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Meridional almost normal surfaces in knot complements

ROBIN TODD WILSON

Suppose K is a knot in a closed 3–manifold M such that M �N.K/ is irreducible.
We show that for any integer n there exists a triangulation of M �N.K/ such that
any weakly incompressible bridge surface for K of n bridges or fewer is isotopic to
an almost normal bridge surface.

57M99

1 Introduction

It was shown independently by M Stocking [14] and J H Rubinstein [11] that any
strongly irreducible Heegaard splitting for an irreducible 3–manifold is isotopic to
an almost normal surface. Also see S King [10] for another proof of this result. The
concept of a bridge surface for a knot complement is analogous to the idea of a Heegaard
surface for a 3–manifold in that the bridge surface is a splitting surface that separates the
knot complement into two equivalent and fairly elementary submanifolds. In addition,
the fact that a bridge surface lifts to a Heegaard surface in the 2–fold branched cover
of a knot complement gives another important connection between bridge surfaces for
knot complements and Heegaard surfaces for 3–manifolds.

In the study of bridge surfaces for knots and links the idea of a weakly incompressible
splitting surface is immediately analogous to the idea of a strongly irreducible Heegaard
surface for a 3–manifold. In this paper we prove an analog to the main theorem of
Stocking [14] and Rubinstein [11, Theorem 3]. We show that any weakly incompressible
bridge surface in a 3–manifold is isotopic to an almost normal bridge surface.

Main Theorem 1 Let K be a knot in a closed, orientable, irreducible 3–manifold M .
Let N.K/ be an open regular neighborhood of K and suppose that the complement
MK DM �N.K/ is irreducible. Then for any integer n there is a triangulation T
of MK such that if S is a bridge surface for K of n bridges or fewer that gives an
irreducible Heegaard splitting of M and SK D S �N.K/ is weakly incompressible,
then SK is properly isotopic in MK to an almost normal surface with respect to T .
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1718 Robin Todd Wilson

The proof will be similar in spirit to that of [14] but the proof here fills in a few missing
cases and simplifies the argument by making greater use of edge slides. Closely related
results have been proven by David Bachman [1] and Alexander Coward [4]. In Section
2 we briefly introduce some definitions and notation. The proof of the main theorem is
contained in Section 3.

This research was done while under the support of the UC President’s Postdoctoral
Fellowship Program and the Department of Mathematics at UC Santa Barbara. I would
like to thank Martin Scharlemann for all of the helpful conversations and many valuable
comments, as well as Scott Taylor for his insightful comments about the proof of
Lemma 24.
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2 Preliminaries

Notation If K is a properly embedded 1–manifold in a 3–manifold M then let
MK DM �N.K/. If X is any surface in M transverse to K such that K\X ¤∅,
then let XK DMK \X . For T a triangulation of a 3–manifold M , let T@M denote
the restriction of T to @M .

The following definition is from Tomova [16] and is based on the definition of a
K–compression body given in Bachman [2].

Definition 2 ([16]) A properly embedded arc K in a 3–manifold M is boundary
parallel if there is a disk D in the 3–manifold so that @D is the end point union of K

and an arc in @M . The disk D is called a cancelling disk for K . A K–handlebody
.A;K/ is a handlebody A containing a finite collection of boundary parallel arcs K .
When there is little risk of confusion we will also refer to AK D A �N.K/ as a
K–handlebody. For our purposes, a K–compression body .W;K/ is a compression
body W containing a finite collection of arcs K properly embedded in W such that
each arc is either boundary parallel or each arc has one end on each of @CW and @�W

and is vertical in the product region @�W � I �W .

Remark 3 Two sets K and K0 of boundary parallel arcs in a handlebody A or vertical
arcs in a compression body are properly isotopic in A if they have the same cardinality,
ie, jKj D jK0j.
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Definition 4 A spine of a handlebody A is a graph †A properly embedded in A such
that A�†A is a product @A� I . Let .A;K/ be a K–handlebody and suppose that
†A is a spine for handlebody A and K is a collection of boundary parallel arcs in A.
Let ˛ be a collection of jKj arcs, each connecting †A to a single arc of K . Then a
regular neighborhood A0 DN.†A[˛/ is again a K–handlebody, and K intersects it
in a boundary parallel set of arcs K0 �A0 . If the closure of the region .A�A0/.K�K 0/

between them is a product @AK � I then †.A;K / D †A [ ˛ is called a spine of the
K–handlebody .A;K/.

Definition 5 A spine of a compression body W is a graph †W with endpoints in @�W

such that W �.†W [@�W / is a product @CW �I . Let .W;K/ be a K–compression
body and suppose that †W is a spine for W and K is a collection of boundary parallel
and vertical arcs in W . Let k denote the collection of boundary parallel arcs in K .
Let ˇ be a collection of jkj arcs, each connecting †W to a single arc of k . Then a
regular neighborhood W 0 D N.†W [ˇ [ @�WK ) is again a K–compression body
and K intersects it in a set of boundary parallel and vertical arcs K0 � W 0 . If the
closure of the region .W �W 0/.K�K 0/ between them is a product @CWK � I then
†.W ;K / D†W [ˇ is called a spine of the K–compression body .W;K/.

Remark 6 It is relatively easy to find such a spine for a K–handlebody or K–
compression body .A;K/. Choose a spine for † of handlebody (compression body)
A and isotope K so that in the product structure A�N.†/D @A�I , each (boundary
parallel) arc of K has a single maximum. Let ˛ (ˇ ) be a collection of vertical arcs in
this product structure, connecting each maximum of K to †.

Definition 7 (Scharlemann–Tomova [13]) Let K be a knot in a closed, orientable
3–manifold M and let S be a Heegaard surface for M . That is, M D W [S W 0 ,
where W and W 0 are handlebodies in M . If in addition, WK and W 0

K
are K–

handlebodies then we call S a bridge surface for MK . (We will often abuse notation
and call the punctured surface SK a bridge surface as well.) We call the decomposition
MK DWK [SK

W 0
K

a bridge splitting of the 3–manifold MK and we say that K is
in bridge position with respect to bridge surface S .

