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The concordance genus of a knot, II

CHARLES LIVINGSTON

The concordance genus of a knot K is the minimum three-genus among all knots
concordant to K . For prime knots of 10 or fewer crossings there have been three knots
for which the concordance genus was unknown. Those three cases are now resolved.
Two of the cases are settled using invariants of Levine’s algebraic concordance group.
The last example depends on the use of twisted Alexander polynomials, viewed as
Casson–Gordon invariants.

57M25; 57N70

Two basic notions of genus for knots K � S3 are the 3–genus, g3.K/, the minimum
genus of an orientable embedded surface bounded by K in S3 , and the 4–genus,
g4.K/, the minimum genus of an orientable embedded surface bounded by K in B4 .
A third notion is the concordance genus, gc.K/, the minimum value of g3.J / among
all knots J concordant to K . Each of these can be defined in either the smooth or the
topological, locally flat, category; our results apply in both. An elementary exercise
shows:

Proposition 1 For all knots K , g3.K/ � gc.K/ � g4.K/. If g4.K/ D 0 then
gc.K/D 0.

There exist knots for which the gap between g3.K/ and gc.K/ is arbitrarily large;
forming the connected sum with a slice knot does not change the value of gc but
raises the values of g3 . Gordon [8] asked whether gc.K/D g4.K/ for all knots K .
In unpublished work, Casson showed that for the knot K D 62 , gc.K/ D 2 and
g4.K/D 1. Nakanishi [20] proved that gc.K/�g4.K/ can be arbitrarily large. (We
use the classical names for knots, such as 62 , as listed in Cha and Livingston [2] and
Rolfsen [24].)

The article [16] by the author initiated a detailed examination of gc , illustrating the
use of algebraic concordance invariants to determine the concordance genus of knots,
and also demonstrating the application of Casson–Gordon invariants when algebraic
invariants do not suffice. In that article the concordance genus was determined for all
prime knots of nine or fewer crossings, excluding 818 and 940 . At 10 crossings the
only example that does not fall to the techniques of [16] is 1082 . Here we delve deeper
into the structure of the algebraic concordance group to prove:
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168 Charles Livingston

Proposition 2 For K D 818 and K D 940 , g3.K/D gc.K/D 3 and g4.K/D 1.

The knot 1082 is much more interesting. Applying Levine’s classification of the
algebraic concordance group, additional results about the integral algebraic concordance
group, Casson–Gordon invariants and recent work on twisted Alexander polynomials,
we have:

Proposition 3 For K D 1082 , g3.K/D 4 and g4.K/D 1. There are knots J with
g3.J /� 3 that are algebraically concordant to K , the first of which is 942 , but K is
not concordant to any such J . In particular, gc.1082/D 4.

Acknowledgment This work was partially supported by grants from the NSF.

1 Basic polynomial and signature obstructions

We begin with the computation of the concordance genus for two examples, 62 and
62 # 62 to illustrate the use of the Alexander polynomial and knot signature functions.
The first, 62 , was Casson’s example answering Gordon’s question to the negative.
To start, we define the normalized form of the Alexander polynomial and state the
Fox–Milnor theorem on Alexander polynomials of slice knots.

Definition 1.1 For a knot K with Seifert form VK we let �K .t/D t�a det.VK�tV t
K
/,

where a is chosen so that �K .t/ 2 ZŒt � and �K .0/¤ 0. This is well-defined up to
sign.

Theorem 1.2 (Fox–Milnor [7]) If K is a slice knot, then �K .t/ D tdf .t/f .t�1/

for some polynomial f .t/ of degree d .

If K bounds a surface of genus g in S3 , then it has a 2g� 2g Seifert matrix, from
which follows the well-known bound on the 3–genus:

Theorem 1.3 For a knot K � S3 , 2g3.K/� deg.�K .t//.

Example 1.4 If K D 62 : g3.K/D 2, gc.K/D 2, g4.K/D 1.

A Seifert surface for 62 of genus 2 is easily found, and since �62
.t/D 1� 3t C 3t2�

3t3C t4 , we have g3.62/D 2.

Since K has unknotting number one (a single crossing change in the standard diagram
yields the unknot), g4.62/� 1; by the Fox–Milnor theorem, since �62

.t/ is irreducible,
62 is not slice, so g4.62/D 1.
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Finally, one sees that gc.62/D 2 as follows. If 62 is concordant to J with g3.J /� 1,
then 62 # �J is slice and by the Fox–Milnor theorem, �62

.t/�J .t/D tdf .t/f .t�1/

for some f .t/. But since �62
.t/ is irreducible and of degree 4, while deg.�J .t//� 2,

this is not possible.

Example 1.5 If K D 62 # 62 : g3.K/D 4, gc.K/D 4, g4.K/D 2.

The knot 62 # 62 cannot be handled in the same way, since its Alexander polynomial is
�62 # 62

.t/D .1�3tC3t2�3t3Ct4/2 , which is, in fact, the Alexander polynomial of the
slice knot 62 #�62 . By the additivity of the 3–genus, we do have that g3.62 # 62/D 4.
Introducing the signature function permits the further analysis of this example.

