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Proving a manifold to be hyperbolic once it has
been approximated to be so

HARRIET MOSER

Let M be a 3–manifold whose boundary consists of tori. The computer program
SnapPea [20], created by Jeff Weeks, can approximate whether or not M is a complete
hyperbolic manifold. However, until now, there has been no way to determine from
this approximation if M is truly hyperbolic and complete. This paper provides a
method for proving that a manifold has a complete hyperbolic structure based on the
approximations of Snap [7], a program that includes the functionality of SnapPea
plus other features. The approximation is done by triangulating M , identifying
consistency and completeness equations as described by Neumann and Zagier [13]
and Benedetti and Petronio [1] with respect to this triangulation, and then, according
to Weeks [21], trying to solve the system of equations using Newton’s Method. This
produces an approximate, not actual solution. The method here uses the Kantorovich
Theorem [8] to prove that an actual solution exists, thereby assuring that the manifold
has a complete hyperbolic structure. Using this, we can definitively prove that every
manifold in the SnapPea cusped census has a complete hyperbolic structure.

57M50, 57N16; 54E50, 51H20

1 Introduction

This paper presents the major result of my doctoral dissertation written at Columbia
University [10], with Walter Neumann as my thesis adviser. Known uses of the method
developed, which allows one to conclusively prove that a 3–manifold has a hyperbolic
structure, include some of David Gabai, Robert Meyerhoff and Peter Milley’s recent
work [6; 5] and a paper by Chris Leininger [9]. Since the determination that M is
complete hyperbolic is dependent on there being a solution to a set of equations, we shall
first review the development of these equations. Every orientable complete hyperbolic
manifold of finite volume is obtained from an ideally triangulated one by Dehn surgery
on some of its cusps. This fact is documented by Neumann and Zagier [13], based
on a Thurston preprint [18], so we first examine N , a noncompact 3–manifold that
is the interior of a compact one whose boundary consists of k tori. Benedetti and
Petronio [1] have shown that N can be realized as a gluing of n tetrahedra, �1; : : : ; �n ,
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104 Harriet Moser

having k vertices after gluing, with a conic neighborhood of each vertex removed. A
conic neighborhood of the vertex, v; is described as follows. Let v be a vertex and �j

a tetrahedron that v belongs to. Take the second barycentric subdivision of the edges
of �j containing v and let w1; w2 and w3 be the closest vertices to v for these edges
with respect to this subdivision. See Figure 1.
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Figure 1: The tetrahedron �j

Definition 1.1 � L�j .v/ D triangle having vertices w1 , w2 and w3 as above
with respect to v and �j .

� L.v/D
S

L�j .v/, where the union is over the tetrahedra �j , 1 � j � n, that
have v as a vertex. L.v/ is called the link of v .

� U�j .v/D tetrahedron having vertices v , w1 , w2 and w3 .

� The conic neighborhood of v is
S

U�j .v/, where the union is over the tetrahedra
�j , 1� j � n, that have v as a vertex.

Every vertex is identified with a cusp of N; and its link is a torus. These truncated
tetrahedra resulting from the removal of the conic sections can now be treated as ideal
hyperbolic tetrahedra, so there exists a hyperbolic structure on N n1–skeleton of N .
In order for N to have a hyperbolic structure, there must be consistency across the
1–skeleton. The conditions for this to happen are embodied in the consistency equations
and will be described in detail in Section 2.

Completeness applies to the cusps. Once a hyperbolic structure is identified, it induces
a similarity structure (ie, a .C;Aff.C// structure) on each of the k tori, T1; : : : ;Tk .
If the similarity structure of a torus identified with a cusp is Euclidean, N will be
complete at that cusp [1]. This occurs when the image of the holonomy of the similarity
structure for the torus consists entirely of translations, or equivalently, has at least one
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Proving an approximately hyperbolic manifold to be hyperbolic 105

nontrivial translation [1]. A holonomy of a similarity structure for a torus, T; is a
map � such that � W �1.T /! Aff.C/ [1]. The conditions for the image of � to consist
entirely of translations are presented by the completeness equations which will also be
discussed in Section 2.

Once we establish the conditions for cusps of N to be complete, we turn our attention
to the manifold M , obtained from N by Dehn surgery on some of the cusps. Assume
h cusps remain unsurgered, so there are k � h surgered cusps. M must satisfy the
consistency equations; however, there are now only h cusps that must be shown to
be complete, so we only need the completeness equations referring to these h cusps.
The remaining k � h surgered cusps must result from Dehn surgery with coprime
coefficients .pi ; qi/ for 1� i �k�h where .pi ; qi/ and the holonomy of the similarity
structure of Ti are joined in one equation [1].

Once the equations needed to prove a manifold complete hyperbolic are identified,
we set up the machinery to test whether a solution exists in Section 3. The method
described there concludes the proof of the following theorem, which is our main result.

Theorem 1.2 Let M be a manifold and assume there are n tetrahedra in the triangu-
lation of M according to SnapPea. There are n equations, ffi.z/D 0 jfi W Cn!Cg
for 1 � i � n; whose simultaneous solution will guarantee that M is complete hy-
perbolic. If SnapPea finds an approximate geometric solution to these equations, let
a D .a1; : : : ; an/ be an approximate geometric solution generated by Snap on the
SnapPea manifold file for M . Let bi D fi.a/ for 1 � i � n and f W Cn! Cn with
f .z/ D .f1.z/; : : : ; fn.z//; so f .a/ D b D .b1; : : : ; bn/. Then there is L > 0 such
that there is a genuine solution to the equations, making M complete hyperbolic when
the following inequality is true:

jbj �
1

2Ljf 0.a/�1j2
:

We devote the final section to examples. Every manifold in the cusped census of
SnapPea has been examined and the results are reported in Section 4. However, for
detailed discussion, three examples are presented. There are simple ones, such as the
figure 8 knot complement and Dehn surgery on the Whitehead link complement. There
is also a complicated link complement with 4 cusps and 32 tetrahedra. In uncomplicated
cases, it is sometimes possible to show that a knot or link complement has a complete
hyperbolic structure using means other than the SnapPea approximation. Thurston has
proven that the figure 8 knot complement has a complete hyperbolic structure, and
shown when a .p; q/ Dehn filling has the same property [19]. Neumann and Reid
have done the same for Dehn fillings of the Whitehead link [12]. However, when
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106 Harriet Moser

it comes to complicated knots and links, until now, it may have been impossible to
definitively determine whether this structure exists. For several years Leininger had
withheld publication of his paper devoted two very large links, one of which is the
last example [9], because he could not prove that their complements have a complete
hyperbolic structure. The paper has now been released using the method presented here.
So far, every manifold that has an approximate solution with respect to a geometric
triangulation in SnapPea that has been tested by this method has been verified to have
a complete hyperbolic structure.
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Figure 2: Edge e of the tetrahedron �j
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Figure 3: The triangle similar to L�j .v/

