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Bitwist 3–manifolds
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W J FLOYD
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Our earlier twisted-face-pairing construction showed how to modify an arbitrary
orientation-reversing face-pairing on a faceted 3–ball in a mechanical way so that the
quotient is automatically a closed, orientable 3–manifold. The modifications were, in
fact, parametrized by a finite set of positive integers, arbitrarily chosen, one integer
for each edge class of the original face-pairing. This allowed us to find very simple
face-pairing descriptions of many, though presumably not all, 3–manifolds.

Here we show how to modify the construction to allow negative parameters, as well
as positive parameters, in the twisted-face-pairing construction. We call the modified
construction the bitwist construction. We prove that all closed connected orientable
3–manifolds are bitwist manifolds. As with the twist construction, we analyze and
describe the Heegaard splitting naturally associated with a bitwist description of a
manifold.

57N10

1 Introduction

In a series of papers [2; 3; 4] we described and analyzed a simple construction of
3–manifolds from face-pairings. If � is an orientation-reversing edge-pairing on a
polygonal disk D , then the quotient space D=� is always a surface. But if � is an
orientation-reversing face-pairing on a faceted 3–ball P , the quotient P=� is not
generally a 3–manifold. (See, for example, Dunfield and Thurston [5, Section 2.7].)
For the twist construction one chooses a positive integer, called the multiplier, for
each edge cycle (equivalence class of an edge under the action of � ). By subdividing
each edge into the product of its multiplier and the size of its edge cycle and then
precomposing � with a twist, one obtains a new faceted 3–ball Q and orientation-
reversing face pairing ı . The fundamental result of the construction is that Q=ı is
always a 3–manifold. Papers [2] and [3] give the basic details of the construction. The
construction is analyzed further in [4], and Heegaard diagrams and surgery diagrams
are given for twisted face-pairing manifolds.
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In this paper we give a modified construction which we call the bitwist construction.
The basic setup is the same, but we allow the edge cycle multipliers to be positive or
negative. Allowing twisting in different directions leads to problems in defining the
new face-pairing ı , but one can resolve this by the appropriate insertion of “stickers”
in the faces of the new faceted 3–ball Q. In Section 2 we give a simple preliminary
example to show how stickers are used in the construction. Following this, we give
the general construction in Section 3. As with the twist construction, the 3–manifolds
constructed from the bitwist construction naturally have a cell structure with a single
vertex. One can easily give presentations for fundamental groups of bitwist manifolds
as in [3, Section 4], but the homology results of [3, Section 6] do not generally hold for
bitwist manifolds. Since Q=ı has a single vertex, some of the results from the twist
construction apply directly to the bitwist construction. In particular, the construction of
Heegaard diagrams and framed surgery descriptions from [4] are valid for the bitwist
construction. This is developed in Section 4. If L is a corridor complex link for an
orientation-reversing face pairing � on a faceted 3–ball P and mul is a multiplier
function for .P; �/, then the bitwist manifold M.P; �;mul/ is obtained by framed
surgery on L, where the face components have framing 0 and an edge component has
framing the sum of its blackboard framing and the reciprocal of the multiplier of its
edge cycle.

After making the leap to negative multipliers, it is natural to inquire about multipliers
with value 0. Allowing edge cycle multipliers to be 0 amounts to collapsing every edge
with multiplier 0 to a point and applying the construction to the resulting complex.
In terms of our surgery description, this amounts to deleting from our framed link
every component with framing 1, an operation which does not change the resulting
manifold. Collapsing edges in general leads to complexes which are no longer 3–balls
– they are cactoids. While we actually do find face-pairings on cactoids interesting and
we do temporarily allow multipliers to be 0 in the proof of Theorem 5.5, for the present
we content ourselves with nonzero multipliers.

The framed surgery descriptions are a primary motivation for developing the bitwist
construction. In order to realize 3–manifolds as twisted face-pairing manifolds or
bitwist manifolds, one wants to be able to change the framings of the edge components.
Suppose L is a corridor complex link for a twisted face-pairing manifold. We still get
a twisted face-pairing manifold if we replace the framing of each edge component by
its blackboard framing plus an arbitrary positive rational number. In Section 5 we show
that using the bitwist construction, we still get a bitwist manifold if we replace the
framing of each edge component by its blackboard framing plus an arbitrary rational
number. This ability to change the signs of the rational numbers gives extra power to the
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construction. Using this, we show in Section 6 that every closed connected orientable 3–
manifold is a bitwist manifold. While we haven’t proved that it is impossible to realize
every closed connected orientable 3–manifold as a twisted face-pairing 3–manifold,
we’ve been unable to realize many 3–manifolds as twisted face-pairing 3–manifolds.
In particular, we haven’t found twisted face-pairing descriptions for the 3–torus or for
any 3–manifold with the geometry of H2 �R.

We give a simple example of the bitwist construction in the next section, and return to
it several times in the later sections. For more detailed examples we refer the reader
to Ackermann’s Master’s thesis [1], where he gives multiple representations of the
Poincaré homology sphere and the 3–torus as bitwist manifolds.

2 A preliminary example

We give a preliminary example to indicate the construction. We start with a simple
model face-pairing � that was considered in [2, Section 2]. Our faceted 3–ball P is a
tetrahedron with vertices A, B , C , and D , as shown in Figure 1. We consider P as
an oriented 3–ball, and for convenience give it an orientation so that in the induced
orientation on the boundary of P the boundary of each 2–cell is oriented clockwise.

A

B

C D

Figure 1: The tetrahedron P

The model face pairing � identifies the triangles ABC and ABD by reflection in the
common edge AB , and it identifies ACD and BCD by reflection in the common
edge CD . In the permutation notation of [2], � is given as follows:

�1W

�
A B C

A B D

�
�2W

�
A C D

B C D

�
:

There are three edge cycles, as follows:

AB
�1
�!AB BC

�1
�! BD

��1
2
��!AD

��1
1
��!AC

�2
�! BC CD

�2
�! CD
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The first edge cycle ŒAB� has length `.ŒAB�/D 1, the second edge cycle ŒBC � has
length `.ŒBC �/ D 4, and the third edge cycle ŒCD� has length `.ŒCD�/ D 1. In the
twisted face-pairing construction, for each edge cycle one chooses a positive integer
mul.Œe�/ called the multiplier. For the bitwist construction, one chooses a nonzero
integer mul.Œe�/, still called the multiplier, for each edge cycle. We use the cycle
lengths and the absolute values of the multipliers to determine how to subdivide the
edges of P . The sign of the multiplier indicates the direction in which we twist edges
in the edge cycle Œe�. If all of the multipliers have the same sign, then we have the
twist construction. For this example, we choose mul.ŒAB�/ D �1, mul.ŒBC �/ D 1,
and mul.ŒCD�/D 1.

We are now ready to replace P by its subdivision Q. We subdivide every edge e of P

into `.Œe�/ � jmul.Œe�/j subedges. We perform these subdivisions so that the face-pairing
� takes subedges to subedges. Let Q0 be the resulting faceted 3–ball. We need to
perform a further modification if the multipliers do not all have the same sign. Let
f be a face of P . Suppose v is a vertex of P in f . Let e1 be the edge of P in
f with terminal vertex v and let e2 be the edge of P in f with initial vertex v . If
mul.Œe1�/ < 0 and mul.Œe2�/ > 0, then we add a sticker (think straight pin with spherical
head) to f at v . That is, we add a new vertex in the interior of f and join it to v
by an edge in f . The faceted 3–ball obtained from P by adding stickers to Q0 as
described above is the subdivision Q. Figure 2 shows the subdivisions Q0 and Q for
this example.