For any knot K , the Murasugi [19] 4–genus bound is given by 2g4.K/ � j�.K/j,
where �.K/ is the signature of the symmetrized Seifert form VK C V t

K
. From our

observation that g4.62/ D 1 we have g4.62 # 62/ � 2; also, �.62 # 62/ D 4, and so
g4.62 # 62/D 2.

The Levine–Tristram signature function of a knot, �K .!/, is the function defined
on the unit complex circle as the local average of the signature of the hermetianized
Seifert form .1�!/V C .1� x!/V t , ! 2 S1 . (See Levine [13] and Tristram [28] or
see Gordon [8] for a general survey of signature invariants.) The Murasugi bound
generalizes to 2g4.K/�j�K .!/j, and as a consequence, �K is a concordance invariant.

For a knot K , its signature function �K .!/; ! 2S1 , is an integer-valued function. The
only discontinuities of �K .!/ occur at roots of �K .t/. For ! near 1, �K .!/ D 0.
Thus, since �.62 # 62/ D �62 # 62

.�1/ D 4, we see that �62 # 62
.t/ must have a root

on the unit circle and the signature function has a jump at one such root. (In fact, this
polynomial has a unique conjugate pair of unit roots.)

If 62 # 62 is concordant to J , then the signature function �J .!/ must similarly have a
jump at a root of �62 # 62

, and it immediately follows that 1�3tC3t2�3t3Ct4 divides
�J .t/. It then follows from the Fox–Milnor theorem that .1� 3t C 3t2� 3t3C t4/2

divides �J .t/, and so we see that gc.62 # 62/D 4.

2 The algebraic concordance group

Knot signatures and exponents of symmetric irreducible factors of the Alexander poly-
nomial yield invariants of Levine’s algebraic concordance group GZ . These invariants
are in fact invariants of the real algebraic concordance group, GR . In [16] a careful
study of such invariants arising from GR , generalizing the examples of the previous
section, was applied to determine the concordance genus of most low crossing number
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knots. To extend that study we need to consider invariants of the rational algebraic
concordance group, GQ . We begin by reviewing some of the basic definitions and
results, taken from [13].

The algebraic concordance group GZ is defined via Seifert matrices V , integer matrices
satisfying det.V �V t /D 1. Such a matrix of size 2g�2g is called Witt trivial if there
is a subspace of Q2g of dimension g on which the bilinear form determined by V

is identically 0. Two Seifert matrices V and W are called algebraically concordant
if V ˚�W is Witt trivial. This is an equivalence relation and the set of equivalence
classes forms the abelian group GZ with operation induced by direct sum. One of
Levine’s theorems is the following.

Theorem 2.1 If K and J are concordant, then ŒVK �D ŒVJ � 2 GZ .

Levine showed that there is an injection  W GZ ! GQ , where the second group is
the group of rational isometric structures, defined as follows. An element in GQ is
represented by a pair .Q;T / where Q is a nonsingular symmetric bilinear form on an
n–dimensional rational vector space for some n and T is an isometry of that form. (So,
if Q and T are represented by matrices, T tQT DQ.) Such a pair is called Witt trivial
if Q vanishes on a T –invariant subspace of dimension g , where 2g D n. Isometric
structures .Q1;T1/ and .Q2;T2/ are called Witt equivalent if .Q1;T1/˚ .�Q2;T2/

is Witt trivial. The set of equivalence classes forms the abelian group GQ with operation
induced by direct sum.

The injective homomorphism  W GZ ! GQ is induced by the map sending V to
.V CV t ;V �1V t /. To show this is well-defined, one proves that every class in GZ

can be represented by an invertible matrix. It is clear that for an invertible Seifert
matrix V , �V .t/D det.V /�T .t/, where T DV �1V t and �T .t/ is the characteristic
polynomial of T .

One observation of Levine in [13] is the following.

Theorem 2.2 For a symmetric monic irreducible polynomial ı , the set of Witt classes
of isometric structures .Q;T / for which �T .t/ D ık for some k is a subgroup
GıQ � GQ . There is an isomorphism �W GQ ! ˚ı GıQ given as the direct sum of
projection maps �ı . Here �ı.Q;T / is the restriction of .Q;T / to the subspace
annihilated by ık.T / for large k .

Notation We will denote �ı.Q;T / by .Q;T /ı and when we focus on the individual
components, we will denote them Qı and T ı .

The next section will illustrate the explicit computation of the decomposition of an
element in GQ . First, we note the following corollary.
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Corollary 2.3 If .Q;T / 2 GQ and �ı.Q;T / is nontrivial, then ı.t/ divides �T .t/.

Proof If ı.t/ does not divide �T .t/, then ı.T / acts as an isomorphism of the
underlying vector space and thus has no kernel.

3 Applications of rational invariants: examples

In this section we determine the concordance genus of the eight and nine crossing knots
that could not be resolved in [16].

Example 3.1 If K D 818 : g3.K/D 3, gc.K/D 3, g4.K/D 1.