2 Identifying the equations

Let �j be an ideal hyperbolic tetrahedron as described in Section 1, and pick an edge e

such that w1 2 e and prior to truncation, e ended in the vertex v; as in Figure 2. Then
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L�j .v/; the triangle with vertices w1; w2 and w3 naturally has a similarity structure as
the triangle in C with vertices 0; 1 and z , as documented by Benedetti and Petronio [1],
Neumann and Zagier [13] and Thurston [17]. See Figure 3. Also, the dihedral angle
at e will be arg.z/: Clearly, z must be in CC; the upper half plane in C . The modulus
of L�j .v/ with respect to w1 is z; so that the inner angle of the triangle at w1 is
arg.z/: The modulus of �j at edge e is z: The only other moduli at the other edges of
�j will be either 1� .1=z/ or 1=.1� z/; so z uniquely describes �j in the upper half
plane. There are six edges with opposite edges having the same modulus [1; 13; 16].
See Figure 4.
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Figure 4: Moduli associated to edges of the tetrahedron �j

2.1 Consistency equations

In order for N to be hyperbolic, if e is an edge of N; the tetrahedra gluing together
at e must close up around e: That is, the product of all the edge moduli associated
with e (different modulus for each tetrahedron e belongs to) must be e2�i ; assuring
that the sum of the arguments is precisely 2�: Any of the three distinct edge moduli of
a tetrahedron, �j ; can be expressed as

˙z
r 0
j

j .1� zj /
r 00
j

with .r 0j ; r
00
j / 2 f.1; 0/; .�1; 1/; .0;�1/g; so the gluing requirement at edge e is

nY
jD1

z
r 0
j

j .1� zj /
r 00
j D˙1;
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108 Harriet Moser

where r 0j D r 00j D 0 if �j does not contain e . A tetrahedron can have more than one edge
glued at e so r 0j and r 00j can take values between �2 and 2. The Euler characteristic of
N is zero, so it can be shown that N has n edges [13]. Thus, the n edge equations
can be expressed as

nY
jD1

z
r 0

ij

j .1� zj /
r 00

ij D˙1 .i D 1; : : : ; n/:

They are referred to as the consistency equations. The existence of a solution is sufficient
to make N hyperbolic. We rewrite them as log equations because they are easier to
use this way and it reflects the fact that the sum of the arguments of the moduli at each
edge is exactly 2� , as shown by Neumann [11].

nX
jD1

.r 0ij log.zj /C r 00ij log.1� zj //D ci� i ci 2 Z .i D 1; : : : ; n/

Let R; C and xR be the following matrices:

RD

0B@ r 0
11

: : : r 0
1n

r 00
11

: : : r 00
1n

:::
: : :

:::
:::
: : :

:::

r 0
n1

: : : r 0nn r 00
n1

: : : r 00nn

1CA ; CD

0B@ �c1
:::

�cn

1CA ; xRD .R;C/:

Proposition 2.1 If rank xRDp; then the space of solutions to the consistency equations
can be defined by exactly p consistency equations.

Proof Let rank xRD p � n; so, without loss of generality, we can assume the first p

rows of xR are linearly independent. For s > p; there exist �s
i 2C for 1� i � p such

that

r 0sj D

pX
iD1

�s
i r 0ij r 00sj D

pX
iD1

�s
i r 00ij cs D

pX
iD1

�s
i ci :

Assume we have a solution zD .z1; : : : ; zn/ to the first p consistency equations. Then
nX

jD1

.r 0ij log.zj /C r 00ij log.1� zj //� ci� i D 0 .i D 1; : : : ;p/:

pX
iD1

�s
i

� nX
jD1

.r 0ij log.zj

�
C r 00ij log.1� zj //� ci� i/D 0:Thus

nX
jD1

�� pX
iD1

�s
i r 0ij

�
log.zj /C

� pX
iD1

�s
i r 00ij

�
log.1� zj /

�
�

� pX
iD1

�s
i ci

�
� i D 0:Hence
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This is the same as
nX

jD1

.r 0sj log.zj /C r 00sj log.1� zj //� cs� i D 0:

Therefore, the last n�p consistency equations are determined by the first p; so we
only need the first p equations to determine hyperbolicity.

In [13; 1] it is proven that for a complete hyperbolic manifold, rank R D n � k .
However, we need to prove hyperbolicity. Neumann’s work in [11] tells us, without a
priori knowledge of hyperbolicity, that rank RD n�k; and C is determined by R; so
rank xRD n�k: This will be explained in Section 2.3. Then, by the above proposition,
we only need n� k consistency equations to determine hyperbolicity.

2.2 Cusp conditions

We now look at the k cusps of N . Details of the following discussion can be found
in [1]. Let Ti be the torus associated with the i –th cusp. Select 2 simple oriented
loops, mi and li ; on Ti ; representing the 2 generators of the fundamental group of Ti :

Furthermore, mi and li can be chosen as simplicial loops with respect to Ti’s triangu-
lation. Such a loop is composed of segments where each segment is an edge of some
triangle L�q

.v/�L.v/D Ti , as identified earlier when describing the triangulation
of N . Let  be any simple simplicial oriented loop on Ti consisting of d segments,
s1; : : : ; sd ; and d vertices, w1; : : : ; wd ; where wr is the vertex at the end of sr as
well as at the beginning of srC1 for 1� r � d � 1 and wd is the vertex at the end of
sd and beginning of s1 . See Figure 5.

We lift  to C D R2; the universal cover of Ti ; starting at the beginning of s1 and
map it to C by way of the developing map which is described by Ratcliffe [16] and
Thurston [19]. The resulting curve will consist of d straight segments, zs1; : : : ; zsd ;

joined at the vertices zwr for 1 � r � d � 1; as in ; except at zwd ; which does not
necessarily connect to the beginning of zs1: So it starts at the beginning of zs1 and ends
at the end of zsd : Repeat the development map process, starting at the end of zsd and let�s01 be the first segment this time, so zwd is the vertex between zsd and �s01: See Figure 6.
Call this curve z : Aff.C/ can be regarded as C Ì C� with .a; b/ 2 C Ì C� such
that it represents aC bx; an affine map of C . The dilation component of .a; b/ is
b . Thus, if an oriented triangle in C has two edges ze1 and ze2 where ze1 ends in the
vertex zx; and ze2 begins at zx; and the modulus of the triangle with respect to zx is
y; then the one and only orientation preserving similarity of C that takes ze1 to ze2

has dilation component equal to �y . Remember, the modulus of the triangle with
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Figure 5: Simple simplicial loop  on torus Ti
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Figure 6: Developing map image of 

respect to zx is defined so that ze1 is identified with the edge from 0 to 1 and ze2 with
the edge from 0 to y in the triangle with vertices .0; 1;y/. If xr1; : : : ;xrpr

are the
vertices of the pr triangles, L�r 1

.v/; : : : ;L�rpr
.v/; that touch  at wr ; as in Figure

5, we get pr corresponding triangles, zL�r 1
.v/; : : : ; zL�rpr

.v/; touching z at zwr with
zxr1; : : : ; zxrpr

the respective vertices of these triangles at zwr . The ordering is such that
zsr is the first edge of zL�r 1