Definition 8 ([13]) Let K be a 1–manifold embedded in M and suppose that F

is a properly embedded surface in M so that F is transverse to K . A simple closed
curve on FK is essential if it doesn’t bound a disk or a once punctured disk in FK .
An embedded disk D �MK is a compressing disk for a surface FK if D\FK D @D

and @D is an essential curve in F . A surface F in M is a splitting surface for M

if we can express M as the union of two 3–manifolds along F . If F is a splitting
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surface for M then we say that the surface FK is weakly incompressible if any pair
of compressing disks on opposite sides of the surface intersect. If FK compresses on
both sides but is not weakly incompressible then it is called strongly compressible.

The study of normal surfaces was first developed by Haken [7]. The concept of an
almost normal surface that is used in this paper first appeared in [11].

Definition 9 Let S be a triangulated surface and let c be a curve on S . Assume that
c is transverse to the 1–skeleton of the triangulation. A curve c in S is called normal
if the intersection of c with any triangle of the triangulation contains no closed curves
and no arcs with both endpoints on the same edge.

Definition 10 ([7]) Let M be a triangulated 3–manifold. A normal triangle in
a tetrahedron of the triangulation is an embedded disk that meets three edges and
three faces of the tetrahedron. A normal quadrilateral is an embedded disk in a
tetrahedron that meets four edges and four faces of the tetrahedron. Normal triangles
and quadrilaterals are called normal disks. Normal disks meet the faces of the boundary
of a tetrahedron in normal curves.

Definition 11 ([11]) Let M be a triangulated 3–manifold. An embedded surface
S �M is a normal surface if it meets each tetrahedron in a disjoint collection of normal
disks. A surface S is almost normal if S meets each tetrahedron of the triangulation
in a collection of normal disks, but in one tetrahedron there is exactly one exceptional
piece. This exceptional piece is either a normal octagon, or it is an annulus consisting of
two normal disks with a tube between them that is parallel to an edge of the 1–skeleton.

The proof of the main theorem relies heavily on the idea of thin position, first introduced
by Gabai [6].

Definition 12 ([14]) Let MK D WK [SK
W 0

K
denote a bridge splitting of MK .

Given spines †.W ;K / and †.W 0;K / for the K–handlebodies .W;K/ and .W 0;K/
respectively, there is a diffeomorphism SK � .0; 1/'MK �N.†.W ;K /[†.W 0;K //.
For t 2 .0; 1/ denote the surface corresponding to SK �ftg by St �MK . A standard
singular foliation F of MK DWK [SK

W 0
K

extends this structure to all of MK by
adding two singular leaves S0 and S1 , called the top and bottom leaves. All leaves
meet the torus @MK in the standard foliation in meridian circles. The top and bottom
singular leaves consist of the union of the spines of the K–handlebodies WK and W 0

K

respectively and the meridian circles of @MK corresponding to each of the n endpoints
of †.W ;K / and †.W 0;K / . There is a height function hW M ! Œ0; 1� associated with the
standard singular foliation given by the map that sends all points on a leaf St together
with the incident meridian disks of N.K/ to the point t in Œ0; 1�.
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Definition 13 (Thompson [15] and Stocking [14]) Assume that T is a collection of
arcs properly embedded in MK and is in general position with respect to F , a standard
singular foliation of MK . That is, all but a finite number of leaves of F intersect
T transversally, every leaf in F has at most one point of tangency with T and T is
disjoint from the singular subarcs of the singular leaf. If a leaf has a point of tangency
with T call it a tangent leaf and all other leaves transverse leaves. Between each
two adjacent tangent leaves choose a transverse leaf Li . Define the width of a fixed
embedding of T with respect to F to be the sum over i of the number of times T

intersects Li . If T has been properly isotoped to minimize its width with respect to F

then we say that T is in thin position with respect to F .

Definition 14 ([15; 14]) Let T be in thin position with respect to a standard singular
foliation F . Then as we move down the foliation from the top the arcs will form a
sequence of maxima with respect to F , then a sequence of minima and so on. We
will call a leaf in a region where the sequence shifts from maxima to minima a thick
leaf and we will call such a region a thick region. An upper (lower) disk D for a
transverse leaf L of F is a disk in int.M /�T such that @D D ˛[ˇ where ˛ is an
arc embedded in L, ˇ is a subarc of T , @˛ D @ˇ , D � ˛ intersects L transversely
and a small neighborhood of ˛ lies above (below) L.

For the proof of the main theorem we will need the following Lemmas. The first
Lemma is proved by Stocking in [14].

Lemma 15 ([14, Lemma 1]) Let S be an almost normal surface in an irreducible 3–
manifold. Suppose that S is incompressible to one side. Then S is isotopic to a normal
surface that does not intersect S and that does not contain S to the incompressible
side.

A version of the following theorem was proved for strongly irreducible Heegaard
surfaces by Casson and Gordon in [3] and has been adapted to the situation of weakly
incompressible bridge surfaces by Tomova in [16].

Lemma 16 ([16, Corollary 6.3]) Let K be a knot in a closed, orientable, irreducible
3–manifold M . Let SK be a weakly incompressible splitting surface for MK and let
S 0

K
be a surface that is obtained from SK by compressing SK to one side. Then S 0

K

is incompressible to the other side.
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3 Almost normal bridge surfaces

The proof of the main theorem follows from an application of ideas from [14] where the
Heegaard surface is replaced with a bridge surface. An important difference between
the two arguments is that the leaves of the foliations in this case are surfaces with
boundary as opposed to closed surfaces. The argument relies heavily on Lemma 17,
Lemma 24 and Lemma 25 whose statements are close to those of [14, Lemmas 4 and
5]. The proofs of these lemmas are similar in spirit to the originals, but differ in detail.
Several cases missed in the original proof in [14] are included here, more extensive use
is made of edgeslides and the arguments have been adapted to our situation.

Proof of Main Theorem Let K be a knot in a closed, orientable 3–manifold M

and assume that M and MK are both irreducible. Suppose that the knot K is in
n–bridge position with bridge surface S so that M D W [S W 0 is an irreducible
Heegaard splitting of M and the punctured surface SK is weakly incompressible.
Also assume that SK separates MK into the two K–handlebodies WK and W 0

K
.