The knot 818 bounds a Seifert surface of genus 3 and has Alexander polynomial
�818

.t/D .t2� t C 1/2.t2� 3t C 1/. Thus, g3.818/D 3.

The unknotting number of 818 is two, but the two crossing changes are of opposite
signs. Thus, 818 bounds an immersed disk D in B4 with two double points of opposite
sign. Two small disks on D , one at each double point, can be removed and the pair of
discs replaced by an annulus missing D , resulting in a embedded punctured torus in
B4 bounded by 818 . Since the Alexander polynomial has an irreducible symmetric
factor with odd exponent, by the Fox–Milnor theorem 818 is not slice, so g4.818/D 1.

If 818 is concordant to a knot J , then by the Fox–Milnor theorem t2� 3t C 1 divides
�J .t/. We wish to show that t2 � t C 1 also divides �J .t/, which implies via the
Fox–Milnor theorem that .t2� t C 1/2 also divides �J .t/, implying that �J .t/ is of
degree at least six, so that g3.J /� 3, and hence gc.818/D 3: We note that �818

.!/

is identically 0, so signature calculations do not yield any information.

In order to apply Corollary 2.3, we need to show that for 818 the projection of its
isometric structure on Gt2�tC1

Q is nontrivial.

The Seifert matrix for 818 , V818
, is 6 � 6. For the associated isometric structure

(defined on Q6 ), .Q;T /, we have that �T .t/ D .t
2 � t C 1/2.t2 � 3t C 1/. Thus,

.T 2�T C1/2.T 2�3T C1/ annihilates all of Q6 . The summand of Q6 annihilated by
a power of T 2�T C1 is precisely the image of the transformation T 2�3T C1. The
transformation T can be expressed in matrix form by V �1V t and a basis for this image
is simply a basis for the column span of the matrix representation of T 2�3TC1, which
can be found, for instance, using Gauss–Jordan elimination. Here our calculations were
aided by the computer program Maple.

Carrying out that calculation, it is found that the column span is 4–dimensional,
with basis, say, fb1; b2; b3; b4g. A 4� 4 matrix representation of the quadratic form
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of .Q;T /t
2�t�1 is given by the matrix with entries bt

i Qbj . Starting with one particular
Seifert matrix, as given in [2], the resulting matrix is

M D

2664
4 �2 0 �2

�2 2 2 3

0 2 �2 1

�2 3 1 2

3775 :
We claim this form is not trivial in the Witt group of symmetric bilinear forms over Q,
W .Q/. To see this, we apply a homomorphism @3W W .Q/ ! W .Z=3Z/, where
W .Z=3Z/ is the Witt group of symmetric forms over the field with three elements.
The homomorphism @3 can be defined via the following algorithm. First, the matrix is
diagonalized so that the diagonal entries are square free integers. Those diagonal entries
that are not divisible by 3 are deleted, and those that are divisible by 3 are divided by 3

and then reduced modulo 3. We demonstrate this with the matrix M above. Details of
the general theory of such homomorphisms can be found in Milnor and Husemoller [18,
Chapter 4]. In brief, there is a surjection @W W .Q/! p̊W .Z=pZ/ defined via such
maps, and the kernel of @ is W .Z/.

For the matrix M above, when we diagonalize we arrive at the matrix

M1 D

2664
1 0 0 0

0 1 0 0

0 0 �6 0

0 0 0 �6

3775 :
Removing the top two entries, which are not divisible by 3, dividing the last two entries
by 3, and reducing modulo 3, gives the matrix with entries in Z=3Z

M2 D

�
1 0

0 1

�
:

This form is nontrivial in W .Z=3Z/ since the equation x2Cy2 D 0 does not have a
nontrivial solution in Z=3Z.

Example 3.2 If K D 940 : g3.K/D 3, gc.K/D 3, g4.K/D 1.

This example is much like the previous one.

We have that 940 bounds a Seifert surface of genus 3 and has Alexander polynomial
�940

.t/D .t2� t C 1/.t2� 3t C 1/2 . Thus, g3.940/D 3.

As with 818 , 940 has unknotting number two, but the two crossing changes can be
taken to have opposite signs, so g4.940/D 1.
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If 940 is concordant to a knot J , then by the Fox–Milnor theorem t2� t C 1 divides
�J .t/. We wish to show that t2� 3t C 1 also divides �J .t/, which implies via the
Fox–Milnor theorem that .t2�3tC1/2 also divides �J .t/, implying that �J .t/ is of
degree at least six, so that g3.J /�3, and hence gc.940/D3: Unlike 818 , �940

.!/D2,
but this arises from the t2� t C 1 factor; the polynomial t2� 3t C 1 has no roots on
the unit circle, so again signatures cannot be applied here.

To apply Corollary 2.3, we will show that for 940 the projection of its isometric structure
on Gt2�3tC1

Q is nontrivial.