.v/; and zsrC1 is the second edge of zL�rpr
.v/; at zwr unless

r D d; and then �s01 is the second edge of zL�dpd
.v/: See Figure 6. If the corresponding

triangle moduli at zwr are yr1; : : : ;yrpr
; then the dilation component of the affine

map that takes zsr to zsrC1 is �
Qpr

iD1
yri . Orientation is responsible for the “�” in

the product. Hence, the affine map that takes zs1 to �s01 has dilation component ofQd
rD1.�1/

Qpr

iD1
yri D .�1/d

Qd
rD1

Qpr

iD1
yri . Note that the modulus of zL�r i

.v/ at
zxri for 1� i � pr is the same as the modulus of L�r i

.v/ at xri for 1� i � pr ; and
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this latter modulus has already been identified as either zj ; 1=.1� zj / or 1� 1=zj for
some 1� j � n. Therefore, the dilation component of the affine map that takes zs1 to�s01 is of the form

˙1

nY
jD1

z
 0
j

j .1� zj /
 00
j :

The holonomy of the .C;Aff.C// structure on Ti is a map � W �1.Ti/! Aff.C/ such
that if [ ] is the element of �1.Ti/ represented by the loop ; then � takes [ ] to
the affine map that takes zs1 to �s01 . This is a homomorphism that is well defined up
to conjugacy class within Aff.C/. However, any two elements of Aff.C/ within a
conjugacy class have the same dilation component [1], so the map

 i W �1.Ti/!C�

Œ �!˙1

nY
jD1

z
 0

ij

j .1� zj /
 00

ij

is a well defined homomorphism. �.Œ �/ will be a translation if its dilation component
is 1; so �.Œ �/ will be a translation when  i.Œ �/D 1.

We now look at loops mi and li . For simplicity of notation, we also refer to the
corresponding generators of �1.Ti/ as mi and li so

 i.mi/D˙1

nY
jD1

z
m0

ij

j .1� zj /
m00

ij

 i.li/D˙1

nY
jD1

z
l 0
ij

j .1� zj /
l 00
ij :

If the triangulation of Ti causes mi to be a simplicial loop with d segments and d

vertices, then its holonomy will be a nontrivial translation when  i.mi/D 1 and the
sum of the arguments of the moduli at the d vertices of mi is d� [1]. Rewriting in
log form, these requirements are expressed as

nX
jD1

.m0ij log.zj /Cm00ij log.1� zj //D cmi� i with cmi 2 Z:

Similarly, one can identify the log equation which sets the condition for the holonomy
of li to be a nontrivial translation. It can be expressed as

nX
jD1

.l 0ij log.zj /C l 00ij log.1� zj //D cli� i with cli 2 Z:
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When the holonomy of the affine structure on Ti has at least one nontrivial translation
in its image, the affine structure is Euclidean [1]. But a Euclidean structure on Ti

means that the i –th cusp is complete [1], so the completeness equations for all of the
k cusps are

nX
jD1

.m0ij log.zj /Cm00ij log.1� zj //� cmi� i D 0 .i D 1; : : : ; k/:

Now consider a hyperbolic manifold, N; with k cusps where h of the cusps are
complete, so the above completeness equations hold only for k �hC 1� i � k . Let
Ti be a torus associated with one of the k � h noncomplete cusps. If pi and qi are
coprime integers, .pi ; qi/ Dehn filling can be performed on this cusp. In the literature,
this process is frequently referred to as Dehn surgery, but it is really a filling. In this
case, pimi C qili is the generator of �1.Ti/ that is killed by Dehn filling. In order to
extend the hyperbolic structure on N to the Dehn filling at this cusp, we need [13; 1]

pi

� nX
jD1

.m0ij log.zj /Cm00ij log.1� zj //� cmi� i
�

C qi

� nX
jD1

.l 0ij log.zj /C l 00ij log.1� zj //� cli� i
�
D 2� i:

That is

nX
jD1

�
.pim

0
ijCqil

0
ij / log.zj /C.pim

00
ijCqil

00
ij / log.1�zj /

�
D csi� i with csi 2Z:

Therefore, if the equations

nX
jD1

�
.pim

0
ij C qil

0
ij / log.zj /C .pim

00
ij C qil

00
ij / log.1� zj /

�
D csi� i

.i D 1; : : : ; k � h/

are satisfied, M; the manifold derived from N by Dehn filling on the k � h cusps,
will be hyperbolic near these cusps.

The last step in identifying the equations is the selection of the appropriate n � k

consistency equations. Let s0ij D pim
0
ij C qil

0
ij and s00ij D pim

00
ij C qil

00
ij ; and define
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the matrices M; L; S and Mh as R is defined in Section 2.1, so that

MD

0B@ m0
11

: : : m0
1n

m00
11

: : : m00
1n

:::
: : :

:::
:::

: : :
:::

m0
.k/1

: : : m0
.k/n

m00
.k/1

: : : m00
.k/n

1CA

LD

0B@ l 0
11

: : : l 0
1n

l 00
11

: : : l 00
1n

:::
: : :

:::
:::

: : :
:::

l 0
.k/1

: : : l 0
.k/n

l 00
.k/1

: : : l 00
.k/n

1CA

SD

0B@ s0
11

: : : s0
1n

s00
11

: : : s00
1n

:::
: : :

:::
:::

: : :
:::

s0
.k�h/1

: : : s0
.k�h/n

s00
.k�h/1

: : : s00
.k�h/n

1CA

Mh D

0B@ m0
.k�hC1/1

: : : m0
.k�hC1/n

m00
.k�hC1/1

: : : m00
.k�hC1/n

:::
: : :

:::
:::

: : :
:::

m0
.k/1

: : : m0
.k/n

m00
.k/1

: : : m00
.k/n

1CA
and then let

UD
�

S
Mh

�
:

We will see that rank UD k . We can select n� k consistency equations so that their
rows in R are linearly independent, and when concatenated with U; give an n� .2n/

matrix of rank n. The reasons for this are a consequence of Neumann’s work [11], and
will be explained in Section 2.3. We will assume, without loss of generality, that the
last n� k out of n consistency equations are the ones we want.

In summary, we have n� k consistency equations,
nX

jD1

.r 0ij log.zj /C r 00ij log.1� zj //� ci� i D 0 .i D kC 1; : : : ; n/;

k � h surgery equations,

nX
jD1

�
.pim

0
ij C qil

0
ij / log.zj /C .pim

00
ij C qil

00
ij / log.1� zj /

�
� csi� i D 0

.i D 1; : : : ; k � h/;

and h completeness equations,
nX

jD1

.m0ij log.zj /Cm00ij log.1� zj //� cmi� i D 0 .i D k � hC 1; : : : ; k/;
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giving a total of n equations that must have a simultaneous solution to make a manifold
complete hyperbolic.

2.3 Matrix rank

In [11], Neumann has constructed a chain complex, J ; and described its homology.
Using the terminology of Section 1, with respect to the triangulation of N and M; let
K be the gluing of the n tetrahedra, �1; : : : ; �n . The modules of the chain complex
are C0; C1 and J; where:

(1) C0DZ module generated by the k vertices of K . Each vertex will be associated
with a cusp of N; and the torus that is the link of the vertex.

