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Heegaard–Floer homology and string links

LAWRENCE ROBERTS

We extend knot Floer homology to string links in D2 � I and to d –based links in
arbitrary three manifolds. As with knot Floer homology we obtain a description of
the Euler characteristic of the resulting homology groups (in D2 � I ) in terms of
the torsion of the string link. Additionally, a state summation approach is described
using the equivalent of Kauffman states. Furthermore, we examine the situation for
braids, prove that for alternating string links the Euler characteristic determines the
homology, and develop similar composition formulas and long exact sequences as in
knot Floer homology.

57M27; 57M25

1 Introduction

In [13] P Ozsváth and Z Szabó use the technology of Heegaard–Floer homology to
refine the Alexander–Conway polynomial of a marked knot in S3 . In particular, they
define knot-Floer homology groups for relative Spinc structures that correspond to
the terms in the polynomial: the Euler characteristic of the homology with rational
coefficients corresponding to i gives the coefficient of t i . They have since shown that
the non-vanishing of these groups characterizes the genus of the knot, [14]. In [10] they
employ Kauffman’s state summation approach to the Alexander–Conway polynomial
to give a concrete realization of the graded generators of the chain complex for each i

(though not, unfortunately, for the differential). Furthermore, the techniques extend
to null-homologous knots in an arbitrary three manifold, Y , where the knot may also
be interpreted as giving a filtration of the Heegaard–Floer chain groups for Y that is
also an invariant of the isotopy class of the knot. They also refine the one variable
Alexander–Conway polynomial of an m–component link in S3 by converting the link,

in a way preserving isotopy classes, to a null-homologous knot in
m�1

# S1 �S2 .

In this paper we simultaneously generalize the preceding picture in two ways: first,
by removing the restriction on the homology class of the embedding, and second, by
defining chain complexes for a “string link,” thereby obtaining the Heegaard–Floer
analog of the multi-variable torsion of the string link for its universal Abelian covering
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space. There is a relationship between the torsion of a string link and the multi-
variable Alexander polynomial of a simple link closure of the string link. Recently,
P Ozsváth and Z Szabó have announced a version of Heegaard–Floer homology for
links which enhances the multi-variable Alexander polynomial, [16], as the knot Floer
homology enhanced the single-variable version. While there should be a relationship
between the string link homology and the link homology, it should be noted that the
string link homology appears to be a different beast; it does not share the symmetry
under change of the components’ orientation, for example. On the other hand, we will
show that in most respects the string link homology is a natural generalization of the
knot Floer homology.

In general, we start with a basing of a link in a three-manifold, Y : we require an
oriented disc, D , embedded in Y so that the link components intersect the disc once,
positively. This configuration is known as a d –base, following the work of N Habegger
and X S Lin, [4]. There are many d –basings of the same link, and our invariant will be
sensitive to these. In S3 there is a more perspicuous description of the configuration,
called a string link.

Definition 1.1 Choose k points p1; : : : ;pk in D2 . A k –stranded string link in D2�I

is a proper embedding,
`k

iD1 fi of
`k

iD1 Ii into D2 � I , where fi W Ii ! D2 � I ,
such that fi.0/D pj � 0 and fi.1/D ps � 1. The string link is called “pure” if j D s

for each interval.

A neighborhood of a d –base is a copy of D2 � I , and its complement in S3 is also
a copy of D2 � I . In the latter D2 � I , the d –based link appears as k copies of
I extending from one end to the other. Thus, for general three-manifolds we can
present our d –based link as a string link in D2 � I along with a framed link diagram
representing Y .

For a d –based link, L[D , embedded in a general three-manifold, Y , we measure
the homology of the components of the embedding by a lattice, ƒ, in Zk consisting
of all vectors of the form .Œh�\L1; : : : ; Œh�\Lk/, where Œh� 2H2.Y IZ/ and the Li

are the components of the associated link. We can now state our main theorem.

Theorem 1.2 Let L[D be a d –based link in Y . Then, for each Spinc structure, s,
on Y , there is a relatively Zk=ƒ–indexed Abelian group bHF .Y; �I s/. This group
can be decomposed into isotopy invariant factors corresponding to elements of an affine
space isomorphic to Zk=ƒ.

When ƒ � 0, most of the results for knots transfer straightforwardly. In particular,
the presence of the d –based link imposes a filtration upon the Heegaard–Floer chain
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complexes of the ambient manifold, that is filtered chain homotopy invariant up to
isotopy of the based link. The case where ƒ 6� 0 occurs naturally when trying to
generalize this picture. Furthermore, the theory can be extended to the other flavors of
Heegaard–Floer homology.

Note In [13] the knot-Floer homology is denoted by 1HFK .Y;KI �/. We will assume
that the presence of � D L[D or K implies the use of the data determined by that
object. Thus, we will use bHF .Y;KI �/ for the knot-Floer homology. When we wish
to refer to the Heegaard–Floer homology of the ambient three-manifold (ignoring the
information provided by K ) we will simply omit reference to the knot or bouquet.
However, these are not relative homology groups according to the classical axioms,
nor do they solely depend upon the complement of the knot or link.

When L[D � S3 , we may restate the theorem in terms of the associated string link,
S .

Corollary 1.3 For each v 2Zk there is an isotopy invariant bHF .S I v/ of the string
link S .

In Section 8, we realize the generators of the chain complex for a string link S in
D2� I from a projection of S . They are identified with a sub-set of maximal forests –
satisfying specific constraints imposed by the meridians – in a planar graph constructed
from the projection of S . This description generalizes the description of generators,
their indices, and their gradings given by P Ozsváth and Z Szabó in [10].

Lemma 1.4 There are vector weights assigned to crossings so that for each tree, adding
the weights calculates the index, v , for the corresponding generator. Furthermore,
there are weights assigned to crossings which likewise calculate the grading for each
generator.

For the specific weights see Figure 6. This lemma requires a generalization of L
Kauffman’s “Clock Lemma,” [5], to maximal forests that describes the connectivity of
the set of maximal forests in a planar graph under two natural operations.

The weights and gradings are enough to form the Euler characteristic of the homology
groups with rational coefficients, which is related to the Alexander–Conway polynomials
of the link components in Section 8.4. However, the Euler characteristic can also be
interpreted as a polynomial arising from the first homology of a covering space. We
let X D D2 � I � int.N.S// and E D @X �D2 � f0g. Consider the Zk –covering
space, eX , determined by the Hurewicz map �1.X /!H1.X IZ/ ŠZk . Let eE be the
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pre-image of E under the covering map. Then there is a presentation, (Litherland [9]),

Zk M
�!Zk!H1. eX ; eE IZ/! 0 of ZŒt˙1

1
; : : : ; t˙1

k
�–modules whose 0th elementary

ideal is generated by det M , a polynomial called the torsion of the string link (Kirk–
Livingston–Wang [7]).

Theorem 1.5 Let S be a string link. The Euler characteristic of bHF .S I vIQ/ is the
coefficient of t

v1

1
� � � t

vk

k
in a polynomial p.t1; : : : ; tk/ describing the torsion of the

string link, �.S/.

R Litherland appears to have originated the study of the module H1. eX ; eE IZ/ as a
source of Alexander polynomials, [9]. He used it to study generalized � –graphs, which,
once we pick an edge, correspond to the string links above.

Many results follow from trying to replicate known properties of the torsion. Braids
are a special sub-class of string links, for which it is known that the torsion is always
trivial. Likewise, we can show that the string link homology is trivial.

Lemma 1.6 If the string link S is isotopic to a braid, then bHF .S/ Š Z.0/ where
bHF .S/Š˚vbHF .S I v/.

The subscript in Z.0/ designates the grading. This result should be likened to the
analogous result for 1–stranded string links, ie marked knots, that are also braids: the
unknot has trivial knot Floer homology. While string links are usually considered up to
isotopy fixing their endpoints on D2 � f0; 1g, this result has the implication that our
invariant will be unchanged if we move the ends of the strings on D2 � f0; 1g.

Furthermore, as in Ozsváth–Szabó [10], alternating string link projections possess an
important property.

Lemma 1.7 Alternating string links in D2 � I have trivial differential in each index,
v , for the Heegaard decomposition arising from an alternating projection.

The proof may be found in Section 11.

As P Ozsváth and Z Szabó can extend the knot Floer homology to links, we may extend
the constructions for string links to a sub-class of colored tangles in D2�I . For a tangle,
T , we allow closed components, in addition to open components requiring that the open
components independently form a string link. To each open or closed component we
assign a color f1; : : : ; kg which corresponds to the variable ti used for that component.
We require that each color be applied to one and only one open component. We may
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then use the colors to construct a string link, S.T /, in a second manifold,
n

# S1 �S2 ,
where n is the number of closed components in T . The isotopy class of S.T / is
determined by that of T in D2�I , allowing us to consider bHF .Y;S.T /I s0; i/ as an
isotopy invariant of T . With this definition, we may extend the skein exact sequence
of [13] to crossings where each strand has the same color.

Finally, we analyze how the homology changes for three types of string link compo-
sitions. Each has the form of connect sum in its Heegaard diagram, and the proofs
roughly follow the approach for connect sums taken by P Ozsváth and Z Szabó . We
picture our three-manifolds as given by surgery on framed links in D2 � I with an
additional string link, S , with k components. Given such diagrams for S1 in Y1 and
S2 in Y2 we may 1) place them side by side to create a string link, S1 C S2 with
k1C k2 components, 2) when k1 D k2 we may stack one diagram on top of the other
(as with composition of braids) to obtain the string link S1 �S2 , and 3) we may replace
a tubular neighborhood, ie a copy of D2 � I , of the i th strand in S1 with the entire
picture for S2 to obtain a string satellite, S1.i;S2/. The analysis of the second type
proceeds differently than in [13]: we consider it as a closure of S1C S2 found by
joining the ends of S1 on D2 � f1g with the ends of S2 on D2 � f0g in a particular
way. We prove the following formulas for the homologies, where sD s0#s1 :

bHF .Y;S1CS2I s; Œj 0�˚ Œj 1�/

ŠH�.bCF .Y0;S0I s0; Œj 0�/˝
bCF .Y1;S1I s1; Œj 2�//

bHF .Y;S1 �S2I s; Œk�/

Š

M
Œk1�CŒk2�DŒk�mod ƒ

H�.bCF .Y1;S1I s1; Œk1�/˝bCF .Y2;S2I s2; Œk2�//

bHF .Y;S1.i;S2/I s; Œ.l1; : : : ; lk1Ck2�1/�

Š

M
Œv0�CŒw0�DŒl�mod ƒ0

H�.bCF .Y0;S0I s0; Œv�/˝bCF .Y1;S1I s1; Œw�//;

where v0 D .v1; : : : ; vi�1; vi ; : : : ; vi ; viC1; : : : ; vk1
/, repeating vi a total of k2 –times,

and w0D.0;: : : ;0; w1;: : : ;wk2
; 0;: : : ;0/ with zero entries except for places i;: : : ;iC

k2� 1. and ƒ0 DƒC 0˚ƒ1˚ 0. Although the isotopy class of S1.i;S2/ depends
upon a framing to specify the gluing, when considered using the more flexible isotopy
described above, this framing becomes irrelevant.

Note We do not address issues of orientation of moduli spaces in the paper. However,
nothing we say will alter the existence of the coherent orientations. It is merely
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convenient to suppress this information. As usual we may work with Z=2Z–coefficients
to avoid these issues.

2 String links and Heegaard diagrams

2.1 String links in general three-manifolds

In this section, we describe the topological input for the paper. Let Y denote a closed,
oriented three-manifold.

Definition 2.1 A d –base for an oriented link L is an oriented disc, D , embedded in
Y whose interior intersects each component of L exactly once, positively.

By thickening the disc D we obtain an embedded ball with the structure of a cylinder,
D2 � I . The complement of this ball together with its intersection with L will be
called a “string link” for Y . We give several examples that will be important in the
remainder of the paper.

Example 1 For knots in S3 a d –basing amounts to picking a point on the knot, the
intersection point with D . This is a marked knot as used in [13]. The string link
associated to a knot comes from dividing the knot at that point and pulling the ends
apart to obtain a knotted strand in D2 � I .

Example 2 A d –base for a link in S3 corresponds to the usual definition of a string
link.

Definition 2.2 Choose k points p1; : : : ;pk in D2 . A k –stranded string link in D2�I

is a proper, tame embedding,
`k

iD1 fi of
`k

iD1 Ii into D2�I , where fi W Ii!D2�I ,
such that fi.0/D pj � 0 and fi.1/D ps � 1. The string link is pure if j D s for each
interval. We orient the strands “down” from 1 to 0.

To each strand of a string link, we may associate a knot: ignore the other strands and
join the two ends of our strand with an unknotted arc in the complement of D2 � I .
Likewise we may associate a link to a pure string link by using k unknotted, unlinked
arcs lying in the projection plane, as for the closure of a braid. Furthermore, by
retaining D2 �f0g, oriented as the boundary of D2 � I , we have an embedded disc
which intersects the strands of the link in one point with Li \D D C1. This is a
d –base in the language of Habbegger and Lin, [4].
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Example 3 To draw the Heegaard diagram for a string link in Y , we think of D[L
embedded in a framed link diagram for Y in S3 . By inverting a neighborhood of the
disc, we can present the string link in Y by a string link in a framed link diagram in
D2 � I . Handleslides of the framed components, or blowing up/down will preserve
the isotopy class of this string link.

When we refer to a string link, we will mean a configuration of strands and framed knots
in D2�I , usually as in Example 2 with the strands ending on prescribed points. String
links are typically considered up to isotopies which pointwise fix the set D2 � f0; 1g.
In this sense, the set of braids is a subset of the set of string links in D2� I . However,
we will consider string links up to a different equivalence.

Definition 2.3 A flexible isotopy of a string link, is an isotopy which setwise preserves
the components D2 � f0; 1g.

As an example of the difference, any braid is flexibly isotopic to the trivial braid with
the same number of strands. The groups we define later will be invariant under this
less rigid form of isotopy. Likewise, we can consider d –based links up to isotopy of
D[L as a complex, which retains the intersection data, or more flexibly by allowing
the strands of L not to return to the same point, and moving their ends independently
on, but not between, the two sides of D .

2.2 Heegaard diagrams for d –based links

We describe the general approach to Heegaard diagrams subordinate to a d –based
link, D[L, and the Heegaard equivalences between them. In particular, we will be
concerned with retaining the data provided by D .

Let Y be a three-manifold. Assume we have a Heegaard decomposition, Y DH˛[†g

Hˇ , where @H˛ D † D �@Hˇ and the gradient flow corresponds to the outward-
pointing normal to H˛ . If we choose decompositions of each handlebody into a zero
cell and g one handles, then we can specify this decomposition by f˛ig

g
iD1

, the co-
cores of the one handles for a handle decomposition in H˛ sitting in †, and likewise
for fˇig

g
iD1

and Hˇ . This configuration of curves in † is called a Heegaard diagram.
We will denote the data of the Heegaard diagram by .†; f˛ig

g
iD1

; fˇig
g
iD1

/ or †˛ˇ
and the underlying three-manifold by M.†; f˛ig

g
iD1

; fˇig
g
iD1

/.

To make our diagram reflect L[D , we additionally require that our Heegaard data
satisfies the following.

(1) M.†; f˛ig
g

iDkC1
; fˇig

g
iD1

/ is Y 3�N.L[D/.
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(2) The complement of M.†; f˛igi¤j ; fˇig
g
iD1

/ for j � k , is homeomorphic to
a tubular neighborhood of Lj in Y with j̨ as an oriented meridian for this
tubular neighborhood.

(3) There is a smooth embedding of the closed unit disc with image D0�† such that
D0\

Sg
iD1

ˇi D∅ while D0\
Sg

iD1
˛i consists of k disjoint closed intervals,

Ij �†, j D 1; : : : ; k with Ij � j̨ . The string link formed from D0 glued to
the attaching discs for ˛1; : : : ; ˛k and the components of L from (1) is isotopic
to L[D .

The first two conditions require that the diagram be subordinate to the link. The third
requires that there be a disc in the Heegaard data that, when attached to the compression
discs for ˛i ; i � k and pushed into H˛ , produces a d –basing for L, isotopic to the
original one. The decomposition associated to such a diagram is said to be subordinate
to L[D . Furthermore, a diagram with such a choice of ˛ and a disc D0 determines a
string link as in item (3). Note that D0 must be oriented opposite to †, and that D0

will usually not be a full component of †n.f˛ig
g
iD1
[fˇig

g
iD1

/.

We may relate diagrams subordinate to an embedding of L[D in Y by the following
lemma.

Lemma 2.4 (Ozsváth–Szabó [15, Lemma 4.5]) Let Y be a closed, oriented three-
manifold. Let L[D � Y be an embedded d –base. Then there is a Heegaard diagram
subordinate to L[D and any two such subordinate diagrams may be connected by a
sequence of the following moves:

(1) handleslides and isotopies among the elements of f˛ig
g

iDkC1
,

(2) handleslides and isotopies of fˇig
g
iD1

,

(3) stabilization introducing ˛gC1 , ˇgC1 intersecting in a single point,

(4) isotopies of f˛ig
k
iD1

and handleslides of them over elements of f˛ig
g

iDkC1
,

where we disallow isotopies and handleslides of any attaching circles resulting in a
curve intersecting the disc D0 .

Proof Let � DL[D . Then N.�/ is a handlebody where the disc D is thickened to
a copy of D�I to which handles are added for each component of L. One component
of D � @I is oriented identically with the boundary of the handlebody, the other is
oriented opposite, D00 . Inside D00 , there are k smaller discs where the handles for each
component of L are attached. Choose a point in the D00 away from these attaching
discs and pick k disjoint arcs from this point to the boundary of each of the attaching
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discs. D0 is then a closed disc neighborhood that is a thickening of the point and the
arcs whose boundary has k –arcs, one on the boundary of each of the attaching discs.
If we take the boundary of each attaching discs to be one of the ˛i with i D 1; : : : ; k ,
we can then extend to a Heegaard decomposition subordinate to D[L. The additional
˛ and ˇ may be chosen to avoid D0 as D0 is contractible in †. Thus, a diagram for
� always exists.