The calculation at this point is much as before. The Seifert matrix for 940 , V940
, is

6� 6. For the associated isometric structure (defined on Q6 ), .Q;T /, we have that
�T .t/D .t

2� t C 1/.t2� 3t C 1/2 . Thus, .T 2�T C 1/2.T 2� 3T C 1/ annihilates
all of Q6 . The summand of Q6 annihilated by a power of T 2� 3T C 1 is precisely
the image of the transformation T 2 � T C 1. Again, T can be expressed in matrix
form by V �1V t and a basis for the image of T 2 �T C 1 is a basis for the column
span of the matrix representation of .T 2� 3T C 1/. Continuing with the calculation
yields, as the matrix representing the bilinear form, the matrix

M D

2664
2 �3 �1 �2

�3 2 4 �2

�1 4 2 0

�2 �2 0 �4

3775 :
To see that this is not trivial in the Witt group of symmetric bilinear forms over Q,
W .Q/, we apply a homomorphism @5W W .Q/!W .Z=5Z/, where W .Z=5Z/ is the
Witt group of symmetric forms over the field with five elements. The homomorphism @5

can be defined in the same way as @3 : diagonalize the matrix so that the diagonal
entries are square free integers; those diagonal entries that are not divisible by 5 are
deleted; and those that are divisible by 5 are divided by 5 and then reduced modulo 5.
For the matrix N above, upon diagonalizing we arrive at

M1 D

2664
2 0 0 0

0 �10 0 0

0 0 1 0

0 0 0 �5

3775 :
The first and third entries are not divisible by 5, so are removed. The remaining entries
are divided by 5 and reduced modulo 5 to yield

M2 D

�
3 0

0 4

�
:
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This form is nontrivial in W .Z=5Z/ since the equation 3x2C 4y2 D 0 does not have
a notrivial solution in Z=5Z.

4 The knot 1082: algebraic concordance

As described in Proposition 3 of the introduction, the situation with the knot 1082

is much more interesting, and delicate work using twisted Alexander polynomials as
Casson–Gordon slicing obstructions is required. In this section we show that 1082 is
algebraically concordant to a knot J with g3.J /D 2. In the next section we apply
Casson–Gordon theory and twisted Alexander polynomials to show gc.1082/D 4.

The basic facts concerning the knot 1082 are as follows. Its Alexander polynomial is

�1082
.t/D .t4

� 2 t3
C t2
� 2 t C 1/.t2

� t C 1/2:

Based on this and the fact that the knot bounds a Seifert surface of genus 4, we
have g3.1082/D 4. Since this knot has unknotting number 1 (and isn’t slice by the
Fox–Milnor theorem) we have g4.1082/D 1.

We also have that �.1082/D 2. This arises from a jump of the signature function at
the unique root of t4� 2 t3C t2� 2 t C 1 on the unit circle (with positive imaginary
part). The polynomial t2 � t C 1 also has a root on the unit circle, but the signature
function for 1082 does not jump at that root.

Theorem 4.1 In the direct sum decomposition GQ Š
L
ı GıQ , the image of the

algebraic concordance class of 1082 in Gt2�tC1
Q is Witt trivial and 1082 has a 4–

dimensional representative in GQ .

Proof Proceeding as in the examples of the previous section, we can find a basis for
the t2� t C 1 summand and compute a matrix representative of the bilinear form:

M D

2664
�16 �26 12 �4

�26 �40 20 �6

12 20 �12 2

�4 �6 2 0

3775 :
Diagonalizing yields

Qt2�tC1
D

2664
�1 0 0 0

0 1 0 0

0 0 �7 0

0 0 0 7

3775 :
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Clearly, this bilinear form is Witt trivial, but since we have lost track of the isometry,
T t2�tC1 , it is not clear that the full isometric structure is Witt trivial.

To show this isometric structure .Q;T /t
2�tC1 is Witt trivial, we apply the results of

Levine [13]. In brief, the form will be Witt trivial if it is Witt trivial for all completions
of Q; that is, if it is Witt trivial in GR and GQp

for all p , where Qp is the p–adic
rationals. In all cases, to check the triviality, one must further factor the Alexander
polynomial over the field; fortunately, the polynomial t2� t C 1 is quadratic, so that if
it becomes reducible in the field of interest, it factors into linear factors, and in that
case, according to Levine, the isometric structure is automatically Witt trivial. Thus, we
can assume that t2� tC 1 is irreducible and no further decomposition of the isometric
structure is required.

Next, another theorem in [13], based on a theorem of Milnor, states that if the charac-
teristic polynomial of the isometry has even exponent (such as in our case, where the
restriction has characteristic polynomial .t2� t C 1/2 ), then over the reals or p–adics,
the isometric structure is trivial if and only if the associated bilinear form is Witt trivial.
Clearly, with the presence of the alternating signs in the diagonalization, the form, the
extension of Qt2�tC1 over the completion Qp , will be Witt trivial for all p .

The previous theorem shows that .Q;T /t
4�2t3Ct2�2tC1 is a 4–dimensional rational

representative of the algebraic concordance class of 1082 . We have a stronger result.

Theorem 4.2 The algebraic concordance class of 1082 has a 4� 4 integral represen-
tative in GZ .

