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Some open 3–manifolds and 3–orbifolds
without locally finite canonical decompositions

SYLVAIN MAILLOT

We give examples of open 3–manifolds and 3–orbifolds that exhibit pathological
behavior with respect to splitting along surfaces (2–suborbifolds) with nonnegative
Euler characteristic.

57M50, 57M99; 57M10

Introduction

Much of the theory of compact 3–manifolds relies on decompositions into canonical
pieces, in particular the Kneser–Milnor prime decomposition [12; 16] and the Jaco–
Shalen–Johannson characteristic splitting [10; 11]. These have led to important develop-
ments in group theory (see Rips and Sela [22], Dunwoody and Sageev [7], Fujiwara and
Papasoglu [9] and Scott and Swarup [24]) and form the background of W Thurston’s
geometrization conjecture, which has recently been proved by G Perelman [20; 21; 19].

For open 3–manifolds, by contrast, there is not even a conjectural description of a
general 3–manifold in terms of geometric ones. Such a description would be all
the more useful that noncompact hyperbolic 3–manifolds are now increasingly well-
understood, thanks in particular to the recent proofs of the ending lamination conjecture
(see Minsky [17] and Brock, Canary and Minsky [4]) and the tameness conjecture (see
Calegari and Gabai [5] and Agol [1]).

The goal of this paper is to present a series of examples which show that naive gener-
alizations to open 3–manifolds of the canonical decomposition theorems of compact
3–manifold theory are false. This contrasts with our positive results in [15; 13] which
give decompositions under various hypotheses.

We now describe our examples and their properties in more detail. All manifolds and
orbifolds in the following discussion are connected, orientable, and without boundary.

An embedded 2–sphere S in a 3–manifold M is called compressible if S bounds a
3–ball in M . If all 2–spheres in M are compressible, we say that M is irreducible. A
spherical decomposition S of a 3–manifold M is a locally finite collection of (possibly
nonseparating) pairwise disjoint embedded 2–spheres in M such that the operation
of cutting M along S and gluing a ball to each boundary component of the resulting
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manifold yields a collection of irreducible manifolds. Note that if S is a spherical
decomposition, then the collection of spheres obtained by removing compressible
spheres of S is still a spherical decomposition.

Kneser’s theorem is equivalent to the statement that every compact 3–manifold has a
spherical decomposition. The first two examples in this paper show that this result does
not generalize to open manifolds. The first relevant example was given by P Scott [23].
Our example M1 in Section 1 is simpler and has additional properties: for instance, it
is a graph manifold and has only one end. Our second example M2 in Section 2 is
closer in spirit to Scott’s; its main purpose is to lead to example M3 in Section 3.

The remaining examples are concerned with generalizing the toric splitting of Jaco–
Shalen and Johannson. The correct definition of a JSJ-splitting for open 3–manifolds
is still open to debate; however we make a few observations. Call an embedded torus
T in a 3–manifold M incompressible if it is �1 –injective, and canonical if it is
incompressible and any incompressible torus in M is homotopically disjoint from T .
The version of the toric splitting theorem proved by Neumann and Swarup [18] asserts
that if one takes a collection T of pairwise disjoint representatives of all homotopy
classes of canonical tori in a compact manifold M (which is always possible, for
instance by taking least area surfaces in some generic Riemannian metric), then T
splits M into submanifolds that are either Seifert-fibered or atoroidal. This approach
can be generalized to 3–orbifolds (see Boileau, Maillot and Porti [2, Chapter 3]). Here
tori are replaced by toric 2–orbifolds, ie finite quotients of tori. Those include pillows,
ie spheres with four cone points of order 2.

Let N1 be an orientable 3–manifold whose boundary is an annulus, which does not
contain any essential tori and open annuli, and is not homeomorphic to S1�R�Œ0;C1/.
Let N2 be the product of S1 with an orientable surface of infinite genus whose boundary
is a line. Since N2 is a Seifert fiber space of infinite topological complexity, it contains
many incompressible tori, none of which is canonical. By gluing N1 and N2 along their
boundaries, one obtains an open 3–manifold M containing again many incompressible
tori, neither of which are canonical. It is easy to construct infinite families of disjoint
incompressible tori which cannot be made locally finite by any isotopy. However, there
is in our view nothing pathological about this example: the “JSJ-splitting” in this case
should consist of the single open annulus A, which splits M into a Seifert part and an
atoroidal part.