(2) C1 D Z module generated by E1; : : : ;En; the n edges of K .

(3) With regard to J; for each tetrahedron, �j ; label the edges as ej1; : : : ; ej6

according to the associated parameters as:

ej1 D z ej2 D
1

1�z
ej3 D 1� 1

z

ej4 D z ej5 D
1

1�z
ej6 D 1� 1

z

Let J�j D Z module generated by the six edges of �j with the relations ej� �

ej.�C3/ D 0 for 1� � � 3 and ej1C ej2C ej3 D 0. Thus, opposite edges of the
tetrahedron are represented by the same element of J�j ; and ej3 can be defined
in terms of ej1 and ej2 . This means that ej1 and ej2 generate the Z module,
J�j . Let

J D
a

1�j�n

J�j :

The chain complex sequence is

J W 0! C0
˛
! C1

ˇ
! J

ˇ�

! C1
˛�

! C0! 0:

We have ˛; ˇ; ˛� and ˇ� defined as follows:

(1) ˛W C0 ! C1; where ˛ takes a vertex to the sum of the edges containing the
vertex, with an edge counted twice if both ends of the edge are at the vertex.

(2) ˇW C1! J can be defined by letting

Ei!

X
1�j�n

X
1���6

Ei is identifiedwith ej�

ej�
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We have the sum X
1���6

Ei is identifiedwith ej�

ej� 2 J�j

because more than one edge of �j can be identified with Ei .

(3) To define ˇ�W J!C1; note that for each �j ; we have the edge set fej1; : : : ; ej6g.
Let �W fej1; : : : ; ej6g ! fE1; : : : ;Eng be such that �.ej� / D Ei when ej� is
identified with the edge Ei . Then, let

ˇ�.ej� /D �.ej.�C1//� �.ej.�C2//C �.ej.�C4//� �.ej.�C5// (indices mod 6):

That is, ˇ� takes ej� to the alternating sum of the edges of N identified with
the edges of �j that touch ej� .

(4) ˛�W C1! C0; where ˛� sends an edge, Ei ; to the sum of its end points.

N is the interior of a compact manifold, SN ; whose boundary is the union of the k

tori, T1; : : : ;Tk ; that are the links of the vertices of K .

Lemma 2.2 When tensored with Q; the sequence, J ; is exact except in the middle,
where its homology is H1.@SN IQ/D

`
1�i�k H1.Ti IQ/.

For a proof, see Neumann [11]. We use this to compute the rank of R. However, we
will use the original chain with coefficients in Z to show that the rank of the matrix
obtained by concatenating U; as defined toward the end of Section 2.2, with n� k

linearly independent rows of R; is n.

2.3.1 Rank of R The matrix of the linear transformation, ˇ; is closely related to Rt ;

the transpose of R; and they have the same rank. Since rank RD rank Rt ; rank RD rank
of the matrix of ˇ . The edges E1; : : : ;En are a basis of C1 as a vector space, so the
vectors ˇ.Ei/ for 1� i � n are the columns of the matrix of ˇ . From the definition
of ˇ; we see that in J�j ;

ˇ.Ei/D
X

1���6
Ei is identifiedwith ej�

ej� modulo relations on J:

Thus, if:

� ej1 or ej4 occur, it means Ei is identified with the zj parameter.

� ej2 or ej5 occur, it means Ei is identified with the 1
1�zj

parameter.

� ej3 or ej6 occur, it means Ei is identified with the 1� 1
zj

parameter.
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In J�j ; ej3 D�ej1� ej2 ; also,

1�
1

zj
D�

1� zj

zj
:

Hence, the sum of the coefficients of ej1 in ˇ.Ei/ is r 0ij ; the sum of the exponents
of zj with respect to the edge Ei in the consistency equations, and the sum of the
coefficients of ej2 in ˇ.Ei/ is �r 00ij ; which is �1 times the sum of the exponents of
1� zj with respect to the edge Ei in the consistency equations, as seen in Section 2.1.
Consequently, R; the 2n� n matrix of ˇ is:

RD

0BBBBB@
r 0
11

: : : r 0
n1

�r 00
11

: : : �r 00
n1

:::
: : :

:::

r 0
1n

: : : r 0nn

�r 00
1n

: : : �r 00nn

1CCCCCA
We see that rank R D rank Rt ; so rank R D rank R. By definition, the rank of R is
equal to the dimension of the image of ˇ . By Lemma 2.2, ˛ is injective, making
dim im.˛/D dim C0 D k; and im.˛/D ker.ˇ/. The matrix of ˇ this way would still
be R; so

rank RD dim im.ˇ/

D dim C1� dim kernel.ˇ/

D dim C1� dim im.˛/

D n� k:

Therefore, rank R D n � k . Let R; C and SR be the matrices associated with the
consistency equations, as in Section 2.1. Consider the matrix equation R � x D �C.
Neumann [11] has proven that there is an zx 2Q2n that is a solution. Then �C is a
linear combination of the columns of R; so R concatenated with �C has the same
rank as R since row rank is the same as column rank. That is,

n� k D rank RD column rank R

D column rank .Rj�C/D column rank .RjC/D column rankSRD rankSR;

so rankSRD n� k . Let Rˇ D matrix consisting of n� k linearly independent rows
of R.

2.3.2 Rank of .SjMhjRˇ/ For now we will include all k cusps of N . Let S1.@SN /D

Z module of simplicial 1–chains, Z1.@SN /DZ module of 1–cycles and B1.@SN /DZ

Algebraic & Geometric Topology, Volume 9 (2009)



Proving an approximately hyperbolic manifold to be hyperbolic 117

module of 1–boundaries. Let ej� 2 J�j for � D 1; 2. If the two vertices at the
ends of ej� in �j are vj�1 and vj�2; let �j�1 and �j�2 be the respective edges of
L�j .vj�1/ and L�j .vj�2/ that do not intersect ej� . Do the same for ej.�C3/; so we
have four 1–simplices identified in @SN . They are �j�1; �j�2; �j.�C3/1 and �j.�C3/2;

with one for each vertex of �j . Now define y0 :

y0W J�j ! S1.@SN /

ej� ! �j�1C �j�2C �j.�C3/1C �j.�C3/2

We have, by [11],

y0W im.ˇ/! B1.@SN /

y0W ker.ˇ�/!Z1.@SN /

so there is the induced map

y W ker.ˇ�/=im.ˇ/!H1.@SN /D
a

1�i�k

H1.Ti/:

Next, let yı0W H1.@SN /! J be defined as follows. Let � be a simple simplicial loop
on the torus, Ti ; associated with the i –th cusp of N . In Figure 5,  is such a loop.
Each vertex, wr ; of ; is the vertex of pr triangles L�r1

.v/; : : : ;L�rpr
.v/ where Ti

is the link of v; a vertex of K . Define the simple cellular path S�; by starting at the
midpoint of the edge of L�11