Following the proof of Ozsváth–Szabó [11, Proposition 7.1], we see that any ˇ isotopy
whose support intersects D0 , and which starts and ends with D0 not intersecting any
ˇ–curve, may be accomplished by handleslides not intersecting D0 . Since D0 �† is
a disc, it suffices to consider isotopies taking an arc of ˇi so that the entire disc moves
to the other side of ˇi from which it started (locally). If we surger all the ˇ–curves
except ˇi we obtain a torus with ˇi and D0 still present, and a collection of disjoints
discs, pairs of which represent each of the other ˇ–curves, and which are disjoint from
D0 and ˇi . If we do the same to the configuration of ˇ–curves in † at the end of
the isotopy we obtain another configuration in the torus, with D0 and the other discs
unchange, and ˇi now on the other side of the disc. There are two ways to move
between these configurations in the torus: 1) isotope ˇi across D0 , corresponding to
the original isotopy in †, or 2) isotope ˇi around the torus opposite to the isotopy
direction, until it comes to the end configuration. In the latter case, each isotopy across
on of the surgery discs corresponds in † to a handleslide whose support does not
intersect D0 in †. As a result the choice made in pushing the ˇ off D0 does not affect
the equivalence class of the diagram.

Given the diagrams for two isotopic embeddings of � , we must see that they can be
related by the moves described in the lemma. These moves preserve the region D0

in the original diagram. D0 and the attaching discs for the meridians act as the disk
for the d –base. On the other hand, the isotopy carries a neighborhood of the disc
into a neighborhood of the new disc; these neighborhoods are all homeomorphic and
may be used as a 3–handle for each of the Heegaard decompositions. That the isotopy
preserves L outside this ball allows us to keep the meridians constant and consider
only the additional handles describing Y �N.�/.

If we consider @N.�/ as @C.Y �N.�// then the existence of the Heegaard diagram
follows from the existence of a relative Morse function that is equal to 1 on the boundary
and that the isotopy class of f˛ig

k
iD1

is determined by their being meridians of the knots
determined by the strands of L. As usual, we may cancel 1–handles with 0–handles
until there is only one 0–handle. Similarly we may cancel off 3–handles until there are
none. The relative version of Cerf’s theorem states that any two such diagrams can be
linked through the first three moves and the introduction of new index 0=1 canceling
pairs or new index 2=3 canceling pairs.

Algebraic & Geometric Topology, Volume 9 (2009)



38 Lawrence Roberts

However, we would like to ensure that the path can be chosen through diagrams with
only one index 0 handle and no index 3 handles. As we introduce a new 3–handle,
we also introduce a canceling 2–handle. The new 2–handle will have one end of its
co-core on @N.�/, since there are no other 3–handles. In a diagram for Y with the
prescribed meridians, this 2–handle has a core that is a homological linear combination
of the ˛ . If we cut † along f˛kC1; : : : ; ˛gg, and cap the new boundaries with discs,
the image of the core will be null-homotopic: it will be homotopic to the boundary
of the B2 at the end of the co-core lying on @N.�/. Since it is null-homotopic, the
core cannot have a non-zero coefficient for a meridian for its homology class. Thus,
it is linear combination of f˛kC1; : : : ; ˛gg. According to [11, Lemma 2.3], the core
curve can be obtained as the image of a f˛kC1; : : : ; ˛gg under handleslides. Thus, any
diagram obtained from the diagram after a 2=3 pair is added, could be obtained from
the old diagram, as handleslides over the new core can be given by handleslides over
˛ , not using any meridians. We may bypass 2=3–handle pairs. The same argument
applies for 0–handles, as there are fewer restrictions on the ˇ .

Once again allowing the meridians to move, the last equivalence follows from con-
sidering the handle decomposition after surgering out f˛ig

g

iDkC1
. The meridians

are determined up to isotopy, and as those isotopies cross surgery discs there are
corresponding handleslides. Likewise, two curves for the same meridian, abutting the
same disc D0 at a specified point, will be isotopic. This takes care of all our choices,
so any two diagrams subordinate to the same isotopy class of string link can be related
with the moves in the lemma.

Note If we allow equivalences that intersect D0 , the moves above would still preserve
the handlebody neighborhood of L[D since we cannot slide over the meridional discs.
This is weaker than preserving the isotopy class of L[D . The additional restriction
imposed by D0 prevents an isotopy from twisting the ends of the same strand at the
intersection point with D . We may still disjoin then ends of the link components and
braid the ends on one side of the disc independently of the other. However the data
from D prevents the ends from moving between the different sides of D .

2.3 Specific Heegaard diagrams for string links

2.3.1 Heegaard diagrams from projections We describe a general procedure for
drawing the Heegaard diagram of a string link presented in D2�I , along with a framed
link specifying the three-manifold Y . We start with the situation in Example 2 above.

Consider D2� I embedded inside S3 . We isotope the string link so that projection
onto the plane formed from a diameter for D2 times I is generic. Such a projection
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provides the data for a Heegaard decomposition of S3 . For a string link whose strands
are oriented downwards, we may draw a Heegaard diagram as in Figure 1 according to
the process described presently.

Figure 1: The Heegaard Diagram for a string link in D2 � I . We place
the meridians at the bottom of the diagram and ˛ curves, depicted as thick
black curves, at each of the crossings, reflecting the type of crossing. The
ˇ–curves, which are dashed, correspond to faces of the projection. The graph
in D2 � f0g illustrates that used in constructing marked diagrams.

Take a small tubular neighborhood of each strand in D2 � I and glue it to the three
ball that is S3n.D2 � I/. This is a handlebody to which we attach 1 handles at each
of the crossings. These handles occur along the axis of the projection, between the two
strands; when we compress the handle to obtain the tubular neighborhood of an “X”,
the attaching circles appear as in Figure 1, one for each type of crossing, cf [10]. The
attaching circles for the handles from the strands are placed in D2 � f0g as meridians
for each strand.

The complement of this in S3 is also a handlebody. It can be described by taking
two 0–handles in D2 � I above and below the plane we projected onto (thought of as
cutting D2 � I through the middle). We then attach handles through the faces of the
image of the projection: a copy of the D2 factor in the handle should be the face. We
use the 1–handle for the face on the leftmost side of the diagram, called U , to cancel
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one of the 0–handles. As these two handlebodies have the same boundary, they must
have the same number of handles, and the decomposition is a Heegaard decomposition.

To extend to the case including framed closed components, we first find a generic
projection of both the strands and the framed components. We choose paths from each
of the framed components to one of the strands, placed generically. We can then find a
Heegaard diagram as above. However, on each of the closed components we will use
the framing, not the meridian, to place the ˛ curves, oriented opposite the longitudes
from S3 . We need the choice of paths in order to have a Heegaard decomposition, but
if a component crosses one of the strands, we can use the path along the projection
direction. Paths only need to be specified for framed components that are disjoint from
the string link in the projection.

Lemma 2.5 Let S be a string link for a three-manifold specifies by a collection of
framed knots, thought of being in D2 � I . Then the Heegaard diagram after

(1) sliding a strand over a framed component, or

(2) sliding a framed component over another component, or

(3) adding a unlinked ˙1 framed unknot,

is equivalent to the Heegaard diagram before.

Proof Sliding a strand in the string link over a framed curve produces a new string
link which is isotopic to the first in Y . Thus the two Heegaard diagrams are related
by Heegaard equivalences. Likewise, handleslides of framed components over each
other can be effected by a bouquet with a path joining the two components and adding
˙1 framed unlinked, unknots (blowing up/down) can be effected using the reduced
Heegaard equivalences.

Finally, how the framed components are joined to the strands does not change the
equivalence class of the diagram. We describe specifically how to use the equivalences
to see this conclusion. The argument comes from [15], for the same result for a
bouquet, with minor alteration. Consider two distinct arcs, s1 and s2 , joining a framed
component to � , and form a regular neighborhood of the graph provided by �[s1[s2 .
We extend this to a diagram for S3 (by adding handles for crossings, etc). We draw a
subordinate diagram using s1 to attach the framed component by placing ˛kC1 as a
meridian to s2 . To obtain a diagram subordinate to the second choice of paths we erase
˛kC1 and replace it with ˛0

kC1
, a meridian to s1 . We surger out all the ˛i for i > kC1

to obtain a genus kC1 surface. We wish to see that ˛kC1 and ˛0
kC1

are isotopic; if they
are we may move the corresponding curves in the original diagram through isotopies
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and handleslides one into the other. The two curves, along with some non-meridional ˛ ,
bound a punctured torus coming from the framed component. After surgering, the other
boundaries are filled, and surgering the framing attaching circle transforms the torus
into a cylinder. Therefore, the ˛kC1 and ˛0

kC1
now bound a cylinder which does not

involve the disc D0 . Each time the isotopy of curves determined by the cylinder crosses
a disc coming from the surgered handles, there is a corresponding handleslide in the
original picture. This provides a sequence of Heegaard equivalences that are allowed
under the reduced equivalences of d –based links. Hence, using two different framed
link descriptions for Y will not change the equivalence of the Heegaard diagrams.

Note In such diagrams, the meridians will intersect at most two ˇ curves. This
happens for all but one of the meridians in the construction above. By sliding one of
these ˇ curves over the other we can ensure that in our Heegaard diagrams the meridians
each intersect only one ˇ–curve, provided the ˇ curves are distinct. However, we can
introduce crossings of strands using the second Reidemeister move to ensure that they
the ˇ–curves are distinct. We will often assume that this simplification has been made.

2.3.2 Marked diagrams It is cumbersome to retain the disc D0 in our Heegaard dia-
grams. Furthermore, since the restricted Heegaard equivalences eliminate handleslides
over the meridians they often impede the simplification of the Heegaard diagram. We
now give a different way to encode a d –based link in a Heegaard diagram that is more
tractable.

Definition 2.6 A multi-pointed Heegaard diagram for Y is a Heegaard diagram
.†; f˛ig

g
iD1

; fˇig
g
iD1

/ which specifies Y , and a collection of points w; z1; : : : ; zk in
†n.f˛ig

g
iD1
[fˇig

g
iD1

/.

We consider multi-pointed diagrams up to the usual Heegaard equivalences with one
exception. The supports of isotopies of curves in either f˛ig

g
iD1

or fˇig
g
iD1

are not
allowed to contain any marked points. We then have the following relationship with
flexible isotopy.

Proposition 2.7 A marked point diagram for Y specifies a Heegaard diagram for
a d –based link embedded in Y , considered up to flexible isotopy. Furthermore, a
Heegaard diagram for a d –based link specifies a multi-pointed diagram, and these two
constructions are inverses up to Heegaard equivalence. The equivalences of Heegaard
diagrams subordinate to a d –based link correspond to equivalences for a marked-point
diagram.
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Proof Using the the disc D0 we may introduce marked points into †. We choose
w to be in the interior of D0 and zi to be on the other side of ˛i in the region of
†n.f˛ig

g
iD1
[fˇig

g
iD1

/ abutting the same segment as D0 .

Conversely, for any Heegaard diagram with a choice of marked points w; z1; : : : ; zk in
†n.f˛ig

g
iD1
[fˇig

g
iD1

/ we can construct a Heegaard diagram subordinate to a string
link. First, choose paths from each zi to w crossing only ˛ . Then take neighborhoods
of the gradient flow lines in Hˇ joining the index 0 critical point and the marked points
in †, remove these neighborhoods from Hˇ and add them to H˛ . The complement in
Hˇ is still a handlebody, since we can see this as removing the neighborhoods of kC1

radii in a closed three ball and then add the other handles to the boundary. Adding the
neighborhoods to H˛ creates a new handlebody H˛0 . The new ˛ are meridians of the
gradient flow lines, and the new ˇ are loops following the flow line from w to the
critical point, then to zi and back along the path we chose in †, crossing only ˛ . To
find the region D0 , take the portion of @H˛0 coming from the newly added handles.
This is a sphere with k C 1 discs removed. Find a point in this disc and join it by
k arcs in this sphere to the meridians of the flow lines through the zi . Now take a
small enough neighborhood of this graph to recover D0 . Adding the attaching discs
produces the disc D regardless of the paths chosen in defining D0 . Thus, a multi-
pointed diagram gives us a diagram subordinate to a string link through the preferred
disc D . Furthermore, if we use the preferred disc, D , to produce a multi-pointed
diagram, after some handleslides of the ˛ over the new meridians and stabilizations,
we can de-stabilize the new ˛ and ˇ to obtain the original multi-pointed diagram.

This construction depends upon the choice of the new ˇ–paths and the graph joining
to the new ˛i . However, if we surger all the ˇ attaching circles in the multi-pointed
diagram, the chosen paths become a star in S2 joining zi to w for all i . If two such
stars are isotopic in the complement of the marked points, the resulting diagrams are
equivalent. Each time the isotopy of a segment crosses a disc introduced by the surgery,
we should think of our new ˇ being slid over an old ˇ . Braiding of the marked points
in S2 , carrying along the star, will not, in general, produce a diagram isotopic to the
one with the star before braiding. However, these diagrams are both stabilizations of
the same diagram and will thus still be equivalent. This discrepancy accounts for the
use of flexible isotopy in the statement of the proposition.

As to the relationship between the equivalences in the two types of diagram, when
going from a multi-pointed diagram to a string link diagram, performing an illicit
isotopy over a marked point zi corresponds to an illicit handleslide over the meridian
of the strand corresponding to zi , according to the previous construction. Were we to
surger out the meridians, the point zi would correspond to one of the two discs used to
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replace that meridian (the other would be close to w inside the region D ). Isotoping
across it would be the same as a handleslide across a meridian.

2.3.3 Admissibility and d –based links In Heegaard–Floer homology, when
H2.Y IZ/ 6Š 0, we must use diagrams submitting to certain admissibility requirements,
[11]. We argue here that by presenting a d –based link as a string link in D2 � I , with
an additional framed link defining Y , we can make the diagram admissible without
disrupting the disc D or the structure of D2 � I . We make use of the lemmas in
[11, Section 3]. Those readers willing to accept this proposition can safely skip this
technical result.

Lemma 2.8 Let L[D � Y be a d –based link. Let s be a Spinc structure on Y .
Then there is a strongly/weakly admissible diagram for .Y; s;L[D/ presented as a
framed link in the complement of a string link in D2 � I .

Proof Suppose Y is presented as surgery on a link in S3 , and � is L[D in this
diagram. We adjust this, as above, to be a framed link diagram in D2� I with a string
link. Recall that we must join the framed components to L[D by paths which do
not touch D2 � f0g. With the framing curves as ˛–curves, this provides a diagram for
Y . However, it need not be admissible; we may need to wind the attaching circles to
make it so. We must ensure that the winding paths do not affect the discs D2 � f0g or
D2 � f1g. We make two observations.

(1) First, any doubly periodic domain must have at least one boundary containing
multiples of a framing curve. Otherwise, by replacing framing curves with
the meridians of the link components, we would obtain a periodic domain in a
diagram for S3 . Furthermore, two periodic domains may not produce the same
linear combination of framing curves in their boundaries.

(2) Second, a meridian of a framed component may be chosen to intersect the framing
curve which replaces it, once and only once, and intersect no other ˛ . Each will,
however, intersect at least one ˇ curve in the projection. By Gompf–Stipsicz
[3, Proposition 5.3.11], these meridians generate all of H1.Y IZ/. By winding
along them we may obtain intersection points representing any Spinc structure;
we have an intersection point which employs the framing curves intersecting the
same ˇ as the meridian.

These are the conditions necessary to draw the conclusion of Lemmas 5.2, 5.4, and 5.6
of [11]. These lemmas guarantee the results in the proposition.
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3 Multi-Pointed Heegaard–Floer homology

3.1 Background and notation

The reader should consult [11] for the notation used below.

Let .†; f˛ig
g
iD1

; fˇig
g
iD1

/ and a choice of w; z1; : : : ; zk 2†n.f˛ig
g
iD1
[fˇig

g
iD1

/ be
a multi-pointed strongly/weakly admissible Heegaard diagram for Y . We will denote
the additional marked point data by � . Then f˛ig

g
iD1

is a set of g disjoint, simple,
closed curves in † whose images are linearly independent in H1.†IZ/ and which
bound compression discs in H˛ . fˇig

g
iD1

has analogous properties for Hˇ . We assume
the curves in f˛ig

g
iD1

and fˇig
g
iD1

are in general position. choose a path of generic
nearly symmetric almost-complex structures, Js , on Symg.†/, in accordance with the
restrictions in [11]. Furthermore, choose an equivalence class of intersection points, s,
for Y and a coherent system of orientations for the equivalence class, [11].

For now we will consider the chain group bCF .Y I s/ as in [11]. When c1.sw.x// is not
torsion we will employ the relative Z=ı.s/Z–grading on the chain complexes, where

ı.s/D gcd
�2H2.Y IZ/

hc1.s/; �i:

If s is a torsion Spinc structure, the chain complexes has an absolute Q–grading, grQ

defined in [15].

Finally, we introduce some extra notation: let I.s/ be the set of all intersection points,
x 2 T˛ \Tˇ , which represent the Spinc –structure, s, for the basepoint w .

3.2 Filtration indices

According to our conventions, the orientation on each ˛ curve representing a meridian is
the one induced from the attaching disk, oriented to intersect Li positively: Li\Di D

C1. If we choose a periodic domain, P , representing the homology class h 2H2 then
@P may only contain multiples of the meridians, not segments on the meridians. With
this orientation convention .nw � nzi

/.P/D �Li \ h. Thus, the quantity nw � nzi

measures the number of times the i th meridian occurs in @P .

Definition 3.1 ƒ.Y;�/ � Zk is the lattice consisting of the vectors˚
.nz1

.P/; : : : ; nzk
.P// ˇ̌P is a periodic domain

	
:

We will usually suppress the subscript, .Y; �/, when the context is clear. The addi-
tional marked points z1; : : : ; zk then provide an additional index for the generators of
bCF .Y; �I s/.
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Definition 3.2 A filtration index, F , for s, is a map F W I.s/ ! Zk=ƒ with the
following properties.

(1) Let nz.�/ D .nz1
.�/; : : : ; nzk

.�// and nw.�/ D .nw.�/; : : : ; nw.�// for � 2
�2.x; y/ then

F.y/�F.x/D .nw � nz/.�/ mod ƒ:

(2) If zi and zj are in the same component of †n.f˛ig
g
iD1
[fˇig

g
iD1

/ then the i th
and j th coordinate maps, Fi and Fj , are equal.

(3) If zi is in the same component as w then Fi � 0, a constant map.

Since for a periodic domain nw.P/ D 0 and nz.P/ 2 ƒ, adding a periodic domain
P to � does not change the relation on the the right hand side of 1). Furthermore,
adding or subtracting ŒS � will change nw.�/ and nz.�/ by the same vector. Thus, the
filtration difference between generators is well-defined by the relation above. However,
we can obtain a new index by taking FCv where v 2Zk=ƒ is a vector not disrupting
properties 2) and 3). Thus we obtain only a relative Zk=ƒ–index on bCF .Y; s/.