This discussion makes plausible the idea that every irreducible open 3–manifold (or
3–orbifold) M could have a JSJ-splitting consisting of a representative of each class
of canonical tori (toric suborbifolds), plus some properly embedded, incompressible
open annuli (annular suborbifolds), splitting M into pieces which are either atoroidal,
or maximal Seifert submanifolds (orbifolds). Furthermore, each incompressible torus
(toric suborbifold) in M should be homotopic into some Seifert piece.
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However, if one wishes to stick to locally finite splittings, this simple idea does not
work, as examples 3–5 show. Our example M3 is an irreducible open 3–manifold
which contains an infinite collection fT 0.v/g of pairwise nonisotopic canonical tori
and a compact set X 0 that meets every torus isotopic to some T 0.v/. In particular, it is
impossible to select a representative in each isotopy class of canonical tori to form a
locally finite collection.

The manifold M3 is constructed as a finite cover of a 3–orbifold O3 which contains
infinitely many isotopy classes of canonical pillows, but such that no infinite collection
of pairwise nonisotopic canonical pillows is locally finite. Moreover, all incompressible
toric 2–suborbifolds in O3 are pillows, and they are all canonical.

The next example O4 is another open, irreducible 3–orbifold with the property that
there are infinitely many isotopy classes of canonical pillows, but no infinite, locally
finite collection of representatives (see Section 4). Again, all of its incompressible
toric 2–suborbifolds are pillows. However, unlike O3 , it also contains infinitely many
classes of noncanonical incompressible pillows. Such pillows come in pairs and can
be used to produce Seifert suborbifolds bounded by canonical pillows, which also
accumulate in an essential way, and hence do not give a maximal Seifert suborbifold
which would contain all incompressible toric 2–suborbifolds up to isotopy. Since the
underlying space of O4 is R3 , it is somewhat easier to visualize than M3 and O3 .

Lastly, the example O5 is an open, irreducible 3–orbifold which contains infinitely
many isotopy classes of noncanonical incompressible pillows, but not a single canonical
toric 2–suborbifold (see Section 5). Its pathological character comes from the fact that
it is impossible to find a Seifert suborbifold that contains all incompressible pillows up
to isotopy. Instead, one finds an infinite collection of incompatible Seifert suborbifolds
which can be made pairwise disjoint, but all intersect essentially some fixed compact
subset of O5 . This shows that strange things can occur even without canonical toric
suborbifolds.

For terminology and background on 3–orbifolds and their geometric decompositions,
we refer to Boileau, Maillot and Porti [2].

Acknowledgements I would like to thank Michel Boileau and Luisa Paoluzzi for
stimulating conversations and Peter Scott for useful correspondence. This work was
partially supported by ANR projects 07-BLAN-0251 and BLAN07-2-183619.

1 Example 1

Our first example is a one-ended open 3–manifold M1 that does not have any spherical
decomposition.
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Let F be the orientable surface with one end, infinite genus and one boundary com-
ponent homeomorphic to the circle. Set N WD S1 �F . Let M1 be the 3–manifold
obtained by gluing a solid torus V ŠD2 �S1 to N so that the boundary of the D2

factor of V is glued to the S1 factor of N , and the S1 factor of V is glued to @F .

We observe that the universal cover of Int N is R3 . We know from Alexander’s theorem
that R3 is irreducible, so by an elementary argument, N is also irreducible.

Let us prove by contradiction that M1 cannot have a spherical decomposition S . We
may assume that there are no compressible spheres in S . Since N is irreducible, all
spheres in S must intersect V . Since V is compact and S is locally finite, we deduce
that S must be finite.