Let MK D WK [SK
W 0

K
denote the bridge splitting of M by S . We can foliate

MK DWK [SK
W 0

K
with a standard singular foliation that intersects the torus @MK

in meridian circles. The top singular leaf of the foliation, Ltop , is a 1–complex given by
the union of a spine †.W ;K / of WK and one meridian circle of @MK for each of the n

endpoints of †.W ;K / on K . Similarly, the bottom singular leaf of the foliation, Lbot ,
is a 1–complex given by the union of a spine †.W 0;K / of W 0

K
and one meridian circle

of @MK for each of the n endpoints of †.W 0;K / on K . Thus there is a symmetric
picture near the top and bottom leaves of the foliation.

Consider a nearby leaf of the frontier of a regular neighborhood of Ltop (resp. Lbot )
in MK . It can be viewed as consisting of two parts. See Figure 1. The first is a
collection � top (resp. �bot ) of n boundary parallel annuli. Secondly, these annuli are
tubed together via the boundary t top (resp. tbot ) of a regular neighborhood of †.W ;K /
(resp. †.W 0;K / ). Topologically � top (resp. �bot ) consists of n once-punctured annuli
and t top (resp. tbot ) consists of an n–punctured copy of SK . Since t top and tbot arise
as the boundary of a regular neighborhood of a 1–complex it is natural to refer to them
as collections of “tubes”. We will refer to the collection of annuli � top and �bot as
� . Throughout the paper the foliation we refer to will always be the standard product
foliation of S1 � I on each component between the top and bottom annuli on @MK .

Next we will describe how to triangulate MK so that the collection � of annuli is
normal with respect to the triangulation. See Figure 2. Consider the collection of 2n

meridional annuli on @MK parallel to � . Start by choosing a longitude of @MK . Next,
in each annulus choose a meridian circle. View the intersection of each meridian and
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K

†.W ;K /

Ltop

Lbot

†.W 0;K /

Figure 1: An example with M D S3 and K a trefoil

the longitude as a vertex, view each of these meridians as the union of a vertex and an
edge and view the longitude as a union of 2n edges and 2n vertices. This divides @MK

into rectangles. Now subdivide each rectangle by adding a diagonal edge connecting
two adjacent vertices. This gives a triangulation of @MK .

@MK

meridian

Figure 2: Triangulation of @MK

By Jaco–Letscher–Rubinstein [8] (also see Jaco–Rubinstein [9, page 56]) we can extend
the triangulation of @MK to a triangulation of all of MK without adding any vertices.
Denote this triangulation of MK by T . All of the vertices of this triangulation are
contained in a neighborhood of the top and bottom leaves of the foliation. The collection
� of 2n annuli is normal with respect to this triangulation and � contains all of the
2n vertices of the triangulation to one side, separating them from the rest of MK .
Also note that T has all of its vertices on @MK , so it has no vertex-linking 2–spheres.
However, T may contain normal 2–spheres disjoint from � that are not vertex-linking.
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Let ƒ denote a maximal collection of non-parallel disjoint normal 2–spheres in MK

disjoint from � . Cutting MK open along ƒ results in several components, but only
one component will contain the torus boundary of MK . Call this component M0

C .
Note that M0

C may have multiple 2–sphere boundary components along with @MK .
Since MK is irreducible each 2–sphere in ƒ must bound a 3–ball to the opposite side
of M0

C .

Since the annuli � are normal and they contain the vertices of the triangulation to
one side, each normal 2–sphere in @M0

C is connected to � via an edge of T 1 . If an
edge of T 1 connects two 2–sphere boundary components of M0

C then by Thompson
[15, Lemma 2] it follows that M0

C must be a punctured 3–ball with a torus boundary
component, which it clearly is not. Thus we can conclude each 2–sphere component of
@M0

C is connected to � top or �bot by an edge of T 1\M0
C . Assume without loss

of generality that an edge connects the 2–sphere to � top . Taking a tube that lies in the
interior of a tetrahedron parallel to this edge connecting � top to the normal 2–sphere
gives an almost normal annulus isotopic to an annulus in � top . By Lemma 15 this
surface is isotopic to a normal surface giving a new collection of normal annuli that we
will call � top0

. We can isotope the tubes t so that they lie in M0
C . We can do this for

each normal 2–sphere in M0
C and then replace the original singular leaf Ltop with the

singular leaf L0top D �
top0

[†.W ;K / . Let M0 be the side of � top0

that lies in M0
C .

Let K0 DK\M0 . Isotoping the bridge surface SK to be disjoint from � 0 induces a
splitting of M0 into two K0 –compression bodies W0 and W 0

0
. Continue to call this

splitting surface SK . Since M0 is a deformation retract of MK the surface SK is a
weakly incompressible splitting surface for M0 . We can foliate M0 with a standard
singular foliation F0 with leaves isotopic to SK . The top leaf of the foliation is Ltop

and the bottom leaf is Lbot . Let T 1
0

denote the part of the 1–skeleton of T that lies
in the interior of M0 . Put T 1

0
into thin position with respect to F0 . Let †0 denote

the pair of spines †.W0;K0/ and †.W 0
0
;K0/

of the K0 –compression bodies W0 and
W 0

0
respectively. Note that †.W0;K0/ � †.W ;K / and †.W 0

0
;K0/
� †.W 0;K / . If T 1

0

intersects †0 then isotope T 1
0

slightly off of †0 . Let �0 denote the pair � top0

and
�bot0 .

The triple .M0; †0; �0/ is the first step in an iterative process. Each later step will
consist of a triple .Mi ; †i ; �i/ with the following properties: Mi �Mi�1 will be a
submanifold of MK for each i � 0. The surface �i D @Mi � @M will be a pair � top

i

and �bot
i of properly embedded normal surfaces with respect to the triangulation T

given above. Let Ki DK\Mi . The submanifold Mi has a weakly incompressible
splitting surface SK that separates Mi into two Ki –compression bodies Wi and
W 0i . Let †top

i and †bot
i denote the spines †.Wi ;Ki / and †.W 0

i
;Ki /

of Ki –compression
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bodies Wi and W 0i respectively. The spine †top
i (resp. †bot

i ) can be extended to
give a spine of M �†W 0 'W (resp. M �†W 'W 0 ). Let †i denote the pair of
spines †top

i and †bot
i of Wi and W 0i respectively. As usual we define †i up to isotopy

and slides of edges over other edges and over @�Wi D �
top
i . The complement of a

regular neighborhood N.†
top
i / (resp. N.†bot

i )) in Mi is foliated by copies of SK with
singular leaf �bot

i [†
bot
i (resp. � top

i [†
top
i ). Thus Mi can be foliated with a singular

foliation Fi by copies of SK with its top singular leaf consisting of � top
i [†

top
i and

its bottom singular leaf consisting of �bot
i [†

bot
i . Now consider the edges of T 1 that

do not lie on @MK and let T 1
i denote their intersection with Mi . Put T 1

i into thin
position with respect to Fi .

