Hi \Hj is quasiconvex and the limit set of Hi \Hj

is Li \Lj . Also, J.Li \Lj /� J.Li/.

Let a; b 2 J.Li/. Let P .a/ D c;P .b/ D d . Let D;C1; k; � be as in Lemma 2.5.
If dG.c; d/ � D , then Œa; c�[ Œc; d �[ Œd; b� is a .k; �/–quasigeodesic lying in a C1

neighborhood of Œa; b�. Since J.Li/, J.Lj / are both 2ı–qc, Œa; b� lies in a 2ı–
neighborhood of J.Li/, and Œc; d � lies in a 2ı–neighborhood of J.Lj /. In particular
c; d lie in a .C1C 2ı/–neighborhood of J.Lj /. Translating by an element of H , we
may assume that c D 1. (Note that the argument in this paragraph works independent
of whether J.Li/\J.Lj / is empty or not.

We proceed now by contradiction. Suppose there exists a sequence of Li and bi 2J.Li/

such that P .bi/D di lies at a distance greater than i from J.Li \Lj / (resp. c D 1)
according as J.Li/\J.Lj / is non-empty or empty. This shows that the sequence Li

has a limit point on ƒ disjoint from Li \ƒ for all i and further that J.Li/ passes
through a bounded neighborhood of 1. Hence the sequence Li is not discrete in
C 0

c .@G/. This contradicts Proposition 2.3 and proves our claim.

2.2 Quasiconvexity and relative hyperbolicity

As an immediate corollary of Proposition 2.6 in conjunction with Theorem 1.12 of
Short [31], we immediately conclude the following.
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Corollary 2.7 Let H be a malnormal quasiconvex subgroup of a hyperbolic group G

with Cayley graph � and limit set L. Then the set of joins J of distinct translates of
L is a uniformly cobounded collection of uniformly quasiconvex sets in � .

Combining Lemma 1.6 with Corollary 2.7 above, we have the following Proposition
due to Bowditch [3].

Proposition 2.8 (Characterization of Quasiconvexity II – [3]) Let H be a malnor-
mal quasiconvex subgroup of a hyperbolic group G . Then G is strongly relatively
hyperbolic with respect to H .

In fact the converse to Proposition 2.8 is also true. We came to learn from the referee
that this follows by combining work of Farb [7], Bowditch [3] and Drutu–Sapir [5].
We provide a proof below for completeness (and because it is easily done).

Malnormality of strongly relatively hyperbolic subgroups is due to Farb [7]. In fact
this does not require G to be hyperbolic.

Lemma 2.9 (Farb [7]) Let G be strongly relatively hyperbolic with respect to H .
Then H is malnormal in G .

It remains to show that H is quasiconvex if a hyperbolic group G be strongly rela-
tively hyperbolic with respect to H . We use Gromov’s definition of strong relative
hyperbolicity. Attach hyperbolic cones cH to distinct translates of �H in �G to obtain
the hyperbolically coned off Cayley graph �h

G
. Then �h

G
is hyperbolic by Gromov’s

definition.

If H is not quasi-isometrically embedded in G then for all i 2N , there exist pi1;pi2 2

�H such that
dH .pi1;pi2/� idG.pi1;pi2/:

Also from the metric dcH on cH , we find that dcH .pi1;pi2/ is of the order of
log2dH .pi1;pi2/. Hence, we can further assume that

dH .pi1;pi2/� idcH .pi1;pi2/:

Join pi1;pi2 by shortest paths ˛i ; ˇi in cH , �G respectively. Then ˛i [ˇi D �i is a
closed loop in �h

G
with total length l.�i/D .dcH .pi1;pi2/CdG.pi1;pi2//. Therefore

i l.�i/� 2dH .pi1;pi2/.

Since any (combinatorial) disk Di in �h
G

spanning �i must contain a path i in �H

joining p1i ;p2i , therefore the area A.Di/ of Di must be at least that of N1.i/, the
1–neighborhood of i in Di .

Algebraic & Geometric Topology, Volume 8 (2008)



1704 Mahan Mj

Therefore there exists C > 0 such that for all i ,

A.Di/�A.N1.i//�
dH .pi1;pi2/

C
�

i l.�i/

2C
:

Since i is arbitrary, this shows that �h
G

cannot satisfy a linear isoperimetric inequality.
Hence �h

G
cannot be a hyperbolic metric space. This is a contradiction. Hence H must

be quasi-isometrically embedded in G . Hence (see for instance [14]), H is quasiconvex
in G . This completes our proof of the following characterisation of strongly relatively
hyperbolic subgroups of hyperbolic groups.