Hence there is a compact subsurface X � F such that every sphere in S lies in
V [S1�X . Since F has infinite genus, we can find a properly embedded arc ˛ � F

and a simple closed curve ˇ � F �X which intersect transversally in a single point.
We then obtain an embedded 2–sphere S �M by taking the annulus S1 � ˛ and
gluing a meridian disk to each boundary component.

We may assume that S is in general position with respect to S . After finitely many
isotopies and surgeries along disks in

S
S , we get a finite collection S1; : : : ;Sn of

embedded 2–spheres in M1 such that ŒS �D
P

i ŒSi �2H2.M1/ and each Si is disjoint
from

S
S . Since S is a spherical decomposition, each Si either bounds a ball, or

cobounds a punctured 3–sphere with some members of S .

As a result, the homology class ŒS � 2H2.M1/ can be written as a finite sum of classes
ŒSj � with Sj 2 S . Now the intersection number of each Sj with ˇ is zero, while that
of S with ˇ is one. This is a contradiction.

Remark The first example of an open 3–manifold without a spherical decomposition
was given by P Scott. His construction is quite intricate and his example is simply
connected. Our example is simpler; it is far from simply connected however, in fact its
fundamental group is an infinitely generated free group. Our example has one end; it is
easy to modify the construction to give any number of ends.

Remark Our example is a graph-manifold: this is of some interest since those mani-
folds arise in the theory of collapsing sequences of manifolds in Riemannian geometry.

Remark There is an alternative description of M1 as the double of the manifold
H D I �F . Any properly embedded arc in F gives a properly embedded 2–disk in
H , which gives a sphere in the double. One readily sees that all those spheres have to
intersect the annulus I � @F . I owe this remark to Saul Schleimer.
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2 Example 2

Here we give another example of a manifold without any spherical decomposition. The
main interest of this construction is that a simple modification of it will give a manifold
which behaves pathologically with respect to essential tori.

First we define an open 3–orbifold O2 . In the following construction, all local groups
will be cyclic of order 2. We let X be a 3–ball with singular locus a trivial 2–tangle,
whose components are denoted by �l and �r . Let Y be a thrice punctured 3–sphere
with singular locus consisting of six unknotted arcs, as in Figure 1. The boundary
components of Y are denoted by @uY , @lY , and @r Y (where the letters u, l , r stand
for “up”, “left” and “right” respectively). There are two arcs �1

l
; �2

l
connecting @uY

to @lY , two arcs �1
r ; �

2
r connecting @uY to @r Y , and two arcs �1

m; �
2
m connecting

@lY to @r Y .

Then we take a countable collection of copies of Y indexed by the vertices of the
regular rooted binary tree T . We glue them together according to the following rule:
each copy Yu of Y has two sons, a left son Yl and a right son Yr . Then we glue @lYu

to @uYl so that � i
l
.Yu/ is glued to � i

l
.Yl/ and � i

m.Yu/ is glued to � i
r .Yl/ for i D 1; 2.

Likewise we glue @r Yu to @uYr so that � i
r .Yu/ is glued to � i

r .Yr / and � i
m.Yu/ is

glued to � i
l
.Yr / for i D 1; 2.

In this way we get a noncompact 3–orbifold N with a single boundary component
which is the upper boundary of the ancestor Y0 . We glue in a copy of X so that �l.X /

is glued to � i
l
.Y0/ and �r .X / is glued to � i

r .Y0/. We call O2 the resulting open
3–orbifold.

For future reference, we note:

Lemma 2.1 The orbifold N is irreducible.

Proof Since the gluing of the various copies of Y occurs along incompressible
suborbifolds, we only need to show that Y is irreducible. Arguing by contradiction,
let S be an incompressible spherical 2–suborbifold of Y . Since any incompressible
sphere in jY j meets the singular locus †Y in at least four points, jS j is compressible
in jY j, ie bounds a 3–ball B . Since Y n†Y is irreducible, the only possibility is that
B intersects †Y in a knotted arc ˛ . One could then extend ˛ to produce a knotted
component of †Y , contradicting the definition of Y .