A

B

C D

a1

a2

a3

b1

b2

b3 c1
c2

c3

d1
d2

d3

A

B

C D

a1

a2

a3

b1

b2

b3 c1
c2

c3

d1
d2

d3

vA
vB

Figure 2: The subdivisions Q0 and Q of P

We define a bitwisted face-pairing ı on Q as follows:

ı1W

�
b3 A B vB B a1 a2 a3 C b1 b2

A vA A B d3 d2 d1 D c3 c2 c1

�
I

ı2W

�
c1 A b3 b2 b1 C D c3 c2

B a1 a2 a3 C D d1 d2 d3

�
:
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The underlying idea is that we precompose � with a twist in the positive direction
on an edge which is a subedge of an original edge with positive multiplier, and we
precompose � with a twist in the negative direction on an edge which is a subedge of
an original edge with negative multiplier. This is not well defined on Q0 since adjacent
original edges can have multipliers of different signs, but one can make it well defined
on Q.

Let M DQ=�, where � is the equivalence relation on Q generated by the face-pairing
ı . The computation below shows that M has two 1–cells and a single 0–cell.

b3A
ı1
�!AvA

ı�1
1
��! BA

ı�1
1
��! vBB

ı1
�!Bd3

ı�1
2
��! c1c2

ı�1
1
��! b2b1

ı2
�!

a3C
ı1
�!Dc3

ı2
�! d1d2

ı�1
1
��! a2a1

ı�1
2
��! b3A

b1C
ı2
�! CD

ı2
�!Dd1

ı�1
1
��! a3a2

ı�1
2
��!b2b3

ı1
�!

c1A
ı2
�! Ba1

ı1
�! d3d2

ı�1
2
��! c2c3

ı�1
1
��! b1C

Since M has two 2–cells and a single 3–cell, �.M /D 0 and so M is a 3–manifold.
Figure 3 shows the link of the vertex of M . As for the twist construction, M can also
be obtained as the quotient under the face pairings of a dual faceted 3–ball Q� , and
the boundary of Q� is cellularly isomorphic to the dual of the link shown in Figure 3.
The subdivision of Q� is shown in Figure 4. It is easy to see from Figure 4 or from
the display above that

�1.M /Š hx;yW xx�1x�1xy�1x�1yxyx�1y�1;yyx�1y�1xyxy�1x�1
i

Š hx;yW y�2x�1yxyx�1;y2x�1y�1xyxy�1x�1
i:

We will see in Section 4 that M is the Brieskorn homology sphere †.2; 3; 7/.

3 The bitwist construction

We now give the main construction. In [3] we defined a faceted 3–ball to be a regular
CW complex. Here we follow the more general definition of a faceted 3–ball P given
in [4]. In particular, we do not assume that the 2–cells in @P are regular. As in [4], a
faceted 3–ball P is an oriented CW complex such that P is a closed 3–ball, there is a
single 3–cell and its interior is int.P /, and @P does not consist solely of a 0–cell and
a 2–cell. It follows from this that for each 2–cell f of P , there is a CW structure on a
closed disk Ff such that (i) Ff has a single 2–cell and its interior is int.Ff / and (ii)
there is a continuous cellular map 'W Ff ! f whose restriction to each open cell is a
homeomorphism.
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f .A/

f .B/

f .C /

f .D/

f .vA/

f .vB/

f .a1/

f .a2/

f .a3/

f .b1/

f .b2/

f .b3/

f .c1/

f .c2/

f .c3/

f .d1/

f .d2/

f .d3/

1 1
1

1

1

1

1 1 1

1

1

2 2

2

2

2 2

2

2
2

Figure 3: The link of the vertex of M
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1
2

1

1
2

1
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2
1

2
1

1

1

2

Figure 4: The dual subdivision
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Still following [4], given a faceted 3–ball P we construct a subdivision Ps of P by
barycentrically subdividing @P . The faceted 3–ball Ps is a regular CW complex and
each 2–cell of Ps is a triangle. Since the 2–cells of P may not be regular, a face
pairing � on P is technically a matching of the faces of P together with a face pairing
on Ps which is compatible with it. We still denote by � the face pairing on Ps . We
assume as before that our face-pairings reverse orientation and satisfy the face-pairing
compatibility condition.

Suppose P is a faceted 3–ball and � is a face-pairing on P . We refer to � as a model
face-pairing. There is an equivalence relation � defined on the edges of P that is
generated by the relation e1 � e2 if e2 is the image of e1 under some element of � ;
the equivalence classes are called edge cycles. If Œe� is an edge cycle, we denote its
cardinality by `.Œe�/ and call it the length of Œe�. In addition to .P; �/, the input for
the bitwist construction consists of a multiplier function. The multiplier function is a
function mulW fedge cyclesg ! Z n f0g. An edge e is positive if mul.Œe�/ > 0 and is
negative if mul.Œe�/ < 0.

Suppose we are given a face-pairing .P; �/ together with a multiplier function mul.
We create a subdivision Q of P in two stages. The first stage consists of subdividing
each edge e of P into `.Œe�/ � jmul.Œe�/j subedges to get a subdivision Q0 of P , and
forming the subdivision Q0s of Q0 by barycentrically subdividing @Q0 . We perform
these subdivisions so that � defines a face-pairing �0 on Q0s . The second stage of our
construction of Q consists of adding stickers at some of the corners of the faces of
Q0 . Suppose f is a face of P , and consider a corner of f at a vertex v with edges e

and e0 , labeled such that e0 precedes e . Suppose that e0 is a negative edge and e is
a positive edge. Let a � f be the edge of Q0s which bisects this corner. To Q0 we
add a barycenter u of a and the subedge of a joining u and v . This subedge of a is a
sticker. We continue with this process for all of the corners of all of the faces of P .
The result is a faceted 3–ball Q which is obtained from P by subdividing edges and
adding stickers.

As for P and Q0 , we form the subdivision Qs from Q by barycentrically subdividing
@Q. We do this so that Qs is a subdivision of Q0s . If f is a face of P , we will still
use the name f for the corresponding face in Q; to cut down on the confusion, we
will refer to edges of P in f as original edges and to vertices of P in f as original
vertices. Note that Qs can be obtained from Q0s by splitting certain edges which
connect original vertices to barycenters of faces and then for each split edge inserting a
digon decomposed into four triangles. See Figure 5, where the edge of Q joining u

and v is a sticker. In particular, there is a correspondence between faces of Q0s and
faces of Qs that do not contain subedges of stickers.
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e0 e

v

u

Figure 5: The subdivision of a face of Qs near a sticker

We next define a bitwisted face-pairing ı on Qs . The orientation on P , and hence on
Q and Qs , determines a cyclic order on the boundary of each face f of Q and hence
a cyclic order on the faces of the subdivision fs .