Proposition 2.10 Let G be a hyperbolic group and H a subgroup. Then G is strongly
relatively hyperbolic with respect to H if and only if H is a malnormal quasiconvex
subgroup.

3 Relative rigidity

3.1 Pairing of limit sets by quasi-isometries

We now consider two hyperbolic groups G1;G2 with quasiconvex subgroups H1;H2 ,
Cayley graphs �1; �2 . Let Lj for j D 1; 2 denote the collection of translates of
limit sets (counted with multiplicity as before) of H1;H2 in @G1; @G2 respectively.
Individual members of the collection Lj will be denoted as L

j
i . Let Jj denote the

collection fJ j
i D J.L

j
i / WL

j
i 2 Lj g. Following Schwarz [29], we give the following

definition.

Definition 3.1 A bijective map � from J1! J2 is said to be uniformly proper if
there exists a function f W N!N such that

(1) dG1
.J.L1

i /;J.L
1
j //� n) dG2

.�.J.L1
i //; �.J.L

1
j ///� f .n/,

(2) dG2
.�.J.L1

i //; �.J.L
1
j ///� n) dG1

.J.L1
i /;J.L

1
j //� f .n/.

When Ji consists of all singleton subsets of �1; �2 , we shall refer to � as a uniformly
proper map from �1 to �2 .

Note We observe that if Ji is just the collection of singleton sets in �i , then a
uniformly proper map between the J is the same as a quasi-isometry between the
�i . This can be seen by putting nD 1 in conditions 1 and 2 above and then using the
fact that graphs have edge length one. Hence what is important here is that the J are
infinite diameter sets.
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Definition 3.2 A map q from �1 to �2 is said to pair the sets J1 and J2 as � does
if there exists a function hW N!N such that

dG.p;J
1

j //� n) dG.q.p/; �.J.L
1
j ///� h.n/:

The following Lemma generalises Schwarz [29, Lemma 3.1], where the result is proven
in the special case of a symmetric pattern of geodesics in Hn . The referee pointed out
to us that the Lemma follows from [26, Lemma 7] by Niblo and Reeves.

Lemma 3.3 For M;m > 0, there exists R > 0, such that the following holds. Let
L1; : : : ;LM be distinct translates of the limit set of a quasiconvex subgroup H of a
hyperbolic group G , such that dG.Ji ;Jj /�m for all i; j D 1; : : : ;M and JiDJ.Li/.
Then there exists a ball of radius R meeting Ji for all i D 1; : : : ;M .

Proof If \M
1

Li ¤ ∅, choose any point p 2 J.\M
1

Li/. Then B1.p/ intersects all
Ji and we are through.

Suppose therefore that \m
1

Li D ∅. We proceed by induction on M . There exists
RM�1 such that a ball of radius RM�1 meets Ji for i D 1; : : : ;M � 1.

We now proceed by contradiction. If no such R exists for M , we have collections
fLk

1
; : : : ;Lk

M
g; k 2N such that a ball of radius RM�1 meets J k

i ; i D 1; : : : ;M � 1

but no ball of radius k meets J k
i ; i D 1; : : : ;M . In particular, (since J.\M�1

1
Lk

i /�

.\M�1
1

J k
i /), if \M�1

1
Lk

i ¤∅, then Nk.J.\
M�1
1

Lk
i //\J M

i D∅.

For all i; j ; k , choose points pk
ij 2 J k

i such that dG.p
k
ij ;p

k
ji/�m.

Assume by G –invariance of J that the ball of radius RM�1 centered at 12�G meets
J k

i ; i D 1; : : : ;M � 1. Therefore J k
M

lies outside a k –ball about 1.

Since the collection of Ji through 1 is finite, therefore assume after passing to a
subsequence if necessary, the following.

(1) fJ k
i gk is a constant sequence for i D 1; : : : ;M �1. Hence, fLk

i gk is a constant
sequence Li (say) for i D 1; : : : ;M � 1.

(2) pk
iM
! piM 2 @G for i D 1; : : : ;M � 1. Hence pk

Mi
! piM 2 @G . Further,

by (1) above, piM 2Li .