Proof A general account of the structure of the integral, as opposed to rational,
algebraic concordance group is contained in [27]. The particular tools needed here are
developed in [15].

In the examples of Section 3 we described how the bilinear form for each ı–summand
of an isometric structure is found. That is how the matrix Qt2�tC1 was found in
this section. Once the basis is found for the summand of interest, one can find the
matrix representation of the isometry, restricted to the summand, by usual linear algebra
techniques: apply the transformation to each basis element and express the result in
terms of the basis. If this is done for the t4�2 t3C t2�2 tC1 summand of the rational
algebraic concordance class of 1082 , one gets the following isometric structure.

.Q;T /t
4�2t3Ct2�2tC1

D

0BB@
2664

0 2 0 0

2 0 0 �2

0 0 �4 �2

0 �2 �2 �8

3775 ;
2664

1 1 �1 1

1 0 0 �1

0 0 1 1

�1 0 0 0

3775
1CCA :
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According to Levine [13] (except for a change of sign convention) a Seifert matrix V

with image an isometric structure .Q;T / is given by Q.1CT /�1 , if it exists. In our
case, this yields

V D

2664
0 2 0 2

0 0 0 �2

0 0 �2 0

�2 0 �2 �4

3775 :
Notice that this is not an integral Seifert matrix, since det.V �V t /¤˙1. However, if
we divide all the entries by 2, the resulting matrix, V2 , is a Seifert matrix

V2 D

2664
0 1 0 1

0 0 0 �1

0 0 �1 0

�1 0 �1 �2

3775 :
Multiplication of a Seifert matrix by 2 has the effect on the corresponding isomet-
ric structure of sending .Q;T / to .2Q;T /. Since multiplication by a square (22 )
represents a change of basis and thus doesn’t change the Witt class, multiplication
by 2 induces an involution of the Witt group GF , for all F. We conclude the proof by
observing that V2 is fixed by this involution. Equivalently, we show that W DV ˚�V2

is Witt trivial in GQ , Levine’s rational analog of the integral algebraic concordance
group. As usual, this will be done by mapping the class to the Witt group of rational
isometric structures. This image class in GQ is the direct sum

.V CV t ;V �1V t /˚�.V2CV t
2 ;V

�1
2 V t

2 /:

We have already seen that rationally the isometric structure for 1082 , which we have
been denoting .Q;T /, is Witt equivalent to .V CV t ;V �1V t /. Thus, we want to show
that

W D .Q;T /˚�.V2CV t
2 ;V

�1
2 V t

2 /

is Witt trivial.

The signature function is identically 0, so over the reals the form is trivial. Thus,
to apply Levine’s theorem we need to consider only the p–adics. Levine tells us to
consider all primes p , but according to [15], if W is in the image of GZ and is Witt
trivial in GQp

for all prime divisors of det.W /disc.�W .t//, then W is Witt trivial
over Q. (Here disc denotes the polynomial discriminant. See Livingston [15] or a
standard algebra text such as Dummit and Foote [5] for details.)

For the W we are considering, the only primes that arise are pD 2, pD 3 and pD 7.
(Discriminants are easily calculated using, for instance, Maple, or, for a quartic, by
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hand.) Furthermore, we need to consider only the t4� 2t3C t2� 2t C 1 part of the
class, W t4�2t3Ct2�2tC1 , since we have already seen that W t2�tC1 will be Witt trivial
for all p–adic completions.

The prime p D 7 is easily dispensed with. Since 2 is a square modulo 7, it is also
a square over the 7–adic rationals. Thus, multiplying by 2 does not change the Witt
class of the associated isometric structure.

For the prime p D 3, the polynomial ı D t4� 2t3C t2� 2t C 1 is irreducible in Q3

(it is irreducible modulo 3), and the characteristic polynomial of the isometry in W

is ı2 . Thus, since ı has even exponent, as in the proof Theorem 4.1 we only need to
show that the bilinear form associated to W is Witt trivial. The diagonalizations of
Qt4�2t3Ct2�2tC1 and .V2CV t

2
/ are given by the matrices2664

�7 0 0 0

0 7 0 0

0 0 �14 0

0 0 0 �2

3775 and

2664
�14 0 0 0

0 14 0 0

0 0 �7 0

0 0 0 �1

3775 :
Upon taking the direct sum of the first and the negative of the second, and removing
the elements that occur with their negatives, we arrive at2664

�14 0 0 0

0 �2 0 0

0 0 7 0

0 0 0 1

3775 :

We next require a somewhat detailed analysis of relevant Witt classes over the p–adics.
One reference is Scharlau [25], and Milnor and Husemoller [18] gives much of the
necessary background. There is an isomorphism

@3˚ @
e
3W W .Q3/!W .Z=3Z/˚W .Z=3Z/:

The first map is defined as the homomorphism @p used in Section 3. Upon diagonalizing
and making the entries square free, consider only those diagonal entries that are divisible
by 3, divide by 3 and reduce modulo 3. In the present case there are no such factors.
The map @e

3
is defined similarly, except one considers only those factors that are not

divisible by 3, in our case all the entries. The reduction modulo 3 is2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3775 :
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In W .Z=3Z/ this is Witt trivial. A metabolizer is generated by the vectors .1; 0; 1; 1/
and .0; 1; 1;�1/.