Example For null-homologous knots and torsion s there is a canonical choice of
filtration index found from the first Chern class, [13]. Suppose all the knots in Y found
by closing strands in S are null-homologous, and that we have a Heegaard diagram
where there is a unique intersection point between each meridian and fˇig

g
iD1

. As
we have noted previously, this can always be arranged. Let �i be a longitude for the
closure of the i th strand, Li . This curve can be realized in the Heegaard diagram for
the string link as a curve crossing only one ˛–curve, the i th meridian. Interchanging
the meridian with this longitude gives a Heegaard diagram for the manifold found by
performing 0–framed surgery on Li . To each intersection point x 2 T˛ \Tˇ we can
associate an intersection point, x0 , for the new Heegaard diagram, cf [13]. A Seifert
surface for the closure of the i th strand becomes a doubly periodic domain, Pi , in the
new diagram. Following the argument in [13] shows that we may choose

Fi.x/D
1

2
hc1.sw.x0/; ŒPi �i

for our filtration index. This provides a canonical choice over different Spinc –structures
on Y , which the axiomatic description lacks, although it still depends on the choice of
Seifert surface if Y is not a rational homology sphere.
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3.3 The differential and the homology theory

According to [11] there is a differential, b@ on bCF .Y I s/ defined by the linear extension
of b@Œx�D X

y2I.s/

X
�2D.x;y/

# cM.�/Œy�

where
D.x; y/D

˚
� 2 �2.x; y/

ˇ̌
�.�/D 1; nw.�/D 0

	
and the signed count is made with respect to the choice of a coherent orientation system.

We can define a new chain complex bCF .Y; �I s/ by using

D0.x; y/D
˚
� 2D.x; y/

ˇ̌
nz.�/� 0

	
instead of D0 . This still defines a differential since nz.�1��2/� 0 implies, for �1; �2

with holomorphic representatives, that nz.�i/� 0; i D 1; 2, as holomorphicity requires
positive multiplicity in every domain.

Since F.y/� F.x/� nz.�/ mod ƒ for every � 2D.x; y/, a choice of F splits the
complex bCF .Y; �I s/ into a direct sum of complexes

bCF .Y; �I s/Š
M

v2Zk=ƒ

bCF .Y; �I s; v/

where bCF .Y; �I s; v/ is generated by those Œx� with

F.x/� .v1; v2; : : : ; vk/ mod ƒ:

In addition, when the latticeƒ.Y;�/� 0, a choice of indexF not only splits bCF .Y; �I s/,
but it also Zk –filters bCF .Y; s/ by the relation

.j1; : : : ; jk/ < .j
0
1; : : : ; j

0
k/

when jl � j 0
l

for all l with strict inequality for some jl . We have F.b@Œx�/� F.Œx�/
since nzi

.�/� 0 on classes represented by a holomorphic disc. (The partial ordering
on non-zero linear combinations of generators,

P
yi �

P
xj , occurs when every

generator yi � xj for each j ). bCF .Y; �I s/ is then analogous to defining an E0 page
of a spectral sequence for this filtration.

The same argument applies to any zj such that nzj .P/D0 for every periodic domain, P .
Then Fj , the j th coordinate of F , which takes values in Z, filters bCF .Y; �nfzj gI s/.
Thus, for any collection, Z , of the zj , which together will produce a lattice equivalent
to 0, we obtain, using their filtration index coordinates, a filtration on bCF .Y; �nZI s/.
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As usual define bHF .Y; �I s/ to be the homology of bCF .Y; �I s/ and bHF .Y; �I s; Œv�/

to be the homology of bCF .Y; �I s; Œv�/ for a specific choice of filtration index. We
then have

bHF .Y; �I s/Š
M

v2Zk=ƒ

bHF .Y; �I s; v/:

The action of H1.Y;Z/=Tors on the Heegaard–Floer homology, [11], extends to an
action on bHF .Y; �I s/. Let  � † be a simple, closed curve representing the non-
torsion class h 2 H1 and missing every intersection point between an ˛–curve and
a ˇ–curve. Let a.; �/ be the intersection number in T˛ of  � Symg�1.†/\T˛
and u.1C i t/ where u represents � . This induces a map � 2Z1.�.T˛;Tˇ/;Z/. The
action of such a co-cycle is defined by the formula:

A�.Œx�/D
X

y2I.s/

X
�2D0.x;y/

�.�/ �
�
# cM.�/

�
Œy�:

A� preserves the summands bCF .Y; �I s; Œv�/. In addition, if ƒ � 0 then we can
replace D0.x; y/ by D.x; y/ in the map above see that usual action on bCF .Y; s/ is a
filtered chain morphism whose top term is the action on bCF .Y; �I s/.

Following the argument presented above that @2 D 0, we can verify that this is a chain
map. We can then proved the analog of [11, Proposition 4.17].

Theorem 3.3 There is a natural action of the exterior algebra,
V�

.H1.Y;Z/=Tors/
on the homology bHF .Y; �I s/, where � 2 H1.Y;Z/=Tors lowers degree by 1 and
induces a filtered morphism of the chain complex when ƒY � 0. Furthermore, this
action respects the splitting into the subgroups bHF .Y; �I s; Œv�/.

Proof To see that this is a chain map note that the formula in [11, Lemma 4.17] for
the coefficients of @A�˙A�@ still applies as it only depends upon the � and not upon
the filtration indices. That the relevant homotopy classes have positive multiplicity
allows us to use the argument above. As for the differential, any � used in �2.x; z/
with �.�/D 2 will give the same set of indices for z. The same observation applies to
[11, Lemmas 4.18 and 4.19].

In the next few sections, we will prove the following theorem, an extension of the main
theorem in [13] which provided the statement for null-homologous knots.

Theorem 3.4 For � � Y coming from a d –based link, the homology bHF .Y; �I s/ is
a relatively Zk=ƒ indexed invariant of L[D , considered up to isotopy, which is a direct
sum ˚bHF .Y; �I s; Œv�/ of sub-groups that are individually invariant. Furthermore, the
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relative Zk=ƒ–structure is invariant, although the precise assignment to cosets depends
upon the choice of F . There is a natural action of

V�
.H1.Y;Z/=Tors/ on each of the

summands.

Theorem 3.5 Furthermore, suppose the link L can be divided into two disjoint sets of
components, L1 and L2 , where L1 consists of only of null-homologous components.
As above, L1 induces a ZjL1j–filtration on the complex bCF .Y;D[L2I s/ which is
invariant up to filtered chain homotopy. The H1 –action will then act as ZjL1j–filtered
chain map on bCF .Y;D[L2I s/.

Comment Although it seems plausible, when ƒ 6� 0, to consider those � with
nz.�/ 2ƒ, this does not prescribe a differential. That � D �1 ��2 does not imply that
nz.�j / 2ƒ. Hence the terms in @2 may give rise to complementary boundaries one of
which does not arise from the definition of the differential.

4 Chain maps and the proof of invariance

4.1 Some chain maps of multi-pointed complexes

4.1.1 Push-forward filtration indices Let .†; f˛ig
g
iD1

; fˇig
g
iD1

; fig
g
iD1

/ be a Hee-
gaard triple equipped with marked points w; z1; : : : ; zk in the complement of the
attaching curves. We assume that M.†; fig

g
iD1

; f˛ig
g
iD1

/Š #lS1 �S2 . Let ‚C be
a closed generator, representing the generator of bHF .†˛; s0/ as an H1 –module. In
analogy with the three dimensional case, let ƒ˛ˇ be the lattice in Zk of vectors

.nz1
.T /; : : : ; nzk

.T //
where T is any triply periodic domain (including doubly periodic domains).

Given filtration indices on Y˛ˇ and Y˛ , the latter assigning ‚C to the index 0, we
can define a push-forward filtration index on Yˇ by

G.z/D F˛ˇ.x/C .nw � nz/. / mod ƒ˛ˇ

where  2 �2.x; ‚C; z/. The expression on the right does not change under the
addition of any triply periodic domains or the class ŒS �. Thus it does not depend
upon the specific homotopy class of triangles joining the three intersection points. Nor
does it change if we use a triangle abutting z but with a different initial point. Let
�1 2 �2.x0; x/, then

F˛ˇ.x/�F˛ˇ.x0/D .nw � nz/.�1/ mod ƒ˛ˇ
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when  0 D  ��1 , we find

G.z/D F˛ˇ.x0/C .nw � nz/. 
0/ mod ƒ˛ˇ

since ƒ˛ˇ �ƒ˛ˇ .

On the other hand, G is (almost) a filtration index for the Spinc –structure on the ˇ
boundary. Let � 2 �2.z; z0/ and  2 �2.x; ‚C; z/, then for  0 D � � ,

G.z0/�G.z/D .nw � nz/.�/ mod ƒ˛ˇ :

This fails to be a filtration index only because the relation holds modulo a larger lattice
than we would like.

4.1.2 Chain maps We continue in the setting of the previous section. As in [11]
and [15] we will now define chain maps for multi-pointed Heegaard diagrams. Let u

be a Spinc –structure on X˛ˇ , restricting to †˛ as the unique Spinc –structure with
torsion first Chern class. We may define a multi-pointed chain map

FuW
bCF .Y˛ˇ; �I ujY˛ˇ ;F/ �!bCF .Yˇ; �I ujYˇ ;G/

by

Fu.Œx�/D
X

z

X
 

#M. /Œz�

where z 2 I.ujYˇ /, and  is a homotopy class representing u with �. / D 0,
nw. /D 0 and nz. /� 0. That this is a chain map follows from the usual arguments
by examining ends of moduli spaces with �. 0/D 1. Note that the map has image in
the homology using the push-forward filtration, G . The latter is just taking the direct
sum of the homology groups associated to cosets of Zk=ƒYˇ , which map to the same
image when we additionally take the quotient under the image of ƒY˛ˇ .

If there is a j � k such that nzj .T /D 0 for all triply and doubly periodic domains we
can adjust Fu to be

Fu.Œx�;Fj .x//D
X

z

X
 

#M. /Œz;Fj .x/� nzj . /�

and let nzj . /� 0. This will then define a chain map for the chain groups where we
allow terms in the differential with nzj � 0. This latter chain group is filtered by the
value of Fj , and the chain map above will be a filtered chain map relative to the j th
coordinate of the push-forward filtration index.
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Example (ƒ˛ˇ � 0.) For example, we have a string link in S3 and the cobordism
is generated by surgeries on curves which are algebraically split from S . In this case,
the push-forward filtration satisfies

G.y/D F.x/C .nw � nz/. /

for every  representing a Spinc –structure on the cobordism restricting in a specified
way to the ends, and for any choice of a complete set of paths. The filtrations on the
ends are Zk filtrations and the chain map bF on the usual Heegaard–Floer homology,
bHF , is a filtered chain map. This situation occurs in the long exact skein sequence of
[13]. In S3 , a filtration index on each component can be calculated using the first Chern
class of a Spinc structure on the manifold obtained by performing 0 surgery on the
knot. In [13], P Ozsváth and Z Szabó show that, in the case under consideration, the
push forward of this filtration is the one determine by the first Chern class calculation
on Y1 and the formula above corresponds to their identity for c1 .

4.2 Invariance

To prove Theorem 3.4, we need to show that performing any of the following moves
will produce a chain homotopy equivalent complex.

� Handleslides and isotopies of fˇig
g
iD1

.

� Handleslides and isotopies of f˛ig
g

iDkC1
.

� Stabilization.

� Isotopies of f˛ig
k
iD1

and handleslides of them over element of f˛ig
g

iDkC1
.

Furthermore, we are not allowed to isotope or slide over any portion of the disc D0 .
We can, however, arrange for a ˇ curve to isotope past the entire disc. The resulting
diagram can be achieved by allowable handleslides in fˇig

g
iD1

because the disc is
contractible, [11].

We develop the proof of invariance through the multi-pointed diagrams; it precisely
mimics the proof for Heegaard–Floer homology, [11], and uses the same technical
results.

4.2.1 Invariance of the choice of F If we choose F 0W I.s/ ! Zk=ƒ to assign
intersection points to cosets, then for any x we have an element v 2 Zk=ƒ such that
F 0.x/DF.x/Cv . This permutes the summands in the decomposition of bCF .Y; �I s/

but does not alter the differential on each summand nor the differences F.y/�F.x/.
Thus the relative Zk=ƒ–structure remains intact. Furthermore, if nzi

.P/ D 0 for
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all periodic domains, the vector v will shift the i th coordinates but not change their
relative position. Thus upon letting Li induce a filtration on the chain complex where
we allow � into the differential with nzi

.�/ � 0, we will have a filtrated chain map
induced by the permutation, so the filtered chain type will also be invariant under
change of the filtration index.

4.2.2 Results on admissibility Strong/Weak admissibility can be achieved for all
our diagrams without disrupting the assumptions coming from � . We have seen the
existence of such diagrams already. In [11, Section 5] P Ozsváth and Z Szabó show
how to ensure that isotopies, handleslides and stabilizations can be realized through
such diagrams. In each case this is achieved by finding a set fig

g
iD1
�† of disjoint,

simple closed curves with the property that #.ˇi \ j /D ıi;j and that T˛ \T ¤∅
(or the same but with the roles of ˛ and ˇ switched).

We convert, through stabilization, our multi-pointed diagram into a diagram with an
embedded disc. We only need require that w and the entire disc do not intersect the
winding region. However, we may always choose our  to lie in the disc’s complement.
If we wish to wind the ˛ we can do the same, requiring only that each i that intersects
a meridian does so away from the segment in @D0 . With this arrangement of fig

g
iD1

the proofs of Lemmas 5.4, 5.6, and 5.7 of [11] carry through.

4.2.3 Invariance of complex structure and isotopy invariance In these cases, we
rewrite the chain maps defined in [11] to incorporate the new indices. For example, P
Ozsváth and Z Szabó define a chain map for a homotopy of paths of almost complex
structures which we adjust to be, cf [11]:

ˆJs;t
Œx�D

X
y

X
�

#MJs;t
.�/Œy�

where the sum is over all � with �.�/D 0, nw.�/D 0, and nz.�/D 0. The moduli
space consists of holomorphic representatives of � satisfying a Cauchy–Riemann like
equation depending on Js;t .

That the filtration index relation holds for all homotopy classes of discs, � , ensures
this is still a chain map and that it preserves the splitting of bCF .Y; �I s/ into a direct
sum of complexes, given a filtration index. Furthermore, when nzi

.P/ D 0 for all
periodic domains, the above map may be adjusted by allowing all homotopy classes
where nzi

.�/� 0. This new map is a filtered chain morphism, by the positivity of nzi
,

for the filtration provided by the i th coordinate of the filtration index.

We adjust the chain homotopy in [11] by considering homotopy classes such that
nw.�/D 0, nz.�/D 0. It is then a consequence of Gromov compactness that ˆJs;t
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has an inverse chain map up to homotopy, and thus the map above is an isomorphism
on homology. Furthermore, if nzi

.P/ D 0 for all periodic domains, we can extend
the homotopy inverse in the same way we extended ˆ above to obtain a filtered chain
map which is an inverse up to filtered chain homotopy. The invariance of the action of
H1.Y;Z/=Tors follows as in [11], adjusting the maps similarly in regard to z1; : : : ; zk .

For the isotopy invariance, the same argument applies (as the proofs are roughly parallel).
We write the chain map coming from the introduction/removal of a pair of intersection
points as:

�‰ Œx�D
X

y

X
�2�‰

2
.x;y

#M‰.�/Œy�

where we count holomorphic representatives with moving boundary, [11].

When we have a pair creation, we get new pairs of intersection points qC and q� along
with a holomorphic disc for a class in �2.qC;q�/. The homotopy classes of discs
joining intersection points from the original diagram do not change in this process, so
their relative indices do not change. We can compute the index for qC from any disc,
and then note that q� receives the same value in Zk=ƒ, using the newly introduced
holomorphic disc. Otherwise, the argument is the same as for invariance under alteration
of the path of almost complex structures. If zi introduces a filtration, as above, then
we can allow �‰ to include discs with nzi

� 0 to obtain a filtered chain map with up
to homotopy filtered inverse.

4.2.4 Invariance under handleslides The standard proof for handleslide invariance
applies in this context, using chain maps induced by a Heegaard triple as modified
below. We show below that the element corresponding to ‚C is still closed and explain
which additive assignment for homotopy classes of triangles will work.

We will describe this solely for the ˛ . Away from the curves involved in the handleslide,
the resulting boundary †˛ is the connected sum of genus 1 diagrams for S1 �

S2 . Because we have not moved a curve across a marked point, the corresponding
multi-pointed diagram has all the basepoints, w and zi , in the same domain D of
†n.f˛ig

g
iD1
[fig

g
iD1

/.

If we calculate the multi-pointed filtration indices for †˛ we see that 1) ƒ� 0 and
2) all 2g representatives of the torsion Spinc structure have filtration index 0. None of
the holomorphic discs have domain containing any marked points, so the homology
with marked points is isomorphic the standard homology for the connected sum of the
S1 �S2 . As usual, we will use the canonical generator ‚C , the maximally graded
generator for bHF .#gS1 �S2I s0/. We will use strongly admissible diagrams for the
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Spinc structures on the ends of the cobordism. The cobordism, X˛ˇ is then Y � I ,
after filling in the Y˛–boundary, so each triangle will represent s� I .

As in the proof of handleslide invariance in Heegaard–Floer homology, [11], our
diagrams may be drawn so that each intersection point in T˛ \Tˇ can be joined to an
intersection point x0 2 T \Tˇ by a unique holomorphic triangle  x 2 �2.x; ‚C; x0/
with domain contained in the sum of the periodic domains from †˛ . Because the
handleslide does not cross a meridian we can ensure that for these special homotopy
classes of triangles nw. x/ D nzi

. x/ D 0. If we identify �2.x; x/ with �2.x0; x0/
using  x then we implicitly have an identification H2.Y0/ŠH2.Y � I/ŠH2.Y1/,
an identification ƒY0

DƒY �I DƒY1
, and a push-forward index

G.x0/D F.x/C .nw � nz/. x/D F.x/ mod ƒY :

We can now repeat the argument from [11] using the chain maps described in the previ-
ous section, for the filtration index and its push-forward. Furthermore, associativity, up
to chain homotopy, can be established using moduli spaces holomorphic quadrilaterals,
and the push-forward filtration indices are compatible with the associativity relation,
since nw D nzj D 0 for all relevant homotopy classes of quadrilaterals. Lastly, in the
associativity relation, there will be can unique holomorphic representatives of homotopy
classes of triangles for Xˇı with nw D nzj and joining the maximal generators for
the torsion Spinc –structures in these boundaries. This follow again from the fact that
we do not allow handleslides with marked points in their supports. This is enough to
complete the argument in [11].

When nzj .P/D 0 for every doubly periodic domain, P , we can extend the chain map
to a filtered chain map for the filtration induced by zj on the chain group allowing
nzj .�/ � 0. The associativity argument also extends to this case, allowing us to
conclude that the filtration is invariant under the handleslide.