Let f be a face of Q, and let e be an edge of fs which is part of an original edge a of
P . See Figure 6, which shows part of fs and f �1

s for some face f of Q with positive
original edge a. The vertices and edges of f and f �1 are drawn thick for emphasis.
Let t be a face of the subdivision fs which contains e . If a is a positive edge, let ı.t/
be the face of f �1

s which is the second face before the face �0.t/ of f �1
s . If a is a

negative edge, let ı.t/ be the face of f �1
s which is the second face after the face �0.t/

of f �1
s . Figure 7 shows ı.t1/ and ı.t2/ for certain faces t1 and t2 of fs for the case

in which f has a sticker. The faces t1 and t2 both contain an original vertex which is
contained in the sticker. Note that in f �1

s from ı.t1/ to ı.t2/ in the positive direction
there are four faces corresponding to the four faces of fs which contain a subedge of
the sticker. It follows that the definition of ı can be extended to a face-pairing between
fs and f �1

s . Doing this for each face defines a face-pairing ı on Q. Unless the sign
of mul is constant, this will not define a face-pairing on Q0s . In effect we are using the
sign of mul to determine which direction to twist each face of Qs ; the stickers enable
us to make this well defined.

We denote by M.P; �;mul/ the quotient space of Q under the equivalence relation
generated by ı .

Theorem 3.1 Let P be a faceted 3–ball, let � be an orientation-reversing face-pairing
on P , and let mul be a multiplier function for .P; �/. Then M DM.P; �;mul/ is a
closed 3–manifold. Furthermore, as a cell complex M has just one vertex.

Proof The proof of the first assertion is an Euler-characteristic argument analogous to
the argument in [2]. To prove that M is a closed 3–manifold, it suffices to show that
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fs f �1
s

t
e

a

�0.t/

ı.t/

Figure 6: Defining the bitwisted face-pairing ı

fs

t1

t2

f �1
s

�0.t2/

�0.t1/

ı.t1/

ı.t2/

Figure 7: Defining ı near a sticker

�.M /D 0. We do this by determining the number of cells in M of every dimension.
It is clear that M has one 3–cell and that the number of 2–cells is the number of pairs
of faces of Q. So to prove Theorem 3.1, it suffices to prove that M has one 0–cell
and that the number of 1–cells is the number of pairs of faces of Q.
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Every edge of Q is either a sticker or a subedge of an original edge. The discussion
involving Figure 7 shows that the image under ı of a sticker contained in a face f of
Q consists of two edges of f �1 . One of these edges of f �1 is a terminal subedge of
a positive original edge and one is an initial subedge of a negative original edge. The
discussion involving Figure 6 implies that every edge of Q contained in an original
edge is equivalent to an edge e of a face f of Q such that either e is the terminal
subedge of a positive original edge of f or e is the initial subedge of a negative original
edge of f . We conclude that every edge of Q is equivalent to an edge e of a face
f such that either e is the terminal subedge of a positive original edge of f or e is
the initial subedge of a negative original edge of f . Also, if f is a face of Q with a
positive original edge e followed immediately by a negative original edge e0 , then the
terminal subedge of e is equivalent to the initial subedge of e0 by means of a sticker.
Moreover every vertex of Q is equivalent to an original vertex.

Now let e0 be an edge of a face f0 of Q such that e0 is the terminal subedge of a
positive original edge of f0 . Also suppose that the original edge of f0 immediately
following e0 is positive. By considering the ı–orbit of e0 we obtain edges e1; : : : ; en

of faces f1; : : : ; fn of Q and original edges e0
1
; : : : ; e0n with the following properties.

nD `.Œe0i �/
ˇ̌
mul.Œe0i �/

ˇ̌
for i 2 f1; : : : ; ng

e0i � fi \f
�1

i�1 for i 2 f1; : : : ; ng

ei is the i th subedge of e0i relative to fi for i 2 f1; : : : ; ng

We see that fnD f0 , that e0n is the original edge of f0 immediately following e0 , that
en is the terminal subedge of e0n relative to f0 , that e0 and en are equivalent in an
orientation-preserving way, that e1 is the terminal subedge of a positive original edge
of f �1

0
and that none of the edges e2; : : : ; en�1 is the terminal subedge of an original

edge relative to either face containing it. Corresponding statements hold if e0 is an
initial subedge of a negative original edge of f0 .

The previous paragraph implies for every face f of Q that the terminal subedges of
positive original edges of f and f �1 and the initial subedges of negative original edges
of f and f �1 are all equivalent and they are not equivalent to any other such edges
of other faces. This and the results of the next-to-last paragraph establish a bijection
between the 1–cells of M and pairs of faces of Q. Similarly, the last paragraph implies
for every face of Q that its original vertices are equivalent. This and the results of the
next-to-last paragraph imply that M has just one 0–cell.

We denote by Q� the subdivision of P obtained by replacing the multiplier function
mul by �mul.
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Theorem 3.2 Let P be a faceted 3–ball, let � be an orientation-reversing face-pairing
on P , and let mul be a multiplier function for .P; �/. Then the dual of the link of the
vertex of M is isomorphic to @Q� in an orientation-reversing way.

Proof The proof is an adaptation of the arguments for the analogous results in [3]
and [4]. Suppose f is a face of P and e is an edge of P in f . First suppose that e

is a positive edge. Let a be the initial vertex of e relative to f , let b be the terminal
vertex of e relative to f , and let h be the edge of Q preceding e in f . Let x be the
vertex of M . The image of link.a;Q/ in link.x;M / has a vertex corresponding to h,
and this vertex is in a chain of `.Œe�/mul.Œe�/C 1 faces; the first face is the image of
link.a;Q/, the last face is the image of link.b;Q/, and all of the other faces are digons
which are the images of links of vertices of Q that are not vertices of P . Similarly, if e

is a negative edge, a is the terminal vertex of e relative to f , b is the initial vertex of e

relative to f , and h is the edge of Q following e in f , then the vertex corresponding
to h in the image of link.a;Q/ in link.x;M / is in a chain of `.Œe�/ jmul.Œe�/j C 1

faces joining the images of link.a;Q/ and link.b;Q/. So in each case, in the dual of
link.x;M / there is a segment subdivided into `.Œe�/ jmul.Œe�/j edges which joins the
duals of the images of link.a;Q/ and link.b;Q/.

We next need to see how these segments fit together. We suppose for convenience that e

is a positive edge. Let e0 be the edge of P that precedes e in f and let e00 be the edge
of P that follows e in f . If e0 is also a positive edge, then in the dual of link.x;M /

there is a face containing a pair of adjacent segments, subdivided into `.Œe�/mul.Œe�/
and `.Œe0�/mul.Œe0�/ edges. A similar statement holds if e00 is a positive edge. If e0 is a
negative edge, then the edge of Q preceding e in f is a sticker, and is the same as the
edge of Q following e0 in f . This sticker is the edge h of the previous paragraph for
both e and e0 . So in the dual of link.x;M / the segments corresponding to e and e0

are adjacent in some face. If e00 is a negative edge, then the terminal subedge of e in
f and the initial subedge of e00 in f are equivalent to a sticker in the face f �1 , and
so there is a sticker in the dual of link.x;M / between the segments corresponding to
e and e00 . A similar analysis holds if e is a negative edge.

This implies that in the dual of link.x;M / there is a face corresponding to f that is
cellularly homeomorphic to the face corresponding to f in Q� . This correspondence
between faces of Q� and faces of the dual of link.x;M / respects adjacency of faces.
So the dual of link.x;M / is cellularly homeomorphic to @Q� . It follows as in [3] that
this homeomorphism reverses orientation.

Remark 3.3 The proof of Theorem 3.2 interpreted in terms of dual cap subdivision
shows just as in [3] and [4] that the manifolds M.P; �;mul/ and M.P; �;�mul/ are
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homeomorphic by means of a map which establishes a duality between these cell
complexes.