In general we will obtain the submanifold Mi from Mi�1 for each i � 1 by showing
that Mi�1 contains an almost normal surface obtained by compressing the splitting
surface SK to one side. This almost normal surface is then isotopic to a normal surface
by Lemma 15 and Lemma 16 which we will call � top

i (or �bot
i depending on whether

we compressed SK above or below). The surface � top
i determines a submanifold Mi of

M0 with � top
i � @Mi . The surface SK separates Mi into two Ki –compression bodies,

Wi and W 0i with @�WiD�
top
i and @�W 0i D�

bot
i . The spines of these Ki –compression

bodies are now what we will call †top
i and †bot

i respectively.

Denote by t
top
i and tbot

i the boundary of a regular neighborhood N.†i/ in Mi which
we continue to call “tubes”. A regular leaf near the top (resp. bottom) singular leaf is
then obtained by attaching t

top
i (resp. tbot

i ) to a punctured copy of � top
i (resp. �bot

i ).

The surface SK is a weakly incompressible splitting surface for Mi that separates it into
two K–compression bodies Wi and W 0i for each i � 0. To see this observe that if SK

is a weakly incompressible splitting surface for Mi�1 then since Mi was constructed
by compressing along disks in Wi�1 and W 0

i�1
to obtain Wi and W 0i it follows that

the collection of compressing disks in Wi and W 0i are a subset of the collection of
compressing disks in Wi�1 and W 0

i�1
. Since every pair of compressing disks on

opposite sides of SK intersect in Mi�1 it follows that every pair of compressing disks
on opposite sides of SK in Mi must intersect as well.

Here is a sketch of the iterative process that we will describe in detail later. If it happens
that at the first step of this process the surface SK is isotopic to the collection of annuli
�0 then we can conclude that K is the unknot. Otherwise, start with .Mi ; †i ; �i/. If,
without loss of generality, �.� top

i /D �.SK / and � top
i is isotopic to an almost normal

surface then since � top
i is obtained by compressing a leaf of the foliation it follows that

�
top
i is isotopic to SK and we are done. Otherwise apply either Lemma 17 or Lemma

24 to obtain a new collection of normal and almost normal surfaces in Mi . If there is
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an almost normal surface G in the collection with �.G/D �.SK / then again because
the almost normal surface comes from compressing a leaf of the foliation we know G

must be isotopic to SK and we are done. Otherwise since by Lemma 16 the surface
G is incompressible to one side we can use Lemma 15 to isotope the almost normal
surfaces (if any) in the collection to be normal. This collection of normal surfaces now
becomes either � top

iC1
or �bot

iC1
, depending on whether we compressed SK above or

below. Then, using this new collection of normal surfaces we can cut .Mi ; †i ; �i/

along this collection to obtain .MiC1; †iC1; �iC1/, which will also satisfy the above
properties. It turns out that we only need to repeat the recursive step a finite number of
times before obtaining an almost normal surface isotopic to SK . This completes the
sketch.

Now, consider the arcs T 1
i in Mi in thin position with respect to Fi . Recall that all

ends of T 1
i lie on � top

i or �bot
i , part of the top or bottom singular leaves of Fi . One

possibility is that there is a maximum of T 1
i that is above a minimum of T 1

i which
implies that there is a thick region of T 1

i in Mi . The other possibility is that all of
the minima of T 1

i are above all of the maxima of T 1
i and so there is no thick region.

In this situation we will consider separately the following two possibilities. The first
is that there is no thick region and there is some arc of T 1

i with both ends on � top
i

or both ends on �bot
i . The second possibility is that there is no thick region and each

arc each arc of T 1
i has one endpoint on � top

i and the other endpoint on �bot
i . We will

consider each of the three possibilities in turn.

The first possibility is that there a thick region of T 1
i with respect to Fi .

Lemma 17 (cf [14, Lemma 5]) If there is a thick region for T 1
i in Mi , then there is

a collection of normal and almost normal surfaces in Mi obtained from a leaf of the
foliation by compressing the leaf to one side. At most one surface in the collection can
be almost normal. Not all of the surfaces are boundary parallel.

Proof of Lemma 17 The proofs of Claim 18, Claim 19, Claim 20 and Claim 21 can
be found in [15]. Let .Mi ; †i ; �i/ be as described above, where T 1

i is in thin position
with respect to the foliation Fi of Mi . Since there is a thick region of T 1

i in Fi we
can apply [15, Claim 4.5].

Claim 18 ([15, Claim 4.5]) There exists a transverse leaf L in the first thick region
of Fi which intersects the 2–skeleton entirely in normal arcs and simple closed curves
disjoint from the 1–skeleton.

Let L be a leaf of Fi in a thick region intersecting the 2–skeleton in normal arcs and
simple closed curves disjoint from T 1 as is guaranteed by Claim 18. Then we can
apply Claim 19, Claim 20 and Claim 21 to the leaf L.
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Claim 19 ([15, Claim 4.1]) Let H be any tetrahedron in the triangulation T of MK .
Then L\ @H contains no parallel curves of length greater than or equal to eight.

Claim 20 ([15, Claim 4.2]) Let H be any tetrahedron in the triangulation T of MK .
Then L\ @H contains no curve of length greater than eight.

Claim 21 ([15, Claim 4.3]) Let H1 and H2 be distinct tetrahedra in the triangulation
of MK . Then L\ @H1 and L\ @H2 do not both contain curves of length eight.