4.2.5 Stabilization invariance Stabilization changes the surface † to †0 D†#T2

and adds an additional ˛ and an additional ˇ curve, intersecting in a single point
c . Stabilization does not alter H2 nor does it affect the structures of �2.x; y/. We
make the necessary alterations for the gluing result, [11, Theorem 10.4], to hold. This
theorem provides the invariance under stabilization in the standard case. In addition, in
[11], P Ozsváth and Z Szabó show that the action of H1.Y;Z/=Tors is invariant under
stabilization. That this also applies to multi-pointed diagrams follows analogously to
the case of the differential.
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5 Additional chain complexes

We can use the multi-pointed data to more directly mimic the development of knot
Floer homology.

Definition 5.1 For s 2 Spinc.Y /, Let CF1
�
.Y I s/ be the ZŒU �–module

SpanZfŒx; i; v�jx 2 I.s/; i 2 Z; v 2 Zk
g

with U –action
U.Œx; i; v�/D Œx; i � 1; v1� 1; : : : ; vk � 1�:

Let CF�
�
.Y I s/ be the submodule where i < 0 and let CFC

�
.Y I s/ be

CF1� .Y I s/=CF�� .Y I s/

(with i � 0).

We pick an additive assignment.

Definition 5.2 An additive assignment for s is a map

AW �2.x; y/!H2.Y IZ/

for all x; y 2 I.s/, such that

(1) A.�1 ��2/D A.�1/CA.�2/,

(2) A.†/D 0.

We will also pick a basepoint x0 2 I.s/ and interpret nz.A.�// as nz.D/ where D is
the periodic domain corresponding to A.�/ in �2.x0; x0/.

Given an additive assignment and a basepoint, we can redefine filtration indices to have
image in Zk .

Definition 5.3 A filtration index, F , for s, is a map F W I.s/!Zk with the following
properties.

(1) Let nz.�/D .nz1
.�/; : : : ; nzk

.�// and nw.�/D .nw.�/; : : : ; nw.�//

F.y/�F.x/D .nw � nz/.�/C nz.A.�//:
(2) If zi and zj are in the same component of †n.f˛ig

g
iD1
[fˇig

g
iD1

/ then the i th
and j th coordinate maps, Fi and Fj , are equal.

(3) If zi is in the same component as w then Fi � 0, a constant map.
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(4) F.x0/� 0.

For any x there is a unique �x 2 �2.x0; x/ such that A.�/D 0 and nw.�/D 0. For
a periodic domain P 2 �2.x; x/, we let P 0 D ��1

x �P � �x . Then .A/.P 0/DA.P/.
When we add a periodic domain P to � , the right hand side of 1) will then change by
�nz.P/Cnz.P/D 0. Thus the filtration index is well-defined. Choosing a different
A alters the value assigned to each � by an element of ƒ. Changing x0 changes F to
F C v . Thus, modulo ƒ, the filtration index relation defines a relative Zk=ƒ–grading.

Given a choice of x0 2I.s/ and A. There is a differential, @1 on CF1
�
.Y I s/, defined

by the linear extension of

@Œx; i; v�D
X

y2I.s/

X
� 2 �2.x; y/
�.�/D 1

# cM.�/Œy; i � nw.�/; v� nz.�/C nz.A.�//�:

The differential is a ZŒU �–module map which also specifies a differential on CF˙
�

.

Definition 5.4 Let CF1.Y; �I s;A; x0/ be the subgroup of CF1
�
.Y I s/ generated

by those Œx; i; v� with

.v1; v2; : : : ; vk/� .i; i; : : : ; i/D F.x/:

It is then possible to find a more convenient complex.

Proposition 5.5 CF1.Y; �I s;A; x0/ is a subcomplex of CF1
�
.Y I s/ as a ZŒU �–

modules.

Sketch of proof We must check three requirements.

(1) That CF1.Y; �I s;A; x0/ is preserved by ZŒU �. This is a byproduct of the
filtration index relation.

(2) If Œx; i; v�2CF1.Y; �I s;A; x0/ and h@1Œx; i; v�; Œy; j ; w�i¤ 0 then Œy; j ; w�2
CF1.Y; �I s;A; x0/. This follows from the additivity of A and the filtration
index relation applied to calculating F.x/ using � 2�2.x; y/ with i�j Dnw.�/

and v�w D nz.�/.

(3) That .@1/2 D 0. It could be that a � D 2 class  has holomorphic moduli
space with boundaries �1 ��2 and �0

1
��0

2
, but such that the v–index changes

differently in the calculation for the two different boundaries. However, since
A, nw , and nz are all additive, this does not happen.
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Otherwise, we follow the proof in [11].

The action of H1.Y;Z/=Tors on the Heegaard–Floer homology, [11], also extends to
an action on the homology of the CF1.Y; �I s;A; x0/ by

A�.Œx; i; v�/D
X

y

X
f�W�.�/D1g

�.�/ �
�
# cM.�/

�
Œy; i � nw.�/; v� nz.� �A.�//�:

Combining the the techniques of [11] for the H1 –action with the previous sections one
can then prove the following theorem.

Theorem 5.6 For � coming from a d –based link. HF˙.Y; �I s/ and HF1.Y; �I s/

each have a relative Zk=ƒ grading which is an invariant of the isotopy class of the
d –based link. U acts non-trivially on this additional grading. Furthermore, there
is a natural action of the exterior algebra,

V�
.H1.Y;Z/=Tors/ on the homology

HF1.Y; �I s/, where � 2H1.Y;Z/=Tors lowers degree by 1.

The details are omitted, except to say that one adjusts all the chain maps, relative to an
additive assignment on a Heegaard triple, used in the usual proof of invariance in the
same manner as the differential was adjusted above, relative to an additive assignment
on the Heegaard diagram.

6 Basic properties of HF .Y; S I s/

Note For the remainder of the paper, we will think in terms of a string link, S , in
D2 � I , possibly with some framed link specifying a three-manifold other than S3 ,
but without reference to a d –base.

6.1 An example

In Figure 2 we examine the homology of a knot in S1 � S2 which intersects ŒS2�

precisely once. Regardless of the knot, K , we may find a diagram as in the figure.
The intersection points, after handlesliding, giving generators in the chain complex
are precisely ‚˙ � x, where x is a generator for the Knot Floer homology of K in
S3 . However, in the complex, only one of the two homotopy classes from ‚C to ‚�

does not cross the marked point, z . It is straightforward to verify that b@‚C � x D
‚� � xC‚C �b@K x. In each Spinc structure, the filtration index collapses; however,
the differential as above also produces trivial homology.
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Figure 2: 0–surgery on an unknot linked with K . The d –base follows the
dashed arc without twisting. The hatched part of the diagram includes the
effect of K on the ˛ (heavy) and ˇ (dashed) curves. The portion shown
in detail describes the linking and the surgery. Note that placing a meridian
instead of the framing curve gives a diagram for K . The intersection points
never use x1 or x2 , hence come from intersection points for the knot dia-
gram. Destabilizing the meridian for K produces a diagram where the only
holomorphic discs are those from the complex for K and for S1 �S2 .

6.2 Subtracting a strand

Suppose we remove a component strand of S � .Y �B3/ to obtain a new string link,
S 0 . We may use any of the complexes defined previously from a Heegaard diagram
for S to compute find the complex for S 0 by ignoring zk . The diagram without zk

is a Heegaard diagram subordinate to S 0 , and the differential incorporates the same
holomorphic discs. When Lk does not algebraically intersect any homology class in
Y , we can view the last coordinate, jk , as a filtration on the complex bCF .Y;S I s/ and
use the associated spectral sequence with E1 term ˚r

bHF .Y;S I s; Œj1; : : : ; jk�1�; r/

to calculate bHF .Y;S 0I s; Œj1; : : : ; jk�1�/. It collapses in finitely many steps.

Adding or subtracting an unknotted, unlinked, null-homologous component corresponds
to adding or subtracting an index which behaves like i . The Heegaard diagram
corresponds to stabilizing in the region containing w and placing a new point zkC1 at
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the end of an arc which crosses the new ˛ once geometrically and misses the new ˇ .
As zkC1 will still be in the same domain as w , so there is no change in homology.

6.3 Mirror string links

Let S � Y �B3 be a string link in standard form, lying in the plane which defined
the projection of our framed link diagram except in neighborhoods of the crossings.
Let s denote a Spinc structure on this manifold. Let S 0 be the string link found
through reflection in this plane, reflecting the framed components as well and switching
the sign of their framing. Then S 0 is the string link induced by S in �Y under
orientation reversal. Drawing a Heegaard diagram from a projection of .Y;S/, we may
use the same ˇ–curves, and change the ˛–curves for each crossing and framing to
obtain a diagram for a projection of .�Y;S 0/. Keeping the orientation of the mirror
plane fixed, we can compare portion of the three-manifolds on either side of the
mirror plane. The meridians intersect both sides; however, the marked points for S

lie on one side of the plane whereas their counterparts for S 0 , z0i , lie on the other
side of the mirror plane, since they too must be reflected. The intersection points in
T˛ \Tˇ from the original diagram are in bijection with those of the new diagram.
Each homotopy class � is carried to a new homotopy class �0 , but to join the same
intersection points it must map in with reversed multiplicities. All this implies that
we may calculate bHF �.�Y;S 0I s0/ by looking at the intersection points for .Y;S/
and the differential for the complex using �†. As in Heegaard–Floer homology, this
new complex calculates the co-homology bCF

�
.Y;S I s/; there is thus an isomorphism

bHF �.Y;S I s/ ! bHF
�
.�Y;S 0I s0/. (This isomorphism maps absolute degrees as

d!�d if s is torsion). Using the same marked points, but the image of the basepoint
and paths in the complete set of paths we find that �F will be a filtration index for S 0

when F is for S (ƒ.�Y;S 0/D �ƒ.Y;S/Dƒ.Y;S//. In particular, since each intersection
point has fixed image on each meridian, the boundary of a class � must contain whole
multiples of the meridian and so nzi

.�/D�nz0
i
.�0/ since the multiplicities reversed,

but nz0
i
.�0/D nzi

.�0/. In summary, there is an isomorphism (including the absolute
grading when present):

bHF
.�d/

� .Y;S I s; Œj �/! bHF
�

.d/.�Y;S 0I s0; Œ�j �/:

When Y D S3 and S is a normal string link, then S 0 is the mirror image of S found
by switching all the crossings. The change in indices corresponds to the alteration
ti! t�1

i in the Alexander polynomial (see Section 7).
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7 Alexander invariants for string links in D2� I

Let S be a string link in D2 � I . In this section we relate the Euler characteristic of
bCF .S I v/˝Q to classical Alexander invariants built from coverings of D2 � I �S .

7.1 Alexander invariants for string links

Let S �D2� I be a string link; let X DD2� I � int N.S/ be the complement of its
tubular neighborhood. Let E0 DX \ .D2 �f0g/ and E1 D @X � .X \ int D2 �f0g/.
Both are planar Riemann surfaces. By the Meyer–Vietoris sequence we have that
H1.X IZ/Š Zk , generated by the meridians of the strands in E0 . Denote by H the
ring ZŒt˙1

1
; : : : ; t˙1

k
� and let � W �1.X;x0/ ! H1.X;Z/ be the Hurewicz map for

some basepoint, x0 , made more specific below.

Definition 7.1 The torsion of a string link in D2�I , denoted �.S/, is the Reidemeister
torsion of the H–module H1. eX ; eE 1IZ/, where eX is the cover of X determined by
the Hurewicz map and eE 1 is the pre-image of E1 under the covering map. Note that
this is defined only up to multiplication by a unit of H.

This Abelian invariant first appeared in a paper of R Litherland, [9], on the Alexander
invariants of �kC1 –graphs. String links and d –based links can be seen through the
lens of �kC1 –graphs, and the definition above is then equivalent to that in [9]. P Kirk,
C Livingston and Z Wang, [7], were the first to use torsion properties in studying string
links. Their definition is slightly different, using the fundamental group, but they relate
it to the Reidemeister torsion of the based, acyclic co-chain complex C �.X;E0IF /

where F DQ.h1; : : : ; hk/ and the coefficients are twisted by the Hurewicz map. This
is essentially the same as our definition.

To compute �.S/ we will construct a relative cell decomposition for .X;E1/. We
start with a relative cell complex for .E0;E0 \E1/. Think of E0 as the unit disc
D2 minus non-overlapping, equal radii open discs centered at .i=k; 0/ for i D 1�

k; 3� k; : : : ; k � 3; k � 1. We use k one-cells, the first joining .1; 0/ to the boundary
of the disc centered at .k � 1/=k and lying on the x–axis, and each successive one
cell joining the boundaries of the discs centered at j=k and .j � 2/=k and lying
on the x–axis. The complement of the @E0 union these one cells is an open 2–cell.
This relative cell decomposition may be extended to the entirety of X by attaching
one-cells at each of the crossings in a projection of S , along the axis of the projection,
and then adding two-cells for each face in the projection with the exception of the
leftmost one, which we have called U . By the definition of a cell complex, there are
two-cells, F1; : : : ;Fk , arising from faces, that intersect E0 in each of the one-cells in
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the decomposition of E0 . The complement in X of @X union the one and two cells is
the interior of a single three-cell, which completes the decomposition.

We may collapse the two-cell in E0 into the union of E1 and the other two-cells by
contracting the three-cell. Likewise we may collapse the one-cells in E0 into the union
of E1 and the other one-cells by contracting F1; : : : ;Fk respectively. This leaves a
relative cell complex with an equal number of 1– and 2–cells. We call this cell complex
Y . The homotopy and homology properties of the pair .X;E1/ are determined by this
complex. In particular, the chain complex for eY , the lift of Y under the covering map
corresponding to the Hurewicz map, as a relative cell complex has a boundary map

0 �! C2.eY / e@�! C1.eY / �! 0:

Thus, H1. eX ; eE 1/ Š coker e@ , and e@ defines a square presentation matrix, P , for
H1. eX ; eE 1/. Let �W H ! Z be the homomorphism defined by substituting 1 for
each variable, and �.P / be the matrix found from P by applying � to each of its
entries. The �.P / is the boundary map for the relative chain complex for Y . Since
H1.X;E1IZ/Š 0, as E1 also contains all the meridians, �.P / is invertible and P

has non-zero determinant, �.S/.

It is easier to calculate P using Fox calculus applied to the fundamental group of the
complement of the string link, see Kauffman [6] or Burde–Zieschang [1]. We present
the fundamental group of X DD2�I �S by choosing a basepoint in D2�I �S and
loops through faces of the projection as generators. The crossings then provide relations
in the usual manner, and we obtain a presentation of the fundamental group, similar to
the Dehn presentation for a knot group, with k more generators than relations. If we
denote the generators by si and the relations by Rj then the matrix

�
@Rj
@si

�
found by

first applying free differentials @
@si

to Rj , then taking the image of each element in
H1.X IZ/ is presentation matrix for H1. eX ;ex 0/ as an H–module. This presentation
matrix has k more columns than rows, corresponding to the faces F1; : : : ;Fk . Ignoring
these columns corresponds to collapsing the faces, and the resulting square matrix gives
a presentation for H1.eY ; eE 1/.

7.2 Heegaard splittings and Fox calculus

Proposition 7.2 Let �.S/ be the torsion of H1. eX ; eE 1/ as in the previous subsection.
Then �.S/ equals, up to multiplication by a unit,X

v2Zk

�.bHF .S; vIQ//tv1

1
� � � t

vk

k
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where bHF .S; vIQ/ is the homology of bCF .S3;S I v/˝Q and the Euler characteristic
is taken with respect to the canonical Z=2Z–grading, [11].

We will prove this using Fox calculus. Various other authors have used much the
same argument in different settings; J Rasmussen provides a very similar argument for
Heegaard diagrams for three-manifolds in [17].

Proof Let S be a string link in D2 � I . We consider the standard Heegaard decom-
position induced from a projection described in section 1. Let H˛ be the handlebody
determined by f˛ig

g
iD1

, and Hˇ be the handlebody determined by fˇig
g
iD1

. We assume
that our meridians lie in D2 � f0g. In such a diagram, each x 2 T˛ \Tˇ has only one
choice for its representative point on each meridian (an intersection with the attaching
curve for one of the faces F1; : : : ;Fk ). This corresponds to collapsing these faces in
the relative cell complex.

We take as our basepoint, p0 , for �1.X / the 0–cell in Hˇ . For each of the faces,
we choose a path fi , the gradient flow line oriented from the basepoint to the critical
point corresponding to ˇi which links the core positively in S3 . The other gradient
line oriented from the index 1 critical point to the 0–cell will be called f i . The loops
bi D f i ıfi generate �1.X;p0/.

The ˛ , not including the meridians, induce the relations for a presentation of �1

corresponding to the Dehn presentation of the fundamental group, [6]. We choose
an intersection point u 2 T˛ \Tˇ which corresponds to points ui 2 ˛�.i/\ˇi in †
for some permutation � 2 Sg . Note that the choice along the meridians is prescribed
for each such intersection point: there are k meridians and kC 1 faces intersecting
them, but we cast one aside. This arrangement implies that our only choices occur
on the non-meridional ˛ . For a non-meridional ˛ , let Œ˛�.i/� be the path from the
basepoint, along fi , through the attaching disc for ˇi to ui , and around ˛�.i/ with the
its orientation, and then back the same way to the basepoint. Each time Œ j̨ � crosses ˇi

positively, we append a bi to the relation; each time it intersects negatively we append
a b�1

i . The word so obtained is called ai . We derive this principle by looking at the
segments ˛s

j into which the ˇ cut ˛i and flowing them forwards along the gradient
flow. The interior of each segment flows to the basepoint, while the endpoints flow to
critical points in the attaching discs for the ˇ . Thus, the path from one endpoint of
the segment, to the critical point corresponding to that ˇs , then along some f �1

s or

f s , and back along one of ft or f
�1

t , then to the other end of the segment, and back
along the segment, is null homotopic. This allows us to break the ˛ up into the various
ˇ it crosses.
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Then
�
@aj
@bi

�
, ignoring the columns corresponding to the faces abutting D2 � f0g, is

a presentation matrix for the H–module H1. zX ; zE1/, and hence its determinant will
provide the Alexander invariant.

If we consider the free derivative of aj with respect to a bi we find terms which
correspond to each intersection point of j̨ with ˇi . The term possesses a minus
sign when the two intersect negatively, otherwise it possesses a positive sign. The
terms correspond to paths from the basepoint through f��1.j/ to ˇ��1.j/ , through the
attaching disc to u��1.j/ , along j̨ to the intersection point with ˇi and then back
along f �1

i . This can be rewritten as a word in the bi . Summing over all intersection
points with ˇi equals @bi

.aj /.