4 Heegaard diagrams for bitwist manifolds

Let M DM.P; �;mul/ be a bitwist manifold, let Q be the corresponding subdivision
of P , and let ı be the corresponding bitwisted face-pairing on Q. As in [4, Section
4], one can construct the edge pairing surface S of .Q; ı/. For each face f in Q,
there is a CW structure on a closed disk Ff such that (i) Ff has a single 2–cell whose
interior is the interior of Ff , (ii) there is a continuous cellular map 'f W Ff ! f

whose restriction to each open cell is a homeomorphism, and (iii) there is a continuous
cellular map  f W Ff ! f �1 whose restriction to each open cell is a homeomorphism.
(And also 'f and  f are compatible with respect to the face-pairing.) Let Y be the
quotient of the union of the 1–skeleton X of Q and the finite union of the complexes
@Ff �Œ0; 1�, one for each pair .f; f �1/, under the equivalence relation generated by the
identifications of .x; 0/ with 'f .x/ and .x; 1/ with  f .x/ for x 2 @Ff . Then Y is an
orientable closed surface, and the dual cap subdivision of Y is the edge pairing surface
S . (See [4, Section 3] for the definition of the dual cap subdivision. The dual cap
subdivision of a 2–complex is obtained from its barycentric subdivision by removing
the edges joining vertices to barycenters of faces.) Edges of S that are contained in X

or disjoint from X are called vertical, and the other edges of S are called diagonal.
Edges of S that are not contained in edges of Y are called meridian edges, and edges
of S contained in edges of Y are called nonmeridian edges.

Theorem 4.1 Let M DM.P; �;mul/ be a bitwist manifold, and let S be the edge
pairing surface for the associated bitwisted face pairing. The union V of the vertical
meridian edges is a basis of meridian curves for S , and the union D of the diagonal
meridian edges is a basis of meridian curves for S . Furthermore .S;V;D/ is a
Heegaard diagram for M .

Proof Since M DQ=ı is a manifold with a single vertex, this follows immediately
from [4, Theorem 4.2.1].

Figure 8 shows the union of @Ff1
� Œ0; 1� and @Ff2

� Œ0; 1� for the example from Section
2, where f1 is the triangle ABC , f2 is the triangle ACD , and the two sides of the
stickers have been identified.

As in [4], the surface S can also be decomposed into edge cycle cylinders. The only
difference from the construction in [4] is that if f is a face of P and e is either a
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Figure 8: @Ff1
� Œ0; 1� and @Ff2

� Œ0; 1� for the example from Section 2

positive original edge which is preceded by a sticker or a negative original edge that is
followed by a sticker, then the sticker is included with that edge in the construction of
the edge cycle cylinder. For example, Figure 9 shows, for the example from Section
2, the edge cycle cylinders. Figure 10 shows, for the same example, the edge cycle
cylinders with the stickers pushed back to be horizontal edges. Note that, in this view,
vertical meridian edges are drawn vertically and diagonal meridian edges are drawn
diagonally. This view makes the effect of adding the stickers more apparent. When
a diagonal meridian edge crosses a sticker, it changes direction. This reflects the
difference in directions of twists corresponding to edge cycles with positive multipliers
and edge cycles with negative multipliers.
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Figure 9: The edge cycle cylinders for the example from Section 2
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Figure 10: Another view of the edge cycle cylinders for the example from
Section 2

Let C be an edge cycle cylinder, where as in Figure 10 we have pushed the stickers
back to be horizontal. Let ˛ (resp. ˛0 ) be a minimal union of vertical (resp. diagonal)
meridian edges that joins the two horizontal ends of C , chosen so that @˛ D @˛0 . Let
ˇ be a simple closed curve in C that separates the ends of C , and let mDmul.E/,
where E is the edge cycle associated to C . Then ˛0 is isotopic rel endpoints to �m.˛/,
where � is a Dehn twist along ˇ . Furthermore, as one repeats this construction for
the other edge cycle cylinders, the directions of the Dehn twists can all be chosen
consistently with respect to an orientation of S .

Theorem 4.2 Let M DM.P; �;mul/ be a bitwist manifold, let S be the edge pairing
surface for the associated bitwisted face pairing, and let V D f˛1; : : : ; ˛ng be the
vertical meridian curves as in Theorem 4.1. Let E1; : : : ;Em be the edge cycles of
� . For each i 2 f1; : : : ;mg let Ci be the edge cycle cylinder associated to Ei and let
�i be a Dehn twist along a simple closed curve in Ci which separates the ends of Ci .
We choose the �i ’s so that they twist in consistent directions with respect to a fixed
orientation of S . Let � D �mul.E1/

1
ı � � � ı �

mul.Em/
m . Then .S;V; f�.˛1/; : : : ; �.˛n/g/

is a Heegaard diagram for M .

Proof This follows immediately from Theorem 4.1 and the discussion in the paragraph
before the statement of the theorem.

The construction of corridor complex links for bitwist 3–manifolds is the same as their
construction in [4, Section 6] for twisted face-pairing manifolds, though the framings
change because of the signs of the multipliers. We first recall the construction of
corridor complex links.

Suppose P is a faceted 3–ball, � is an orientation-reversing face-pairing on P , and
mul is a multiplier function for � . Let M DM.P; �;mul/ be the associated bitwist
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3–manifold. We form a corridor complex for � as follows. We choose a pair f1 and f2

of faces in @P that are matched by � , and choose an edge-path arc in the 1–skeleton of
@P that joins a corner of f1 to its image under � in f2 . We then split this edge-path to
a thin corridor. This gives a new cell structure on @P in which the old faces f1 and f2

have been joined by the corridor into a single face. We do this successively for all of
the face pairs of @P , and call the resulting cell structure on @P the corridor complex
C .

We next describe a link L in S3 in terms of its projection to C . For each face of C

there is an unknotted component of L that lies in one of the old faces that are part of
that face; we call this component a face component. Next consider one of the old faces
f that contains a face component. Each edge of that old face corresponds to an edge
of the corresponding face in the corridor complex. For each such edge e , L contains
an arc which enters the old face from the barycenter of the edge, crosses under the
face component in the old face, crosses over the face component, goes through the
corridor, and ends at the barycenter of the edge �f .e/. These arcs are constructed so
that they have no self-crossings or intersections with other such arcs from that face.
We construct these arcs for each face of the corridor complex. Suppose e is one of
the original edges in P . If e has not been split in the construction of the corridor
complex, then at the barycenter of e we have the ends of the arcs from the two faces
that contain e (or from the face that meets e with multiplicity two). If e has been
split in the construction of the corridor complex, then we join the ends of the two
corresponding arcs by an arc that goes under the arcs in the corridor. The union of all
of these arcs is a finite set of components of L that are called edge components. Each
edge component crosses exactly those edges of C which correspond to an edge cycle
of � . The corridor complex link L is the union of the face components and the edge
components. We call L a corridor complex link for .P; �/. A corridor complex link
for the example from Section 2 is shown in Figure 11. It then follows from Theorem
4.3 and the discussion in [3, Example 7.6] that for this example the bitwist manifold
M is the Brieskorn homology sphere †.2; 3; 7/.

Theorem 4.3 Let M D M.P; �;mul/ be a bitwist 3–manifold, and let L be the
corresponding corridor complex link. Define a framing on L by giving each face
component framing 0 and giving the edge component corresponding to an edge cycle
E the framing mul.E/�1 plus the blackboard framing of the edge component. Then
Dehn surgery on the framed link L yields M .