.v/ that ends in w1 but is not s1 . Continue across the
fL�1q

.v/g2�q�p1�1 by crossing from one triangle to another at the midpoint of the
edges that have w1 as a vertex, ending at the edge of L�1p1

.v/ that is not s2 . Then
continue across L�1p1

.v/DL�21
.v/ to the edge of L�21

.v/ that has w2 as a vertex
but is not s2 . Repeat the process until the loop is closed by going from the edge of
L�dpd

.v/ D L�11
.v/ that contains wd but is not s1 to the starting point. When S�

crosses L�r q
.v/ for 2� q � pr � 1; it goes counterclockwise around the vertex wr ;

as a vertex of L�r q
.v/; and when it crosses L�rpr

.v/DL�.rC1/1
.v/; it goes clockwise

around the vertex of this triangle that is opposite to srC1 . When one of these vertices
belongs to the triangle L�r q

.v/; the vertex is associated with an edge, erq� ; of �rq

for some 1 � � � 6; as defined at the beginning of Section 2.3, and this edge is an
element of J�r q

� J . To each of these edges assign a “C” if S� goes around its
corresponding vertex counterclockwise, and a “�” if S� goes around its corresponding
vertex clockwise. � is homotopic to S�; so we can define yı0W Z1.@SN /! J such that
yı0.S�/D yı0.�/ is the signed sum of these edges in J . That is,

yı0.S�/D
X

1�r�d
2�q�pr

.�1/terq�
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where t D 0 when erq� is assigned a “C” and t D 1 when erq� is assigned a
“�”. In J�r q

; erq� D erq.�C3/ for 1 � � � 3 with the last subscript mod 6; and
erq1C erq2C erq3 D 0; so �erq� D erq.�C1/C erq.�C2/ with the last two subscripts
mod 6. Therefore, when erq� is assigned a “�”, we substitute erq.�C1/C erq.�C2/

with both subscripts mod 6. Hence,

(1) yı0.S�/D
X

1�r�d
1�q�pr

erq�

where erq� is an edge of �rq that is associated with wr ; a vertex of L�r q
.v/ and wr

is a vertex of the simple simplicial loop � in Ti . The relations of J also mean that
erq3 D erq6 D�erq1� erq2; so

yı0.S�/D
X

1�j�n
S� crosses L�j .v/

g0
jS�

ej1Cg00
jS�

ej2

where, with respect to �j ; g0
jS�

is the number of occurrences of the zj parameter
minus the number of occurrences of the 1� 1=zj parameter and g00

jS�
is the number

of occurrences of the 1=.1� zj / parameter minus the number of occurrences of the
1� 1=zj parameter in Equation (1).

Now let mi and li for 1 � i � k be the meridional and longitudinal simple simplicial
loops on Ti ; as in Section 2.2. We get corresponding xmi and xli ; constructed as S�
was, where mi and li are homologous to xmi and xli ; respectively. So xmi and xli are the
generators of H1.Ti/ and their image under yı0 are two columns of ML; the matrix of
yı0 . These two columns are of the form

Egmi
D .g01 xmi

;g001 xmi
; : : : ;g0n xmi

;g00n xmi
/ with g0j xmi

Dm0ij and g00j xmi
D�m00ij

Egli
D .g0

1xli

;g00
1xli

; : : : ;g0
nxli

;g00
nxli

/ with g0
jxli

D l 0ij and g00
jxli

D�l 00ij

where m0ij ;m
00
ij and l 0ij ; l

00
ij are the components of the matrices M and L found toward

the end of Section 2.2. Let ML be M concatenated with L. For each generator of
H1.@SN / D

`
1�i�k H1.Ti/; there is a column in the matrix of yı0; so ML has 2k

columns and 2n rows, where the .2j�1/–st row of ML is equal to the j –th column
of ML and the 2j –th row of ML is .�1/ times the .nCj /–th column of ML. Thus,
rank MLD rank MLt D rank ML. The next step is to show that rank MLD 2k . We
have im.yı0/� ker.ˇ�/; with yı0.B1.@SN //� im.ˇ/; so there is the induced map

yıW H1.@SN /! ker.ˇ�/= im.ˇ/:
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Now y yıW H1.@SN /! H1.@SN / is multiplication by 2 [11], so yı0 must be injective.
Consequently, the matrix of yı0 has maximal rank, which is 2k; making the 2k vectors,
fEgmi

; Egli
g1�i�k ; linearly independent.

M is derived from N by the Dehn filling of k�h cusps of N with filling coefficients
of .pi ; qi/ for 1� i � k � h. Let Egsi

D pi Egmi
C qi Egli

for 1� i � k � h.

Lemma 2.3 The kC h vectors

fEgs1
; : : : ; Egsk�h

; Egmk�hC1
; : : : ; Egmk

; Eglk�hC1
; : : : ; Eglk

g

are linearly independent.

Proof Assume otherwise. Then there exists �si for 1 � i � k � h and �mi and 'li

for k � hC 1� i � k such that

0D
X

1�i�k�h

�si Egsi
C

X
k�hC1�i�k

.�mi Egmi
C'li Egli

/

D

X
1�i�k�h

�si.pi Egmi
C qi Egli

/C
X

k�hC1�i�k

.�mi Egmi
C'li Egli

/

D

X
1�i�k�h

�sipi Egmi
C

X
1�i�k�h

�siqi Egli
C

X
k�hC1�i�k

.�mi Egmi
C'li Egli

/:

We have just seen that fEgmi
; Egli
g1�i�k ; is linearly independent, so �mi D 'li D 0 for

k �hC 1� i � k and �sipi D �siqi D 0 for 1� i � k �h. But at least one of pi or
qi is not 0; so �si D 0 for 1� i � k � h.

Since rank R D n� k; select n� k linearly independent vectors in im.ˇ/ that are
columns of the matrix R; and denote them by Egˇi

for k C 1 � i � n. Observe that
im.yı0/\ im.ˇ/D f0g; because otherwise, there is a nontrivial x 2H1.@SN / such that
y0
yı0.x/D y0.element of im.ˇ// 2 B1.@SN /. Then y yı.x/D 0 2H1.@SN /. But y yı is

multiplication by 2 on H1.@SN /; so x D 0; which is a contradiction.

Lemma 2.4 Set notation as follows:

(1) SD the 2n�.k�h/ matrix whose columns are the vectors Egsi
; for 1� i �k�h.

(2) Mh D the 2n� h matrix whose columns are the linearly independent vectors
Egmi

; for k � hC 1� i � k .

(3) Rˇ D the 2n � .n � k/ matrix whose columns are the linearly independent
vectors Egˇi

; for kC 1� i � n.