For the even prime p D 2 the maps @2 and @e
2

are not sufficient to determine the Witt
class, so we use a direct argument. To begin, we must first factor the characteristic
polynomial over the 2–adics. However, one can check that t4 � 2 t3C t2 � 2 t C 1

is irreducible modulo 4, and thus is irreducible in the 2–adics. As in the case of
considering the prime p D 3, we are left to check the triviality of the following form
(the same one as above) over the 2–adic rationals, Q2 :2664

�14 0 0 0

0 �2 0 0

0 0 7 0

0 0 0 1

3775 :

If �7 is a square in the 2–adics, that is, if there is a 2–adic a such that a2 D�7, this
form will be Witt trivial; a metabolizer would be spanned by the vectors .1; a; 0; 0/
and .0; 0; 1; a/. A rational integer is a square in Q2 if and only if it is of the form
2nu, where n is even u is an odd integer congruent to 1 modulo 8 (see for instance
Serre [26]). Since �7 is congruent to 1 modulo 8, we are done.

Remark 4.3 A more ad hoc approach to showing that there is a 4� 4 integral repre-
sentative of the algebraic concordance class of 1082 consists of finding a particular
genus 2 knot which is algebraically concordant to 1082 . A computer search reveals
that �942 is one such knot. To prove this, one needs to show that J D 1082 # 942 is
algebraically slice.

Both knots have the same signature function, and hence J D 0 2 GR . Also, the
Alexander polynomial of J is �J .t/D .t

4�2t3C t2�2tC1/2.t2� tC1/2 . As seen
earlier, the image of J in Gt2�tC1

Q is trivial. Thus, we must show that the image in
Gt4�2t3Ct2�2tC1

Q is trivial. As mentioned earlier, according to Levine one now needs
to check triviality in all p–adic completions of Q, but as in the proof of Theorem 4.2,
one need check only at the primes p D 2, p D 3 and p D 7. The actual calculations
are much the same as in the proof of Theorem 4.2 and thus won’t be repeated. However,
we should comment on one aspect of the argument. In defining the isometric structure
of a knot we needed to work with a nonsingular Seifert matrix; that is only required to
define the isometric structure. Thus one can work with the 6� 6 Seifert matrix of 942

given in [2] even though that matrix has determinant 0. The details are not included
here.
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5 Casson–Gordon invariants, twisted polynomials and rib-
bon obstructions

This section is devoted to the proof of the following result, Proposition 3 of the
introduction. Recall that g3.1082/ D 4 and g4.1082/ D 1. Also the Fox–Milnor
theorem applies to show 2� gc.1082/� 4.

Theorem 5.1 There does not exist a knot J with g3.J /� 3 such that 1082 # �J is
slice. In particular, gc.1082/D 4.

5.1 Casson–Gordon invariants

Let K be a knot with p–fold branched cover Mp . For simplicity we assume that p

is a prime. Let �W H1.Mp/! Z=qZ, where q is a prime. In this setting a Casson–
Gordon [1] invariant is defined:

�.K; �/ 2W .Q.�q//˝ZŒ1=q�;

where �q is a primitive q–root of unity. The main theorem of [1] states:

Theorem 5.2 If K is slice, there exists a metabolizer M for the linking form of
H1.Mp/ such that for all � that vanish on M , �.K; �/D 0 2W .Q.�qr //˝ZŒ1=q�;
for some r � 1.

Comments A metabolizer M �H1.Mp/ is a subgroup for which jM j2DjH1.Mp/j

and on which the linking form of H1.Mp/ is identically 0.

Addendum In the case that q is odd or that K is ribbon, it follows from the work
of [1] that one can let r D 1 in the statement of Theorem 5.2. In our case we need to
work with q D 2. This introduces algebraic difficulties that have not appeared in past
work using Casson–Gordon theory. These difficulties seem unavoidable in working
with 1082 , and necessitate a Galois theory argument in the next section.

5.2 Twisted Alexander polynomials

We now summarize the results of Herald, Kirk and Livingston [10] and Kirk and
Livingston [12]. Given the pair .Mp; �/, one lets SMp be the 3–manifold that is the
p–fold cyclic cover of 0–surgery on K . There is an induced character x�W H1. SMp/!

Z=pZ˚Z. Then Q.�q/Œt; t�1� is a module over the group ring ZŒ�1. SMp/� and we
can consider the twisted homology group H1. SMp;Q.�q/Œt; t�1�/ as a Q.�q/Œt; t�1�–
module. This will be a torsion module, and we have the following.
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Definition 5.3 With the notation above, �K ;�.t/ 2 Q.�q/Œt; t�1� is the order of the
module H1. SMp;Q.�q/Œt; t�1�/. It is well-defined up to multiplication by units, that is,
by elements of the form at i .