The above claims together imply that this leaf L of the foliation Fi intersects the
2–skeleton only in simple closed curves disjoint from the 1–skeleton and normal curves
of lengths three, four and at most one of length eight. Compressing the simple closed
curves in L\ T 2 as well as any compressions in the interior of the tetrahedra gives
a collection of normal surfaces with at most one almost normal surface. The almost
normal surface, if it exists, must be a normal octagon since we have compressed any
almost normal annuli in the interior of the tetrahedra. We can think of the leaf L as
this collection of normal and almost normal surfaces with tubes attached. Since our
triangulation has no normal 2–spheres we can conclude that this collection will contain
no almost normal 2–spheres as well since any almost normal 2–sphere can be isotoped
to give a normal one by Lemma 15. Also notice that in this collection we will not have a
normal surface with a tube attached to the side opposite the side that we compressed to
or we get a contradiction to the leaf being weakly incompressible. As long as there are
no normal 2–spheres in this collection of normal surfaces then the collection of disks
of L\ @H that arise in each tetrahedron H of T correspond to actual compressing
disks of L. Also, since this collection of disks is disjoint these compression disks must
all be to the same side of L otherwise we again contradict the fact that the surface L

is weakly incompressible. In general, by Lemma 16 compressing L to one side gives
a surface that is incompressible to the opposite side. Therefore all compressions must
be to one side of L. This completes the proof of Lemma 17.

Remark 22 There is no choice in the direction in which the tubes of L compress,
however Lemma 16 implies that after compressing L, the remaining collection of
normal and almost normal surfaces is incompressible in the direction opposite to which
we have compressed.

For the proof of the Lemma 24 we will need the following claim.

Claim 23 A properly embedded, orientable, normal surface is incompressible and
boundary incompressible in the complement of the 1–skeleton T 1 .
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Proof This claim follows from a standard innermost disk and outermost arc argument.

The second possibility is that there is no thick region and some arc of T 1
i has both

endpoints on � top
i or both endpoints on �bot

i .

Lemma 24 (cf [14, Lemma 4]) If there is no thick region for T 1
i in Mi and some

arc of T 1
i has both endpoints on � top

i (resp. has both endpoints on �bot
i ), then there is

an almost normal surface in Mi that is isotopic to a surface obtained from a leaf of Fi

by compressing the leaf above (resp. below).

Proof We will prove the Lemma for arcs of T 1
i with both endpoints on � top

i . The
argument for arcs of T 1

i with both endpoints on �bot
i is symmetric. Let L be a leaf of

the foliation near the top singular leaf � top
i [†

top
i , so that L consists of the normal

surface � top
i punctured and attached to the tubes t

top
i D @N.†

top
i /. See Figure 1 for the

case i D 0 and M D S3 . Let ˇ be an arc of T 1
i with both endpoints on � top

i . Since
there is no thick region for T 1

i , ˇ has only a single minimum and it is parallel to an
arc on L, so there is a lower disk E whose boundary is the union of ˇ and an arc ˛ in
L. We will show that after some edge slides and isotopies of †top

i , ˛ runs once over
exactly one tube of t

top
i and that this tube connects two normal disks in a tetrahedron,

therefore is part of an almost normal surface.

Define the complexity of E to be .a; b/, lexicographically ordered, where a is the
number of points of †top

i \ T
2 to which ˛ is also incident and b is the number of

components in which E meets the 2–skeleton of T . We will assume that the complexity
of E has been minimized over all choices of E .

Observe that the arc ˛ of @E can’t lie entirely in � top
i . Otherwise E would be a

boundary compressing disk in the complement of the 1–skeleton of the normal surface
�

top
i which contradicts Claim 23. Our strategy will be to show that there is a sequence

of proper isotopies of †top
i and slides of ends of arcs of †top

i over each other and over
�

top
i (neither of which affect the isotopy class of � top

i [†
top
i ) so that afterwards ˛ is

incident to a single edge z in †top
i , ˛ runs along this edge once and E lies entirely

inside a single tetrahedron. Then � top
i [@.N.z// is the required almost normal surface

obtained from L by compressing all other tubes of †top
i . Now that we have established

some notation, for the rest of the proof we will consider the intersections of the disk E

with the 2–skeleton of T and we will show that any intersection violates the minimality
of .a; b/.

When we consider the arcs of intersection between E and the 2–skeleton, we can get
four types of components of E\T 2 in E . See Figure 3. Components of Type I are
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simple closed curves in E . Components of Type II are arcs with both endpoints on ˛ .
Components of Type III are arcs with both endpoints on ˇ and components of Type IV
are arcs with one endpoint on ˛ and the other endpoint on ˇ . Next we will describe
how each type of component of intersection of E \ T 2 can be removed, violating
minimality of .a; b/.

ˇ

˛

IV II

I

III

Figure 3: The disk E

Removing components of Type I Components of Type I are simple closed curves in
E . A component of Type I that is innermost in a 2–simplex of T 2 can be removed
by substituting the disk it bounds in T 2 for the disk it bounds in E . This reduces the
number of times that E meets the 2–skeleton, thus reducing b and contradicting the
minimality of E .

Removing components of Type II A component of Type II corresponds to an arc in a
face � of some tetrahedron of T that either has both endpoints on distinct components
of .†top

i [�
top
i /\� , or has both endpoints on the same component of .†top

i [�
top
i /\� .

Suppose  is an arc of intersection between T 2 and E that is outermost in E and is of
Type II. See Figure 4(a). Let ı be a subarc of ˛ such that [ı is the boundary of a disk
D in E�T 2 . In what follows we will use edge slides of †top

i to remove components
of T 2\E and T 2\†

top
i . Recall that t

top
i is the boundary of a neighborhood of †top

i

and we will abuse notation and consider ı � ˛ as an arc on †top
i when we really mean

that ı is an arc on t
top
i .

Any two ends of edges of †top
i that meet the same normal disk in � top

i can be isotoped
together so that there is at most one edge incident to each normal disk. Since †top

i

can be extended to give a spine of W , any cycle in †top
i gives a cycle in †. Since

W [S W 0 is an irreducible Heegaard splitting of M it follows from Frohman [5] (also
see [12, Proposition 2.5]) that no cycle of †.W ;K / lies in a 3–ball. Hence for any
tetrahedron H of T , †top

i \H cannot contain a cycle. Thus †top
i \H is a union
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ı



�

�


DD

(a) (b)

Figure 4: Arcs of Type II and IV in E

of trees for each tetrahedron H in T . Each component of †top
i \H is a tree and

each component of .†top
i [�

top
i /\H is a tree with disks attached and so is simply

connected.