Concatenate these matrices to get the 2n�n matrix FD .SjMhjRˇ/. Then rank FD n.
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Proof Assume otherwise. Then the vectors that are the columns of F are not linearly
independent, so there are �si for 1 � i � k � h, 'mi for k � hC 1 � i � k and �ˇi

for kC 1� i � n; where not all are zero, such that

(2) 0D
X

1�i�k�h

�si Egsi
C

X
k�hC1�i�k

'mi Egmi
C

X
kC1�i�n

�ˇi Egˇi
:

Therefore,

0D y0.0/

D y0

� X
1�i�k�h

�si Egsi
C

X
k�hC1�i�k

'mi Egmi
C

X
kC1�i�n

�ˇi Egˇi

�
D y0

� X
1�i�k�h

�si Egsi
C

X
k�hC1�i�k

'mi Egmi

�
C y0

� X
kC1�i�n

�ˇi Egˇi

�
D y0

�
yı0

� X
1�i�k�h

�si.pi xmi C qi
xli/C

X
k�hC1�i�k

'mi xmi

��
C y0.element in im.ˇ//:

But y0.im.ˇ//� B1.@SN /; so

y yı
� X

1�i�k�h

�si.pi xmi C qi
xli/C

X
k�hC1�i�k

'mi xmi

�
D 0:

Therefore,
P

1�i�k�h �si.pi xmiCqi
xli/C

P
k�hC1�i�k 'mi xmi D 0 since y yı is injec-

tive. Hence,

0D yı0.0/

D yı0

� X
1�i�k�h

�si.pi xmi C qi
xli/C

X
k�hC1�i�k

'mi xmi

�
D

X
1�i�k�h

�si
yı0.pi xmi C qi

xli/C
X

k�hC1�i�k

'mi
yı0. xmi/

D

X
1�i�k�h

�si Egsi
C

X
k�hC1�i�k

'mi Egmi
:

By Lemma 2.3, �si for 1� i � k�h and 'mi for k�hC1� i � k are all zero. Then,
Equation (2) becomes 0D

P
kC1�i�n �ˇi Egˇi

. However, the Egˇi
for kC 1 � i � n

were selected to be linearly independent, so �ˇi D 0 for k C 1 � i � n. This is a
contradiction.

Corollary 2.5 Each column of Rˇ has a corresponding row in R; the matrix associ-
ated with the consistency equations. Let Rˇ be the matrix comprised of only these
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n� k rows of R and let

FD

0@ S
Mh
Rˇ

1A :
Then rank FD n.

Proof As before, every .2j�1/–th row of F is equal to the j –th column of F and
every 2j –th row of F is .�1/ times the .nCj /–th column of F. Thus,

rank FD rank Ft
D rank FD n:

That is, rank FD n.

3 How to test for a solution

Define maps fi , i D 1; : : : ; n, as follows:

fi.z1; : : : ; zn/D

nX
jD1

�
.pim

0
ij C qil

0
ij / log.zj /C .pim

00
ij C qil

00
ij / log.1� zj /

�
� csi� i .i D 1; : : : ; k � h/

fi.z1; : : : ; zn/D

nX
jD1

.m0ij log.zj /Cm00ij log.1� zj //� cmi� i

.i D k � hC 1; : : : ; k/

fi.z1; : : : ; zn/D

nX
jD1

.r 0ij log.zj /C r 00ij log.1� zj //� ci� i

.i D kC 1; : : : ; n/

and let f be the map

f W Cn
!Cn

z D .z1; : : : ; zn/! f .z/D .f1.z/; : : : ; fn.z//:

Then let

t 0ij D pim
0
ij C qil

0
ij t 00ij D pim

00
ij C qil

00
ij t 000i D csi .i D 1; : : : ; k � h/

t 0ij Dm0ij t 00ij Dm00ij t 000i D cmi .i D k � hC 1; : : : ; k/

t 0ij D r 0ij t 00ij D r 00ij t 000i D ci .i D kC 1; : : : ; n/:
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The resulting components of f are

fi.z1; : : : ; zn/D

nX
jD1

.t 0ij log.zj /C t 00ij log.1� zj //� t 000i � i .i D 1; : : : ; n/:

@fi.z/

@zj
D

t 0ij

zj
�

t 00ij

1� zj
for 1� i � n;Then

@f .z/

@zj
D

� t 0
1j

zj
�

t 00
1j

1� zj
; : : : ;

t 0nj

zj
�

t 00nj

1� zj

�
:so

Let H DCn
C; the upper half plane in Cn: H is open in Cn . Each fi is holomorphic

on H; so, according to Range [15], f is holomorphic on H . Thus, by Whitney [22],
f is smooth on H; with the derivative of f at z ,

f 0.z/D
�@fi.z/

@zj

�
1�i;j�n

;

being well defined on H . Since we are only working with manifolds where SnapPea
finds an approximate solution to f in Cn

C; there is an a2Cn
C such that f .a/Db and b

is extremely close to 0 2 Cn . From Choi [2] we know that detf 0.a/ ¤ 0; so rank
f 0.a/D n and f is regular at a. Then f 0.a/�1 exists. Let

ıW Cn
!Cn

v! jf 0.a/�1
� vj:

Since ı; as a function of v; is a continuous function on Cn; it will attain a maximum
and minimum on the compact set fv 2Cn W jvj D 1g.

3.1 Kantorovich

The Kantorovich Theorem, found in Hubbard and Hubbard [8], provides a test for the
solution of f . The relevance of this theorem to the solution of f was brought to our
attention by Joan Birman after another test had been developed by us. We thank her
for telling us about it. The Kantorovich Theorem is usable in our situation because we
can identify the quantities used, though this is not the case for all functions. The test
provides a sufficient condition for a manifold to have a complete hyperbolic structure.
Consequently, it is possible for a manifold to not satisfy the condition and still be
complete hyperbolic.

Theorem 3.1 (Kantorovich) Let U be an open neighborhood of a point, a; in Cn

and f W U ! Cn a holomorphic mapping with invertible derivative f 0.a/ at a: Let
hh D �f 0.a/�1f .a/; za D aC hh and U0 D Bjhhj.za/, the open ball of radius jhhj

about za. If U0 � U ,
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(1) the derivative f 0.z/ satisfies the Lipschitz condition on U0; with Lipschitz
ratio L, and

(2) jf .a/jjf 0.a/�1j2L� 1
2
;

then f .z/D 0 has a unique solution in U0:

The Kantorovich Theorem applied to our function, f; works as follows. Let U DH .
Given a; an approximate solution to f .z/D 0; apply Newton’s method to f at a to
get an even better approximate solution, za: That is, let hhD�f 0.a/�1 �f .a/ and zaD
aChhD .a1Chh1; : : : ; anChhn/ so zaj D aj Chhj : Then see if a Lipschitz ratio,
denoted by L; can be identified for z 2 Bjhhj.za/ so that f 0.z/ satisfies the Lipschitz
condition on U0 with L. One way to do this is to find an upper bound, cijk ; on the
second partials, j@i@jfk.z/j for 1� i; j ; k � n for z 2 Bjhhj.za/; and let