Let � be is the Hurewicz map from the fundamental group to the first homology
group. According to the Fox calculus, the matrix Œ�.@bi

aj /�, is a presentation matrix
for the homology of the cover as an H–module. Again, we ignore the bj corre-
sponding to the faces abutting D2 � f0g. We calculate the Alexander invariant by
computing the determinant of this matrix. Each term in this determinant has the form
sgn.�/.�1/#h

�1

1
� � � h

�k

k
, where �i is the sum of the powers of hi over the terms in

the determinant multiplying to this monomial; we do not allowing any cancellation of
terms. This monomial corresponds to a specific intersection point in T˛ \Tˇ found
from the pairing of rows and columns in the matrix. Likewise # is the number of
negative intersections ˛�.i/\ˇi in the g–tuple corresponding to this term.

Let x and y be two intersection points. We will consider the differences

#y� #x �i.y/� �i.x/:

Since we are considering points in T˛ \Tˇ for a diagram of S3 , there is a homotopy
class of discs � 2 �2.x; y/.

We place marked points in the diagram corresponding to the strands and according to
our conventions. We may measure how many times a 2–chain in X , representing a
homotopy class of discs, � , intersects the link components by evaluating .nw�nzi

/.�/.
We wish to show that

�i.y/� �i.x/D .nw � nzi
/.�/:

The right hand side counts the number of times that that the boundary of D.�/ winds
around the i th meridian. We need only show that the same is true of the left, or,
equivalently, that �i , the i th coordinate of the boundary, equals the left hand side.

In the boundary of the disc we have the ˛ oriented from the points in x to those in
y. We can take segments starting at ui and traveling along ˛�.i/ to xi and yi so that
their difference is the oriented segment of the boundary of � in ˛i . We join this to the
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basepoint by using paths in the attaching discs for the ˇ and the preferred paths fj

or f �1
j at each endpoint. Breaking this up as before, we can convert this path into a

word of bi and their inverses. If we look at one of the ˇi boundary segments in � ,
we see that the concatenation of the words for the ˛ segments corresponding to the
intersection points with ˇi homotopes into the ˛ boundary and the ˇ boundary of � .

Thus �i of the concatenation equals �i of the boundary of D.�/. Furthermore, �i

applied to each word of the concatenation tells us how many more times the segment in
one ˛ corresponding to y, converted into a word of generators, wraps around the i th
meridian than does the segment corresponding to x. Taking �i of the concatenation
gives the sum of these differences, or �i.y/� �i.x/.

We now consider the difference in # between the two intersection points. The intersec-
tion point determines a permutation �x where xi 2 ˛�.i/\ˇi . We orient T˛ by the
projection ˛1 � � � � �˛g! T˛ , and likewise for Tˇ . The orientation of Symg.†/ is
given by the orientation of Tx1

†˚ �˚Txg
†. Then T˛ \x Tˇ has local sign

sgn.�x/.�1/
g.g�1/

2 � .˛�.1/\x1
ˇ1/� � � � � .˛�.g/\xg

ˇg/

or
sgn.�x/.�1/

g.g�1/
2 .�1/#.x/:

The difference in sign between y and x is then multiplication by sgn.�y/sgn.�x/ �

.�1/#y�#x . This is also the difference in sign between terms in the determinant, and
corresponds to the Z=2Z grading in Ozsváth and Szabó [12, Section 10.4].

Thus, if we consider those intersection points with �.x/D v , for a given vector v , we
recover the intersection points for a given filtration index since � satisfies the index
relation. In addition, these each correspond to the term h

v1

1
� � � h

vk

k
and occur with sign

given by the Z=2Z grading of the Heegaard–Floer homology, which is also the sign of
the corresponding term in the determinant. For rational coefficients, the sum of these
generators with sign is the Euler characteristic of the homology group corresponding
to v for this filtration index.

8 State summation for Alexander invariants of string links in
S 3

For the Heegaard diagram derived from a generic projection of a string link S in
D2 � I we can give a more precise description of the generators of bCF .S3;S I s0/

in terms of the combinatorics of a planar graph. The intersection points of T˛ \Tˇ
will correspond to a subset of the maximal spanning forests of this graph, subject to
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certain constraints imposed by the meridians. As in [10; 5], we will then use these
forests to compute the coordinate functions, Fi , for a filtration index, and a function
G , which will yield the grading of the corresponding generator of bCF . We do this
by showing that certain sums of weights assigned to each crossing of the projection
satisfy the same relations, relative a homotopy classes � , as the indices and gradings of
the chain complex. As we have already seen that the Euler characteristic of the chain
complex, suitably interpreted, gives �.S/, we will also obtain a combinatorial way
to compute �.S/ from a state summation. Once we have adapted the spanning tree
construction to apply to string links, the argument is an analog of the argument in [10],
albeit with more cases.

8.1 Planar graph preliminaries

We consider planar graphs in the unit square, I2 . Choose a number, k , and place k
2

vertices, marked by �, along the bottom edge when k is even ( kC1
2

when k is odd).
Place additional vertices, labeled by �, along the top edge until there are k vertices
in total. Let � be a connected, planar graph in I2 which includes these vertices, but
whose other vertices and all its edges are in the interior of the square. We let F be a
maximal spanning forest for �, with a tree component for each � on the boundary,
rooted at �, and oriented away from its root.

We may define a dual for � by taking its planar dual inside I2 , �� , and placing
the vertices that correspond to faces of I2 �� touching @I2 on @I2 . Since � is
connected, this choice of arc on the boundary is unambiguous. There is one vertex
which corresponds to the left side of the square. We replace it with an � and continue
counter-clockwise, changing boundary vertices to � until we have altered k

2
C 1 (or

kC1
2

, k odd). This graph must also be connected.

We say that F admits a dual forest if the edges in �� corresponding to edges of ��F

form a maximal spanning forest, F� , with each component rooted at a single �. In
that case, we orient the forest away from its roots. Not every F admits a dual forest: a
component of F� may contain two �. We consider the set F of forests in � that are
part of a dual pair .F;F�/. We will encode F� in the diagram for � by inscribing
the edges in ��F with a transverse arrow which concurs with the orientation of F� .

Now consider a string link, S in D2 � I and a generic projection of S into I2 . We
decompose S D S1[ � � � [Sl , where each Sj consists of a maximal string link with
connected projection, ie one whose projection into I2 forms a connected graph.

Lemma 8.1 For the Heegaard decomposition of S3 defined by the connected projec-
tion of a string link, S , there is a one-to-one correspondence between the generators of
bCF .S/ and the set of dual pairs, F , for a planar graph �� I2 as above.
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Figure 3: An example of the ancillary graph for a simple string link.

Proof The regions in I2�p.S/ can be colored with 2 colors as the projected graph is
4–valent. We label the leftmost region with the letter “U ” and color it white. We then
alternate between black and white across the edges of the projection. By using vertices
corresponding to the black regions and edges corresponding to crossings where two
(not necessarily distinct) black regions abut, we may form an second planar graph. For
those regions touching the border of I2 , the vertex should be place on the boundary.

We replace the vertex of each black region abutting the bottom edge of I2 with an
�. Thus, we have a graph embedded in D2 with k vertices on the boundary, kC1

2
of

which are � when k is odd and k
2

when k is even. An example is given in Figure 3.
In particular, � is connected: starting at a vertex of � inside a black region of p.S/

we can take a path to p.S/ and follow p.S/ to a point in the boundary of any other
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black region. Since any edge of p.S/ touches a black region, we may then perturb the
path into the black regions and find a corresponding path in the graph of black regions.
If we place the U in all the white regions abutting the bottom edge of I2 , then the
graph of white regions is connected and, replacing the U with � is the dual graph,
�� , from above.

Suppose we use the Heegaard decomposition of S3 arising from the diagram for S .
Following [10], we describe an intersection point in T˛ \ Tˇ by local data at the
vertices of p.S/. For each non-meridional ˛ there are four intersection points with
fˇig

g
iD1

, corresponding to the four regions in the projection abutting the crossing
defined by ˛ . For each meridian there are one or two intersection points depending
upon whether it intersects the region U . However, there can be only one choice along
all the meridians which assigns each meridian to a distinct ˇ . We will place a � in the
quadrant corresponding to the intersection point at each vertex.

Every intersection point corresponds to a pair of dual maximal spanning forests in
the black and white graphs of the projection. The unique choice along the meridians
corresponds to the rooting of the forests. We then choose the edges in the black graph
which join two regions through a quadrant marked with a �. As each black region
contains a �, this produces a subgraph, F , containing all the vertices of �. We can
perform the same operation in the white graph to obtain a second sub-graph.

Furthermore, all the components of these sub-graphs are trees. A cycle in F would
bound a disc in S2 not containing a region labeled U . Rounding the crossings of p.S/

along the cycle, we find a 4–valent planar graph with Bin crossings and BinC1 faces
not touching the cycle. The original intersection point must form a 1�1 correspondence
between these faces and crossings as all the surrounding faces were consumed by the
cycle. There can be no such identification and thus no cycle in the black graph.
Similarly, if the intersection point does not produce a forest in the white graph there is
a contradiction. Thus we have two maximal spanning forests.

Every component must contain precisely one �. It cannot contain more as there is a
� for each edge in the tree and for each root. In order for the number of edges plus
roots (the ˛ ) to equal the number of ˇ there must be precisely one root. Thus the two
sub-graphs are a dual pair of maximal spanning forests for the graphs of black and
white regions.

Conversely, the arrows on the edges of � found from a dual pair .F;F�/ tell us how to
complete the assignment of the ˛ to ˇ from the unique assignment along the meridians:
for each non-meridional ˛i we choose the intersection point in ˛i \ˇ�.i/ pointed to
by the arrow on the edge corresponding to the crossing defined by ˛i . The existence of
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F� ensures that no arrow contradicts the assignment along the meridians by pointing
into a region labeled with U .

8.2 A variant of the clock theorem

We will now examine the structure of the set of dual maximal spanning forests. As in
Gilmer–Litherland [2] we consider two moves performed on the decorations a dual pair
inscribes on �: the clock and counter-clock moves. These are moves that interchange
the two pictures in Figure 4. There should be a face – not labeled with a U – of I2��

abutting these two edges at their common vertex. Note that this allows a portion of �
to be wholly contained in the interior of the face.

Figure 4: The clock (!) and counter-clock ( ) moves on maximal forests
at a vertex. The central sub-tree should be wholly contained in the face around
which the move is made.

A clock move performed on a forest, F , in � corresponds to a clock move performed
on F� in �� . These moves take dual maximal forest pairs into dual maximal forest
pairs. If the edge with the transverse arrow joins two distinct components of F , then
the new oriented sub-graph, F 0 , of � after the clock move is still a forest. The portion
of F beyond the vertex where the move occurs is a tree which does not contain the
vertex on the other component. The clock move merely prunes this portion of F and
glues it to the other component. If the edge with transverse arrow joins vertices in
the same component of F , it is conceivable that a cycle could form. However, this
can only happen if the original transverse arrow points out of the disc bounded by this
cycle, and thus a root of the dual graph must be contained in the cycle. Since those
roots lie on @I2 , this cannot happen.

For a connected, finite planar graph, �, with only one root, the structure of maximal
spanning trees is already understood, [2; 5]. We require that the root be in the boundary
of U , the unbounded component of R2��. Pick one of the trees, T . Each additional
edge in �, when adjoined to the tree, divides the plane into a bounded and an unbounded
component. Draw an arrow pointing into the bounded component along each of these
edges. This is the decoration inscribed by the dual tree as before.

In [2], Gilmer and Litherland reprove and strengthen Kauffman’s clock theorem, [5].
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Theorem 8.2 (The Clock Theorem) The set T of maximal, spanning trees is a
graded, distributive lattice under the partial order defined by T � T 0 if we can move
from T to T 0 solely by using clock-moves.

We will only need that any T 2 T can be obtained from any other T 0 by making
clock and counter-clock moves. It is shown in [2] that only a finite number of clock (or
counter-clock) moves can be made successively before we reach a tree not admitting
another such move. Furthermore, this tree is unique for the type of move. Therefore,
we can go from any tree to any other by continually making clockwise moves until
we reach the unique un-clocked tree and then make counter-clock moves to get to the
other tree.

8.2.1 The clock theorem for forests Our analog of the clock theorem is the following
lemma.

Lemma 8.3 The dual pairs .F;F�/ for the graph of black regions, �, found for a
connected projection of a string link may be converted, one into another, by clock and
counter-clock moves performed on the decorations coming from the rooting of the
string link.

Proof The vertices @I2 divide the boundary into arcs. We draw an arrow into the the
regions labeled by U , across the corresponding arcs. Place arrows pointing out along
the other edges. A dual pair .F;F�/ for the string link S extends these arrows in the
sense that each face has exactly one arrow pointing into it.

� � � � � �

Figure 5: Graphs in I2 admitting a unique pair of maximal spanning forests.
In particular, no counter-clock moves can be performed in them. Furthermore,
embedded appropriately in a planar graph with a maximal tree inscribing the
same decorations, no counter-clock move in the planar graph can alter the
decorations in this region. We use the one on the left when k is even, the one
on the right when k is odd.

We use the arrows on @I2 to extend � to a planar graph with a single root, so that
each dual pair .F;F�/ corresponds to a unique maximal spanning tree in the resulting
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graph. To do this we consider a new square with the reverse of the decorations (“out”
goes to “in” and vice-versa) on the boundary of the old square, with the exception that
the decorations on the right edge and the first root from right to left remain the same.
We can then extend these decorations by a graph, �0 , and a dual pair as in Figure 5.
By inspection, these are the unique decorations providing a dual pair of forests in this
graph and extending the boundary conditions. (No two arrows may point into the same
white region, if the dual is to be a forest).

We can glue this decorated graph to the one from S to obtain a planar graph where
there is only one U , corresponding to the leftmost edge of S , one �, and the pair
.F;F�/ becomes the decorations from a maximal spanning tree as in the clock theorem.
Furthermore, a maximal spanning tree in the glued graph inscribing the decorations on
the �0–portion as in Figure 5 corresponds to a maximal pair .F;F�/ in the graph of
black regions for S .

Now we perform counter-clock moves until we reach the maximally clocked tree. At
no time do these moves disrupt the decorations in the �0–portion. No such move can
occur on a face in �0 as there is no vertex with the requisite arrangement of tree edge
and transverse arrow. Furthermore, the �0 region can be disrupted from outside only
when a counter-clock move occurs on a face abutting �. Noting that the arrows point
out of the vertices on the bottom, and into the vertices on the top, inspection shows that
no counter-clock move can occur on such a face at a vertex from �0 . This is not true
for clock moves, which can occur on the top left of �0 . Finally, since the transverse
arrows point into the faces that were formerly labeled by U , these arrows are never
altered. Consequently, no counter-clock move ever involves a face formerly labeled
with U . However, as any forest pair for S may be extended to a tree for the new
graph and counter-clocked to the maximal clocked tree, there is always a sequence of
counter-clock and clock moves, not involving �0 , which connect any two pairs for
S .

8.3 State summation

Following [10], we will prescribe weights at the crossings of the string link as in
Figure 6, and extend those weights to apply to more than one component. For each
intersection point in T˛\Tˇ , we consider the associated dual pair .F;F�/ and locally
place the � in the quadrant at each crossing pointed to by the arrow on the edge of
� corresponding to that crossing. We sum the weights from the marked region at
each crossing and meridian. Likewise, there are weights to calculate the grading for
each intersection point, see Figure 7. For each intersection point we add the weights
over all the crossings without considering which strands appear. The meridians do not
contribute to the grading.
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Figure 6: Filtration weights depicted for the thick strand. If this strand is the
i th strand then the weights contribute to a sum computing Fi . The meridians
do not contribute to any of the weights; nor do crossings not involving the
thick strand contribute to the computation of Fi .

+1−1

Figure 7: Weights for the absolute grading.

Proposition 8.4 Let .F;F�/ be a dual pair of forests for the graph �, arising from
a projection of the string link S �D2 � I . At each crossing, c , the dual pair assigns
an arrow pointing into one of the quadrants. Assign a value �i.c/ given by the weight
in Figure 6, with the thick strand being the i th strand, in the quadrant determined by
.F;F�/. Assign a value g.c/, by taking the weight in Figure 7. Let x be the generator
of bCF .S/ corresponding to .F;F�/. Then

Fi.x/D
X
c2C

�i.c/
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where C is the set of crossings, defines the i th coordinate in a filtration index for S ,
and

G.x/D
X
c2C

g.c/

is a relative Z–Maslov grading for x.

Note For a single knot in S3 , a string link consists solely in the choice of a point on
the knot. This gives a preferred position for the meridian and the two points w; z used
in [13] to calculate the knot Floer homology. The weights then agree with those of
[10].

Proof When we change from the intersection point obtained from one tree to that of
another tree, differing by a clock or counter-clock move, we have shown that the change
in the exponent of ti in �.S/ is given by .nw�nzi

/.�/ for any � in �2.x; y/ that joins
these intersection points. Once we verify that this also equals the change in the weights
for Fi , we will have the result. As the Heegaard diagram describes S3 , an integer
homology sphere, such a class � must exist. Since the dual pair .F;F�/ coming from
an intersection point can be obtained from the dual pair for any other intersection point
by clock and counter-clock moves, we may then compute the difference in exponents
for any two intersection points by looking at the difference in the overall weights. the
same argument will apply to comparing G with the Maslov grading.

We must now show that the difference in grading and filtration values between one
maximal forest and the forest that results after a clock or counter-clock move equals
.nw �nzi

/.�/ for some � . We denote the local contribution to each intersection point
by placing a � or ı at each crossing. We will assume that � and ı are identical for
crossings that are not depicted. Following the definitions of maximal trees and clock
and counter-clock moves given above, we can verify that the moves from ı to � fulfill
our requirements and exhaust all possible moves. We break the argument up into cases.

Case I Figure 8 shows the cases where a counter-clock move joins intersection points
at two crossings (not meridians). These correspond to unique discs, namely squares,
“atop” the Heegaard surface. As the squares do not cross any of the multi-points, there
will be no change in exponents corresponding to any of the three strands. This equals
the change in the weights. On the other hand. squares always have a one dimensional
space of holomorphic representatives, so the intersection point ı has grading 1 greater
than � in Heegaard–Floer homology. This equals the change in the grading weights.

Case II Figure 9 shows the same alteration but with a different configuration of
under and over-crossings. The homotopy class we choose is now a “square” with
punctures and handles added to it. In particular, the disc travels off the end of the
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Figure 8: Case I: Weights, depicted for the horizontal strand, do not change
under the alteration from ı to � . The thin strands do not need to come
from the same component. The thin component on the left receives weight
0 from these configurations. The thin strand on the right receives the same
weight from ı and � . The grading change occurs along the middle strand, as
inspection of the crossings shows.

figure in the direction of the knot picking up punctures at crossings and joins punctures
into handles if it happens to go through the same crossing twice. It terminates on the
meridian corresponding to the horizontal strand. Thus, the filtrations remain unchanged
except in the i th component. But the “disc” passes over zi once, so Fi.�/�Fi.ı/

D .nw � nzi
/.�/ D�1. In [10], P Ozsváth and Z Szabó show that �.�/D 1 for such

a class, so the grading change equals the change in grading weights.