Case 1 The arc  has both endpoints on distinct components of .†top
i [�

top
i /\ � .

Case 1.1 Let H be the tetrahedron in T that contains ı and let q denote the component
of †top

i \H that contains ı . If q is a single arc with both endpoints on the same
face of H then D describes an isotopy that removes two points of intersection of q

with T 2 . This reduces the number of points of †top
i \ T

2 to which ˛ is incident, thus
reducing a, which is a contradiction.

Case 1.2 Now suppose that q is not an arc and ı is a path in q that begins at point x

in q that is not in a normal disk but is in some face � of H . See Figure 5. Let z be
the edge of †top

i containing x . Then ı describes a series of edge slides of z which
culminate by introducing an extra point of intersection between †top

i and � . However,
after the edge slides the disk D runs only over the edge z . Hence we can reduce the
number of intersections of edges of †top

i incident to ˛ that meet T 2 by two as in Case
1.1 reducing a by at least one and contradicting the minimality assumptions.

Case 1.3 If ı is an arc on L that has both endpoints of T 2\E on normal disks of
L, then either ı must run over some edges of †top

i or it lies in a normal disk. If ı lies
on a normal disk in H then it bounds a subdisk D0 of the normal disk. Together D

and D0 bound a 3–ball in H that can be used to isotope E into the next tetrahedron
removing  and reducing complexity.

So we can assume that ı runs over some edges of †top
i . Say that ı runs from normal

disk D1 to normal disk D2 . Since †top
i is incident to D1 in only a single point, ı is

incident to @D1 in a single point. It follows that D1 �N.†
top
i / is an annulus and ı

intersects the annulus in a single spanning arc. Thus ı runs precisely once along the
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x

 D

z

D

Figure 5

edge z that is incident to D1 . Then, as above, D describes a slide and isotopy of z

that carries it to the arc  in a simplex of T 2 . But then a subdisk of that face describes
a parallelism between z and a subarc of T 1 . In particular, attaching a tube to � top

i

along z gives an almost normal surface.

Case 2 The arc  has both endpoints on the same component of .†top
i [�

top
i /\ � .

In this case the arc  has both endpoints on the same component of q \ @H . Let x

denote the endpoint of q in the face � of tetrahedron H . We assume that x 2†
top
i , so

 forms a loop based at x in � bounding a disk A in � ; the case where both ends of
 lie on a normal disk is similar.

Case 2.1 If int.A/\†top
i D∅, then construct new disks E0 and E00 by cutting the

disk D along  and attaching a copy of A to each piece. One of the disks E0 or E00

will still be a lower disk and it will meet T 2 in fewer components than E , contradicting
the minimality of E .

Case 2.2 Now suppose that A\†
top
i ¤∅. Since †top

i is a union of trees in H , we
know that a neighborhood of each component q of †top

i \H is a 3–ball. So there is a
disk D0 in N.q/ whose boundary is the union of ı and a diameter ı0 of a small disk
� with which N.q/ meets @H at x .

Isotope the leaf L by compressing ı to ı0 via the disk D0 in N.q/, splitting the disk
� in two. See Figure 6. The effect on the spine is a possibly complicated series of edge
slides. The overall effect is that the number of components of †top

i \ � increases by
one when � splits and D[D0 becomes a disk disjoint from †

top
i and parallel to A.
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The disk A now contains at least two points of †top
i \ � . Now push D[D0 across A

to remove  , thus reducing b which is a contradiction.

x

A


D

Figure 6

Removing components of Type III and IV To see how to remove components of
Types III and IV it will be helpful to view the arc ˇ that runs along the edge e of T 1

as an arc that lies on @N.e/. As an arc on @N.e/, ˇ may wind around the edge e . If
the winding is not monotone a priori then we can reduce the number of components
in which the disk E meets the faces of T 2 , contradicting minimality. Thus we may
assume that the curve ˇ winds monotonically around the edge e , creating a “barber
pole” effect shown in Figure 7 and Figure 8. This implies that there are no curves of
Type III since the existence a curve of Type III means that the arc ˇ must ‘double back’
as it winds around e , contradicting monotonicity.

Let  be an outermost arc component of Type IV, and let D be the corresponding
outermost sub-disk of E . Let � be the face of T 2 that contains  . See Figure 4(b).
The disk D is co-bounded by a sub-arc � of ˛ , a sub-arc � of ˇ , and  . Let H

denote the tetrahedron containing D in its interior and with � as a face.

There are two cases that we will consider separately. The first case is when the arc 
of E \ � that runs from the edge e to L ends on a normal disk � of L. The second
case is when  ends on a tube (neighborhood of †top

i ) of L.

Case 3.1 Suppose first that  ends on a normal disk �. See Figure 7. In this situation
there are two subcases. Either †top

i \ �D∅ or †top
i \ �¤∅.

Case 3.1.1 Suppose that †top
i \ �D∅. In this case the arc � runs over only normal

disks and does not meet any tubes of †i . See Figure 7(a). Observe that there is a disk
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D0 in @N.e/ whose boundary consists of 3 arcs. The first arc is the subarc � of ˇ . The
second arc is an arc on @N.e/ that corresponds to where the face � meets @N.e/. The
third arc is a subarc of a meridian of @N.e/ that corresponds to where � meets @N.e/.
In this case D0[�[D[� bounds a 3–ball in H that we can use to isotope D across
� and into the next tetrahedron. If no components of †top

i are contained in the 3–ball
then isotoping D across � and into the next tetrahedron will remove  and reduce b ,
thus reducing the complexity of E , giving a contradiction. If components of †top

i are
contained in the 3–ball then the overall effect of isotoping D into the next tetrahedron
will remove  thus reducing b and will not increase the number of components of
†

top
i \ T

2 , and again the complexity of E has been reduced giving a contradiction.

Case 3.1.2 Suppose now that †top
i \ �¤∅. See Figure 7(b). Since †top

i is a union
of trees, each component of N.†

top
i / is a 3–ball. In particular, there is a disk � in

N.†
top
i / whose boundary is the union of a sub-arc of � and a diameter d of the disk

� with which N.†
top
i / intersects the normal disk �. Isotope N.†

top
i / by compressing

d to � in N.†
top
i /, splitting the disk � in two. The effect on †top

i is a series of edge
slides that results in a new component of †top

i \H that is on the same side of � as e .
We can repeat this process until we have removed all components of †top

i \ � . Now
proceed as in Case 3.1.1.