LD

s X
1�i;j ;k�n

.cijk/
2

(see Hubbard and Hubbard [8]). This works for us, but in general, the major stumbling
block to using this theorem is the difficulty in finding this L. Here, jf 0.a/�1j; the norm
of f 0.a/�1; can be either the supremum norm, which we will denote by jf 0.a/�1jsup;

or the length norm, referred to as jf 0.a/�1jlen; where

jf 0.a/�1
jsup D supjvjD1jf

0.a/�1
� vj

and if a component of f 0.a/�1 is denoted by hij ;

jf 0.a/�1
jlen D

s X
1�i;j�n

jhij j
2:

Now substitute values in the inequality found in the second part of the Kantorovich
Theorem and see if they pass the test. If so, there is a solution in Bjhhj.za/:

3.1.1 Calculate jf 0.a/�1j

Supremum norm jf 0.a/�1jsup

Let B D ff 0.a/�1
� v W jvj D 1g D fw 2Cn

W jf 0.a/ �wj D 1g:

We look at the continuous real valued function � on the compact set B such that

�W B!R

w! jwj2:
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Let S D fv 2 Cn W jvj D 1g: Then � attains a maximum at some zw 2 B and the
function ı will attain a maximum at some zv 2 S where zw D f 0.a/�1 � zv . Now let
AD f 0.a/. This is a complex matrix, so

jAwj2 D .Aw/t .Aw/ . xAD conjugate of A and t D transpose of A/

D .wtAt /.Aw/

D wt .At xA/ xw:

Let D D .At xA/. This is a self adjoint matrix so, according to Edwards [4], it has real
eigenvalues. Then

B D fw W jAwj D 1g

D fw W jAwj2 D 1g

D fw W wtD xw D 1g:

Using the Lagrange multiplier method to maximize � on B [4], let

H.w1; : : : ; wn; �/D jwj
2
��.wtD xw� 1/

D

nX
iD1

wiwi ��

� nX
iD1

wi

� nX
jD1

dijwj

�
� 1

�
:

In order to find a critical point for H; all partials with respect to w1; : : : ; wn and �
must be 0. We set

0D
@H

@wi
D wi ��

� nX
jD1

dijwj

�
.i D 1; : : : ; n/;

0D xw��D xwso

D .I ��D/ xw

D

�
1

�
I �D

�
xw:

Then D xw D xw=�; making 1=� an eigenvalue of D . Also,

0D
@H

@�

D wtD xw� 1:

Thus, wtD xw D 1; and substituting xw=� for D xw from above, we have wt xw=�D 1.
That is, wt xw D �. But wt xw D jwj2; so maxjwj2 D max� such that 1=� is an
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eigenvalue of D . Then,

maxonBjwj
2
D

1

smallest eigenvalue of D

D
1

smallest eigenvalue of At xA

D
1

smallest eigenvalue of f 0.a/tf 0.a/
:

By definition, jf 0.a/�1jsup DmaxonBjwj; so

jf 0.a/�1
jsup D

1p
smallest eigenvalue of f 0.a/tf 0.a/

:

We calculate the eigenvalues of f 0.a/tf 0.a/ using its characteristic polynomial and
take the square root of the smallest one to get jf 0.a/�1jsup .

Length norm jf 0.a/�1jlen

Let the components of f 0.a/�1 be .hij /1�i;j�n: Then

jf 0.a/�1
jlen D

s X
1�i;j�n

jhij j
2:

3.1.2 Calculate cijk Let z 2 Bjhhj.za/: Then jz � zaj < jhhj; so jzj � zaj j < jhhj;

where zj �zaj D zj � .ajChhj / since zaj D ajChhj : Figure 7 shows the situation for
each j . There are three tests that need to be performed before we test for the inequality
in the Kantorovich Theorem. The entire process stops and Kantorovich tells us nothing
about a manifold when any of these tests fail.

Test 1 We want a solution in H; so we require that Im.zaj / > jhhj: Otherwise, there
are z 2 Bjhhj.za/ that have Im.zj /� 0; and the solution could be one of these z:

Test 2 j.zj � aj /� hhj j D jzj � .aj C hhj /j D jzj � zaj j< jhhj:

Using triangle inequalities,

jzj � aj j � jhhj j � j.zj � aj /� hhj j:

Therefore,jzj �aj j � jhhj j< jhhj; giving jzj �aj j< jhhj jC jhhj: But jhhj j � jhhj;

so jzj � aj j< 2jhhj: Now

jzj j D jaj C .zj � aj /j � jaj j � j.zj � aj /j:

jzj j> jaj j � 2jhhj:Thus,
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0 1

.aj&%
'$

. zaj

.zj

Figure 7: Disc of radius jhhj about zaj

We need jaj j � 2jhhj > 0 in order to define L; so the second test is to check that
jhhj< 1

2
jaj j: Then,

(3)
1

jzj j
<

1

jaj j � 2jhhj
:

Test 3 We do a similar process as in the previous test. We already know that jzj�aj j<

2jhhj: Only now, we use 1� zj instead of zj ; so

j1� zj j D j1� aj � .zj � aj /j � j1� aj j � j.zj � aj /j:

j1� zj j> j1� aj j � 2jhhj:Hence

We need j1� aj j � 2jhhj> 0I a third test is to see if jhhj< 1
2
j1� aj j: Then,

(4)
1

j1� zj j
<

1

j1� aj j � 2jhhj
:

Remainder of calculation We are now ready to look at the second partials. By
Section 3 we see that for z 2 Bjhhj.za/;

@jfi.z/D
@fi.z/

@zj
D

t 0ij

zj
�

t 00ij

1� zj
:

Therefore,

@k@jfi.z/D 0 for k ¤ j

D�
t 0ij

z2
j

�
t 00ij

.1� zj /2
for k D j:
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Consequently,

j@j@jfi.z/j �
jt 0ij j

jzj j
2
C
jt 00ij j

j1� zj j
2
:

Combining this with Equations (3) and (4) yields

j@j@jfi.z/j �
jt 0ij j

.jaj j � 2jhhj/2
C

jt 00ij j

.j1� aj j � 2jhhj/2
:

Using this, cijk for 1� i; j ; k � n is defined as

cijk D 0 for j ¤ k

cijj D
jt 0ij j

.jaj j � 2jhhj/2
C

jt 00ij j

.j1� aj j � 2jhhj/2
:

The Lipschitz ratio, L; can now be identified as

LD

s X
1�i;j�n

.cijj /2

LD

vuuut X
1�i;j�n

 
jt 0ij j

.jaj j � 2jhhj/2
C

jt 00ij j

.j1� aj j � 2jhhj/2

!2

:

The theorem can finally be applied, testing to see if jf .a/jjf 0.a/�1j2L � 1
2
: Since

b D f .a/; this can be rewritten as

jbj �
1

2jf 0.a/�1j2L
:

We really have two tests, one using the supremum norm and the other using the length
norm. This completes the last part of the proof of Theorem 1.2.

4 Examples

The methods presented are implemented by the use of two programs: Snap [7] to get
information about the manifold and Pari–Gp [14] to do calculations. We use Pari–Gp
instead of Mathematica because of its high level of precision.