Case III For the other cases with three distinct strands, the strand on the right
should go under the horizontal strand. However, if we rotate the figures in cases (1)
and (2) 180ı using the horizontal strand as an axis, we get precisely those cases. The
disc also rotates and occurs “beneath” the Heegaard diagram. This disc represents
a counter-clock move; However, we will still calculate the difference for a clock
move from ı to �. For this we use ��1 with D.��1/ D �D.�/. The weights on
the horizontal strands reflect across the horizontal strand as do the weights for the
grading. The weights for the thin strands remain the same. Thus FIII

i .�/D FII
i .ı/

and FIII
i .�/�FIII

i .ı/ D �
�FII

i .�/�FII
i .ı/

�
D C1 for those configurations in

case II. But .nw � nzi
/.��1

III
/ D �.nw � nzi

/.�III / D �.nw � nzi
/.�II / D C1 as

�II and �III include the i th meridian the same number of times.

Algebraic & Geometric Topology, Volume 9 (2009)



Heegaard–Floer homology and string links 73

?

6

6cs cs cs cs

cs cs cs cs

6

�

6

�

?

��

?

?

C
1
2
C

1
2

C
1
2

C
1
2

�
1
2

�
1
2

C
1
2

C
1
2

�
1
2
�

1
2

�
1
2

�
1
2

C
1
2

�
1
2

�
1
2

C
1
2

Figure 9: Case II: Weights, depicted for the horizontal strand, reduce by 1

under the alteration from ı to � . The same comments as in the caption for
case I apply to the thin strands and the grading.

Case IV In the cases where two or more of the above strands are in the same
component, we employ the following observations: 1) if the two thin strands belong
to the same link component, then nothing changes, and 2) if the horizontal strand
corresponds to the same component as one of the thin strands (or both), the sum of the
weights in each quadrant differs by the same amount from that quadrant’s weight as a
self-crossing. Thus the difference between intersection points of the sum is the same as
the difference of the self-intersection weights. The grading computations don’t change.
Inspecting the values in Figure 8 and Figure 9, we see that the filtration difference still
equals the difference in the weights for the horizontal strand.

Finally, we have implicitly assumed that the horizontal strand between the two inter-
sections is locally unknotted. Local knotting alters the topology of the domain D.�/
above. Take the square in case I. If we knot the horizontal strand, there is still a class � ,
with positive domain, joining the two intersection points, but it is a punctured disc with
the same four points on its outer boundary, and one point that is both � and ı on each
of its other boundaries. These new boundaries come from the faces in the projection
of the local knot, and consist entirely of ˇ curves. The ˛ curve at each intersection
point on such a boundary joins that boundary to another boundary ˇ , possibly from
the original square. According to R Lipshitz, in [8, Proposition 4.8], we can compute
�.�/ as e.D.�//C nx.�/C ny.�/. Here e.D.�//D .1� n/� 1, where 1� n is the
Euler characteristic of the domain of � , and we subtract 1 due to the contributions
of the acute angles from the square. Furthermore, nx.�/D ny.�/D

1
2
C

n
2

. The first
summand, 1

2
comes from the two points on the quadrilateral boundary, whereas the
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other n
2

comes from the point on each of the other boundaries. Adding these shows
that �.�/D 1.

Proposition 8.5
G.x/D

X
c2C

g.c/

is the absolute Q–grading for x as a generator of bCF .S3/.

The proof occupies the the remainder of this section. The argument in [10] adapts
readily to show that gr.y/� gr.x/ is the same as the difference in weights. However,
we will show that there is an intersection point for which the sum of the weights above
is the absolute grading obtained from the Heegaard–Floer theory. Thus the sum of the
grading weights will equal the grading for every intersection point since the difference
between these is equal for distinct intersection points. We will need a lemma before
we proceed.

Lemma 8.6 Let G � R2 be a finite graph and let H˛ be the handlebody that is its
regular neighborhood in S3 . Then S3�H˛ is a handlebody with the co-cores of its
one-handles corresponding to the bounded faces of R2�G . We choose these co-cores
to be the fˇig

g
iD1

of a Heegaard diagram for S3 . Suppose that f˛ig
g
iD1

contains ˛
which intersect at most 2 ˇ , each geometrically once. Furthermore, assume that each
˛ links exactly one edge of G . Then there is only one point in T˛ \Tˇ .

Proof Suppose x and y are points in T˛ \Tˇ and x¤ y. Then xD fx1; : : : ;xgg

and yD fy1; : : : ;ygg where xi 2 a�.i/ \ˇi and yi 2 a .i/ \ˇi with �;  2 Sn . If
x¤ y then  �1 ı � is not the identity. It must therefore have a decomposition into
cycles with at least one of length greater than or equal to 2. In the planar graph formed
by placing a vertex in each bounded face of �, and an edge between each pair of faces
abutted by an ˛ curve, each non-trivial cycle in the cycle decomposition corresponds to
a cycle in the graph. Each cycle in the graph implies the existence of a collection of ˛
that are null-homologous in †, contradicting the Heegaard assumption. Thus at most
one intersection point exists. Since bHF .S3/' Z.0/ , there is at least one intersection
point, x0 .

Starting with a string link in S3 , we use handleslides to construct a Heegaard diagram
as in the lemma. The intersection point in this Heegaard diagram will correspond to
one in the diagram for the string link. We will ensure that the handleslides do not
alter the absolute grading. The intersection point for the string link must then have
absolute grading equal to 0. This will also be the value of G.x/ for that intersection
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point. Since we know that G.y/�G.x/D gr.y/� gr.x/, the weights above will give
the absolute grading of each intersection point.

To obtain an acceptable diagram, it suffices that the new ˛ link an edge entering the
crossing defined by the old ˛ before the handlesliding as the weights for the grading
only occur in the quadrant between the two edges exiting a crossing. The unique
intersection point will then correspond to an old intersection point with G.x/D 0. We
ignore the points fz1; : : : ; zkg to find a pointed diagram for S3 .

We order the crossings in the string link projection by the following conditions. Each
crossing of Lk is larger than any crossing of strands Li and Lj with i; j < k . For
any k , the crossings with Li for i � k are enumerated from largest to smallest by the
first time they are encountered while travelling backwards along Lk from the meridian.
We adjust each crossing in increasing order by starting at that crossing (either for Lj

with itself or between Li and Lj with i � j ) and isotoping and handlesliding the
˛–curve in the direction of Lj , going over all the ˛ along that route. At self-crossings
we choose to follow the edge which exits the crossing and arrives at a meridian without
returning to the crossing. When we arrive at the meridian we handleslide across it,
and then repeat the procedure in reverse. This produces an ˛ linking the penultimate
edge through the original crossing. Furthermore, for each crossing the ordering implies
that there is a path to the meridian along the orientation of one or other strand, along
which the crossing does not recur, and such that none of the ˛ encountered have been
previously altered.

The handleslides do not take the ˛ across w . By inspecting the standard handleslide
diagram, [11], we can see that the new intersection point is in the image of one of
the original intersection points under the handleslide map, the one with marking in
the same quadrant at each crossing, under the composition of the handleslide maps.
The cobordism induced by the handleslides is S3 � I , so the formula calculating the
change in absolute grading implies that the grading does not change. Moreover, since
the triangle does not cross w we know that the image is Œx0; 0� which has absolute
grading zero. This equals the absolute grading assigned by the weights.

8.4 Euler characteristic calculations

We have seen that x 2 T˛ \Tˇ corresponds to an assignment of a quadrant to each
crossing in a projection of S . Let G.x/ be the sum of the grading weights over the
quadrant corresponding to x at each crossing. Likewise let Fi.x/ be the sums of
weights assigned to the i th strand over each crossing. To each intersection point in
T˛ \Tˇ assign the monomial

.�1/G.x/h
F1.x/
1

� � � h
Fk.x/
k
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in ZŒh˙1
1
; : : : ; h˙1

k
�. From the previous section we know that the sum of these mono-

mials will equal X
v2Zk

�.bHF .S; vIQ//tv1

1
� � � t

vk

k

up to multiplication by a unit, given the indeterminacy of the filtration indices. Therefore,
the Laurent polynomial

rS .h1; : : : ; hk/D†x.�1/G.x/h
F1.x/
1

� � � h
Fk.x/
k

is the torsion of the string link, defined up to multiplication by a unit. Furthermore, it
satisfies the Alexander–Conway skein relation in hi at self-crossings of Li . The proof
is a comparison of the weights assigned to forests in the projections for the positive,
negative, and resolved crossings. In fact, the three Reidemeister moves also preserve
this summation.

We now show how the particular choice of weights actually normalizes the torsion.

Proposition 8.7 Let Li be the knot which corresponds to ignoring all the strands
except the i th. The polynomial rS .h1; : : : ; hk/ evaluates to �Li

.ti/, the Alexander–
Conway polynomial of Li , upon setting hj D 1 for j ¤ i .

It is shown in [10] that for 1–stranded string links (marked knots) r and � are
identical. The proof follows from two observations: 1) from Kauffman, that the
polynomial formed by the weights at crossings is the Alexander–Conway polynomial,
and 2) that the polynomial formed by using the first Chern class as the filtration index is
symmetric due to the symmetries of Spinc –structures on the three manifold found from
0–surgery on the knot. Since both schemes assign values to intersection points that
satisfy the filtration relation, and both produce symmetric polynomials under h! h�1 ,
they must be equal. For string links, we do not have an analog of the first observation,
and thus will resort to model calculations. In particular, it is not sufficient to simply
ignore all the strands but one (ie using only zi and ignoring the other marked points)
and appeal to the case for knots. The argument in [10] applies to a specific type of
Heegaard decomposition for a knot, and while we may ignore all the zi but one, the
projection of a string link is still not such a Heegaard decomposition, due to the other
strands.

Proof We first prove a supporting lemma.

Lemma 8.8 Suppose we may interchange

(1) crossings of Li with itself,
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(2) crossings of Lj with Lk when j ; k ¤ i . This includes self-crossings of Lj ,
j ¤ i .

Then the string link S may be put in the form of a braid as found in Figure 10.

l24

l23

l12

Figure 10: Reduced Form for a String Link when i D 2 . The numbered
boxes indicate the number of full twists between the two strands. For general
i , we require that the other strands have no self-crossings, can link Li some
number of times representable as a box, and otherwise if j > k then Lj

always crosses over Lk . Furthermore, the box for Lk should be lower than
that for Lj . Notice that these string links are actually braids.

Proof By interchanging self-crossings of Li we may arrange for this strand to be
unknotted. We may then isotope so that it is a vertical strand. Consider D2 � I to be
I2�I with the i th strand given as .1

2
; 3

4
/�I . By isotoping the other strands vertically,

switching crossings where necessary, we can ensure that each is contained in a narrow
band I2 � .aj � �; aj C �/ except when coming from or going to the boundary, when
we require that they are vertical. If we look in the band I2 � .aj � �; aj C �/ for the
j th strand, we see that all the other strands are vertical segments and the j th strand is
some strand in a string link. We may isotope Lj past all the vertical segments except
that for Li . By effecting self-crossing changes in Lj we can make it unknotted. It can
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then be isotoped so that it reaches the level I2 � aj from the bottom, winds around
Li in that plane exactly lk.Li ;Lj / times, and then proceeds vertically to the top. We
un-spool this winding vertically so that the result is a braid, where all the clasps are
once again in I2� .aj � �; aj C �/. Doing this to each of the strands produces a string
link with projection as in Figure 10 when we choose aj < ak if j < k for j ; k ¤ i .

Consider the closure, Li formed by taking the i th strand and joining the two ends
in S3 by a simple, unknotted arc. The intersection points in the Heegaard diagram
give rise to Spinc –structures on the three-manifold formed by taking 0–surgery on
this knot, [13]. Let Pi be the periodic domain corresponding to the Seifert surface in
the Heegaard diagram for the 0–surgery manifold. We already know that the sum of
the filtration weights assigned to x by Li differs from 1

2
hc1.s.x/;Pii by a constant,

independent of x, but which may depend upon S . Each of these quantities satisfies
the same difference relation for a class � joining two distinct intersection points. The
crossings of Lj with Lk do not contribute to either calculation as the periodic domain
P does not change topology or multiplicities when we interchange such crossings. It
consists of punctured cylinders arising from the linking of Li with Lj or Lk and
terminating on the meridian for that strand. However, the punctures and multiplicities
remain the same regardless of the type of crossing between Lj and Lk . Since only
the topology and multiplicities contribute to the calculation of the first Chern class for
the intersection points, and the intersection points correspond under crossing changes,
the value of the first Chern class does not change. Nor do the weights change as such
crossings are assigned a weight of 0. As a result, interchanging crossings of Li and
Lj does not affect the value of the constant.

It requires more effort to see that interchanging self-crossings of Li will not alter the
constant. But presuming that, we see that the polynomial rS .h1; 1; : : : ; 1/ must be
h

Ci .S/
i rLi

, since by [10] the polynomial determined by the first Chern class is the
Alexander–Conway polynomial of the knot. Furthermore, we may calculate Ci.S/ by
finding the polynomial assigned to the reduced form above, since it does not change
under the moves of Lemma 8.8. The i th strand is then the unknot, with Alexander–
Conway polynomial equal to 1, and the value of Ci.S/ is 0 from our calculation for
braids at the beginning of the next section.

That Ci.S/ does not change when interchanging self-crossings of Li follows by seeing
that the first Chern class calculation changes in the same way as the filtration weights.
Notice that we may do the calculation for the multiplicities shown in Figure 11.

By adding multiples of Œ†� and P we may realize a periodic region with the multi-
plicities for the crossing as shown in the figure. We fix the intersection point to be
considered. On the left we have a local contribution to nx of C2 on top, C1 on
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−1

+1

+1

−1
−1

−1

−1

−1

+1

+1

+1

+1

Figure 11: Local Heegaard diagrams for self-crossings of Li . The thick
curves are the ˛–curves. The thickest is the longitude, used as a surgery
curve; while the middle thickness depicts the crossing. There is a positive
crossing on the left, and a negative crossing on the right. The multiplicities
are for the band added at the crossing according to Seifert’s algorithm.

left and right, and 0 on bottom. We may always pick and intersection point where
the longitude pairs with a ˇ intersecting the meridian, and thus does not incur an
additional contribution from any crossing. On the right, the contribution is �2, �1,
and 0, respectively. All other local contributions are equal as is the value of nw on the
periodic region. The only other variation that can occur will be in the Euler measure,
y�.P/. Outside of the depicted region, P does not change. Indeed, if we divide P by
cutting the corners of the large C1 or �1 region along the dashed lines, we have a disc
of multiplicity ˙1 and the remainder,R, of P , which is the same in both diagrams.
Then on the left y�.P/ D y�.R/C 1 � 2 while on the right y�.P 0/ D y�.R/ � 1C 2.
The sign changes occur because of the Euler measure; in the first we add a C1 disc
joined along two segments to a C1 region and at two points to a �1 region, which
contributes nothing. In the second case the multiplicities are reversed, and the Euler
measure must be calculated differently. Taking the difference of these, and adding the
difference of the contribution from each quadrant gives C2� .�2/C .�1� 1/ D 2

on top, C1� .�1/C .�1� 1/D 0 on left and right, and 0� 0C .�1� 1/D �2 on
bottom. This is �2 times the difference in the weights for these quadrants, but that is
precisely the factor we divide into the first Chern class to get a filtration index. Hence,
the weights for any intersection point before and after a crossing change differ from
the first Chern class calculation for the corresponding intersection point by the same
amount. In particular, Ci.S/ does not change.
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Implicit in this discussion is the following corollary.

Corollary 8.9 For the filtration indices, Fi , calculated from the weights

hc1.s.x//;Pii D 2Fi.x/:

9 Triviality for braids

In Section 7, we saw that the Euler characteristic of the chain groups for a string link in
S3 produces the torsion of the string link �.SL/ defined in [7]. The torsion is known
to be trivial if the string link is a pure braid. We now prove the analog for the homology
groups.

Lemma 9.1 bHF .SL/ Š Z0 when SL is a pure braid. Using the weights from the
previous section, the homology is non-trivial only for the index .0; : : : ; 0; 0/.

Proof There are two ways to prove this statement. The first analyzes the combinatorics
of Kauffman states in the diagram. There is only one state: The meridians consume
the first row of ˇ–curves. Each crossing then has three regions already claimed, so it
must use the fourth. This consumes the second set, and we proceed up the diagram.
However, a more conceptual explanation may also be given. We know that the invariant
we have defined does not depend upon how the strands move about on D2 � f1g. We
may simply undo the braid to obtain the trivial string link.

The statement about filtration indices follows from the weights defined in the previous
section and the observation that the unique state assigns its local contributions to the
quadrant between two edges pointing into the crossing as the strands are oriented down
the page.

10 Three operations on string links

Given two string links, S0 and S1 , in Y0 and Y1 , there are three simple operations
we can perform to construct a new string link in a new manifold. We picture our
three-manifolds as given by surgery on framed links in D2 � I equipped with a string
link, S , with k components. Given such diagrams for S0 in Y1 and S1 in Y2 we may
1) place them side by side to create a string link, S0CS1 with k0Ck1 components, 2)
when k0 D k1 we may stack one diagram on top of the other (as with composition of
braids) to obtain the string link S0 �S1 , and 3) we may replace a tubular neighborhood,
ie a copy of D2 � I , of the i th strand in S0 with the entire picture for S1 to obtain a
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string satellite, S0.i;S1/. See Figure 12 for examples of each operation. The satellite
operation depends on a choice of how to glue the vertical boundary of one D2 � I

into the boundary of the tubular neighborhood of the i th strand. We will designate this
by a framing, which we will generally suppress as it will make no difference when
we start calculating the Heegaard–Floer invariants, since it only adds braiding to the
companion string link. The analysis of the second type proceeds differently than in [13]:
we consider it as a closure of S0CS1 found by joining the ends of S0 on D2 � f1g

with the ends of S1 on D2�f0g in a particular way. We always assume that the strands
are oriented downwards. We will now analyze the effects these operations have on the
Floer homology.