(3) Lk
M

converges to a closed set Z � @G . By Proposition 2.3, Z must be a
singleton set fzg.

(4) J k
M

lies outside Bk.1/[Nk.J.\
M�1
1

Lk
i //. If \M�1

1
Li ¤ ∅, then assume

further by G –invariance, that 1 2 J.\M�1
1

Lk
i /. Also, using Theorem 1.12 due

to Short [31], and translating by an appropriate element of \M�1
1

H k
i , we may

assume that 1 2 J.\M�1
1

Lk
i / is closest to J k

M
.
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Now, pk
Mi
2 J k

M
and hence by (3) above, pk

Mi
! z 2 @G . Combining this with (2)

above, we get z D piM for all i D 1; : : : ;M � 1. Therefore, z 2 \M�1
1

Li ¤∅.

But dG.1;J
k
M
/D dG.J.\

M�1
1

Lk
i /;J

k
M
/� k . Let zk 2 J k

M
such that dG.1;J

k
M
/D

dG.1; zk/D dG.J.\
M�1
1

Lk
i /;J

k
M
/� k .

Then the Gromov inner product .zk ;p
k
iM
/1 is uniformly bounded above. Therefore

.zk ;piM /1 is uniformly bounded above. Hence finally .z;piM /1 is bounded above.
In particular z ¤ piM . This is the contradiction that proves the Lemma.

Definition (Definition of q ) Let � be a uniformly proper (bijective, by definition)
map from J1! J2 . We shall now show that there exists a quasi-isometry q from �1

to �2 which pairs the sets J1 and J2 as � does.

We will define a map qW �1! �2 which pairs J1 with J2 as � does and prove that
q is a quasi-isometry as promised.

Choose K > 0 such that the K neighborhood BK .g/ of g 2 �1 has greater than w2

(the width of H2 in G2 ) J 1
i passing through it.

Let J j
K ;g

(for j D 1; 2 ) denote the collection of J
j
i passing through NK .g/ for

g 2 �j ; j D 1; 2.

By the proof of Proposition 2.3, there exists M DM.K/ (independent of g 2 �1 )
such that at most M J 1

i in J 1
K ;g

pass through NK .g/. Since � is a bijective pairing,

�.J j
K ;g

/ has at least .w2C 1/ and at most M.K/ elements in it. By definition of w2 ,
and by Theorem 1.12 at least two of the limit sets of the �.J 1

i / are disjoint. Let L2
1

and L2
2

denote these limit sets. Hence, by Corollary 2.7, for any K1 � f .K/, there
exists D such that the collection of points

fp 2 �2 W d2.p;J
1
2 /�K1; d2.p;J

2
2 /�K1g

has diameter less than D .

Also, by uniform properness of � ,

d2.�.J
1
m/; �.J

1
n //� f .2K/

for J 1
m;J

1
n passing through NK .g/ (independent of g ).

Summarising,

(1) L2
1

and L2
2

are disjoint,

(2) but, by Lemma 3.3, using mDf .2K/ and M DM.K/, there exists RDR.K/

and a ball of radius R meeting each �.J 1
i /,
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(3) for any K1 , there exists D , such that fp2�2 Wd2.p;J
1
2
/�K1; d2.p;J

2
2
/�K1g

has diameter less than D .In particular, we may choose K1 DR.

Define q.g/ to be the center of the ball of radius R obtained in (2) above. By (3),
q.g/ is thus defined upto a uniformly bounded amount of discrepancy for all g 2 �1 .

Lemma 3.4 q is uniformly proper with respect to the metrics d1 , d2 .

Proof The proof is an almost exact replica of Schwarz [29, Lemma 3.2] and we
content ourselves with reproducing the heuristics of his argument here.

If x;y are close in �1 , then the pairwise minimal distances between elements of J x
K1

and J
y
K1

is uniformly bounded above. Hence, by Lemma 3.3, there exists a uniform
upper bound to the radius of a minimal radius ball intersecting all elements of �.J x

K1
/

as well as �.J y
K1
/. Also, since the center w of such a ball is defined upto a bounded

amount of discrepancy, it must be at a bounded distance from both q.x/ as well as
q.y/. Hence d2.q.x/; q.y// is uniformly bounded, ie close.