The template for a script of these calculations can be downloaded from the ADDITIONAL

MATERIAL section of the web page for this paper or from here: template.txt. It
is an edit file that needs to be adjusted for information gotten from SNAP and then
copied into Pari-GP for execution. templateinstruct.txt (also available from the
web page for this paper) has the instructions for how to use the template.
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We now look at three examples. Each example will have two sets of data. The first
comes from Snap and the second is the result of calculations in Pari–Gp. The vectors
and matrices are printed as they appear in Snap. The matrix F contains the cusp
equations where the first k � h rows represent the cusp surgery equations and the
next h rows are the meridian completeness equations. The matrix of all n consistency
equations is denoted by G . The Pari–Gp data has been shortened to 40 decimal places
from the calculated precision of 60 decimal places so as to fit on one line since in these
examples, it has no effect on understanding the results.

4.1 Figure 8 knot complement

The simplest is the figure 8 knot complement. From Thurston [19] we know that this is
complete hyperbolic already. However, only sufficiency conditions have been presented
here, so it is nice to see that a manifold we know to be complete hyperbolic does not
fail the test.

Quantities from Snap

nD 2

hD k D 1

aD [0.5000000000000000000000000000+0.8660254037844386467637231707*I,
0.5000000000000000000000000000+0.8660254037844386467637231707*I]

F D Œ1; 0; 0; 1; 0�

G D Œ2;�1;�1; 2; 0I �2; 1; 1;�2; 0�

Pari–Gp calculations

jbj D 1:296666384352891444530724934775173278518E � 28

LD 4:472135954999579392818347339211785668123

jf 0.a/�1jsup D 1:592226038754547070932399593119376104348

jf 0.a/�1jlen D 1:632993161855452065464856049716587347937

1=.2jf 0.a/�1j2supL/D 0:04410070808503045666350407221846082500302

1=.2jf 0.a/�1j2lenL/D 0:04192627457812105680767200627679720162466

4.2 .9872 ; 11111/ Dehn surgery: Whitehead link complement

Neumann and Reid [12] show that the Whitehead link complement has a complete
hyperbolic structure. This example considers Dehn surgery on only one of the two
cusps of the Whitehead link complement.
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Quantities from Snap

nD 4

hD 1 and k D 2

aD [0.9999343700073827649570992430+1.000170536257729817727630077*I,
0.4999147436597508540443693049+0.4999671844066970777583211769*I,
0.5000852675298210651958243937+0.5000328032070212542658981140*I,
0.4999147436597508540443693049+0.4999671844066970777583211769*I]

F D Œ20983; 0;�9872; 0;�9872; 11111;�1239; 20983;�2I 0; 0; 0; 1; 1;�1; 0; 0; 0�

G D Œ1; 1; 1; 1; 1;�2; 0; 0;�1I 0;�1;�1;�1;�1; 1; 1; 1; 1I �1; 1; 1; 1; 1; 0;

�2;�2;�1I 0;�1;�1;�1;�1; 1; 1; 1; 1�

Pari–Gp calculations

jbj D 6:290546043622649509854067366063508951285E � 24

LD 56237:01131396100111291495604741250466464

jf 0.a/�1jsup D 1:063909899076773471157618529051471308315

jf 0.a/�1jlen D 1:235415661324873497175222236812823735348

1=.2jf 0.a/�1j2supL/D 0:000007854853193291278165225494981053686965848

1=.2jf 0.a/�1j2lenL/D 0:000005825343870778317976532920417278552662252

4.3 Largelink complement

This is the smaller of two extremely large link complements. See Figure 8. It has 32

tetrahedra and 4 cusps. The other one has 57 tetrahedra and 11 cusps. These two links
are used by Leininger [9] to construct other knots and links by cut and paste methods,
and then looking at their covers. For any even integer g > 0; we eventually get from
Largelink a two component link whose complement in S3 contains an embedded
totally geodesic surface of genus g . The importance of Largelink is that prior to this,
such embedded surfaces could only be found in the complement of links with more
than two components.

Quantities from Snap

nD 32

hD k D 4

The vector a has 34 components, F is a 4� 65 matrix and G is a 32� 65 matrix:
these can be found at largelinkdata.txt (also available from the ADDITIONAL

MATERIAL section of the web page for this paper).
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Figure 8: The link Largelink

Pari–Gp calculations

jbj D 2:890741236697218507543429035402903716418E � 27

LD 38:46960927036768465200292167581178343887

jf 0.a/�1jsup D 8:212846275527759925085525656342053316915

jf 0.a/�1jlen D 10:32145710779244812406937753131330598443

1=.2jf 0.a/�1j2supL/D 0:0001926925132239904423664849871566682428236

1=.2jf 0.a/�1j2lenL/D 0:0001220029142841818172845137711227723107218

4.4 Cusped census

We can apply the tests of Theorem 1.2 to every manifold in the SnapPea cusped census.
The results are found in the following theorem.

Theorem 4.1 Every manifold in the SnapPea cusped census has a complete hyperbolic
structure.

A program was written in Perl [3] that issues commands to Snap to send tetrahedron
shapes and filling equations for each manifold in the cusped census to an output file.
Then a Pari–Gp program reads the file, getting the needed data per manifold, and applies
the template using this input. The program then prints out the results. The first run of
this process determined that all but four manifolds, 5 168, 6 297, 7 1431 and 7 1927,
have a complete hyperbolic structure. The program rejected these four because each one,
upon triangulation by Snap, had one tetrahedron shape parameter with an imaginary
component that was effectively zero. This was remedied by revising the original Perl
program to process only these four manifolds, and including the “randomize” command
to get a different, acceptable triangulation. The Pari–Gp program, also revised to
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process only these four manifolds, was then run using the second Perl output file. The
result was a determination that they also have a complete hyperbolic structure.

These programs can be adapted to give other information, such as the maximum value
that norm b , the norm of b; assumes over all the manifolds in the cusped census.
Call this maxnorm b . Similarly, for each manifold, we can ascertain the larger of the
two values that norm b is compared to, and then the minimum of these maximum
comparison values over all the manifolds in this census. We do this because as long
as norm b of a manifold is less than the larger of the two comparison values for that
manifold, the manifold will have a complete hyperbolic structure. Then if norm b of a
manifold in the census is less than the smallest of these maximum comparison values
over the whole census, that manifold is guaranteed to have a complete hyperbolic
structure. Call this minimum of maximum comparison values minmaxval. It tells us
the precision needed to evaluate a manifold in the census. The following quantities are
computed:

maxnorm b
D 1:717844093022015223183888589087321425164875899778E � 26

minmaxval
D 0:00000147831677691814063380907736140260722549837777747014

Thus, the approximate solution given by SnapPea, which is given to 10 digits but is
computed to an internal precision of at least 15 significant digits, is sufficient for use as
our a1; : : : ; an . It is interesting to see that the largest norm b is considerably smaller
than the smallest comparison value over the entire cusped census. The Perl programs
and output files, as well as the Pari–Gp programs and log files, can be found at my
website. These Perl programs also include data with respect to a third test for a solution
to the equations. However, the third test yields smaller comparison values than the
Kantorovich tests, so it has no effect on minmaxval.
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