10.0.1 S0CS1 We will show the following.

Proposition 10.1

bHF .Y;S1CS2I s; Œj 0�˚ Œj 1�/ŠH�.bCF .Y0;S0I s0; Œj 0�/˝
bCF .Y1;S1I s1; Œj 2�//:

Proof We assume that we have .Y0;S0/ and .Y1;S1/ presented as string links in
framed surgery diagrams in D2 � I . We assume that these have been put in standard
form. This means we arrange that all the meridians, at the bottom of each diagram,
intersect at most two ˇ . However, there is only one choice possible for every g–tuple
of intersection points due to the presence of U . Amalgamating the second string
link does not affect this property for the meridians. Alternately, we can wind in the
complement of D2 � f0g and the amalgamation region as their union is contractible in
†.

Topologically, the amalgamation is a connect sum of Y0 and Y1 where the sums occur
for balls removed outside the region depicted as D2�I . Thus for two Spinc –structures,
s0 and s1 , there is a unique s D s0#s1 on the amalgamated picture. Furthermore,
H2ŠH2.Y0IZ/˚H2.Y1IZ/. If the first string link has k0 strands and the second k1

strands, the amalgamation has filtration index taking values in Zk0=ƒY0
˚Zk1=ƒY1

.

Counting ˛ and ˇ from the portion of Y coming from Y0 demonstrates that for an
intersection point we must have an ˛ from Y0 pairing with a ˇ from Y0 and likewise
for Y1 . Even if some ˇ extend from the Y0 region to the Y1 region (which we can
avoid if we like), this remains true. In particular, the diagrams drawn from projections
in D2�I will have one such ˇ . Therefore, the generators for the new chain group are
the product of generators for the two previous groups: as groups bCF .Y;S0CS1I s/Š
bCF .Y0;S0I s0/˝bCF .Y1;S1I s1/. We may choose filtration indices for both links,
choosing basepoints and complete sets of paths. The amalgamation will have .F0;F1/

as a filtration index for the complete set of paths found by using the product of the two
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S1S0

S0 + S1

S0 · S1

S0(3, S1)

Figure 12: Examples of the three operations on string links.

basepoints and the paths from complete sets for Y0 and Y1 . That the domain containing
w corresponds to the outer boundary of D2� I � .S0CS1/, and that the same is true
for each string link individually, ensures that the paths in each complete set need not
be altered. Furthermore, this region separates the domains for homotopy classes, � ,
used in the differentials in the two complexes; thus b@S0CS1

D
�b@S0

˝I
�
˚
�
I ˝b@S1

�
.
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We have verified that

bHF .Y;S1CS2I s; Œj 0�˚ Œj 1�/ŠH�.bCF .Y0;S0I s0; Œj 0�/˝
bCF .Y1;S1I s1; Œj 2�//

up to gradings. The grading calculation follows as for connected sums [12]. In
particular, for two torsion Spinc –structures on Y0 and Y1 , the absolute grading satisfies
gr.x˝ y/ D grS0

.x/C grS1
.y/, which is all we require for string links in S3 . We

may also establish this relation by using the Maslov index calculation for Y0 or Y1 ,
presented as surgery on a link in S3 , found in the absolute gradings section of [15]. Our
assumptions include such presentations for Y0 and Y1 and the connect sum provides
one for Y . We may use triangles with nw D 0 for Y0 and Y1 . This allows use to use
a product triangle in the calculation for Y . The first Chern class for the associated
Spinc –structure will be the sum of those for Y0 and Y1 . Since the intersection form
splits and the Euler characteristics and signatures of the cobordisms add, we see that
the gradings for the complexes for Y0 and Y1 add to give that for the complex on
Y .

10.0.2 S1 �S2 The second operation is called the composition of string links, the
analog of composition for braids. The torsion of the composite is the product of the
torsions of the two factors, [7]. We may prove the analogous result for the homologies
of the string links. For n D 1 stranded string links composition corresponds to the
connect sum of knots.

We will work with .Y0;S0/ and .Y1;S1/ with the assumption that S0 and S1 have
the same number, n, of strands going from top to bottom. In addition, since we require
each component of the string links to have one boundary on the top and one boundary
on the bottom of the D2�I region in their respective manifolds, no closed component
is formed by the stacking operation.

The affect on the homology groups can be calculated.

Proposition 10.2

bHF .Y;S0 �S1I s; Œk�/D
M

Œk0�CŒk1�DŒk�modƒ

H�.bCF .Y0;S0I s0; Œk0�/˝bCF .Y1;S1I s1; Œk2�//:

Strictly speaking, this formulation only applies to pure string links. The additional
difficulty in the general case arises from the labeling of the strands. Relabeling variables
to make the subscripts for each strand correspond in the composition solves the problem.

Proof Let †˛0ˇ0 be a weakly admissible Heegaard diagram for .Y0;S0/ with marked
points w; z1; : : : ; zn and †˛1ˇ1 be a weakly admissible Heegaard diagram for .Y0;S0/
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with marked points w0; z0
1
; : : : ; z0n . In each case, we use a diagram arising from a

projection. Thus, the region containing w (or w0 ) includes all of @.D2� I/ minus the
strands, and each meridian intersects at most two ˇ–curves. The diagram with data
˛0[˛1; ˇ0[ˇ1 is formed as in Figure 13, by joining †0 and †1 with a one handle
attached at the gray discs. Once we add the handle, the w and w0 are in the same
domain, so we will consider only w0 . We let  1

i be a small Hamiltonian isotope of ˇ1
i

for all attaching curves curves, except for the meridians in S1 . Each meridian for S1

we replace with curves which traverse the tube and loop around the i th strand in each
diagram, as depicted for the light gray curves in Figure 13. This effects the gluing of
the different diagrams into one diagram for S0 �S1 . Note that after replacing meridians
with the light gray curves each z0i winds up in the same domain as w0 . Furthermore,
we require that the domain containing z0i abut ‚� .

We will analyze the cobordism generated by the triple ˛0[˛1 , ˇ0[ˇ1 , and ˛0[ 1 ,
where the occurrence of repeated sets of curves in a diagram indicates using Hamiltonian
isotopes in the standard way. Each of the ends of this cobordism has 2n marked points,
so we will have filtration indices taking values in Z2n , modulo some lattice. First, we
describe the various boundary components.

Boundary I ˛0 [ ˛1; ˇ0 [ ˇ1 . Topologically, this is a connect sum for Y0 and
Y1 whose Heegaard diagram is drawn in the standard way. Each Spinc –structure is
therefore of the form s0#s1 . Inclusion of the marked points puts us into the previous
construction: amalgamation. Thus, the generators of the complex for s are products
of generators from s0 and s1 , which we denote x˝ y. As in the amalgamation case,
we find that ƒI � ƒ.Y0;S0/˚ƒ.Y1;S1/ with filtration index .F0;F1/. We use the
previous result to identify

bCF .Y0#Y1;S0CS1I s; Œj 0�˚ Œj 1�/Š
bCF .Y0;S0I s0; Œj 0�/˝

bCF .Y1;S1I s1; Œj 1�/:

Boundary II ˛0 [ ˛1; ˛0 [  1 . Topologically, this boundary is a g0 C g1 fold
connect sums of S1 �S2 , which may be seen by isotoping the new ˛1 components
down the strands of S0 , across the meridians found there, and back up the strands.
However, with the additional marked points, it is unclear if the candidate for ‚Cstd is
closed in this diagram. We can choose ‚Cstd as our basepoint, and use products of
topological discs in † from each connect sum component as our complete set of paths.
If we denote by ei , the i th basis vector in Z2n , the lattice for this component will be
ƒII � Spanfei � enCig. We now argue that ‚Cstd is indeed closed for the differential
missing all marked points.

There are precisely 2g0Cg1 intersection possible for this diagram. We may use our
complete set of topological discs to see that ‚Cstd has maximal grading. By the
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w

z′
1z′

2z′
n

Figure 13: The left side depicts the curves in D2 � f1g for S0 and the right
depicts the curves in D2 � f0g . The thin black curves are the ˇ curves in
the respective diagrams. The dashed curves are the meridians for S1 . The
marked points are as indicated. The process described in the text consists of
attaching a 1–handle to the two gray discs and then using the gray curves
to define the curves 1 through n . These replace the meridians. The red
arrows in the left hand picture show a sequence of handleslides, starting on
the left, whose result applied in a mirror fashion in the diagram for S1 is
already depicted on the right. Note that each meridian intersects only one
ˇ–curve. Note also that although the  curves can intersect more than one
ˇ , n only intersects only one ˇ , while n�1 intersects two, one of which
already intersects n and so forth. In particular there is a unique way to define
the intersection point on these  –curves (see the text for why the picture on
the left plays no role). There is a small holomorphic triangle identifying the
intersection point for the meridians with the ˇ–curves and the  –curves with
the ˇ–curves. Finally, note that in the ˇ1 1 picture, all the z0i are in the
same domain as w .

Heegaard–Floer homology theory, we must have that the generator ‚Cstd is closed
for the differential only missing w . In particular, a holomorphic disc contributing to
this differential cancels with some other holomorphic disc. Suppose we have two such
homotopy classes of discs, � and �0 . Splicing the inverse of one to the other, ��1 ��0

must produce a periodic domain. This periodic domain must evaluate to an element of
ƒII under the application of nz . However,

P
nzi
.P/D 0 for every periodic domain.
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Since classes with holomorphic representatives must have non-negative multiplicities,
it must be the case that when nz.�/ D 0 so too nz.�

0/ D 0. As the differential
missing all marked points arises from a subset of the moduli spaces in the Heegaard–
Floer differential and adding the extra marked points does not eliminate one disk in a
cancelling pair without eliminating the other, so ‚Cstd is still closed

Boundary III ˛0[  1; ˇ0[ˇ1 . This diagram represents the result of composition.
Topologically, each of the new  1 curves may be slid down a component of S0 until it
reaches a meridian. After sliding across the meridian, and back up the diagram, we have
the connect sum of the diagrams for Y0 and Y1 . Again, each Spinc –structure on Y is
the sum of structures, si , from Y0 and Y1 . Additionally, H2.Y IZ/ŠH2.Y0IZ/˚
H2.Y1IZ/. However, the lattices now combine as ƒIII �

�
ƒY0
CƒY1

�
˚0, the span

of the two original lattices, and z0i is in the same domain as w . We required that our
original diagrams be weakly admissible for our Spinc –structures. We will see below
how to extend periodic domains so that they continue to have positive and negative
multiplicities in the diagram for Y . Thus, the new diagram will be weakly admissible.

In the diagram for S0 there are g0 ˛ curves and g0 ˇ curves. As we have not changed
these, the intersection point from a ˇ0

j curve that contributes to a generator must come
from an intersection with a curve from ˛0 , even if ˇ0

j intersects a curve i . Hence,
the intersection point on any curve j must come from an intersection with a curve in
ˇ1 . For the  curves crossing the tube, these intersections have precisely the same
form as intersections with the meridians in the original diagram for Y1 . This allows
us to establish a one-to-one correspondence between the product of generators for Y0

and Y1 and those of Y . The chain complex, as an abelian group, is the product of the
original chain complexes. These generators we denote xy.

Consider a class � with nw.�/D 0 in either of the original diagrams. If � is in the
lower diagram, we may use � in the diagram for Y as the condition on nw implies that
the domain of the disc does not extend into the upper diagram: a small region at the top
of each strand lies in the domain containing w in the diagram for Y0 . If � occurs in the
upper diagram, its domain may cross nz0

i
and include copies of the meridians for S1

in its boundary. In the diagram for Y , we may extend this disc by following the strand
down to a meridian from S0 . At crossings, the disc gains a boundary component and
an intersection point, or a copy of a framed component. However, the extension, �0 ,
will still have nw.�

0/D 0, and nzi
.�0/ will be the same as nz0

i
.�/ (note the implicit

relabelling if the string links are not pure). Periodic domains will continue to have the
same multiplicities in the regions coming from their respective diagrams.

Given a class � 2 �2.x; x0/ with nw.�/ D 0 in .Y0;S0/ we may use it to calculate
the difference in filtration index from xy to x0y to be F0.x0/�F0.x/. This holds for
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any y, an intersection point for .Y1;S1/. Likewise, if � 2 �2.y; y0/ with nw.�/D 0

in .Y1;S1/, we may extend to �0 as in the previous paragraph. This class may be
used to calculate the filtration difference from xy to xy0 . The result will be the same
as F1.y0/�F1.y/ since the extension has nzi

.�0/D nzi
.�/ and nw.�/D 0. Thus,

given filtration indices on the two diagrams, we can construct a filtration index on the
composite which agrees with the vector sum in the first k components: .F0CF1; 0/.
This is taken modulo ƒIII .

We now return to the triple ˛0 [ ˛1 , ˇ0 [ ˇ1 , and ˛0 [  1 . We call the induced
four manifold X . We choose on X the Spinc –structure u that is s� I and restricts
to the torsion Spinc –structure on the ˛0 [ ˛1; ˛0 [  1 –boundary. We then have
ƒX �ƒ0˚ƒ1CƒII . We use a homotopy class of triangles to join x0˝ y0 , ‚Cstd ,
and x0y0 ; a choice specified as the unique local holomorphic class in the argument
below. As we assign ‚Cstd filtration index 0 and this local class has nw. /Dnz. /D0,
we have the following relation for the filtration indices on generators and for some
� 2ƒX :

F.xy/D F0.x/˚ 0C 0˚F1.y/C�X :

Topologically, the cobordism, once we fill in the second boundary, is .Y0#Y1/�I . If we
take the quotient modƒX , we recover the filtration index on Y as Z2n=ƒX ŠZn=ƒIII

and the filtrations will add correctly. Since z0i is in the same domain as w in the diagram
for Y , there is a chain isomorphism preserving filtrations which drops their entries in
the filtration index. Thus, we recover bCF .Y;S0 �S1/ as a relatively indexed complex
(and not, as initially could happen, a quotient of its index group).

The Heegaard triple will be weakly admissible for the doubly periodic domains, so we
may choose an area form on † assigning the periodic domains signed are equal to zero.
As it stands, this may assign large portions of the diagram small areas because the
periodic domains abutting the old meridians from S1 in the ˛0[˛1; ˛0[ 1 –boundary
are quite substantial. We may address this difficulty by handlesliding the portion of the
 running over the tube down the diagram for S0 until they are close to the meridians
for S0 . By doing this, we will have introduced new intersections between individual ˛
and ˇ curves; however, none of these may occur in a generator. Were we to use one of
them, there would be too few  remaining in the diagram for S1 to pair with the ˇ
found there, and no means to ameliorate this deficiency with ˇ from the bottom region.
Furthermore, nothing in the previous analysis will be changed by this alteration.

In this new diagram, there are obvious holomorphic triangles abutting each intersection
point x˝y and ‚Cstd . These consist of g0Cg1 disjoint topological triangles embedded
in † whose domains are contained in the support of the periodic regions from the
˛0 [ ˛1; ˛0 [  1 –boundary. The triangles near the meridians for S1 are shown in
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Figure 13. None of these triangles intersect a marked point We may make those periodic
domains arbitrarily small in unsigned area, forcing our local triangles to have area
smaller than � . Without the adjustment in the previous paragraph, we would not be
able to ensure that only the triangles identified above give rise to �–“small” homotopy
classes. Using the induced area filtrations, the chain map decomposes into a “small”
portion, which is an isomorphism, and a “large” portion:

F..x˝ y/˝‚Cstd/D˙xyC lower order:

We see then that the chain map found by counting triangles not crossing any marked
points induces an injection of bCF .Y0#Y1;S0C S1I s; Œj 0�˚ Œj 1�/ into bCF .Y;S0 �

S1I s; Œj 0 C j 1�/ and that the map is a chain isomorphism on ˚bCF .Y0#Y1;S0 C

S1I s; Œj
0

0�˚ Œj
0

1�/ where Œj 0Cj 1�D Œj
0

0Cj 1� mod ƒIII . Together with our analysis
of boundary I, this proves the result.

Finally, as the small triangles used in the argument each have nw D 0 and � D 0,
and the cobordism induces the torsion Spinc –structure, the absolute grading for the
image will be the sum of the absolute gradings for the original intersection points,
when si are torsion. Since there are handleslides in the ˛0˛

0
1
; ˇ0ˇ1 diagram taking

the curves replacing meridians in ˛0
1

back to the meridians, and the “small” triangles
in each handleslide map link the corresponding generators, the absolute grading for the
generators in this diagram are the same as for Y0 .

10.0.3 S0.i;S1/ The third operation is a form of string satellite to a string link. This
can be formulated using the Heegaard diagram shown in Figure 14. Note that this
diagram applies regardless of the framing chosen for gluing in the companion string
link. That the framing does not matter at the level of Heegaard diagrams can also
be seen by noting that changing the framing, which can be seen as twists around the
central axis of the companion string link, is equivalent to composing S1 with a braid
and then taking a satellite with a different framing. As we have seen the portion of the
Heegaard diagram corresponding to the braid can be simplified to that for the trivial
string link by the reduced Heegaard equivalences. For any framing we have

bHF .Y;S1.i;S2/I s; Œ.l1; : : : ; lk1Ck2�1/�ŠM
Œv0�CŒw0�DŒl�mod ƒ0

H�.bCF .Y0;S0I s0; Œv�/˝bCF .Y1;S1I s1; Œw�//:

The notation is explained below.

Proof For string links in S3 , there is only one way to pair meridians with ˇ curves
to achieve an intersection point. Indeed, if we draw the ˛ as vertices of a graph and
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ˇ

zi

z0
1

z0
2

Figure 14: The Heegaard Diagram for a String Satellite. This is a cutaway
view of a diagram for S0.i;S1/ with the cut through the i th strand of S0 .
All other attaching circles which have not been shown occur in one part or
the other of this diagram, but do not cross from the inner cylinder to the outer
one.

the ˇ as edges, the meridians and the ˇ that intersect them form a tree with one
edge not possessing a vertex on one end. There is only one way to pair edges to
end points in such a graph. The remaining ˇ in the diagram can only intersect ˛
according to the intersections in the original diagrams. However, the construction
still applies to string links in more general manifolds, presented as surgery on framed
links in D2� I . A count of the ˛ and ˇ shows that generators for this new diagram
occur as products of generators from the old diagrams, even when we have wound to
achieve some admissibility and possibly increased the number of intersections at each
meridian. Alternately, we may use the standard form to obtain diagrams to which the
argument from S3 still applies. Once again, the construction is a connect sum of two
three-manifolds, and once again the Spinc structures, etc transfer as expected.

Thus the generators of the chain complex correspond to the products of generators from
the chain complexes for the constituent string links. The filtration indices, however,
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differ from before. To ease the argument, we note that we may think of such a string
link as the multiplication of one strand in .Y0;S0/ n1 times, followed by a composition
with .Y1;S1/ amalgamated with a trivial string link on n0 strands. We already know
the result of composition, hence we need only understand the string satellite where
the inner constituent is an n1 stranded trivial string link in S3 . This has only one
intersection point, hence the chain complex, as a group, is the same as that for .Y0;S0/

for each Spinc –structure.