In [12] it is proved that for q odd, �K ;�.t/ is, roughly, the discriminant of the Casson–
Gordon invariant. From that one can conclude that if K is slice, then for appropriate �,
�K ;�.t/ will factor as f .t/f .t�1/, f 2 Q.�q/Œt; t�1�, (with perhaps an additional
factor of .1� t/ appearing). However, in [12] a direct proof of this factoring condition
is given, and that proof does not make use of the condition that q is odd in attaining a
factoring condition. However, as in the original work of [1], if qD 2 then the factoring
can only be shown to be over the field Q.�qr / for some r . In summary we have:

Theorem 5.4 If K is slice, there exists a metabolizer M for the linking form of
H1.Mp/ such that for all � that vanish on M , �.K; �/D at if .t/f .t�1/.1� t/s for
some a 2Q.�qr /; i 2 Z and f 2Q.�qr /Œt; t�1�, where r is some positive integer. For
� nontrivial, s D 1, and for � trivial, s D 0.

5.3 Homology of covers

To apply Theorem 5.4 we need to understand the metabolizers of the relevant branched
covers of the knots of interest.

Suppose that 1082 is concordant to a knot J with gc.J /� 3. Then by the Fox–Milnor
theorem we have that for some integer a,

�J .t/D .t
4
� 2t3

C t2
� 2t C 1/.at � .a� 1//..a� 1/t � a/:

Theorem 5.5 (1) The homology of the 3–fold branched cover M3.1082/ of S3

over 1082 is given by H1.M3.1082//D Z=8Z ˚ Z=8Z.

(2) The homology of the 3–fold branched cover M3.J / of S3 over J satisfies
H1.M3.J //D Z=2Z ˚ Z=2Z ˚ T , where the order of T is odd.

(3) For each metabolizer M �H1.M3.1084 # �J // there is a nontrivial character
�W H1.M3.1084 # �J //! Z=2Z which vanishes on M and also vanishes on
H1.M3.�J //.

Proof (1) This is a standard calculation in knot theory; see for instance Rolfsen [24].
See also the proof of (2) next.

(2) A theorem of Fox [6] states that the order of the homology of the 3–fold branched
cover of a knot K is given by j�.�3/�.�3/j: From this a direct calculation based on
our given form of �J .t/ yields jH1.M3.J //j D 4.a3 � .a� 1/3/2 . The theorem of
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Plans [22] (see also Rolfsen [24]) states that for odd prime powers p , H1.Mp.K// is
always of the form T1 ˚ T1 for some torsion group T1 . Since a3� .a� 1/3 is odd,
the result follows.

(3) The 2–torsion in H1.M3.1084 # �J // is H2 Š Z=8Z˚Z=8Z˚Z=2Z˚Z=2Z.
We let M2 be the 2–torsion in M : jM2j D 16. For notation, we use the coor-
dinates given by the direct sum decomposition of H2 ; abbreviate v1 D .1; 0; 0; 0/,
v2D .0; 1; 0; 0/, v3 D .0; 0; 1; 0/ and v4 D .0; 0; 0; 1/. A generating set for M2 can
be simplified using a Gauss–Jordan procedure to be of the form

f.a1; b1; c1; d1/; .0; b2; c2; d2/; .0; 0; c3; d3/; .0; 0; 0; d4/g:

If a1 is even, then the character �W H2! Z=2Z that takes value 1 on v1 and 0 on all
other vi vanishes on M2 and H1.M3.�J //, as desired.

If a1 is odd, then b2 must be even, or else the first two generators, .a1; b1; c1; d1/ and
.0; b2; c2; d2/, would generate a subgroup of order 64. If b1 is also even, then we can
let � be the character that takes value 1 on v2 and 0 on all other vi . If b1 is odd, we
can let � be the character that takes value 1 on v1 and v2 , and takes value 0 on v3

and v4 . In either case, � will have the desired properties.

We now wish to compute the twisted polynomial for the � given in the previous theorem.
We state the outcome as the following lemma.

Lemma 5.6 For the character �W H1.M3.1084 # �J //! Z=2Z given above,

�1082 # J ;�.t/D .t
4
� 8t3

C 10t2
� 8t C 1/g.t/g.t�1/

for some g.t/.

Proof By multiplicativity, the twisted polynomial is given by �1082;�1
.t/�J ;�2

.t/;

where �1 and �2 are the two restrictions. Notice that �2 is trivial.

Since J is unknown, computing its general twisted polynomials would be impossible.
In the present case however, �2 is trivial and the twisted polynomial is determined by
the Alexander polynomial of J . The simplest formulation, given in [10], is as follows.
For any polynomial f and prime p we can form the product

Np.f /.t/D

p�1Y
iD0

�J .�p
ix/jxpDt :

(The product on the right will be a polynomial in xp , so the substitution xp D t

does yield a polynomial in t .) Then, according to [10], for the trivial �, we have
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�K ;�.t/DNp.�K .t//, where p is the degree of the covering space; that is, if we are
working with H1.Mp/.