Proof This follows easily from the proofs of [4, Theorem 6.2.2] and [4, Theorem
6.1.2]. The proof of [4, Theorem 6.2.2] goes through in this greater generality until the
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A
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Figure 11: A corridor complex link for the example from Section 2

last paragraph, when it refers to [4, Theorem 6.1.2]. The statement and proof of [4,
Theorem 6.1.2] go through in this greater generality.

5 Generalizing framings of corridor complex links

In this section we develop some of the machinery needed for the proof of Theorem 6.2.
We first discuss some well-known techniques for changing framed surgery descriptions
of 3–manifolds. We then show that, in a sense made precise in Theorem 5.1, connected
sums of corridor complex links are corridor complex links. Theorem 5.2, that connected
sums of bitwist manifolds are bitwist manifolds, follows easily. We next consider a
special family of face-pairings called reflection face-pairings, and use them to show
that every lens space is a twisted face-pairing 3–manifold. This allows us to prove
Theorem 5.7, which states that if L is a complex corridor link, then for any choices of
framings for the edge components we still get a bitwist manifold by framed surgery.

5.1 Dehn surgery preliminaries

We collect some well-known facts about Dehn surgery which will be used later.

We first discuss Rolfsen twists. They appear in the book by Gompf and Stipsicz [6,
page 162], in the book by Prasolov and Sossinsky [9, Sections 16.4, 16.5, 19.4] as
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Fenn–Rourke moves, and in the book by Rolfsen [10, Section 9.H]. For this let L be a
link in S3 framed by the elements of Q[ f1g. Let J be an unknotted component
of L. Then L n J is contained in a closed solid torus T , which is the complement
in S3 of a regular neighborhood of J . Let � be a right hand Dehn twist of T . Let
n 2 Z. Let L0 be the link gotten from L by applying �n to L nJ . We frame L0 as
follows. If the L–framing of J is r , then the L0–framing of J is 1

nC 1
r

. If K is a

component of L other than J with framing r , then the image of K in L0 has framing
r Cn � lk.J;K/2 , where lk.J;K/ is the linking number of J and K after orienting J

and K arbitrarily. When nD 1, we say that L0 is obtained from L by performing a
Rolfsen twist about J . In general we obtain L0 by performing n Rolfsen twists about
J . We are interested in Rolfsen twists because the manifold obtained by Dehn surgery
on L0 is homeomorphic to the manifold obtained by Dehn surgery on L.

We next discuss slam-dunks [6, page 163]. Let L be a framed link in S3 . Suppose that
one component K of L is a meridian of another component J and that K is contained
in a topological ball in S3 which meets no components of L other than J and K .
Suppose that the framing of J is n 2 Z and that the framing of K is r 2Q[ f1g.
Let L0 be the framed link obtained from L by deleting K and changing the framing
of J to n� 1

r
. We say that L0 is obtained from L by performing the slam-dunk which

removes K . The manifold obtained by Dehn surgery on L0 is homeomorphic to the
manifold obtained by Dehn surgery on L.

5.2 Connected sums of corridor complex links

Here we establish the fact that the links obtained from the corridor construction are
closed under the operation of connected sum in a certain restricted sense.

We begin with two faceted 3–balls P1 and P2 . For i 2 f1; 2g let �i be an orientation-
reversing face-pairing on Pi with multiplier function muli , and Mi DM.Pi ; �i ;muli/.
For i 2 f1; 2g let Li be the link corresponding to Mi as in Theorem 4.3. For i 2 f1; 2g,
let Ci be an edge component of Li and let ei be an edge of Pi which lies in the
�i –edge cycle corresponding to Ci . We assume that either e1 has distinct vertices or
e2 has distinct vertices. Let P 0i be the faceted 3–ball obtained from Pi by replacing ei

with a digon Di for i 2 f1; 2g. See Figure 12. Because either e1 has distinct vertices
or e2 has distinct vertices, we obtain a faceted 3–ball P from P 0

1
and P 0

2
by cellularly

identifying D1 and D2 . We refer to P as a connected sum of P1 and P2 along e1

and e2 . The face-pairings �1 and �2 induce a face-pairing � on P . Except for choices
to be made involving corridors along either e1 or e2 , the corridor constructions for
.P1; �1/ and .P2; �2/ which give rise to L1 and L2 induce a corridor construction
for .P; �/, which gives rise to an unframed link L. The isotopy type of L is uniquely
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determined by L1 , L2 and the identification of D1 and D2 . It is easy to see that L is
a connected sum of L1 and L2 which joins C1 and C2 . We summarize this paragraph
in the following theorem.

ei Di

Figure 12: Replacing ei with a digon Di

Theorem 5.1 Let P1 and P2 be faceted 3–balls with orientation-reversing face-
pairings �1 and �2 . Let L1 and L2 be corresponding unframed corridor complex links.
Let C1 be an edge component of L1 , and let C2 be an edge component of L2 . Let
e1 be an edge of P1 which lies in the �1 –edge cycle corresponding to C1 , and let e2

be an edge of P2 which lies in the �2 –edge cycle corresponding to C2 . Suppose that
either e1 has distinct vertices or e2 has distinct vertices. Let P be a connected sum of
P1 and P2 along e1 and e2 , and let L be the corresponding connected sum of L1 and
L2 which joins C1 and C2 . Then L is an unframed corridor complex link associated
to the orientation-reversing face-pairing on P induced by �1 and �2 .

Proof This is clear from the previous paragraph.

Suppose P1 and P2 are faceted 3–balls. For i 2f1; 2g let �i be an orientation-reversing
face-pairing on Pi and let muli be a multiplier function for �i . Let e1 be an edge in
P1 and let e2 be an edge in P2 such that mul1.Œe1�/Dmul2.Œe2�/. Then the multiplier
functions mul1 and mul2 induce a multiplier function for the face-pairing induced by
�1 and �2 on the connected sum of P1 and P2 along e1 and e2 .

5.3 Connected sums of bitwist manifolds

Theorem 5.2 The connected sum of two bitwist manifolds is a bitwist manifold.

Proof Let P be the faceted 3–ball with just two faces which are degenerate pentagons
as in Figure 13. Let � be the face-pairing on P which fixes the edge common to the
two faces, and let mul be the multiplier function for � indicated in Figure 13. Figure
14 shows a corridor complex and a corridor complex framed link L for � and mul.
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m1 m2

1

Figure 13: The faceted 3–ball P and edge cycle multipliers

1
m1 1

m2 0

1

Figure 14: The framed corridor complex link L

Now let P1 and P2 be faceted 3–balls with face-pairings and multiplier functions
which give rise to bitwist manifolds M1 and M2 . We choose one of the two edges
of P in the �–edge cycle with multiplier m1 , and we form a connected sum P 0

1
of

P and P1 along this edge and any edge of P1 . Next we choose one of the two edges
of P in the �–edge cycle with multiplier m2 . This edge corresponds to an edge of
P 0

1
. We form a connected sum P 0

2
of P 0

1
and P2 along this edge and any edge of P2 .

Theorem 5.1 easily implies that we obtain a twisted face-pairing manifold M which is
the connected sum of M1 , M2 , and a manifold which is obtained by Dehn surgery on
a framed link which consists of two simply linked unknots with framings 0 and 1. This
third connected summand is the 3–sphere. Thus M is the connected sum of M1 and
M2 .