We claim that O2 is homeomorphic to a connected sum of two copies of itself. Indeed,
let D1 �X be a properly embedded nonsingular 2–disk separating �l from �r . Then
@D1 bounds a 2–disk D2 � Y0 intersecting the singular locus transversally in two
points, one on �1

m and one on �2
m . The union of D1 and D2 is a football S . Splitting
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Figure 1: Y

O2 along S and capping off the corresponding discal 3–orbifolds, we get two copies
of O2 .

We now define our manifold M2 : by repeatedly applying the Seifert–van Kampen
Theorem [2, Corollary 2.3], we see that the fundamental group of O2 has an infinite
presentation with generators m1;m2; : : : and relations r1; r2; : : : as follows: each
generator mi corresponds to a meridian; for each i one has a relation m2

i D 1; all
other relations are of the form mimj mkml D 1 corresponding to some boundary
component of some copy of Y . Hence there is a well-defined group epimorphism
�W �1O2 ! Z=2Z sending each mi to the generator of Z=2Z. The kernel of � is
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Some open 3–manifolds and 3–orbifolds 1801

a torsion free index two subgroup of �1O2 . Let M2 be the corresponding covering
space of O2 and p be the covering map.

Then M2 is a manifold which is a connected sum of two copies of itself. Now N is
irreducible (Lemma 2.1,) hence by [14, Theorem 10.1], p�1.N / is irreducible. Since
M2 np�1.N / has compact closure, we conclude that any spherical decomposition of
M2 with only essential spheres would have to be finite.

Next we prove that there is no such spherical decomposition: let Z be a compact
submanifold of M2 containing all spheres in a putative spherical decomposition. Let
v be a vertex of T which is lower than any vertex v0 such that p.Z/ \ Yv0 ¤ ∅.
There is a football F �O2 intersecting Yv in a disk with two cone points, one on �1

m

and the other on �m
2

, each Yv0 in a nonsingular annulus (for v0 above v ) and X in a
nonsingular disk. Then S WD p�1.F / is a 2–sphere embedded in M2 . One can find a
properly embedded line L �M2 missing Z and hitting S transversally in a single
point. As before we get a contradiction.

3 Example 3

Here is an example of an irreducible open 3–manifold which contains infinitely many
isotopy classes of incompressible tori, all of which are canonical, but such that there is
no infinite, locally finite collection of canonical tori.

Let O3 be the open 3–orbifold obtained by the following modification of the previous
construction, where every singular arc is “doubled”.

Let X be a 3–ball with singular locus a trivial 4–tangle, whose components are denoted
by �l ; �

0
l
; �r ; �

0
r . Let Y be a thrice punctured 3–sphere with singular locus consisting

of twelve unknotted arcs: four arcs �1
l
; �2

l
; �1

l
0; �2

l
0 connecting @uY to @lY , four arcs

�1
r ; �

2
r ; �

1
r
0; �2

r
0 connecting @uY to @r Y , and four arcs �1

m; �
2
m; �

1
m
0; �2

m
0 connecting

@lY to @r Y .

We remark (cf [6]) that X and Y are irreducible and atoroidal, Y has incompressible
boundary, and the only essential annular 2–suborbifolds in Y are nonsingular annuli
connecting two distinct boundary components.

As before, let T be the regular rooted binary tree. To each vertex v of T , we assign
a copy Y .v/ of Y . With the same notation as in Section 2, we glue @lYu to @uYl

and @r Yu to @uYr so that � i
l
.Yu/ (resp. � i

l
0.Yu/) is glued to � i

l
.Yl/ (resp. � i

l
0.Yl/),

etc. We again call N the resulting 3–orbifold with boundary. We glue in a copy
of X so that �l.X / (resp. �l

0.X /) is glued to � i
l
.Y0/ (resp. � i

l
0.Y0/), and �r .X /

(resp. �r
0.X /) is glued to � i

r .Y0/ (resp. � i
r
0.Y0/.)

We call O3 the resulting open 3–orbifold, and P the union of all boundaries of all
Y .v/’s.
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Proposition 3.1 (1) O3 is irreducible.
(2) There are infinitely many incompressible pillows up to isotopy.
(3) All incompressible toric 2–suborbifolds in O3 are pillows. Furthermore, they

are all canonical, and they all meet the compact 3–suborbifold X .