Conversely, suppose that q.x/; q.y/ are close. First, by Lemma 3.3, there exists a uni-
form upper bound R on radius of minimal radius balls B1;B2 centered at q.x/; q.y/,
intersecting all elements of �.Jx

K1
/;�.Jy

K1
/ respectively. Then the .RCd2.q.x/; q.y///

ball about q.x/ (or q.y/) meets every element of �.J x
K1
/ as well as �.J y

K1
/. Since

� is uniformly proper, this means that there is a uniform upper bound on the minimal
radius of a ball meeting every element of .J x

K1
/ as well as .J y

K1
/. As before, d1.x;y/

is uniformly bounded, ie x;y are close.

Similarly, we can construct q�1 using the bijective pairing ��1 such that q�1 is
uniformly proper. Also, from Lemma 3.3 q; q�1 composed with each other in either
direction is close to the identity.

Since � pairs L1 , L2 bijectively and is uniformly proper from J1 to J2 , therefore by
invariance of J2 under G2 , every point of �2 lies close to the image of q . Therefore
q is uniformly proper, by Lemma 3.4 above, from �1 onto a net in �2 . Hence q is a
quasi-isometry. This concludes the proof of the main theorem of this subsection.

Theorem 3.5 Let � be a uniformly proper (bijective, by definition) map from J1!

J2 . There exists a quasi-isometry q from �1 to �2 which pairs the sets J1 and J2 as
� does.

We have thus shown one aspect of relative rigidity, viz. upgrading a uniformly proper
map between the Ji to a quasi-isometry between the �i . In the next subsection, we
shall deduce the second aspect, viz. isomorphism of C –complexes.
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3.2 C –complexes

By Theorem 3.5 we obtain a quasi-isometry q from �1 to �2 which pairs J1 and J2

as � does. Since q is a quasi-isometry, it extends to a quasiconformal homeomorphism
from @G1 to @G2 . Also, for all ˛ > 0, there exists ˇ > 0 such that

d1.x;J
1
i /� ˛) d2.q.x/; �.J

1
i //� ˇ

and conversely,
d2.y;J

2
i /� ˛) d1.x; �

�1.J 2
i //� ˇ:

In particular, @q maps the limit set L1
i homeomorphically to the limit set of �.J 1

i //.
Hence, @q preserves intersection patterns of limit sets. Since � pairs J1 with J2 as q

does, summarising we get the following lemma.

Lemma 3.6 The following are equivalent:

(1) \k
iD1

L1
i D∅,

(2) \k
iD1

@q.L1
i /D∅ and

(3) \k
iD1

�.L1
i /D∅.

Hence by the definition of the C –complexes C.G1;H1/ and C.G2;H2/, we find that
@q induces an isomorphism of C.G1;H1/ with C.G2;H2/. We obtain the following
theorem.

Theorem 3.7 Let �W J1 ! J2 be a uniformly proper map. Then � induces an
isomorphism of C.G1;H1/ with C.G2;H2/.

Note In Theorem 3.5 and Theorem 3.7 we start with the assumption that there exists
a uniformly proper pairing of the collections J1 and J2 . This can be translated to a
pairing of collections of limit sets L1 and L2 . Theorem 3.5 then says that the pairing of
the Ji (or the Li ) is induced by a quasi-isometry from �1 to �2 . Thus, the existence
of a uniformly proper pairing implies the existence of a quasi-isometry between the �i ,
ie an ambient extension (or, equivalently, a quasiconformal homeomorphism between
@Gi ).

Also Theorem 3.7 shows that a uniformly proper pairing induces an isomorphism of
the C –complexes C.Gi ;Hi/. This is reminiscent of the initial step in the proof of
rigidity theorems for higher rank symmetric spaces, where Tits complexes replace
C –complexes.
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3.3 Cross ratios, annular systems and a dynamical formulation

In this subsection, we give a more intrinsic formulation of Theorem 3.5 and Theorem
3.7. The hypothesis of these theorems is given in terms of distances between elements
of Ji . A more intrinsic way of formulating this hypothesis would be in terms of
the action of Gi on @Gi , i D 1; 2. In this case, the distance between J i

l
;J i

m can be
approximated by the hyperbolic cross-ratio of their limit sets. This was described in
detail by Bowditch [4]. We give the relevant definitions and Theorems below and then
dynamically reformulate Theorem 3.5 and Theorem 3.7.

Let M be a compactum.