This proves Theorem 5.2.
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5.4 Reflection face-pairings

We next consider face-pairings of a very special sort. We assume that our model faceted
3–ball P can be identified with the closed unit ball in R3 so that the following holds.
The intersection of the unit sphere with the xy –plane is a union of edges of P and the
model face-pairing � on P is given by reflection in the xy –plane. In other words, we
have cell structures on both the northern and southern hemispheres of the unit sphere
in R3 , and the face-pairing maps of the model face-pairing � are given by the map
.x;y; z/ 7! .x;y;�z/, which is therefore a cellular automorphism of P . In this case
we call P a reflection faceted 3–ball, and we call � a reflection face-pairing. Using
the identification of P with the closed unit ball in R3 , we speak of the equator of P

and the northern and southern hemispheres of P .

Let P be a reflection faceted 3–ball with reflection face-pairing � and multiplier
function mul. As in Figure 15, we can describe P , � , and mul using a diagram
which consists of a cellular decomposition of a closed disk together with a nonzero
integer for every edge. We view this closed disk as the northern hemisphere of P .
Hence we have the cellular decomposition of the northern hemisphere of P , which
therefore determines the cellular decomposition of the southern hemisphere of P , and
the integer attached to the edge e is mul.Œe�/. We sometimes allow ourselves the liberty
of attaching 0 to an edge instead of a nonzero integer. Attaching 0 to an edge means
that every edge in the corresponding �–edge cycle collapses to a vertex.

Let P be a reflection faceted 3–ball with reflection face-pairing � . Suppose given a
multiplier function mul for � , and let M be the associated bitwist manifold. Theorem
4.3 describes a framed link in the 3–sphere S3 such that Dehn surgery on this framed
link gives M . In this paragraph we describe another framed link L in S3 such that
Dehn surgery on L also gives M . We construct L as follows. We identify P with
the closed unit ball in R3 as in the definition of reflection faceted 3–ball. For every
edge e of the northern hemisphere of P we choose an open topological ball Be �R3

such that Be \ @P is a topological disk which meets e and is disjoint from every edge
of P other than e . We assume that such topological balls corresponding to distinct
edges are disjoint. For every face f of the northern hemisphere of P we construct
an unknot Cf in the interior of f such that if e is an edge of f , then Cf meets Be .
These unknots are all components of L with framings 0. We call these components of
L face components. Let � 2 f˙1g. Every edge e of P in the northern hemisphere
also gives a component Ce of L, called an edge component, as follows. Let e be an
edge in the equator of P contained in the face f of the northern hemisphere. The
�–edge cycle of e is just feg. We define Ce to be a meridian of Cf contained in Be

with framing �=mul.feg/. Now let e be an edge of the northern hemisphere of P
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not contained in the equator. Let f and g be the faces of P which contain e . Let x

be a point of f \Be separated by Cf from @f , and let y ¤ x be a point of g\Be

separated by Cg from @g . The �–edge cycle of e is E D fe; �f .e/g. We define Ce to
be an unknot in Be with framing �=mul.E/ such that P \Ce is a properly embedded
arc in P \Be joining x and y . This defines L.

Example 5.3 Let P be the reflection faceted 3–ball with reflection face-pairing, and
multiplier function given by the diagram in Figure 15. Figure 16 shows the framed link
L constructed above from these data using � D 1.

p

q

s

t
r

Figure 15: The diagram corresponding to P , � , and mul

1
p

1
q

1
r

1
s

1
t

0

0
0

Figure 16: The framed link L

Theorem 5.4 Let P be a reflection faceted 3–ball with reflection face-pairing � .
Suppose given a multiplier function for � , and let M be the associated bitwist manifold.
Let L be the framed link in S3 constructed above. Then Dehn surgery on L gives M .

Proof Since L is amphicheiral, multiplying all framings by �1 does not change the
resulting manifold. So we may assume that � D 1. We show how to adapt [4, Theorem
6.1.2] to the present situation.

We construct a handlebody H as follows. We still identify P with the closed unit
ball in R3 . Let B be the topological ball which is the closure in S3 of S3 nP . We
construct H by attaching handles to B as follows. Let f and f �1 be faces of P
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paired by � . Then f and f �1 are joined by a vertical circular cylinder. We attach
such a cylinder to B . Doing this for every pair of faces of P yields our handlebody
H . It is clear that the closure in S3 of S3 nH is also a handlebody. We identify the
components of L with curves in @H in a straightforward way.

As in [4, Theorem 6.1.2], let S be the edge pairing surface for the bitwisted face-pairing
ı , let ˛1; : : : ; ˛n be the vertical meridian curves of S , and let ˇ1; : : : ; ˇm be core
curves for the edge cycle cylinders. Then there exists a homeomorphism 'W S ! @H

such that '.˛i/ is the face component of L corresponding to ˛i , this face component
being a meridian of H , for every i 2f1; : : : ; ng. We also have that the edge components
of L are parallel copies of '.ˇ1/; : : : ; '.ˇm/. The framing determined by @H of
every edge component of L is 0. Just as in the proof of Theorem 4.3, the statement
and proof of [4, Theorem 6.1.2] go through in this greater generality. So Dehn surgery
on L gives M .

5.5 Lens spaces

In this subsection we show that every lens space is a twisted face-pairing manifold. We
will use this in the proof of Theorem 5.7.

We begin by defining a scallop. A scallop is a reflection faceted 3–ball P (defined in
Section 5.4) whose northern hemisphere has a cell structure essentially as indicated in
Figure 17. More precisely, every vertex of a scallop P lies on the equator of P , P

contains a vertex v such that every edge of P not contained in the equator of P joins
v with another vertex, and every vertex of P other than v is joined with v by at least
one edge. So the northern hemisphere of a scallop might consist of just a monogon.
Otherwise it is subdivided into digons and triangles, in which case it has at least two
digons, but it may have arbitrarily many digons.

Figure 17: Top view of a scallop

Theorem 5.5 Let P be a scallop with k faces in its northern hemisphere. Let �
be a reflection face-pairing on P , let mul be a multiplier function for � , and let
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M DM.P; �;mul/. Suppose that P , � , and mul are given by the diagram in Figure
18, where m1 > 0, mk > 0, and mi � 0 for i 2 f2; : : : ; k � 1g. (If a multiplier is 0,
then the corresponding edge in Figure 18 collapses to a vertex of P .) Define integers
a1; : : : ; ak so that a1 Dm1 if k D 1 and if k > 1, then a1 Dm1C 1, ak Dmk C 1,
and ai D mi C 2 for i 2 f2; : : : ; k � 1g. Then there exist relatively prime positive
integers p � q such that M is homeomorphic to the lens space L.p; q/, where

p

q
D Œa1;�a2; a3; : : : ; .�1/kC1ak �D a1�

1

a2�
1

a3� � � � �
1

ak�1�
1

ak

:

(It is possible that p D q D 1, in which case we obtain the 3–sphere.) Furthermore,
given relatively prime positive integers p and q with p � q , then there exists a unique
sequence of integers m1; : : : ;mk as above such that the above continued fraction equals
p=q .

m1

m2

m3

m4 m5

mk

1

1

1
1

1

1

Figure 18: The diagram for P , � and mul

Proof Theorem 5.4 implies that M is given by Dehn surgery on the framed link in
Figure 19, where for convenience we have chosen � D�1. We repeat that if mi D 0

for some i 2 f2; : : : ; k � 1g, then the corresponding edge in Figure 18 collapses to a
vertex of P . In this case the corresponding component of the link in Figure 19 is to be
removed. This is consistent with the fact that any component with framing 1 may
be removed from a framed link without changing the resulting manifold. We next use
Kirby calculus to simplify the framed link in Figure 19. For every i 2 f1; : : : ; kg we
perform the slam-dunk which removes the component with framing �1=mi . In doing
this, the component linked with the given component acquires the framing mi . We
next perform a Rolfsen twist about every component shown in Figure 19 with framing

Algebraic & Geometric Topology, Volume 9 (2009)



210 J W Cannon, W J Floyd and W R Parry

�1. Every such component is then removed, and 1 is added to the framing of the
components linked with it. The resulting framed link is shown in Figure 20. It follows
from Rolfsen [10, page 272], from Prasolov and Sossinsky [9, page 108] or just by
iterating slam-dunks that M is the lens space as stated in Theorem 5.5.