Proof (1) Suppose there is an essential 2–suborbifold S �O3 with positive Euler
characteristic. Take among all of them one that intersects P minimally. Since X and
Y are irreducible, S \P cannot be empty. Let v be a vertex of T such that S meets
Y .v/, but avoids all Y .v0/’s with v0 below v . Let F be a component of S \ Y .v/.
By minimality of #S \P , F must be essential. However, Y does not contain any
essential 2–suborbifold whose boundary is nonempty and contained in @uY .v/ (this
can be seen by embedding Y into a product orbifold and applying [6, Proposition 5].)
This is a contradiction.

(2) Pick any vertex v of T . Let vD v0; v1; v2; : : : ; vn be a path in T connecting v to
the ancestor. We define a pillow T .v/�O3 as follows: Let F � Y .v/ be a disk with
four cone points, with boundary in @uY .v/, and intersecting each of �1

m; �
2
m; �

1
m
0; �2

m
0

exactly once. Define inductively a family fAig1�i�n such that:

(i) Ai is an essential nonsingular annulus in Y .vi/;
(ii) One boundary component of A1 is @F ;

(iii) For every i , one boundary component of Ai is equal to some boundary compo-
nent of AiC1 ;

(iv) One boundary component of An lies in @uY .vn/.

Finally let D be a disk in X with @D equal to the other boundary component of An .
Then F [A1[� � �[An[D is an embedded pillow in O3 , which we denote by T .v/.

The four singular points of T .v/ belong to four distinct components L1;L2;L3;L4

of †O3
, which are properly embedded lines. There exists a properly embedded

nonsingular annulus A which separates O3 in two components Z1;Z2 such that Z1

contain the Li ’s and is homeomorphic to the product of a disk with four cone points
of order two with the real line. By the Seifert–van Kampen theorem, �1O3 is an
amalgamated product of �1Z1 with �1Z2 over �1A. The fundamental group of Z1

can be expressed as the free product of four order two cyclic subgroups generated by
meridians m1;m2;m3;m4 of L1;L2;L3;L4 respectively. Now @lY .v/ intersects A

in a circle, which is essential on A, but bounds a nonsingular disk in xZ2 . Hence �1A,
has trivial image in �1O3 . As a result, the image of �1Z1 in �1O3 is the quotient of
�1Z1 by the single relation m1m2m3m4D 1. This implies that T .v/ is �1 –injective,
hence incompressible.

If v ¤ v0 , then up to exchanging v and v0 , we can find a line in †O3
which intersects

T .v/ transversally in a single point, and does not meet T .v0/. As a consequence, T .v/

and T .v0/ are not isotopic.
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(3) Let T be an incompressible toric 2–suborbifold of O3 . Then T could be a
nonsingular torus, a pillow, or a Euclidean turnover. Any sphere in jO3j which is
transverse to †O3

meets it in an even number of points, so O3 does not contain any
turnover. Let T be a nonsingular torus in O3 . Since T is compact, there is a compact
suborbifold Z �O3 consisting of X and finitely many Y .v/’s such that T �Z . The
orbifold Z is homeomorphic to S3 minus a finite union of disjoint balls, with planar
singular locus, so �1.jZj n†Z / is a free group. Thus T is compressible in jZj n†Z ,
hence in O3 . As a consequence, all incompressible toric 2–suborbifolds of O3 are
pillows.

Our next goal is to prove that the collection fT .v/gv2T actually contains all incomp-
ressible pillows up to isotopy. Indeed, let T be an incompressible pillow. Assume
after isotopy that T intersects P minimally. Since X is atoroidal, T meets some
Y .v/. Choose v0 so that T meets Y .v0/ and does not meet any Y .v/ with v below
v0 . Then an argument similar to that used to prove assertion (1) shows that T \Y .v0/

must consist of a disk D intersecting each of �1
m; �

2
m; �

1
m

0
; �2

m

0
in exactly one point.

Let v1 be the father of v0 . The intersection of T with Y .v1/ must be an essential
nonsingular annulus A, one of whose boundary components is @D .