Definition 3.8 An annulus A is an ordered pair .A�;AC/ of disjoint closed subsets
of M such that M n .A� [AC/ ¤ ∅. An annulus system is a collection of such
annulii. If AD .A�;AC/, then �AD .AC;A�/. An annulus system is symmetric if
A 2A)�A 2A.

Given a closed set K �M and an annulus A, we say that K < A if K � i ntA� .
Also, A<K if K < �A.

If A;B are annulii, we say that A< B if M D i ntA�[ i ntBC .

Fix an annulus system A. Given closed sets K;L � M , we say that the annular
cross-ratio .KjL/A 2N [1 for the maximal number n 2N such that we can find
annulii A1; : : : ;An 2A such that

K <A1 < � � �<An <L:

We set .KjL/A D1 if there is no such bound.

Thus .KjL/A is the length of the maximal chain of nested annulii sepatrating K;L.
For two point sets fx;yg DK and fz; wg DL, we write .KjL/A as .xyjzw/A .

One of the crucial results of [4] is the following theorem.

Theorem 3.9 (Bowditch [4]) Suppose a group G acts as a uniform convergence
group on a perfect metrizable compactum M . Then there exists a symmetric G–
invariant annulus system A such that if x;y; z; w are distinct elements in M , then
the theree quantities .xyjzw/A , .xzjyw/A , .xwjzy/A are all finite and at least two
of them are zero. Also, if x ¤ y , then .xjy/A > 0. Further, G is hyperbolic, and
dG.J.K/;J.L// differs from .K;L/A upto bounded additive and multiplicative fac-
tors.
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Combining Theorem 3.5 and Theorem 3.7 with Proposition 2.3 and Theorem 3.9, we get
the dynamical formulation we promised. Let C 0

c .M / denote the collection of closed
subsets of M containing more than one point. (Replacing dGi

by cross-ratios .::j::/i
in Definition 3.1 we get the corresponding notion of a map being uniformly proper
with respect to the cross-ratios .::j::/1 and .::j::/2 in the theorem below. Similarly for
the homeomorphism q .)

Theorem 3.10 Let G1;G2 be uniform convergence (hence hyperbolic) groups acting
on compacta M1;M2 respectively. Also, let Ai (for i D 1; 2 ) be Gi –invariant annulus
systems and let .::j::/i denote the corresponding annular cross-ratios.

Let H1;H2 be subgroups of G1;G2 with limit sets ƒ1; ƒ2 . Suppose that the set Li

of translates of ƒi (for i D 1; 2) by essentially distinct elements of Hi in Gi forms a
discrete subset of C 0

c .Mi/.

Also assume that there exists a bijective function �W L1! L2 and that this pairing is
uniformly proper with respect to the cross-ratios .::j::/1 and .::j::/2 . Then

(1) Hi is quasiconvex in Gi ,

(2) there is a homeomorphism qW M1!M2 which pairs L1 with L2 as � does.
Further, q is uniformly proper with respect to the cross-ratios .::j::/1 and .::j::/2
on M1 , M2 respectively,

(3) q (and hence also � ) induces an isomorphism of C –complexes C.G1;H1/ with
C.G2;H2/.

Thus from a uniformly proper map with respect to the pseudometrics on the Li in-
duced by cross-ratios we infer a quasi-isometry that is an ambient extension as also a
(simplicial) isomorphism of C –complexes.

3.4 Axiomatisation, relative hyperbolicity

For classes of pairs .X;J /, what did we really require to ensure relative rigidity?
Assume .X; d/ is a metric space and let the induced pseudometric on J be also
denoted by d .

(1) For all k > 0 there exists M 2N such that for all x 2X , Nk.x/ meets at most
M of the J in J . (This is a coarsening of the notion of height.)

(2) For all K 2N , there exists kD k.K/ > 0 such that for all x 2X , Nk.x/ meets
at least K of the J in J . (This is the converse condition to (1).)
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(3) For all k > 0; n2N there exists K> 0 such that for any collection J1; : : : ;Jn 2

J with d.Ji ;Jj / � k , there exists a ball of radius at most K meeting all the
Ji .

(4) There exists N 2 N such that for all k > 0 there exists K DK.k/ > 0 such
that the following holds. For all n �N and J1; : : : ;Jn 2 J , the set of points
fx 2X WNk.x/\Ji ¤∅; i D 1; : : : ; ng is either empty or has diameter bounded
by K .