Since we are interested in whether the twisted polynomial factors as f .t/f .t�1/ we
can ignore the pair of factors of �J .t/ that are already of this form and compute
N2.t

4� 2t3C t2� 2t C 1/. The calculation yields

�J ;�2
.t/D .t4

� 8t3
C 10t2

� 8t C 1/g.t/g.t�1/:

(Notice that since we are working with a character to Z2 , the polynomial will be real;
the primitive square root of 1 is �1.)

For 1082 a calculation based on the results of [10] yields

�1082;�1
.t/D .t2

C 2t � 1/.t2
� 2t � 1/.t � 1/2:

Note, this is of the form atkh.t/h.t�1/. Thus, the statement of the lemma follows.

As a consequence, we can now complete the proof of Theorem 5.1.

Proof of Theorem 5.1 If 1082 # J is slice for some J with g3.J /�3, then by Lemma
5.6 the polynomial �.t/ D t4 � 8t3 C 10t2 � 8t C 1 would factor as t2g.t/g.t�1/

in Q.�2r /Œt � for some r . In fact, over Q.�8/, �.t/ does factor into two irreducible
symmetric factors:

�.t/D .t2
C .2�8� 2�3

8 � 4/t C 1/.t2
C .�2�8C 2�3

8 � 4/t C 1/:

These factors however are not complex conjugates; the coefficients are all real.

Thus, if �.t/ does factor as t2g.t/g.t�1/ for some g.t/ 2 Q.�2r / and r � 1, then
�.t/ would factor into linear factors, so that g.t/ would be the product of one linear
factor of each of the two irreducible quadratic factors of �.t/ in Q.�8/Œt �.

In particular, we would have that the splitting field F for �.t/ would be a subfield
of Q.�2r /. The Galois group of the splitting field for �.t/ is the nonabelian dihedral
group with eight elements, as can be computed by Maple. On the other hand, this
Galois group should be a quotient of the Galois group of the extension Q.�2r /, which
is abelian. This gives the desired contradiction.

6 Problems

6.1 Smooth invariants

The distinction between the smooth and topological locally flat category, with respect
to the study of concordance genus, is made clear by the following problem: working in
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the smooth category, find a knot K with �K .t/D 1, and for which gc.K/¤ g4.K/.
Although a host of tools are now available that distinguish smooth and topological
concordance (for instance, based on gauge theory [3], Heegaard Floer homology [21]
and Khovanov homology [23]), it is not clear that any of these can be applied to this
problem.

6.2 Topological obstructions

The results of this paper, including those using Casson–Gordon invariants, apply in
the topological category. In [16] Casson–Gordon invariants were used to analyze the
concordance genus for algebraically slice knots. There should be examples for which
Casson–Gordon methods fail, but for which the techniques of [4] do apply.

To make the issue concrete, here is a specific problem: For every n2 1
2

Z, find a knot K

with g4.K/D 1 such that there exist knots J with g3.J /D 1 and K # �J 2Fn , but
for all such J , K # � J … FnC:5 . Here fFng represents the filtration of C defined
in [4].

6.3 Concordance relations and torsion

The work in this paper is closely related to the problem of finding and obstructing,
concordance relations between low-crossing number knots. For instance, we have seen
that 1082 # 942 is not slice, but is algebraically slice. It remains possible that this knot
represents torsion in the concordance group; that is, k1082Ck942D 02 C for some k .
Many new methods have been applied to obstruct torsion in C , and these have resolved
many of the basic examples taken from the table of low-crossing number knots. See,
for example, Grigsby, Ruberman and Strle [9], Jabuka and Naik [11], Lisca [14] and
Livingston and Naik [17]. New test cases can be found by examining such algebraic
concordance relations.

6.4 (Sub)additive properties of g4 and gc

It is clear that for all K and n� 0, g4.nK/� ng4.K/ and gc.nK/� ngc.K/. Knots
that represent torsion in C can be used to build a variety of examples demonstrating
that the inequality can be strict. For instance, g4.n.31 # 41//D gc.n.31 # 41//D nC� ,
where � D 0 if n is even and � D 1 if n is odd.

Interesting results can be observed by considering, for a fixed knot K , the quotient
g4.nK/=n for n large. For knots that represent torsion in C there is a limiting value:
limn!1 g4.nK/=n D 0. If the 4–genus of a knot is determined by it classical

Algebraic & Geometric Topology, Volume 9 (2009)



184 Charles Livingston

signature (that is, �.K/ D 2g4.K/) then again there is a limiting value: we have
limn!1 g4.nK/=nD g4.K/. This applies for the trefoil knot.

There are more interesting examples. For instance, for the knot K D 81 one has that
g4.K/D g4.2K/D 1 and lim supn g4.nK/=n � 1=2. In fact a limit exists, but it is
unknown whether for this knot, or any knot, the limiting value can be a noninteger.

The same questions can be asked regarding gc , but here there are few tools to employ
beyond basic signature and Alexander polynomial methods. For instance, for the knots
818 , 940 and 1082 , the methods of this paper do not distinguish the limiting behavior
of gc and g4 .
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