�
1

m1

�
1

m2

�
1

m3

�
1

m4
�

1
m5

�
1

mk

0

0

0

0 0

0

�1

�1

�1

�1

�1

�1

Figure 19: The framed link corresponding to Figure 18

a1 a2 a3 a4 a5 ak

Figure 20: Dehn surgery on this framed link gives M

The uniqueness statement is well known. For this, first note that if k D 1, then a1 is an
arbitrary positive integer. If k > 1, then a1; : : : ; ak are arbitrary integers with ai � 2

for i 2 f1; : : : ; kg. Given p and q , we calculate a1; : : : ; ak by modifying the division
algorithm usually used to calculate continued fractions. Instead of taking the greatest
integer less than or equal to our given number, we take the least integer greater than or
equal to our given number. The details are left to the reader.
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Corollary 5.6 Every lens space is a twisted face-pairing manifold.

5.6 Changing the framings

Suppose given an orientation-reversing face pairing � on a faceted 3–ball P . In Section
4 we construct a corridor complex link L by means of link projections. The face
components of L correspond to the face-pairs of � , and the edge components of L

correspond to the edge cycles of � . Given the extra information of a multiplier function
mul, we define framings on the components of L. We define the framing of each face
component to be 0. If C is an edge component, then we define the framing of C to be
the blackboard framing of C plus mul.E/�1 , where E is the edge cycle corresponding
to C . By Theorem 4.3, performing Dehn surgery on L with this framing obtains our
bitwist manifold M.P; �;mul/. The following theorem states that if we redefine the
framing of L by replacing each framing of an edge component by an arbitrary rational
number, then Dehn surgery on L still obtains a bitwist manifold (usually constructed
from a different faceted 3–ball).

Theorem 5.7 Let L be an unframed corridor complex link. We frame L as follows.
Let C be a component of L. If C is a face component, then we define the framing
of C to be 0. If C is an edge component, then we define the framing of C to be an
arbitrary rational number. Then Dehn surgery on L with this framing obtains a bitwist
manifold.

Proof Let P be a faceted 3–ball and let � be an orientation-reversing face pairing
on P such that L is a corridor complex link for .P; �/. Let E1; : : : ;Em be the
edge cycles, and let C1; : : : ;Cm be the corresponding edge components of L. For
i 2 f1; : : : ;mg, let bi be the blackboard framing of Ci and let ˛i 2Q such that biC˛i

is the framing on Ci . Let N D fi 2 f1; : : : ;mgW ˛i is not the reciprocal of an integerg.

Suppose given i 2 f1; : : : ;mg. If i … N , then we define the multiplier of Ei to be
mul.Ei/ D 1=˛i . If i 2 N , we in effect change the framing of Ci by “attaching a
scallop” to our model faceted 3–ball, proceeding as follows.

Suppose that i 2N and ˛i � 0. Let ri D 1=.1� ˛i/, and let a1; : : : ; ak be positive
integers with aj � 2 if k > 1 such that ri D Œa1;�a2; a3; : : : ; .�1/kC1ak �. As in
Theorem 5.5, define m1; : : : ;mk by m1 D a1 if k D 1 and, if k > 1, m1 D a1 � 1,
mk D ak�1, and mj D aj �2 for j 2 f2; : : : ; k�1g. Let Pi be the reflection faceted
3–ball shown in Figure 21, and let �i be the associated reflection face-paring. Define
the multiplier of Ei to be mul.Ei/D 1, and define the multiplier function on .Pi ; �i/

as indicated in Figure 21.
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�m1

�m2

�m3

�m4 �m5

�mk

1

�1

�1

�1
�1 �1

�1

Figure 21: The reflection faceted 3–ball Pi when i 2N and ˛i � 0

Now suppose that i 2 N and ˛i > 0. Let ri D 1=.1C ˛i/, and let a1; : : : ; ak be
positive integers with aj � 2 if k > 1 such that ri D Œa1;�a2; : : : ; .�1/kC1ak �. As
in Theorem 5.5, define m1; : : : ;mk by m1 D a1 if k D 1 and, if k > 1, m1 D a1�1,
mk D ak�1, and mj D aj �2 for j 2 f2; : : : ; k�1g. Let Pi be the reflection faceted
3–ball shown in Figure 22, and let �i be the associated reflection face-paring. Define
the multiplier of Ei to be mul.Ei/D�1, and define the multiplier function on .Pi ; �i/

as indicated in Figure 22.

m1

m2

m3

m4 m5

mk

�1

1

1

1
1 1

1

Figure 22: The reflection faceted 3–ball Pi when i 2N and ˛i > 0

We now construct the faceted 3–ball P 0 and orientation-reversing face-pairing �0 by
repeated connect sums of P with the faceted 3–balls Pi for which i 2N . For each
i 2N , we do this via an edge in the edge cycle corresponding to Ci and the edge in
Pi which is immediately to the left of the top vertex in Figure 21 or 22. Since the
multipliers are compatible on edge cycles that are amalgamated, they define a multiplier
function for �0 .

We next construct a framed corridor complex link for .P 0; �0/. If i 2N and ˛i � 0,
then the link Ki shown in Figure 23 is a framed link for .Pi ; �i/ as in Figure 19. This
framed link is in fact isotopic to a framed corridor complex link for .Pi ; �i/. If i 2N
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and ˛i > 0, then one gets a framed corridor complex link Ki from the link in Figure
23 by multiplying the framing of each component by �1. By repeated applications of
Theorem 5.1, one gets a framed corridor complex link J for .P 0; �0/.

Suppose i 2N and ˛i � 0. Figure 24 shows part of J corresponding to Ki . As in
the proof of Theorem 5.5, we can simplify this to obtain the framed link in Figure 25.
Again as in the proof of Theorem 5.5, by performing k�1 slam-dunks, we may reduce
J to the framed link in Figure 26. A similar argument holds if i 2 N and ˛i > 0,
except that the framing of the meridian component is �ri instead of ri .

1

�
1

m1

�
1

m2

�
1

m3

�
1

m4
�

1
m5

�
1

mk

0

0

0

0 0

0

�1

�1

�1

�1

�1

�1

Figure 23: The framed link Ki when ˛i � 0

Finally, one performs a slam dunk for each i 2N . If ˛i � 0, then the framing of Ci

becomes

bi Cmul.Ei/
�1
�

1

ri
D bi C 1� .1�˛i/D bi C˛i :

If ˛i > 0, then we have bi � 1C .1C˛i/D bi C˛i . So Dehn surgery on the framed
link L is a bitwist manifold.
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Ci

biC1

0 0 0�1 �1 �1

�
1

m1
�

1
m2

�
1

mk

Figure 24: Part of the framed link J

Ci

biC1
a1 a2 a3 ak

Figure 25: Simplifying the framed link J

Ci

biC1

ri

Figure 26: Simplifying the framed link J

6 Realizing 3–manifolds as bitwist manifolds

In this section we show that every closed connected orientable 3–manifold is a bitwist
manifold.