N.e/

(b)

N.e/

(a)

D0 D

D

†i

†i

�

� ��



�

Figure 7: Arcs of type IV

Case 3.2 Now suppose that  ends on a tube of L. See Figure 8. The core of this
tube is an edge � that may connect to other edges of †top

i in †top
i \H , and †top

i

connects to a normal disk �. We will describe in two steps a slide of � and an isotopy
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of D that will remove a component of †top
i \E , reducing a, and thereby reducing the

complexity of E .

First, since � connects to other edges of †i in †i \H , � describes an edge slide of �
that keeps � \� fixed but slides the opposite end of the edge � off of †i and onto the
normal disk �. See Figure 8(b). We continue to slide � along � following � until it
almost meets @N.e/. Now we can use the disk D to isotope all of � until it lies close
to �[  . See Figure 8(c). At this point the entire disk D and tube � lie very close to
ˇ[  in H .

For the second step recall the disk D0 in @N.e/ that is bounded by �, a copy of part
of the edge e that bounds the face � and a copy of a meridian of @N.e/. Together the
disks D and D0 describe an isotopy of � across the face � and into the next tetrahedron,
removing the component  from � \E and, in particular, removing the component of
intersection between � and � in T 2 , reducing a, which is a contradiction. See Figure
8(d). Thus there can be no arcs of Type IV. Therefore the arc ˇ of T 1

i , the edges
of †top

i that ˛ runs along and the disk E are all contained in one tetrahedron. An
argument similar to the one given in the last paragraph of Case 1 above shows that ˛
is incident to a single edge in †top

i and ˛ runs along this edge exactly once. Attaching
a tube to � top

i along this edge and compressing all other tubes of †top
i in L gives an

almost normal surface. By Lemma 16 compressing L to one side gives a surface that
is incompressible to the opposite side. Therefore all compressions must be to one side
of L, namely all compressions are either above or below.

The third possibility is that there is no thick region and each arc of T 1
i has one endpoint

on � top
i and the other endpoint on �bot

i .

Lemma 25 If there is no thick region for T 1
i in Mi and each arc of T 1

i has one
endpoint on � top

i and has the other endpoint on �bot
i then Mi is a product region.

Proof Recall that @Mi D �
top
i [�

bot
i . Since � top

i and �bot
i are normal with respect

to T it follows that there are two possibilities for how the region Mi between � top
i

and �bot
i can intersect a face of the 2–skeleton. Either the region bounded by � top

i and
�bot

i is a trapezoid region or a hexagon region. See Figure 9.

Suppose that there is a hexagon region of Mi \T 2 . Then three edges of the hexagon
are arcs of .� top

i [ �
bot
i /\ T 2 and the other three edges are arcs of T 1

i connecting
the three components of �i \ T 2 . But this implies that some arc of T 1

i connects
either � top

i to � top
i or �bot

i to �bot
i which is a contradiction. Therefore there cannot

be any hexagonal components and all regions of intersection between Mi and T 2 are
trapezoids.
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(d)(c)

N.e/
(a)

�

(b)

†i

D0

D D

�
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Figure 8: Arcs of type IV

Because we know that there are no hexagonal components of intersection between Mi

and T 2 this implies that the only possibilities for components of intersection between
Mi and the tetrahedra of the 3–skeleton are triangular product regions and quadrilateral
product regions. Each triangular and quadrilateral product region is bounded on one
side by a normal disk of � top

i and on the other by a normal disk of �bot
i . Since each

component of Mi \H is a product region with one end on each of � top
i and �bot

i for
each tetrahedron H in T we can conclude that Mi is itself such a product region.

We can now complete the proof of Main Theorem 1. We will prove the theorem by
describing a recursive process that will end when it produces an almost normal surface
isotopic to the bridge surface SK . Recall that we began with a knot K in a closed
3–manifold M with the assumptions that M and MK are irreducible. We foliated
MK by copies of the bridge surface SK with two singular leaves and triangulated MK

so that the annuli � are normal and the vertices of T are to one side of � . Cutting
along a maximal family of non-parallel normal 2–spheres tubed to the normal annuli
� we obtained the submanifold M0 of MK . The surface SK induces a splitting of
M0 into K0 –compression bodies W0 and W 0

0
and M0 is foliated by copies of the

bridge surface SK and where the top (resp. bottom) leaf of the foliation is given by
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Figure 9

the union of the spine †top
0

(resp. †bot
0

) of W0 (resp. W 0
0

) and � top
0

(resp. �bot
0

).
Here � top

0
D � top0

(resp. �bot
0
D �bot0 ) are the normal annuli in @M0 . The triple

.M0; †0; �0/ is the beginning of the recursive process. Each later step will produce a
triple .Mi ; †i ; �i/ such that Mi �Mi�1 and for each i the surface SK is a weakly
incompressible splitting surface for Mi separating it into two Ki –compression bodies
Wi and W 0i , where Ki DK\Mi . The spine †top

i (resp. †bot
i ) of Wi (resp. W 0i ) is

contained in some spine for W (resp. W 0 ) and �i D @Mi�@M is a pair of collections
of normal surfaces � top

i and �bot
i in @Mi .

The top (bottom) leaf of a singular foliation Fi is given by the union of � top
i (resp.

�bot
i ) and the intersection †top

i �†
top with Mi (resp. †bot

i �†
bot with Mi ). Put T 1

i ,
the part of T 1 lying in Mi � @M , in thin position with respect to Fi . As mentioned
earlier, either the arcs of T 1

i all have one endpoint on � top
i and one endpoint on �bot

i ;
or there is some arc that either has both endpoints on � top

i or both endpoints on �bot
i .

If there is a thick region of T 1
i in Mi then we are in a position to apply Lemma 17.

Otherwise we are in a position to apply either Lemma 24 or Lemma 25.