Given (1)–(4), the construction of qW X1 ! X2 from a uniformly proper pairing
�W J1! J2 goes through as in Theorem 3.5. In short, pick N from (4). From (2),
pick k D k.N /. Now for all x 2 X1 , consider the collection of J in J1 that meet
Nk.x/. By (1) there is an upper bound M DM.k/ on the number of such J . Map
these over to J2 . Any two of these are at a distance of at most m apart where m

depends on � and k . From (3) choose K DK.M;m/ such that a ball of radius K

meets all these. Set q.x/ to be the center of such a ball. By (4), q.x/ is defined upto
a uniformly bounded degree of discrepancy. The rest of the proof goes through as
before. Hence (1)–(4) define sufficient conditions for relative rigidity for a class of
pairs .X;J /.

With these conditions, it is easy to extend Theorem 3.5 to pairs .X;J / where X is
(strongly) hyperbolic relative to the collection J . Conditions (1) and (2) are trivial.

Condition (3) follows from “bounded penetration” (see Farb [7]). For any subcollection
J1 of J with d.Ji ;Jj / � C0 (for all Ji ;Jj 2 J1 ), fix any two J1;J2 2 J and a
geodesic 12 of length � C0 joining them. Construct an electric triangle for triples
J1;J2;J3 2 J1 of horosphere-like sets for arbitrary J3 2 J1 , such that the hyperbolic
geodesics 13; 32 joining J1;J3 and J3;J2 respectively have lengths bounded by C0 .
Then 12 and 13 meet J1 at a uniformly bounded distance from each other by bounded
penetration. To see this, first note that J1;J2 can be joined by two paths, one consisting
of one side of the triangle and the other the union of the two remaining sides of the
triangle and both paths have electric length bounded by 2C0 ; in particular both paths
are uniform quasigeodesics (with quasigeodesic constant depending only on C0 ). They
may be converted to quasigeodesics without backtracking by not increasing lengths.
Thus 13[ 32 decomposes as the union of a quasigeodesic without backtracking  0

12

joining J1;J2 and (possibly) a uniformly bounded (� C0 ) number of loops of length
not longer than 2C0 . The entire quasigeodesic without backtracking  0

12
lies near 12

for all J3 2 J1 . The same holds for the loops of bounded length (since they in turn
may be regarded as uniform quasigeodesics without backtracking starting and ending
at the same point). In particular J3 lies at a uniformly bounded distance D0 from 12 .
Since 12 has length bounded by C0 , and J3 may be chosen arbitrarily satisfying the
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hypothesis of (3) above, it follows that for any x 2 12 , d.x;J3/� .C0CD0/ for all
J3 2 J1 . Condition (3) follows. (Results closely related to the proof of Condition (3)
here occur as [22, Lemma 3.11] and [16, Proposition 8.6].)

Condition (4) follows from the fact that for a pair of distinct Ji ;Jj , Nk.Ji/\Nk.Jj /

is either empty or has diameter bounded by some C.k/.

We have thus shown the following.

Theorem 3.11 Let Xi be (strongly) hyperbolic relative to collections Ji (i D 1; 2).
Let � be a uniformly proper (bijective, by definition) map from J1! J2 . There exists
a quasi-isometry q from X1 to X2 which pairs the sets J1 and J2 as � does.

By work of Hruska and Kleiner [15], CAT(0) spaces with isolated flats are (strongly)
hyperbolic relative to maximal flats. Hence we have from Theorem 3.11 above.

Corollary 3.12 Let Xi be CAT(0) spaces with isolated flats and let Ji denote the
collections of maximal flats (i D 1; 2). Let � be a uniformly proper (bijective, by
definition) map from J1! J2 . There exists a quasi-isometry q from X1 to X2 which
pairs the sets J1 and J2 as � does.

3.5 Symmetric spaces of higher rank

We now consider CAT(0) spaces which are at the other end of the spectrum. Let M

be a compact locally symmetric space and T a totally geodesic torus with rank =
rank.M /. Take X D fM and J to be the lifts of T to fM . As these are all equivariant
examples (ie J is invariant under a cocompact group action), it is enough to check
(1)–(4) at a point.