Let B be a braid with n strands. Following Prasolov and Sossinsky [9], we consider
the strands of B as joining the points Ai D .i; 0; 0/ and Bi D .i; 0; 1/ in R3 , 1� i � n.
The closure of B is a link in S3 DR3[f1g obtained by joining each Ai and Bi by
an arc such that the projections of these arcs on the xz–plane are disjoint from each
other and from the projection of B onto the xz–plane. By a generalized closure, we
only assume that the endpoints fAi W 1� i � ng[fBi W 1� i � ng are joined by n arcs
whose projections are disjoint from each other and from the projection of B . This
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agrees with the definition of closure given by Kawauchi [7], but is more restrictive than
that because we are not allowing any more crossings in the projection.

Lemma 6.1 Every link L is a generalized closure of a pure braid.

Proof Let L be a link in R3 , and let � W R3! R be the projection onto the third
coordinate. Then L can be isotoped so that, for some integer n, the height function
on L has n local maxima, which lie in ��1..1;1// and n local minima, which lie
in ��1..�1; 0//. Furthermore, we can assume that L intersects the xy–plane in
the points Ai D .i; 0; 0/, 1 � i � 2n , L intersects the plane z D 1 in the points
Bi D .i; 0; 1/, 1� i � 2n, and all crossings of the projection of L onto the xz -plane
lie in ��1.Œ0; 1�/. (This follows, for example, from Alexander’s theorem, which states
that L can be represented as the closure of an n–strand braid.) For convenience, we
call the components of L\��1.Œ0; 1�/ the strands of L, we call the components of
L\��1.Œ1;1// the tops of L, and we call the components of L\��1..�1; 0�/ the
bottoms of L. We first isotope L to a link L1 so that there is a strand of L1 joining
A1 and B1 and so that there is a top of L1 joining B1 and B2 . This can be done
by sliding tops past each other and possibly introducing a crossing in the projection
of one top to change the order of its endpoints in the projection. If the strand of L1

descending from B2 ends at A2 , then we repeat this process starting with the strand
rising from A3 . Otherwise, by sliding bottoms of L1 past each other and possibly
adding a crossing in the projection of one bottom of L1 , we can isotope L1 to a link
L2 such that there is a strand of L2 joining A1 and B1 , there is a top of L2 joining
B1 and B2 , there is a strand of L2 joining B2 and A2 , and there is a bottom of L2

joining A2 and A3 . One next considers the strand rising from A3 . One can continue
this process to isotope L to a generalized closure of a pure braid with 2n strands.

We next consider generators for the pure braid group. Let Kn be the pure braid group
of isotopy classes of n–stranded pure braids. Given 1� i < j � n, let bi;j be the pure
braid obtained by doing a full twist on the collection of strands from the i th to the j th .
Then (if the directions of twisting are chosen properly) aij D bi;j b�1

iC1;j
is a pure braid

for which the i th strand goes in front of the k th strands, i < k � j , and then behind
the k th strands, i < k � j . Since the elements aij , 1� i < j � n, generate the pure
braid group, the elements bi;j , 1� i < j � n, generate the pure braid group.

Theorem 6.2 Every closed connected orientable 3–manifold is a bitwist 3–manifold.

Proof Suppose M is a closed connected orientable 3–manifold. By the Dehn–
Lickorish theorem, M can be obtained by Dehn surgery on a framed link L. By
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Theorem 5.2 we can assume that L is not a split link. By Lemma 6.1, L is a generalized
closure of a pure braid B . We write B in terms of the generators bi;j . We now view
our projection of L as lying in the plane R2 . We view the braid B as lying in a
rectangle R, with its strands joining the top and the bottom. The generators of B lie in
subrectangles which stack together to give the rectangle R. Choose such a subrectangle
Qg corresponding to a generator g of B . See Figure 27.a). Then g is a full twist
on a set of consecutive strands of the braid in Qg . Let Rg be a subrectangle of Qg

which contains only the consecutive strands that are twisted in g . We next attach a
rectangular block to R so that the bottom of the block is on Rg . The side of the block
facing the top of R is the front of the block, and the side of the block facing the bottom
of R is the back of the block. We replace the strands of Rg that are twisted by parallel
strands that go over the front of the block, along the top of the block, and then back
down the back of the block. We also drill out a hole in the block that goes through the
sides. See Figure 27.b). In effect, we have added a handle to the surface, and have
replaced g by a trivial braid which goes over the handle. We also choose a circle for
the boundary of the block’s hole, and we choose a meridian for the handle. We expand
the meridian slightly so that it links the arcs that go over the handle and the circle in
the boundary of the hole. See Figure 27.c). We choose framing 0 for the meridian,
and framing ˙1 (depending on the direction of twist of the generator) for the circle in
the boundary of the hole. We shrink the block slightly so that blocks corresponding to
different subrectangles are disjoint. Doing this for each generator while maintaining
the framings of the components of L gives a framed link L0 . Let S be the surface
obtained from the 2–sphere R2[f1g by adding a handle as described above for each
generator of B .

If we perform a slam-dunk on each circle along the boundary of a hole, then the effect
on L0 is to delete those circles and to change the framing on each of the meridian
circles to ˙1. If we now perform a Rolfsen twist along each of the meridian circles,
then we recover the original link L, but with framings changed by sums and differences
of squares of linking numbers of the meridian curves and the components of L. Hence
if we change the framings on L0 by adding an appropriate integer to each of the
components of L, we get a framed link L00 such that M is obtained from the 3–sphere
by surgery on L00 . By Theorem 5.7, to prove Theorem 6.2 it suffices to prove that L0

is a corridor complex link whose face components are the meridians.

To get a face pairing, we cut open the surface S along the meridians. If there are n

meridians, the result is a 2–sphere with 2n paired holes and disjoint arcs joining their
boundaries. We attach a disk to every hole to obtain a 2–sphere S 0 . Since L is not
a split link, the connected components of the complement in S 0 of the union of the
arcs and closed disks are all simply connected. The link in Figure 28 gives rise to the
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(a) (b) (c)

Qg
Rg

Figure 27: Steps in the construction of L0

surface with curves in Figure 29 (which is taken from [4]). Figure 30 shows the result
S 0 of cutting open S and attaching disks. We fatten each arc to a quadrilateral, foliated
by arcs parallel to the core arc, so that adjacent quadrilaterals touch on the boundaries
of the 2n disks. See, for example, Figure 31. We now collapse to a point each leaf in
a quadrilateral and the closure of each region in the complement of the union of the
paired disks and foliated quadrilaterals. By Moore’s theorem [8] the quotient space
S 00 is a 2–sphere, with a cell structure that consists of a vertex for each collapsed
complementary region, an edge for each collapsed foliated quadrilateral, and a face
for each of the 2n paired disks. We define a face-pairing on the quotient space S 00

in a straightforward way. This defines a face-pairing � for a faceted 3–ball P whose
boundary is the 2–sphere S 00 . For the example above, this is shown in Figure 32. By
construction, L0 is a corridor complex link for .P; �/.
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Figure 28: The link L0 for a simple example
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Figure 29: The surface S with meridians and nonmeridian link components
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Figure 30: Cutting open the surface S to get S 0
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