Any class � joining two generators, with nw.�/D 0 can be extended to the new string
link. It includes the new ˛ and thus goes up the inner string link to the top and back
down to the new meridians. For each time � crosses zi , each of the new meridians,
m0

1
; : : : ;m0n2

will be in the boundary of the new disc. In the trivial string link picture
there is one generator: u1 � � � � � un1

with one intersection on each meridian. In
particular, the new ƒ in Zn0Cn1�1 is spanned by vectors

v0 D .�1; : : : ; �i ; �i ; : : : ; �i ; : : : ; �n1
/

where �i is repeated n1 times and .�1; : : : ; �n0
/ is a vector in ƒS0

. We choose the
extension of �x to �x�u1�����un1

to give our complete set of paths. The filtration index
is now measured by

.F1; : : : ;Fi�1;Fi ; : : : ;Fi ;FiC1; : : : ;Fn1
/

with n2 copies of Fi .

As a consequence, discs with nzi
.�/D 0 in the original diagram extend as themselves

to the new diagram. In addition, any disc with nz0
i
.�0/D 0, i D 1; : : : ; n2 corresponds

to a disc in the original diagram with nzi
D 0. The differentials b@ and b@0 must be the

same, and count only classes of discs which do not need to be extended.

Putting all this together, if we denote the string satellite found by substituting S1 in
the i th strand of S0 by S0.i;S1/ then

bHF .Y;S0.i;S1/I s; Œ.l1; : : : ; ln1Cn2�1/�/ŠM
Œj
0
�CŒk

0
�DŒl�mod ƒ0

H�.bCF .Y0;S0I s0; Œj �/˝bCF .Y1;S1I s1; Œk�//

where
j
0
D .j1; : : : ; ji�1; ji ; : : : ; ji ; jiC1; : : : ; jn1

/

and
k
0
D .0; : : : ; 0; k1; : : : ; kn2

; 0; : : : ; 0/
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and
ƒ0 DƒC 0˚ƒ1˚ 0:

We need also to calculate the absolute grading, when appropriate. When we have
inserted the trivial string link into S0 and a torsion Spinc –structure on Y0 we may
handleslide the new ˛ across the new meridians to arrive at a picture for a standard
connect sum. At each handleslide, there is a small �D 0 homotopy class of triangles
with nw D 0 and admitting holomorphic representative joining each intersection point
to the corresponding point in the new diagram (the product decomposition of generators
is unchanged). In the connect sum picture, the gradings add – the grading of the product
generator is the same as the grading of the generator from S0 . In the cobordism induced
by the handleslides, the grading does not change: gr.x�u1 � ��un1

/D grY0
.x/.

11 Vanishing differential for alternating string links

We call a string link, S , alternating if there is a projection of S where proceeding
along any strand in S from D2 � f0g to D2 � f1g encounters alternating over and
under-crossings. Our goal is to prove that nothing contributes meaningfully to the
differential.

Theorem 11.1 Let S be a string link with alternating projection. Then the chain com-
plex, bCF .S; j /, arising from the projection Heegaard splitting has trivial differential
for every index j . In fact, all the generators have the same grading.

This generalizes the result in [10] for alternating knots. We will need the knot case for
the general result. The result in [10] is somewhat stronger (by identifying the grading).

First, we collect a few observations about alternating string links that will be used
in the proof. In a projection, we may place a small kink (formed using the first
Reidemeister move) in any strand which does not initially participate in any crossing
(self or otherwise) without changing whether the projection is alternating. We will
assume that this is done, so every strand participates in some crossing.

We call the i th strand, si when counting from left to right on D2 � f0g and si when
counting on D2 �f1g. If we follow si from D2 �f0g to D2 �f1g find that it is s�.i/

for some permutation � 2 Sk .

At each end of D2�I we may label the strands as u or o denoting whether the strand
is the over or under strand in the crossing immediately preceding (following) the end
of the strand on D2 � f1g (D2 � f0g). This assigns a k –tuple called the trace of the
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string link at that end. We denote the trace at D2�fig by Ti.S/. There is an inversion
on such k –tuples found by interchanging the u and o, which we denote v! v . To
compose alternating string links to have an alternating result requires T1.S1/DT0.S2/.

We call Morse critical points of index 1 for the projection of si to the I factor a “cap”.
Critical points of index 0 are called “cups”.

Lemma 11.2 We may draw an alternating projection for S so that 1) Every crossing
occurs with both strands oriented up, 2) No two crossings, caps, or cups occur in the
same level in the I factor.

Proof Rotate every crossing without the correct orientations so that both strands
go up. This can be done in a small neighborhood of the crossing at the expense of
introducing cups and caps. The second condition is achieved by a small perturbation
of the diagram.

Given a diagram in this form, we proceed with a few combinatorial lemmas. These are
devoted to showing that an alternating string link may be closed up to give an alternating
knot with certain additional properties. At each time t in the parametrization, si.t/ of
the i th strand, let fi.t/ be the number of intersections between the string link and a
horizontal line through that point on si.t/ and strictly to its the left.

Lemma 11.3 Let t be a time when si.t/ is in a level (in I ) not containing any caps or
cups, and not at a crossing. The total number of crossings encountered along the strand
si by the time t is � jfi.t/� iC1j mod 2 when si.t/ is oriented up and � jfi.t/� i j

mod 2 when si.t/ is oriented down.

Proof The number of caps plus the number of cups encountered in the i th strand, by
time t , is even when the strand is oriented up, and odd when the strand is oriented
down. fi.t/ changes value by 1 as si.t/ goes through a cap, cup or crossing. It changes
value by 2 at levels where a cap or cup occurs to the left of si.t/. By reducing modulo
2 we eliminate the latter variation. Since there are fi.t/ strands to the left, having
started with i � 1 strands to the left, the number of cups, caps and crossings must be
congruent to jfi.t/� iC1j modulo 2. Removing the parity of the number of caps and
cups gives the result.

Corollary 11.4 The total number of crossings encountered by the i th strand is con-
gruent modulo 2 to j�.i/� i j.

This lemma has the following consequence.
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Lemma 11.5 Suppose si and sj cross somewhere in S . If T0.si/ D T0.sj / then
i � j mod 2. If T0.si/¤ T0.sj / then i � j C 1 mod 2.

Proof Consider the first time that they cross in the ordering on si . Suppose that i < j ,
and that there are k strands to the left of the point in si just before the crossing. Then
there must be k˙1 strands to the left of sj . We label each point on the strands, except
at crossings, by a u or an o depending upon whether an over, or under, crossing must
occur next. The labels of the points on the two strands just before the crossing of si and
sj must be different. If si has encountered an even number of crossings prior to this
point, it will have label T0.si/, otherwise it has label T0.si/. The same will be true of
sj . We have assumed that both strands are oriented up just before the crossing. Thus,
the parity of the number of crossings involving si is that of jfi.ti/�iC1j D jk�iC1j

and the same parity for sj is jfj .tj /� j C 1j � jk � j j. If T0.si/D T0.sj /, then one
strand must have experienced an even number of crossings, while the other experienced
an odd number. This happens when i � j . Otherwise, both strands must encounter the
same parity of crossings and i � j C 1.

We decompose S D S1 [ � � � [Sl , where Sj consists of a maximal string link with
connected projection. We apply the following lemma to each Sj .

Lemma 11.6 For a connected, alternating string link T0.S/ must be either .u; o;u; : : :/
with alternating entries, or .o;u; o; : : :/.

Proof For si and sj there is a sequence si0
; : : : ; sir

with si0
D si and sir

D sj and
where consecutive entries cross one another. The result follows from induction using
the conclusion of the previous lemma, which also proves the base case.

Since any strand in Sj divides the projection into two parts, we see that each Sj must
consist of consecutive strands in the diagram (along both ends). We can show more,
however.

Lemma 11.7 For an alternating projection of S , T0.S/D T1.S/.

This lemma guarantees that the usual closure of the string link (join si to si for all i )
is alternating.

Proof We divide S D S1[ � � � [Sl and apply the corollary above to each maximal
sub-string link. By the preceding lemma, we have an alternating trace for the end
D2 � f0g. By the corollary, the other end of si has the same label when �.i/� i is
even, and different labels when �.i/� i is odd. The result follows directly.
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In fact, a repetition of u or o in T0.S/ implies that S D S1 [S2 for an alternating
string link. S1 consists of those strands including and to the left of the first u, and S2

consists of those strands including and to the right of the second.

Note Recall that we add kinks by the first Reidemeister move to strands who don’t
cross any other strand (including themselves). This is how they get labeled.

We now turn to proving the main theorem of this section. The chain complex of a string
link S which decomposes as a union of noncrossing components S1 [ � � � [ Sl for
the index .j 1; : : : ; j l/ is bCF .S1; j 1/˝ � � � ˝

bCF .S2; j l/ with the standard tensor
product differential. Thus, proving the theorem for connected, alternating string links
will prove the general result. Our strategy is to compare the chain group from our
projection to the chain group of an alternating knot.

We make a few observations about braids. First, their projection Heegaard diagrams
possess only one generator. Second, given the projection of a braid, forgetting over and
under crossings, there is precisely one set of crossing data with T0.B/D .u; o;u; o; : : :/.
Write the braid as a product of generators or their inverses. The traces picks out which
(generator or inverse) must occur. Pushing up the diagram, the traces .u; o;u; o; : : :/
repeats as T0.B

0/ for the remainder of the braid.

We choose a braid representing a permutation � such that � ı� is a cyclic permutation
taking 1 to k . As we have just seen, we may use T0.B/D T1.S/ to choose a braid so
that S#B is still an alternating string link. We complete the construction by closing
the new string link as in one of the diagrams in Figure 15. The trace at the bottom of
S �B determines which to use. Due to our assumption about � , the result is a knot, K .

By construction, the knot is alternating. We draw a Heegaard diagram for this knot by
using m1 from the string link diagram to give a meridian for the knot. This meridian
intersects only one ˇ . It is a basing for the knot in the Kauffman state picture of [10].
We analyze the generators of this knot. In particular, we have seen that a generator x of
bCF .S; j / extends uniquely to a generator x0 for S �B . We would like to extend x0 to
a generator of bCF .K/. However, when we forget the states on the other meridians, we
have that the shaded regions of Figure 16 receive an assignment, but the others do not.
There is a unique way to complete the figure to a generator x00 in the knot complex,
and this corresponds to a Kauffman state.

Suppose that there is a � 2 �2.x; y/ with cM.�/¤∅ and with nw.�/D nzi
.�/D 0.

The condition at the marked points, and that for a string link there is only one choice of
assignment along the meridians, implies that the homotopy class � gives a homotopy
class �00 2�2.x00; y00/ in the diagram for K . That there is no variation on the meridians
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S · BC

or

Figure 15: The closures used to construct an alternating knot from an al-
ternating string link. The box with S � B indicates that the projection of
the composition of the string link with the braid should lie in this box. The
strands coming out of the box are assumed to match up to the strands on
the left side of the diagram, without crossing in between. The projection in
the box labeled C is one or other of the clasp diagrams, chosen to make the
resulting projection alternating. The diagram only depicts the case when S

has an even number of strands, but the case for an odd number of strands
is similar. The basing (meridian) for the new knot is shown as a small line
across the knot and intersecting U .

allows us to alter the generators as in the extension. The marked point conditions ensure
that D.�/ is wholly insulated from the additional braid and the closure construction.
Furthermore, a neighborhood of each meridian is eliminated by the condition that
nzi
.�/D 0 as � must contain whole multiples of the meridians in its boundary. There

must then exist two intersection points x00 and y00 in the same filtration index for the
knot (since � doesn’t cross the marked points) but which differ in grading by 1. This
contradicts the statement in [10] that, for an alternating knot, the grading of every
Kauffman state representing the same filtration index is the same (determined by the
signature of the knot!). Hence, all moduli spaces contributing to the differential must
be trivial, b@S � 0. The same argument holds for � as above with �.�/¤ 0, thus all
the generators of the chain complex in a given filtration index in fact lie in the same
grading.
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Figure 16: The Unique Extension of Generators. The diagram depicts the
projection of the knot in the region of the clasp extension, but without any
crossing data. The black dots indicate in which quadrant one should choose
the intersection point for the ˛ curve corresponding to that crossing. The
short line m1 should be taken to indicate the meridian of the knot. The shaded
regions have already been assigned to a crossing by the generator in S �B

(see the previous diagram) and thus are unavailable for the crossings in this
portion of the knot projection. The extension of the generator depicted here
corresponds to the extension of dual pairs used to prove the clock theorem for
string links.

11.1 Example

In the graph of black regions for Figure 3 we may form dual forests in two ways, see
Figure 17. First, we may have arrows pointing up the segments on the left side of the
graph of black regions. Second, we may have some arrows pointing up that side, then a
transverse arrow, then arrows pointing down the remainder of the segments on the left
side. To join the vertices at top and bottom we have an arrow up the single segment on
the right side.

When all the arrows go up the left side, they place the local intersection points on
the opposite side of L2 from that pointed to by the orientation of L1 . Looking at
the weights indicates that, regardless of the crossing type, such a tree contributes 0

to the filtration index for L2 and 0 to the grading weight. On the other hand, when
the crossings are positive all the segments on the left are assigned �1

2
for the weight

on L1 . The transverse arrow on the right will contribute nothing to either sum. A

Algebraic & Geometric Topology, Volume 9 (2009)



Heegaard–Floer homology and string links 97

: : :
: : :

Figure 17: Examples of dual maximal forests for the graph � from Figure 3.

similar analysis for negative linking implies that this forest contributes h
�lk.L1;L2/
1

to
the Euler characteristic.

For the second type of forest, let m be the number of arrows pointing up on the left
side. Then m can vary between mD 0 and mD 2lk.L1;L2/� 1D 2L� 1 when the
linking number is positive. The monomial for this state is h�s

1
h�LCs

2
when mD 2s

and �h�s�1
1

h�LCs
2

when mD 2sC 1. The minus sign in the latter comes from the
generator having grading �1. Together these imply a polynomial of the form�

h�L
1 C h�LC1

1
h2C � � �C h�L

2

�
�
�
h�L

1 h�1
2 C � � �C h�1

1 h�L
2

�
:

Since the string link is alternating, and the minus signs occur from grading �1, we can
determine the homology for the string link from the above polynomial (see the next
section). It is (v1; v2 � 0)

bHF .S; .v1; v2//Š Z.0/ v1C v2 D�lk.L1;L2/

bHF .S; .v1; v2//Š Z.�1/ v1C v2 D�lk.L1;L2/� 1:

12 Tangles and skein exact sequences

12.1 Tangles

Recall the definition of a tangle.
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Definition 12.1 For each k > 0 choose a set, Xk , of k distinct points in D2 . A
.k; k 0/–tangle, � , in D2 � I is an oriented smooth 1–sub-manifold whose boundary
equals Xk � f0g[Xk0 � f1g.

Definition 12.2 Two tangles are flexibly isotopic if there exists a self-diffeomorphism
of D2 � I , isotopic to the identity, setwise fixing the ends D2 �f0; 1g, and carrying
one tangle into the other while preserving the orientations of the components.

Note that all braids are flexibly isotopic to the trivial string link.

Suppose we have a tangle with n–components. We will call it m–colored if there is
a function, c , from the components of the tangle, �j , to f1; : : : ;mg. We require our
isotopies to preserve the value of c . We restrict to those tangles for which exactly one
component in c�1.i/ is open for each i 2 f1; : : : ;mg, and this component is oriented
from D2�f1g to D2�f0g. The collection of open components will then form a string
link.

To construct a Heegaard diagram we convert the tangle, � , to an associated string
link, S.�/ in another three-manifold. First, connect the components with the same
color by paths in the complement of the tangle so that, with the paths as edges and the
components as vertices, we have a tree rooted at the open component for that color.
These paths may be used to band sum the components together, using any number of
half twists in the band which will match the orientations on components correctly. We
then perform 0–surgery on an unknot linking the band once. The resulting manifold, Y ,
is a connect sum of s copies of S1�S2 where s is the number of closed components.
The image of � after performing the band sums is a multi-component “string link”,
S.�/, in the complement of a ball. We have a color map c on this string link which
we use to index the components. The homology group for index j for the colored
tangle, � , is defined to be bHF .Y;S.�/I s0; j / where s0 is the torsion Spinc structure.
Underlying this construction is the following fundamental observation.

Lemma 12.3 The flexible isotopy class of S.�/ is determined by that of � .

Proof This follows as for [13, Proposition 2.1]. It suffices to show that the choices
made in performing the band sums do not affect the isotopy class of S.�/. Once we
add the 0–framed handles, the choice of the bands no longer matters. In each band,
we may remove full twists by using the belt trick to replace them with a self-crossing
of the band. We may then isotope the 0–framed circle to the self-crossing and slide
one of the strands in the band across the handle. Done appropriately this will undo a
full twist in the band. Furthermore, by sliding across the 0–framed handles, we may
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Figure 18: Kirby calculus interchange of connecting paths for a tangle.

move the bands past each other or any component in the string link. By using the trick
from [13] illustrated in Figure 18, we may arrange that all the closed components of
the same color are linked in a chain to a single open component. In addition, we may
interchange any two components along the chain. The combination of these moves
provides Heegaard equivalences, not involving the meridians, between any two ways
of joining the closed components in a color to that with boundary, regardless of the
paths for the band sums, or twists in the bands.

12.2 Long exact sequences

The tangle formulation where there is one open component for each color permits the
introduction of the skein long exact sequence found in [13] where we may resolve
crossings of components with the same color, but not crossings involving different
colors. We should think of the resolved crossing, arising from 0–surgery on an unknot
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in the long exact surgery sequence, in the context of tangles. We let Lc
� be a tangle

with a negative self-crossing in color c , Lc
C be the tangle with a positive self-crossing

instead, and Lc
0

be the tangle resulting from resolving the crossing. As in [13] there
are two sequences. If the crossing is a self-crossing of a component then

! bHF .Lc
�; j /!

bHF .Lc
0; j /!

bHF .Lc
C; j /!

whereas if the crossing occurs between different components of the same color we have

! bHF .Lc
�/!

bHF .Lc
0/˝V ! bHF .Lc

C/!

where V D V�1˚V0˚VC1 and V�1 consists of a Z in filtration index �1 for the
color c and 0 for all others, V0 consists of Z2 with filtration index 0 for all colors, and
VC1 consists of a Z in color c filtration index C1. The maps preserve the filtration
indices with the tensor product index defined as the sum of those on the two factors.
The proof is identical to that in [13].

Note Since the theory for tangles arises from thinking of them as string links in an
another manifold, the result for composition of string links extends to composition
of this sub-class of tangles. The sub-class condition disallows the formation of new
closed components when composing.
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