(1) and (2) are clear. To prove condition (4), we consider \iNk.Fi/ and it is easy to
bound from below the N appearing in Condition (4) (Section 3.4) in terms of the size
of the Weyl group and rank. In that case, \iNk.Fi/ has bounded diameter or is empty.

Finally, to prove (3), we proceed as in Lemma 3.3. As in Lemma 3.3 we assume
by induction that any k flats fF1; : : : ;Fkg that “coarsely pairwise intersect at scale
D” (ie ND.Fi/\ND.Fj / ¤ ∅ ) intersect coarsely (ie \iD1;:::;kND0.Fi/ ¤ ∅ for
some D0 D D0.D; k/). To get to the inductive step, we suppose that for i D k C

1, we have collections of worse and worse counterexamples. Consider a maximal
collection F D fF1; : : : ;Fkg of maximal flats whose “coarse intersection at scale D”
\iND.Fi/DF is non-null. Translate the collection by a group element so that a fixed
point 0 (thought of as the origin) lies on the intersection F . Now take a sequence
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of maximal flats Fj whose D–neighborhoods ND.F
j / intersect each ND.Fi/, but

dj D d.Fj ;F / D d.0;F / � j . We scale the metric on .X; d/ by a factor of dj to
obtain a sequence of metric spaces .X; d

dj
/ converging (via a non-principal ultrafilter)

to a Euclidean building X1 (this fact is due to Kleiner and Leeb [17], but we shall
only mildly need the exact nature of X1 ). The Fi converge to flats F1i �X1 and
the Fj converge to a flat G1 �X1 . Then the collection G D F1i ;G1 satisfy the
following.

(P1) Each element of G is a flat in X1 .

(P2) By induction, the intersection of any i elements of G is non-empty and convex
for i � k .

(P3) The intersection of all the .kC 1/ elements of G is empty.

Consider the subcomplex K D G1
S

i F1i of X1 . Then K is a union of r –flats,
where r D rank.X /. In particular, the homology groups Hn.K/D 0 for n > r . On
the other hand, if we consider the nerve of the covering of K by the sets G1;F1i ,
then using the properties .P1/; .P2/; .P3/ to compute Cech homology groups, we
conclude that K has the same homology groups as the boundary of a k –simplex. In
particular, Hk.K/D Z. For k > r this is a contradiction, finally proving Condition
(3). Thus we obtain the following theorem.

Theorem 3.13 Let Xi be symmetric spaces of non-positive curvature, and Ji be
equivariant collections of lifts of a maximal torus in a compact locally symmetric space
modeled on Xi (i D 1; 2). Let � be a uniformly proper (bijective, by definition) map
from J1! J2 . There exists a quasi-isometry q from X1 to X2 which pairs the sets
J1 and J2 as � does.

Combining Theorem 3.13 with the quasi-isometric rigidity theorem of Kleiner–Leeb
[17] and Eskin–Farb [6] we can upgrade the quasi-isometry q to an isometry i .

Corollary 3.14 Let Xi be symmetric spaces of non-positive curvature, and Ji be
equivariant collections of lifts of a maximal torus in a compact locally symmetric space
modeled on Xi (i D 1; 2). Let � be a uniformly proper (bijective, by definition) map
from J1! J2 . There exists an isometry i from X1 to X2 which pairs the sets J1

and J2 as � does.

Remark 3.15 The technique of using asymptotic cones and the nerve of the covering
by flats can be generalised easily to equivariant flats of arbitrary (not necessarily
maximal) rank.
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We conclude this paper with two (related) questions.

Question 1 In analogy with a Theorem of Ivanov, Korkmaz, Luo (see for instance
[19]), regarding the automorphism group of the curve complex, we ask: If the C –
Complex C.G;H / of a pair .G;H / (for G a hyperbolic group and H a quasiconvex
subgroup) is connected, is the automorphism group of C.G;H / commensurable with
G ?

Question 2 Consider the pair .G;H /, with G a hyperbolic group and H a quasicon-
vex subgroup. Let .J ; d/ be the collection of joins as in Lemma 3.3 with the induced
pseudometric. For a uniformly proper map � from .J ; d/ to itself, is there an isometry
pairing the elements of J as � ? We have proved in Theorem 3.5 that a quasi-isometry
q exists pairing the J as � does. The question is whether q may be upgraded to an
isometry, or better, to an element of G ? This question is related to the notion of pattern
rigidity introduced by Mosher, Sageev and Whyte in [23].
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