The other component of @A cannot be on @lY .v1/ or @r Y .v1/, for otherwise by
carrying on the same argument, we would get a string of nonsingular annuli going
down the tree, and we would never be able to close up. Hence the other component of
@A lies on @uY .v1/. We can repeat the argument until we arrive at Y0 . The upshot
is that T is isotopic to T .v0/. Finally, since the T .v/’s can be realized so as to be
pairwise disjoint, it follows that they are all canonical.

As before, we consider the homomorphism �W �1O3! Z=2Z which sends meridians
to the generator. The corresponding regular cover M3 is a good orbifold with torsion-
free fundamental group, hence a manifold. We let pW M3!O3 denote the covering
map, and set X 0 WD p�1.X /, P 0 WD p�1.P /, and Y 0.v/ WD p�1.Y .v// for all v 2 T .

Proposition 3.2 (1) M3 is irreducible;
(2) There is an infinite collection fT 0.v/gv2T of pairwise nonisotopic canonical tori,

all of which essentially intersect X 0 .

Proof (1) follows from irreducibility of O3 and [14, Theorem 10.1].

To establish (2), we define T 0.v/D p�1.T .v//. This gives us an infinite collection
of tori in M3 . If two of them were isotopic, then they would be homologous, and so
would be the underlying spaces of their projections to O3 , which is not the case. By
the equivariant Dehn Lemma, each T 0v is incompressible.

Fix v2T . To show that T 0.v/ is canonical, it suffices to prove that every incompressible
annulus properly embedded in M3 cut along T 0.v/ is parallel to an annulus in T 0.v/.
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We hence need to deduce this from the corresponding property for T .v/�O3 . This can
probably done by elementary topology, but we prefer to use a direct minimal surface
argument suggested by Peter Scott. Notice first that for all v; v0 , the pairs .O3;T .v//

and .O3;T .v
0// are homeomorphic. Passing to the double cover, this implies that

.M3;T
0.v// and .M3;T

0.v0// are homeomorphic for all v; v0 . Hence we only give
the proof when v is the ancestor v0 .

Let Z be a component of M3 cut along T 0.v0/, and let A be an incompressible
annulus properly embedded in Z . Assume that A has been isotoped so as to intersect
P 0 minimally.

If A intersects P 0 at all, then for some v one component of A\Y 0.v/ is an essential
annulus whose boundary is contained in a single component of @Y 0.v/. However, we
have the following lemma:

Lemma 3.3 Every essential annulus in Y 0.v/ meets two different components of
@Y 0.v/.

Proof To shorten notation set Y WD Y .v/ and Y 0 WD Y 0.v/. Put a sufficiently convex
Riemannian metric on Y and give Y 0 the lifted metric. Assume the lemma is false,
so that there is a component U of @Y 0 and an essential, properly embedded annulus
A � Y 0 with both boundary components in U . By [8], one finds an annulus A0 of
least area with this property. Let A0

0
be the translate of A0 by the deck transformation

group of the double cover pW Y 0 ! Y . If A0 D A0
0

or A0 \A0
0
D ∅, then p.A0/

is a properly embedded, essential, annular 2–suborbifold of Y with both boundary
components in p.U /. This is impossible.

So generically A0 and A0
0

intersect in a finite family of curves and arcs. By standard
exchange/roundoff arguments (cf [8; 14]) one obtains a contradiction. This proves
Lemma 3.3.

We return to the proof of Proposition 3.2. By Lemma 3.3, our annulus A, does not
intersect P 0 . Hence it is contained in X 0\Z . But this manifold does not contain any
essential annulus with both boundary components in X 0\T 0v0

, by an argument entirely
similar to that used in the proof of Lemma 3.3. This contradiction completes the proof
of Proposition 3.2.

4 Just another brick in the wall

Let O4 be the orbifold whose underlying space is R3 and whose singular locus is the
trivalent graph shown in Figure 2, where all edges should be labeled with the number 2.

A key property of the graph †O4
is that it is planar. In particular, every properly

embedded line in †O4
is unknotted as a subset of R3 . We choose an unknotted arc ˛

connecting the two components of †O4
as in Figure 3.
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Figure 2: The singular locus of O4

Proposition 4.1 (1) O4 is irreducible.