We will describe the step that takes us from .Mi ; †i ; �i/ to .MiC1; †iC1; �iC1/. First
consider the initial step. If at the first step we encounter a thick region in M0 , then
start with a leaf L0 in a thick region of F0 intersecting T 2 in normal arcs and simple
closed curves as is guaranteed by Claim 18. Applying Lemma 17 we obtain a collection
G0 of normal surfaces and at most one almost normal surface obtained by compressing
L0 to one side. If G0 contains an almost normal surface and L0 is incompressible
above and below then G0 DL0 is an almost normal surface isotopic to a leaf and we
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are done. If G0 does not contain an almost normal surface isotopic to L0 then without
loss of generality let G0 D �

top
1

and proceed as below.

Henceforth assume without loss of generality that L0 compresses above to give G0 .
Otherwise we can invert the picture and declare �bot

i to be the “top” leaf. Since G0

has been obtained by compressing above, Lemma 16 implies that G0 is incompressible
below. By Lemma 15 we can isotope the almost normal surface G0 to be normal. This
gives a new collection � top

1
of normal surfaces isotopic to G0 . Cut M0 along the

collection � top
1

and keep the component to the incompressible side below �
top
1

that
contains part of @MK . Call this submanifold M1 . Observe that � top

1
� @M1 . The

cores of the tubes of the thick leaf that were compressed to give the almost normal
surface G0 ' �

top
1

form the required 1–complex †top
1

. Let †1 denote the pair †top
1

and †bot
1
D†bot

0
and let �1 denote the pair � top

1
and �bot

1
D �bot

0
. This completes the

first step.

The remainder of the proof falls into the following three cases.

Case 1 Mi contains a thick region of T 1
i with respect to Fi .

In this case using Claim 18 start with a leaf Li in a thick region of the foliation Fi

intersecting T 2 in normal arcs and simple closed curves disjoint from the 1–skeleton.
Applying Lemma 17 we obtain a collection Gi of normal surfaces and at most one
almost normal surface obtained by compressing Li to one side. Lemma 16 implies that
Gi is incompressible to the opposite side. If Li is incompressible then Gi DLi and
since Li is isotopic to a leaf we are done. So suppose without loss of generality that
Li is compressible above to give Gi . The cores of the tubes of Li that are compressed
above to give Gi will make up the spine †top

iC1
. Let †iC1 denote the pair †top

iC1
and

†bot
iC1
D†bot

i . By Lemma 15 we can isotope the almost normal surface Gi to give a
new collection � top

iC1
of normal surfaces. Cut Mi along the collection � top

iC1
and keep

the component to the incompressible side below �
top
iC1

that contains part of @MK . Call
this new submanifold MiC1 . Let �iC1 denote the pair � top

iC1
, �bot

iC1
D �bot

i .

If on the other hand Gi is compressible below then the cores of the tubes of Li that
are compressed below to give Gi will make up the spine †bot

iC1
. By Lemma 15 we

can isotope Gi to be normal and call the new collection of normal surfaces �bot
iC1

. Let
�iC1 denote the pair � top

iC1
D �

top
i and �bot

iC1
. Cut Mi along the collection of normal

surfaces �bot
iC1

and keep the component to the incompressible side above �bot
iC1

. Call
this new submanifolds MiC1 . This completes the recursive step in this case.

Case 2 Mi contains no thick region of T 1
i and some arc of T 1

i either has both
endpoints on � top

i or has both endpoints on �bot
i .
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Without loss of generality suppose that there is an arc of T 1
i with both endpoints on

�
top
i . Applying Lemma 24, starting with a leaf Li of Fi near the top singular leaf above

all of the minima we obtain an almost normal surface Gi in Mi by compressing the
leaf Li above. It follows from Lemma 16 that Gi is incompressible below. Moreover,
�.Gi/ D �.�

top
i / � 2. Using Lemma 15 isotope the almost normal surface Gi to

give a normal surface � top
iC1

. Cut Mi along � top
iC1

and keep the component to the
incompressible side below �

top
iC1

to obtain the submanifold MiC1 . Denote by �iC1

the pair � top
iC1

and �bot
iC1
D �bot

i . The spine †top
iC1

of MiC1 consists of the cores of the
tubes of Li that are compressed above to give Gi . Denote by †iC1 the pair †top

iC1

and †bot
iC1
D†bot

i .

In both Cases 1 and 2 the new surface Gi isotopic to � top
iC1

(resp. �bot
iC1

) in Mi is
not parallel as a normal surface to the normal surfaces � top

i (resp. �bot
i ). The reason

depends on whether Lemma 17 or Lemma 24 was applied. If the surface, without loss
of generality say � top

iC1
, comes from compressing a thick leaf via Lemma 17 then there

is a subarc of T 1 lying between � top
i and � top

iC1
with both ends on � top

iC1
. Hence � top

i

and � top
iC1

are not parallel. If � top
iC1

comes via Lemma 24 then �.� top
iC1

/D �.�
top
i /� 2

so the surfaces are not parallel. If � top
i and � top

j are parallel then all leaves � top
k

where

i � k � j are parallel as well. In particular, then � top
iC1

is parallel to � top
i which cannot

happen as we have just seen above. Therefore it follows that � top
i is non-parallel to

�
top
j for all i < j .

Case 3 Mi contains no thick region of T 1
i and each arc of T 1

i has one endpoint on
�

top
i and one endpoint on �bot

i .

In this case by Lemma 25 Mi is a product. Suppose i ¤ 0. The submanifold Mi D

Mi[N.Ki/ is a product as well and has the surface S as a Heegaard surface that gives
an irreducible Heegaard splitting of Mi . By [12] it follows that the splitting surface is
isotopic to � top

i and �bot
i , one of which is in turn isotopic to the almost normal surface

Gi�1 and so we are done.

If i D 0 then the argument above shows that the surface SK consists of a collection of
annuli. However the surface SK is a bridge surface for K so it is connected. Therefore
SK consists of one annulus and K must be the unknot.

It follows from a well known result of Haken that there are only a finite number of
non-parallel, disjoint, normal surfaces in MK . See Haken [7]. Therefore we will only
have to apply Lemma 24 and Lemma 17 a finite number of times before we either reach
a situation where we apply Lemma 25 and obtain an almost normal surface isotopic to
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the bridge surface SK or we exhaust all of the non-parallel, disjoint, normal surfaces
in MK and we obtain an almost normal surface isotopic to SK .
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