(2) All incompressible toric 2–suborbifolds are pillows, and intersect ˛ .

(3) There are infinitely many isotopy classes of canonical pillows.

Proof (1) Let S be a general position 2–sphere in R3 . Let B � R3 be the 3–ball
bounded by S . If S avoids †O4

, then so does B . Otherwise S intersects †O4
in at

least two points. If #S \†O4
D 2, then the two intersection points lie on the same

edge of †O4
and B intersects †O4

in an arc. This arc cannot be knotted inside B

since it extends to a properly embedded singular line in †O4
, which cannot be knotted

in R3 as remarked above. If #S \†O4
D 3, then B intersects †O4

in a Y-shaped
graph, which must be unknotted for a similar reason. In each case, the 2–suborbifold
whose underlying sphere is S is compressible.

(2) Recall (cf [2, Chapter 2]) that all Euclidean turnovers have at least one cone point
of order different from 2. Hence O4 contains no Euclidean turnovers. Any nonsingular
torus T � O4 lies in a 3–ball intersecting †O4

in a planar graph. Hence one can
find a handlebody in jO4 n†O4

j containing T . This shows that T is compressible in
jO4 n†O4

j, hence a fortiori in O4 .

Let P be a pillow in O4 . Assume that P misses ˛ . Then there are two cases: either
one can find two edges e1; e2 of †O4

such that P \†O4
consists of two points of e1

and two points of e2 , or jP j is the boundary of a regular neighborhood of an edge of
†O4

. In either case, the compact 3–suborbifold bounded by P is a solid pillow (cf [2,
Figure 5, p 33].) This implies that P is compressible.

(3) Let P1 be the pillow depicted on Figure 3. Let X1;X2 be the 3–suborbifolds
bounded by P1 . Then any 2–disk properly embedded in jX1j or jX2j intersects †O4

in at least two points unless it is parallel rel †O4
to some disk in P1 . Hence P1 is

incompressible. If there were an incompressible pillow P2 meeting P1 essentially,
then after isotopy X1\P2 and X2\P2 would consist of essential annular 2–orbifolds
with underlying space a 2–disk and two singular points. Now the only such annular
suborbifolds are shown in Figure 3; their boundaries are not isotopic, hence they cannot

Algebraic & Geometric Topology, Volume 8 (2008)



1806 Sylvain Maillot

˛

P2

P1

Figure 3: Two canonical pillows in O4

be glued together to give a pillow that would intersect P1 essentially. This shows that
P1 is canonical.

The same argument works for the pillow P2 on the same figure. It is easy to see that
one can find in this way an infinite family of canonical pillows P1;P2;P3; : : :, where
PnC1 is separated from Pn by three vertical bars.

Remark This orbifold O4 also contains noncanonical incompressible pillows. For
instance, let X be the 3–suborbifold bounded by P1[P2 and observe that P2 can be
obtained from P1 by moving to the right and “crossing” three vertical arcs in †O4

.
If one “crosses” only one of these arcs, one obtains another incompressible pillow,
consisting of an annular suborbifold of P1 together with one of the dotted annular
suborbifolds in X . There are two such pillows. With a little more work, one can show
that X has a Seifert fibration where those two pillows are vertical, and their projections
to the base orbifold intersect essentially. Hence by [3] those two pillows intersect
essentially. In particular, they are noncanonical.

5 Jacob’s nightmare

In order to motivate the example O5 constructed later in this section, we first consider
an example of a 3–orbifold which we do not view as pathological. Its underlying space
is R3 and its singular locus is as in Figure 4, all meridians having order 2. It consists
of two connected trivalent graphs looking like bi-infinite ladders (which we shall call
“Jacob ladders”.)

The same arguments as for O4 show that this orbifold is irreducible, and that its only
incompressible toric 2–suborbifolds are pillows. Furthermore, around each ladder one
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Figure 4: An orbifold with two Jacob ladders as singular locus

can find a properly embedded bi-infinite annulus that bounds a Seifert 3–suborbifold
U : one chooses a vertical band Z containing the ladder and foliates jZj by intervals
such that the rungs are leafs. Then those intervals, viewed as 1–suborbifolds, are
mirrored intervals, which are fibers of the Seifert fibration on U , the other fibers being
circles wrapped around Z (cf [2, p 33].) Thus the orbifold under consideration has a
natural “JSJ splitting” consisting of two annuli.

Of course there could be more ladders, or even infinitely many of them. This we still do
not consider pathological, since the corresponding infinite collection of annuli would
be locally finite.

However the 3–orbifold O5 in Figure 4 fails to have such a decomposition. Its
underlying space is again R3 , and its singular locus consists of an infinite sequence of
Jacob ladders plus another component J . The precise shape of J is unimportant; the
only relevant feature is that it should not create unwanted incompressible 2–suborbifolds.
For example, we can take it to be a planar “brickwall” graph similar to each component
of †O4

, also with all labels equal to 2, but with five horizontal half-lines instead of four,
so that there is an unknotted, properly embedded, nonsingular plane in O5 separating
J from the rest of the singular locus, and having the property that the component
containing J is irreducible and does not contain any toric 2–suborbifold.
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Most important is the position of J with respect to the ladders: any finite set of ladders
can be separated from J by a properly embedded nonsingular plane, but there is an
arc ˛ (see Figure 5) which connects J to L0 and which can be extended to a properly
embedded line ƒ� R3 by adding a half-line in J and a half-line in L0 , such that for
all negative n, one can find a circle Qn �Ln (consisting of four arcs: a subarc of each
upright plus two rungs connecting them) such that the linking number of Qn and ƒ
is 1.

Also, any two ladders are separated by a properly embedded nonsingular plane. For
each ladder we assign to each rung an integer so that going up the ladder corresponds
to increasing the numbers.

˛

L�1

J

L0 L1

Figure 5: Jacob’s nightmare

By arguments similar to those of Section 4, one shows that O5 is irreducible and that
its only incompressible toric 2–suborbifolds are pillows, and meet a single component
of the singular locus. By choice of J , this component must be a ladder. More precisely,
each incompressible pillow is obtained in the following way: fix a ladder Ln , an integer
p � 2 and a finite sequence of consecutive rungs r1 < � � � < rp of Ln . Then take a
sphere S intersecting †O5

only on Ln , and such that S \Ln consists of four points
on the uprights of Ln , two immediately below r1 and two immediately above rp .
Observe that this pillow is not canonical, since for instance, the pillow associated to
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the sequence .r1� 1/; r1 will intersect it essentially. Thus O5 has no canonical toric
2–suborbifolds at all.

Further observe that for all n < 0, there is a pillow Tn associated to Ln such that
the intersection number of Tn with ˛ is 1. (In fact, there are infinitely many.) As a
consequence, Tn intersects ˛ essentially, ie any pillow isotopic to Tn still meets ˛ .

Proposition 5.1 There exists no Seifert 3–suborbifold U �O5 such that all incom-
pressible pillows can be isotoped into U .

This is a consequence from the following Claim:

Claim Let T;T 0 be two incompressible pillows associated to distinct ladders, and
U be a Seifert 3–suborbifold containing T [ T 0 . Then T;T 0 belong to distinct
components of U .

Indeed, applying the Claim to the infinite family of pillows fTngn<0 described above,
we see that the compact set ˛ would have to meet infinitely many distinct connected
components of U , which is impossible.

Lastly, we prove the claim: if T and T 0 are contained in a connected Seifert suborbifold
V , then they are vertical by [3, Theorem 4]. Therefore, there exist closed curves c � T

and c0 � T 0 such that c and c0 are freely isotopic in V , hence freely isotopic in O5 .
Now since the ladders are unlinked, there exists a properly embedded nonsingular plane
P � O5 separating T from T 0 . Hence by the Seifert–van Kampen theorem, �1O5

can be expressed as a free product, with �1T and �1T 0 belonging to distinct factors.
Hence the elements of �1O5 represented by c and c0 cannot be conjugate. This is a
contradiction.
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